Tertiary Conformational Transition In Horse Haemoglobin Induced By Inositol Hexakisphosphate

Omolola E Omotosho¹, Kehinde O. Okonjo², Victor T. Omotosho³, Solomon O. Rotimi¹ and Shalom N. Chinedu¹

¹ Dept. of Biological Sciences, Covenant University, Ota, Nigeria
² Dept. of Chemistry, Covenant University, Ota, Nigeria
³ Dept. of Physics, Covenant University, Ota, Nigeria

The red blood cell of the domestic horse contains two haemoglobin types. The two haemoglobins were separated on a column of carboxymethylcellulose. The equilibrium constant, K_{equ}, for the reaction of 5,5′-dithiobis(2-nitrobenzoate) — DTNB — with the CysF9β sulfhydryl group of each haemoglobin was determined at 25°C as a function of pH. The reactivity of CysF9β is affected by allosteric effectors such as the proton (H⁺) and inositol hexakisphosphate (inositol-P₆). Between pH 5.6 and 9.0 K_{equ} decreased by about two to four orders of magnitude, demonstrating that H⁺ is a heterotropic allosteric effector of haemoglobin with respect to its reaction with DTNB. Inositol-P₆ also decreased K_{equ} by about two to four orders of magnitude across the experimental pH range. CysF9β exists in two tertiary conformations, r and t, in dynamic equilibrium.

K_{rt}, the equilibrium constant for the $r \leftrightarrow t$ conformational transition, was determined for each of the two horse haemoglobins from an analysis of the pH dependence of K_{equ}. The calculations from the pH dependence of K_{equ} showed that the pK_a values of the ionisable groups coupled to the DTNB reaction vary between 5.0 and 8.9. The equilibrium constants, K_{rt}, for the $r \leftrightarrow t$ tertiary structure transition, were 0.143 ± 0.05 and 0.446 ± 0.22 for the fast and slow stripped horse haemoglobins respectively. In the presence of inositol–P₆, K_{rt} for the fast and slow were 2.219 ± 0.79 and 2.214 ± 0.83 respectively. The results show that inositol–P₆ increases the relative population of the t tertiary conformation. So, it increases the affinity of CysF9β by changing the relative distribution of two protein conformations.