Propensity for Diabetes and Correlation of its Predisposing Factors in Ota, Nigeria

1E.E.J. Iweala, 1,2S.N. Chinedu, 1,3T.S. Afolabi, 1,4O.O. Ogunlana, 1,5D.E. Azuh, 1,2V.C. Osamor and 4,5T.A. Toogun

Body Mass Index (BMI) and Random Blood Glucose (RBG) are considered important predisposing factors for type 2 diabetes mellitus in adults. This study assessed the propensity to become diabetic based on the relationship between Body Mass Index (BMI), Random Blood Glucose (RBG), gender and age in a community in South western Nigeria. The study included a convenient sample size of 140 healthy adult individuals who met the inclusion criteria. Anthropometric indices including height and weight were measured and Blood samples analyzed for random blood glucose. A significant positive correlation was observed (r = +0.32) between BMI and RBG in females while there was no correlation in the males (r = -0.05). The males were found to be less likely to be diabetic than the females. The relationship between age and RBG was significantly positive in both males and females. The study confirms the hypothesis that a positive correlation exist between BMI and RBG but only in women. This suggests that other causes including sex could predispose to diabetes and reiterates the diabetogenic effect of adiposity.

Key words: Body mass index, obesity, random blood sugar, age, diabetes mellitus
INTRODUCTION

Body Mass Index (BMI) associated with a healthy body weight is the ratio of weight in kilograms to the square of height in meters (kg m⁻²) (Hu, 2008). Persons can be categorized as underweight, normal, overweight and obese based on BMI ranges of ≤18.4, 18.5-24.9, 25 to 29.9 and ≥30, respectively (Sturm, 2007; World Health Organization, 1997). A high BMI value is due to genetic and environmental factors and is considered a risk factor for several diseases and medical problems including heart disease, stroke and carcinomas (Whitlock et al., 2009; Yang et al., 2007; Grundy, 2004). A raised fasting or random blood glucose level is associated with type 2 diabetes mellitus, a disease caused by both genetic factors and lifestyle linked to obesity (Sheeloson et al., 2007; Bray, 2004). A positive correlation is generally assumed to exist between BMI and Random Blood Glucose (RBG) levels (Diaz et al., 2007). According to a World Health Organization (WHO) study group and American Diabetes Association (ADA), various un-standardized random blood sugar values can be used in diagnosis and classification of diabetes. RBG above 200 mg dL⁻¹ is classified as likely to be diabetic, less than 200 mg dL⁻¹ as uncertain to be diabetic and less than 80 mg dL⁻¹ as unlikely to be diabetic (World Health Organization, 1985). RBG between 70-140 mg dL⁻¹ is normal, 140-200 mg dL⁻¹ is pre-diabetes and above 200 mg dL⁻¹ is diabetes (American Diabetes Association, 2006). Generally prevalence and complications of diabetes is more pronounced in females than males as result of gender associated adiposity (World Health Organization, 2002; Ikos et al., 1997; Howard et al., 1998; Wishner, 1996). Overweight and obesity are risk factors in the pathogenesis of type 2 diabetes due to insulin resistance and excess cortisol (Steppan et al., 2001; Cornell et al., 1986). Obesity and diabetes have become major global public health challenges (Fauci et al., 2008; World Health Organization, 2005). Globally, there is increase in incidence of type 2 diabetes especially in developing countries due to changing trend of urbanization and lifestyles (Wild et al., 2004; Kenny et al., 1995). This study was undertaken to assess the propensity for diabetes based on the association between BMI and Random Blood Glucose (RBG) in an adult community in Nigeria.

MATERIALS AND METHODS

Study subjects and setting: This study was done in April, 2012 at Iyesi, a small semi urban community located in Ota, Ogun State, South west Nigeria after obtaining approval and permission from relevant government agencies and Covenant University Institutional ethics Committee.

Inclusion criteria: The study group included 140 apparently healthy individuals aged between 20-70 years old and randomly selected to participate in a community health impact programme. They were enlisted on a voluntary basis after obtaining their informed consent. Pregnant women and psychiatric subjects were excluded from the study.

Anthropometric measurement: The weight in kilogram (kg) was taken with a Produe™ digital balance and height was measured in meters (m) with a standard meter rule. The BMI for each subject was calculated by using the standard formula (weight in kilograms divided by square of height in meters).

Random blood glucose measurement: Blood samples were collected by pricking the finger and Random Blood Glucose (RBG) levels estimated using one touch® glucometer.

Statistical analysis: Data is expressed as Mean±SD and analyzed with SPSS version 15. One way ANOVA followed by Tukey’s test and Pearson’s correlation coefficient (r) were used for comparing the variables determined. The p<0.05 was considered statistically significant.

RESULTS

Out of the total subjects assessed, 34% were male and 66% were female with a mean age of 42.4±11.04 and 38.0±11.78 years, respectively. From Table 1, the mean RBG and BMI of the female subjects were 109.8±39.5 mg dL⁻¹ and 26.1±5.84 kg m⁻² while that of the male subjects were 122.5±93.6 mg dL⁻¹ and 26.5±6.84 kg m⁻², respectively. The results showed that the female had lower RBG levels and BMI than the males. Table 2 shows that 12.4% of females were less likely to be diabetic as compared to 86.3% of males. Generally most of

Table 1: Measures of predisposing factors for diabetes in the subjects

<table>
<thead>
<tr>
<th></th>
<th>Total (N)</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg m⁻²)</td>
<td>89</td>
<td>17.04</td>
<td>46.39</td>
<td>26.1±5.95</td>
</tr>
<tr>
<td>RBG (mg dL⁻¹)</td>
<td>89</td>
<td>57.00</td>
<td>305.00</td>
<td>109.8±39.5</td>
</tr>
<tr>
<td>AGE (years)</td>
<td>89</td>
<td>20.00</td>
<td>70.00</td>
<td>38.0±11.78</td>
</tr>
<tr>
<td>Males</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg m⁻²)</td>
<td>51</td>
<td>19.01</td>
<td>61.57</td>
<td>25.9±6.14</td>
</tr>
<tr>
<td>RBG (mg dL⁻¹)</td>
<td>51</td>
<td>67.00</td>
<td>590.00</td>
<td>122.5±93.5</td>
</tr>
<tr>
<td>AGE (years)</td>
<td>51</td>
<td>22.00</td>
<td>64.00</td>
<td>42.4±11.05</td>
</tr>
</tbody>
</table>
Table 2: Percentage classification of diabetes in the subjects (World Health Organization, 1985; American Diabetes Association, 2006)

<table>
<thead>
<tr>
<th>Gender</th>
<th>Less likely to be diabetic (<80)</th>
<th>Uncertain to be diabetic (≥80 - <200)</th>
<th>Likely to be diabetic (≥200)</th>
<th>Below normal (≤70)</th>
<th>Normal (70-140)</th>
<th>Pre-diabetes (140-200)</th>
<th>Diabetes (≥200)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td>89</td>
<td>12.4</td>
<td>85.4</td>
<td>2.2</td>
<td>2.3</td>
<td>2.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Males</td>
<td>51</td>
<td>86.3</td>
<td>7.8</td>
<td>5.9</td>
<td>2.0</td>
<td>9.8</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Table 3: Percentage classification of obesity in the subjects (World Health Organization, 1985)

<table>
<thead>
<tr>
<th>Gender</th>
<th>Underweight (<18.5)</th>
<th>Normal (18.5-24.9)</th>
<th>Overweight (25-29.9)</th>
<th>Obese (≥30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td>3.6</td>
<td>37.1</td>
<td>39.3</td>
<td>18.0</td>
</tr>
<tr>
<td>Males</td>
<td>1.0</td>
<td>41.2</td>
<td>49.0</td>
<td>9.8</td>
</tr>
</tbody>
</table>

Table 4: Relationship between predisposing factors for diabetes in the subjects

<table>
<thead>
<tr>
<th>Gender</th>
<th>RBG (mg dl⁻¹)</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>-0.32**</td>
<td>+0.21</td>
</tr>
<tr>
<td>RBG</td>
<td>-0.05</td>
<td>-0.11</td>
</tr>
<tr>
<td>Males</td>
<td>-0.07**</td>
<td>-0.37**</td>
</tr>
</tbody>
</table>

**Correlation coefficient (r) significant at p<0.01 level (2-tailed).

This study showed that BMI was positively correlated with RBG in female subjects while it was negative for males. This is similar to observations reported by other researchers (Jhanghorbani et al., 1992; Bakari et al., 2006; Shrivastava et al., 2011). Gender and genetic differences in glucocorticoids homeostasis, sex hormones and tissue metabolism may affect the relationship between obesity and diabetes which may explain the different types of association observed in males and females (Andrew et al., 1998; Raven and Taylor, 1995). Other factors including race may also suggest this trend in Nigerians (Bakari and Onyenekwa, 2004). Obesity is usually more pronounced in females than males (World Health Organization, 2002; Kumar, 1996). Overweight and obese women are more at risk for diabetes than males due to genetic and environmental factors (Goh et al., 2009; Laskey et al., 2002). The observed positive correlation between BMI and RBG in female subjects underlies a strong relationship between overweight and impaired glucose regulation. This observation indicates the role of normal weight in the prevention of diabetes and overall maintenance of good health. The deleterious changes seen with type 2 diabetes is usually reversed by weight loss managed by nutrition and exercise (Felber, 1992; Knowler et al., 1991). The strong association between age and RBG is indirectly related to increase in BMI with age which results in insulin resistance to glucose (Kahn et al., 2006).

The study also revealed isolated high RBG levels in some of the subjects which can be associated with type 2 diabetes. Such subjects could be unaware of their undiagnosed diabetic condition as a result of lack of access to constant medical screening and check up. Most of the subjects including males and females were overweight and therefore have a propensity to become diabetic. This could be attributed to patterns of dietary habits and lifestyles. However, the males were less likely to be diabetic than the females which could be due to their engagement in more physical lifestyles as compared to females (Henriksson, 1995; Lau et al., 2007). This was seen in the negative correlation between BMI and RBG in the male subjects. Generally the low level of diabetes in spite of the high level of overweight could be due to the obesity-survival paradox associated with certain persons (Schmidt and Salahudeen, 2007). A good

DISCUSSION

BMI is a good measure of adiposity and by extension overweight and obesity which are major predisposing factors to type 2 diabetes through resistance to insulin-mediated glucose uptake and decreased sensitivity of the beta-cells to glucose (Kahn et al., 2006; DeFronzo and Ferramini, 1991). Insulin resistance is due to adipose tissue-derived hormone-like compounds such as resistin, leptin and adiponectin and other compounds including retinol-binding protein 4, free fatty acids, tumour necrosis factor-alpha, plasminogen activator inhibitor 1 (Steppan et al., 2001; Niswender and Magnuson, 2007; Kadokawa et al., 2006). Diabetes is diagnosed as a consistently high level of blood glucose (Taylor and Agius, 1998).
number of the subjects had normal weight which is
associated with good health and low mortality
(Berrington de Gonzalez et al., 2010). Only a small number
(5.6%) of females were underweight which could generally
be attributed to malnutrition or eating disorders.

CONCLUSION

In conclusion, BMI increased with RBBG in the female
subjects only while RBG increased with age in both sexes.
The prevalence of obesity and diabetes is rising all over
the world including developing countries such as
Nigeria due to unhealthy lifestyles and dietary habits
(Pelletier and Rahn, 1998; World Health Organization,
2005). Also many cases of diabetes are undiagnosed in
Nigeria due to poverty and lack of adequate access to
health facilities. There is thus need to discourage lifestyle
patterns especially in women that may predispose to
obesity and type 2 diabetes and thus reduce their
associated socio-economic and health consequences
(Strycher, 2006; Tate et al., 2007; Braun et al., 1995). There
is also need to enlighten the populace about diabetes and
need for healthy lifestyles and routine medical screening
since the complications of diabetes are far less common
and less severe in people who have well-managed blood
glucose levels.

ACKNOWLEDGMENT

We appreciate the management of Covenant
University, Ota and Ado-Odo/Ota local government area
of Nigeria for providing logistic support for this study.

REFERENCES

American Diabetes Association, 2006. Diagnosis and
classification of diabetes mellitus. Diabetes Care,
29: S43-S48.
Obesity and gender influence cortisol secretion and
83: 1806-1809.
intolerance among apparently healthy Hausa-Fulani
Bakari, A.G., G.C. Onyemelu, B.G. Sani, I.S. Aliyu,
S.S. Hassan and T.M. Aliyu, 2006. Relationship
between random blood sugar and body mass index
in an Africa population. Int. J. Diabetes Metab.,
14: 144-145.
Berrington de Gonzalez, A., P. Hartge, J.R. Cerhan,
A.J. Flint and L. Hannan et al., 2010. Body-mass
index and mortality among 1.46 million white adults.
Effects of exercise intensity on insulin sensitivity in
women with non-insulin dependent diabetes mellitus
Connell, J.M.C., J.A. Whitworth, D.L. Davies, A.F Lever,
A.M. Richards and R. Fraser, 1986. Effects of ACTH
and cortisol administration on blood pressure,
electrolyte metabolism, atrial natriuretic peptide and
renal function in normal man. J. Hypertens.,
5: 425-433.
A multifaceted syndrome responsible for NIDDM,
obesity, hypertension, dyslipidemia and atherosclerotic cardiovascular disease. Diabetes
Care, 14: 173-194.
Diaz, V.A., A.G. Mainous, R. Baker, M. Cammack and
A. Majeed, 2007. How does ethnicity affect the
association between obesity and diabetes? Diabetic
Fauci, A., E. Braunwald, D. Kasper, S. Hauser, D. Longo,
of Internal Medicine. 17th Edn., McGraw-Hill
Professional, New York, ISBN-10: 0071466339,
Pages: 2958.
Pathophysiologica considerations. Int. J. Obes.
Relat. Metab. Disord., 16: 937-952.
Grundy, S.M., 2004. Obesity, metabolic syndrome and
89: 2595-2600.
Guha, D.P., W. Zhang, N. Bansbæk, Z. Amarsi,
of co-morbidities related to obesity and overweight:
A systematic review and meta-analysis. BMC Public
Howard, B.V., L.D. Cowan, O. Go, T.K. Welly,
D.C. Robbins and E.T. Lee, 1998. Adverse effects of
diabetes on multiple cardiovascular disease risk
factors in women. The strong heart study. Diabetes
Care, 21: 1258-1265.

