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ECN225 

MATHEMATICS FOR ECONOMISTS II 

BY  

DR. OKODUA H. AND AKINYEMI O. 

 
1. A firm faces the production function Q = 120L + 200K − L2 − 2K2 for positive values of Q. It can 

buy L at ₦5 a unit and K at ₦8 a unit and has a budget of ₦70. What is the maximum output it 
can produce? 

 
2. Write out the properties of Definite Integrals with at least two examples each. 

3. Evaluate ∫ (
1

1+𝑥
+ 2𝑥)

4

0
𝑑𝑥 

 

4. Find ∫ (2𝑒2𝑥 +  
14𝑥

7𝑥2+5
) 𝑑𝑥 

5. Give examples of Improper Integrals with infinite limits of integration and Improper Integrals 

with infinite integrands 

6. If the marginal cost of a firm is given by the following function of output, C’(Q) = 2𝑒0.2𝑄and the 

fixed cost is 𝐶𝐹 = 90. Find the total cost C(Q). 

7. Given the MC function of a firm to be 𝑀𝐶 =  
𝑑𝑐

𝑑𝑞
= 1.2𝑞2 − 18𝑞 + 100. Derive the total cost 

function of the firm. 

8. A firm faces the production function Q = 12K0.4L0.4 and can buy the inputs K and L at prices per 
unit of ₦40 and ₦5 respectively. If it has a budget of ₦800 what combination of K and L should it 
use in order to produce the maximum possible output? 
 

            Differentiate the following functions. 
9. y = 4x2 + 2x3 − x4 + 0.1x5 
10. y = 20 + 4x − 0.5x2 + 0.01x3. 

11. y = 25 – 0.1x−2 + 2x0.3  

 
12.  Explain any FIVE rules of differentiation.  

13.  Find ∫ 𝑒4𝑥+3 𝑑𝑥 

14.  Evaluate ∫ 𝑒𝑥3+ 𝑥2+1  𝑑𝑥  

15.  Find ∫(3𝑥5 +  2𝑥3 + 1) 𝑑𝑥 

 
16. Find the point of inflection if any, of the function 𝑦 =  𝑥3 + 3𝑥2 + 3𝑥 

17. Ascertain whether the function 𝑦 = 𝑓(𝑥) = 𝑥3 − 6𝑥2 + 12 has a point of inflection and 

determine it. 

18.  With the method of Lagrange multiplier,  

              Minimize 𝑧 =  𝑥2 − 𝑥𝑦 +  
3

2
𝑦2 

              𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜; 𝑥 + 2𝑦 = 3 

 
19.  Optimize the function 𝑧 = 4𝑥 + 6𝑦 − 𝑥2 − 𝑦2 
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20. A firm faces the production function Q = 20K0.4L0.6. It can buy inputs K and L for ₦400 a unit and 

₦200 a unit respectively. What combination of L and K should be used to maximize output if its 
input budget is constrained to ₦6,000? 
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Solution 

1. 𝑀𝑃𝐿 =  
ɗ𝑄

ɗ𝐿
= 120 − 2𝐿      𝑀𝑃𝐿 =  

ɗ𝑄

ɗ𝐿
= 200 − 4𝐾 

For optimal input combination, 
𝑀𝑃𝐾

𝑃𝐾
=  

𝑀𝑃𝐿

𝑃𝐿
 

Therefore, substituting MPK and MPL and the given input prices, 
120 − 2𝐿

5
=  

200 − 4𝐾

8
 

8(120 − 2L) = 5(200 − 4K) 

960 − 16L = 1,000 − 20K 

20K = 40 + 16L 

K = 2 + 0.8L 

Substituting (1) into the budget constraint 

5L + 8K = 70 

gives 

5L + 8(2 + 0.8L) = 70 

5L + 16 + 6.4L = 70 

11.4L = 54 

L = 4.74 (to 2 dp) 

 

Substituting this result into (1) 

K = 2 + 0.8(4.74) = 5.79 

 

Therefore maximum output is 

Q = 120L + 200K − L2 − 2K2 

= 120(4.74) + 200(5.79) − (4.74)2 − 2(5.79)2 

= 1,637.28 

This technique can also be applied to consumer theory, where utility is maximized subject to a 

budget constraint. 

 

2. Find ∫ (2𝑒2𝑥 +  
14𝑥

7𝑥2+5
) 𝑑𝑥 

Integrating separating, 2𝑒2𝑥 is in the form f’(x) 𝑒𝑓(𝑥) 

Thus, ∫ 2𝑒2𝑥 𝑑𝑥 = 𝑒2𝑥 + 𝐶1 

∫
14𝑥

7𝑥2+5
 𝑑𝑥 is in the form 

𝑓′(𝑥)

𝑓(𝑥)
 = ln(7𝑥2 + 5) + 𝐶2 

Thus, ∫ (2𝑒2𝑥 +  
14𝑥

7𝑥2+5
) 𝑑𝑥 = 𝑒2𝑥 + 𝐶1 + ln(7𝑥2 + 5) + 𝐶2 

= 𝑒2𝑥 + ln(7𝑥2 + 5) + 𝐶 

 

3. Recall TC = VC + FC 

Total cost function is the integral of the marginal cost function. 

∫ 2𝑒0.2𝑄 𝑑𝑞 = 2
𝑒0.2𝑄

0.2
 + C = 2.

1

0.2
 (𝑒0.2𝑄) + 𝐶 

= 10𝑒0.2𝑄 + 𝐶 

Given CF as 90 implies total cost when Q = 0. 

Setting Q= 0 yields 10𝑒0.2(0) + 𝐶 = 90 
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Thus, C = 90-10 = 80 

Hence, the total cost function = C(Q) = 10𝑒0.2𝑄 + 80 

4. 𝑀𝑃𝐿 =  
ɗ𝑄

ɗ𝐿
= 12𝐾0.4𝐿−0.4        𝑀𝑃𝐾 =  

ɗ𝑄

ɗ𝐾
= 8𝐾−0.6𝐿0.6 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 𝑚𝑖𝑥 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠; 
𝑀𝑃𝐾

𝑃𝐾
=  

𝑀𝑃𝐿

𝑃𝐿
   

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 
12𝐾0.4𝐿−0.4

200
=  

8𝐾−0.6𝐿0.6

400
 

 

𝐶𝑟𝑜𝑠𝑠 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑖𝑛𝑔 𝑦𝑖𝑒𝑙𝑑𝑠; 
4,800K = 1,600L 

3K = L 

Substituting this result into the budget constraint 

200L + 400K = 6,000 

gives 

200(3K) + 400K = 6,000 

600K + 400K = 6,000 

1,000K = 6,000 

K = 6 

Therefore,  

L = 3K = 18 

 

5. Total cost function of the firm is the integral of the marginal cost. Thus,  

TC = ∫ 𝑀𝐶 𝑑𝑞 =  ∫ 1.2𝑞2 − 18𝑞 + 100 𝑑𝑞 

= (1.2)
𝑞3

3
−  

18𝑞2

2
+ 100𝑞 + 𝐶 

= 0.4𝑞3 − 9𝑞2 + 100𝑞 + 𝐶 

The value of C is dependent on the fixed cost and it is necessarily positive. i.e. C > 0 

6. The problem is to maximize the function Q = 12K0.4 L0.4 subject to the budget constraint 

40K + 5L = 800        (1) 

The theory of the firm tells us that a firm is optimally allocating a fixed budget if the last ₦1 spent 

on each input adds the same amount to output, i.e. marginal product over price should be equal for 

all inputs. This optimization condition can be written as; 

    
𝑀𝑃𝐾

𝑃𝐾
=  

𝑀𝑃𝐿

𝑃𝐿
           (2)    

    

The marginal products can be determined by partial differentiation: 

𝑀𝑃𝐾 =  
ɗ𝑄

ɗ𝐾
= 4.8𝐾−0.6𝐿0.4       (3) 

𝑀𝑃𝐿 =  
ɗ𝑄

ɗ𝐿
= 4.8𝐾0.4𝐿−0.6       (4) 

Substituting (3) and (4) and the given prices for PK and PL into (2) 

4.8𝐾−0.6𝐿0.4

40
=  

4.8𝐾0.4𝐿−0.6

5
 

Dividing both sides by 4.8 and multiplying by 40 gives; 

𝐾−0.6𝐿0.4 = 8𝐾0.4𝐿−0.6 
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𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑖𝑛𝑔 𝑏𝑜𝑡ℎ𝑒 𝑠𝑖𝑑𝑒𝑠 𝑏𝑦 𝐾0.6𝐿0.6 𝑔𝑖𝑣𝑒𝑠; 
𝐿 = 8𝐾         (5) 

Substituting (5) for L into the budget constraint (1) gives; 

40K + 5(8K) = 800 

40K + 40K = 800 

80K = 800 

Thus the optimal value of K is 

K = 10 

and, from (5), the optimal value of L is 

L = 80 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


