Designing an Enhanced VUI Tree Framework for e-Education System

Ambrose A. Azeta, Christopher K. Ayo, Aaron A. Atayero, Nicholas A. Ikhu-Omoregbe
College of Science and Technology, Covenant University, Ota, Ogun state, Nigeria
azeta_ambrose@yahoo.com, cKayome@yahoo.com, atayero@ieee.org, nomoregbe@gmail.com

Abstract. VoiceXML is a standard language recognized by World Wide Web Consortium (W3C) for developing Voice User Interface (VUI) applications. Advances in speech recognition and VUI systems have motivated the provision of a VUI design framework for interacting with vocal applications. For most developers, designing a VUI is a relatively new experience. Today, good VUI frameworks are few mainly because VUI design is novel and requires usability criteria for users’ friendliness and ease of navigation during interaction. This paper presents an enhanced VUI tree framework for Voice-Enabled E-Education System (VEES) using Multi-RootNode Tree to improve speed of access and user’s flexibility while interacting with the system. The propose system will be of immense benefit to the normal users and the visually impaired learners since it will make navigation, access speed and interaction process with the system a lot easier.

Keywords: e-Education; Framework; VEES; VUI Tree; VoiceXML

1. Introduction

In the past decade, the Internet has offered learning institutions a new medium for efficient sharing of learning resources. This has made educational institutions to continue investing in e-Education business for efficient delivery of Learning Management System (LMS) using the World Wide Web. Despite the Internet's growing acceptance, the telephone network is still more widely and readily accessible [1]. The Internet is increasingly becoming accessible through telephone (voice). Voice technology, and, especially VoiceXML, is the enabling technology that allows people to interact with computers and the Internet over the telephone using natural speech dialogues. VoiceXML technology allows people to access the web from anywhere they can make a call, thus providing increased access to goods and services, as well as to customers [2]. Telephone is simple to operate and is the most natural form of communication, i.e. it uses the human voice. The proliferation of mobile devices in the last decade has made access to the telephone network even easier. As discussed in [3], every successful voice-enabled application is built on three solid foundations: Firstly, universal user interfaces guidelines
and usability principles. Secondly, the project guidelines for the application and system requirements. Thirdly, the interaction guidelines for the personality that will be portrayed by the Voice User Interface (VUI). This foundation requires that a standard VUI framework be followed as a guideline for building a voice interface application.

Providing a voice-based interface with the web interface is an advantage to the visually challenged who are unable to use a visual interface. It is also possible to use the application for accessing a web-based interface even while on the move through a mobile phone, which is much easier to carry around than a personal computer. Phone applications are more spontaneous. Most people these days always have their phone on their hip. In many cases, the phone transaction can be completed before the PC even boots or you can log in. The number of telephone users is far greater than the number of people that uses personal computers or the Internet.

In voice-enabled telephony systems, users interact with machines in a conversational dialog over a phone connection. The design of such dialogs affects the quality of service offered by the system. Hence, Voice User Interfaces (VUIs) should be carefully designed with high quality interactive management techniques to attain a positive usability attribute particularly in the area of user's satisfaction, ease of navigation and accessibility. One of the most significant elements of a good user interface is visibility of the system's status. In an ideal situation "What you see is what you get" (WYSIWYG), but with telephony system, "What you hear is what you get" (WYHIWYG). That is, if software VUI interface hears the word exam and exam is understood, then exam happens. Users must also notice immediately what's going on behind the scenes and whether their actions have actually led to the expected results [4].

Voice-enabled applications are currently being applied in e-Education [5, 6, 7, 8]. Thus, by using VoiceXML applications, we can reach out to more students than is possible by using the Internet. This is so because the educational environment is one of the most popular sectors where majority of people carry mobile phones. One of the goals of an e-Education system includes providing quality learning objects to students at a considerable cost saving through a voice-enabled learning platform such as in Fig. 1. This goal can easily be achieved with a voice-enabled application. One way of building quality into technology supported education is providing a successful VUI that is user-friendly and is easily navigated to encourage learners to continue using the e-Education platform. Designing a VUI is very different from designing other user interfaces. Most user interfaces usually offer some visual information for users to interact with. With VUI, users have to listen, memorize, and speak to interact with the system. The VUI cannot provide rich content information because users are not able to memorize pages of verbal information. The design has to be simple, with short and clear dialogs so that users can navigate through the service without any problem.
There are several voice-enabled frameworks in the areas of e-Education [7, 9, 10]. However, there is a dearth of user-friendly VUI framework for interaction management and the speed of accessing voice applications is considerably low. The depth of menu-driven navigation for VUI application has been a problem for certain category of users. We should also consider the fact that designing a VUI is a relatively new experience for most developers. There are very few good VUI guidelines available today mainly because VUI design is so new and requires ample usability testing [11].

This paper explores the design of a VUI tree framework using an enhanced Multi-RootNode Tree structure to improve the users’ mode of interaction. The remaining parts of the paper are structured as follows: Section 2 describes the VUI tree framework and the optimization techniques for improving the framework. Section 3 highlights the proposed enhanced Multi-RootNode Tree technique for restructuring VUI menu-driven applications and section 4 concludes the paper.

2. VUI Tree Framework

The VUI Navigation was modeled using VUI tree structure as shown in Fig. 2. When a user named catman uses a telephone and makes a phone call to VEES, s/he will reach the root node of the VUI tree and hear a greeting message, which may look like "Welcome to
intelligent voice enabled e-Education Application”. If you would like to select student menu say student, for faculty menu say faculty and admin menu say admin. Catman may say faculty and traverse the VUI tree to N2. The interaction between user catman and the system will be confirmed when catman navigates to level two of the VUI tree. At this point he can listen to the registration.

Fig. 2. A VUI tree framework for the system

2.1 VUI Optimization and Enhancement

One approach for optimizing VUI in [12] is the operation of node promotion/demotion (by moving some nodes to higher/lower levels of the VUI tree). This approach uses a Genetic Algorithm based optimization technique. In this model, root node is at level 0, and N_j is the jth node at level i. Node access time is the time length of audio heard by users during each visit to the node. Node access count is the frequency users navigate through and access to the node in a specific term. Leaf node access time is the total access time users navigate from Root to the leaf node. Total time is the summations of every leaf node access time multiply leaf node access count. In a voice site, users’ destination must end at leaf nodes; therefore, we focus on the leaf nodes in the model. It means only leaf nodes have the property of “access counts.”
The properties of the nodes used in this example are described in Table 1. In this case, the values of node access time are randomly created in the range between 3 and 8 seconds, the values of node access count are only applicable to leaf nodes and randomly generated between 40 and 100, and each value of leaf node access time is derived from the values of node access time of all nodes on the path from the root navigating to that particular leaf node. For example, the leaf node access time of N22 is the summation of node access time values of the root, N11, N21 and N22 (i.e., 5 + 6 + 5 + 3 = 19), and the leaf node access time of N23 is the summation of node access time values of the root, N11, N21, N22, N23 and N23 (i.e., 5 + 6 + 5 + 3 + 6 = 25). Using the VUI optimization mechanism, we can restructure the VUI tree and calculate the new total time. The new tree structure is shown in Fig. 3 (nodes having star mark [*] are restructured), and the properties of the nodes of the restructured tree are described in Table 1. Note that while the values of node access time and node access count on all nodes are unchanged, the values of leaf node access time on some leaf nodes are changed because the VUI tree is restructured. In this sample case of optimization model in [12], the improvement is about 57% i.e. (3830-1660=2170, (2170/3830*100) = 57%. Using our enhanced model, the improvement is about 79% i.e. (3830-810=3020, (3020/3830*100) = 79%, even though this is just a simple illustration.

The calculation of total access time for the total access time, optimized time and enhanced time is contained in Table 1. The leaf node access time (t) for *N22 has changed from 19 to 8 and for *N23 from 25 to 11 as a result of the optimization. Similarly, the leaf node access time (t) for **N22 has changed from 8 to 3 and for **N23 from 11 to 6 as a result of the enhancement. The values were derived using the formula in equation (1), (2) and (3):

\[
\text{Total access time} = \sum_{j=1}^{n} NJ(\tau) \times NJ(c), \quad j = 1..n \tag{1}
\]

\[
\text{Optimized access time} = \sum_{j=1}^{n} NU(\tau) \times NU(c), \quad j = 1..n \tag{2}
\]

\[
\text{Enhanced access time} = \sum_{j=1}^{n} NL(\tau) \times NL(c), \quad j = 1..n \tag{3}
\]

Therefore total time = 19 x 70 + 25 x 100 = 3830, Optimized total time = 8 x 70 + 11 x 100 = 1660, and Enhanced total time = 3 x 70 + 6 x 100 = 810. Several other approaches for optimizing VUI tree include the creation of extra links (for providing short-cuts to VUI tree navigation). Changing the order of child nodes for every nonleaf node can create many different restructured VUI trees, and every VUI tree represents a possible solution. One demerit of node order change is that for a VUI tree with hundreds of nodes, the potential number of restructured VUI trees can be very high.
Table 1. Properties of the nodes

<table>
<thead>
<tr>
<th>Node access time (a)</th>
<th>N1 1</th>
<th>N1 2</th>
<th>N1 3</th>
<th>N2 1</th>
<th>N2 2</th>
<th>N2 3</th>
<th>N2 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>na</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leaf node access time (t)</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>19</td>
<td>25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Node access count (c)</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>70</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total time</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1330</td>
<td>2500</td>
<td>-</td>
<td>3830</td>
</tr>
</tbody>
</table>

Optimized Leaf node access time (ot)

| Optimized Leaf node access time (ot) | na | na | na | na | 8 | 11 | - | - |
| Optimized total | - | - | - | - | 560 | 1100 | - | 1660 |

Enhanced Leaf node access time (et)

| Enhanced Leaf node access time (et) | na | na | na | na | 3 | 6 | - | - |
| Enhanced total | - | - | - | - | 210 | 600 | - | 810 |

2.2 The Enhanced Multi-RootNode Tree Model

With the VUI enhanced Multi-RootNode approach, we can restructure the VUI tree and calculate the new total time as shown in Table 1. The new tree structure is shown in Fig. 4.
(nodes having double star mark [**] are restructured). The node label lecture and tutorial have been moved to the same level with the root node.

Fig. 4. The VUI tree (Node marked ** were restructured)

2.3 VUI Call flow

Fig. 5 shows a partial Call flow of the proposed system where voice lecture and tutorial menu have been promoted up to be among the root node.

VEES: Welcome to intelligent Voice enabled eEducation System
VEES: Voice lecture
VEES: Root
 VEES: Student menu
 VEES: Faculty menu
 VEES: Admin menu
VEES: Tutorial
--
VEES: Welcome to Voice lecture menu
VEES: Mention the course code to study
VEES: CSC317
--
VEES: Welcome to student menu.
VEES: registration
VEES: tutorial
VEES: examination
VEES: exit

Fig. 5. Partial Call flow for the system

3. Conclusion

In this paper, an enhanced VUI tree framework for improving the speed and interaction management of voice-based e-Education system (VEES) has been presented. The framework would serve as a reference model for implementing user-friendly telephone-based e-Education applications for normal and visually impaired learners. The application when fully implemented would assist people with physical access difficulties (e.g. repetitive strain injury, arthritis, high spinal injury) that make writing difficult. It can also be effective for students with reading or spelling difficulties (e.g. dyslexia). The VUI tree framework provided in this study will be of immense benefit to the research community.

References