Improvement of Nutritive Value of Sorghum-Ogi Fortified with Pawpaw (Carica papaya L.)

Kolawole O. Ajanaku1* · Kehinde O. Oggunniran1 · Olayinka O. Ajani1 · Oladele O. James1 · Obinna C. Nwinyi2

1 Department of Chemistry, School of Natural Sciences, College of Science and Technology, Covenant University, Km 10 Idiroko Road, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria
2 Department of Biological Sciences, School of Natural Sciences, College of Science and Technology, Covenant University, Km 10 Idiroko Road, Canaan Land, PMB 1023 Ota, Ogun State, Nigeria

*Corresponding author: ajanakukolawole@gmail.com

ABSTRACT

The utilization of pawpaw fruit as a constituent of sorghum-ogi was investigated by preparing mixtures of ogi with increasing level of pawpaw in 0, 20, 40, 60, 80 and 100% addition. The product, sorghum pawpaw-ogi was evaluated for proximate composition, titratable acidity, sugars and vitamins C. A taste panel evaluation was conducted to evaluate the acceptability of the products. The data obtained indicated an increase in protein ash and fat content while there was variation in the carbohydrate content. Vitamins C and sugar content were also found to increase in proportion with the increase in blending. There were no apparent effect of pawpaw addition on pH and titratable acidity in the mixtures. The taste panel evaluation and the amylograph pasting characteristics of the pawpaw-ogi blends concluded that blends with 40% pawpaw addition and beyond were acceptable in improving the nutritive value of ogi.

Keywords: acceptability, amylograph pasting, enriched food, human nutrition, proximate composition

INTRODUCTION

Malnutrition in neonates has been a source of concern to most countries, particularly the developing countries where there are shortages in nutritious foods for the young ones (Pierro and Eaton 2008). Incidentally, as a baby grows older, the demand for nutrient increases and breast milk alone becomes insufficient to sustain the baby. Alternatively, mothers begin the introduction of other foods such as fermented cereal food porridge made from the staple, whilst breast-feeding is progressively reduced. However, the watery porridge has very little nutritive value. Findings in rural Uganda revealed that in the second years of life, children who had been weaned received 60% fewer calories compared to those who were still being breast-fed (Nwasike et al. 1979). This defec tion in value was in spite of twice consumption of quantity of solids as compared to the period when the children are breast-fed. Hence it is imperative that the gruel should be freshly prepared each time and its nutritive value becomes insufficient to sustain the baby. Alternatively, the demand for nutrient increases and breast milk alone becomes insufficient to sustain the baby. Hence it is imperative that the gruel should be freshly prepared each time and its nutritive value becomes insufficient to sustain the baby. Alternatively, the demand for nutrient increases and breast milk alone becomes insufficient to sustain the baby. Hence it is imperative that the gruel should be freshly prepared each time and its nutritive value becomes insufficient to sustain the baby. Alternatively, the demand for nutrient increases and breast milk alone becomes insufficient to sustain the baby. Hence it is imperative that the gruel should be freshly prepared each time and its nutritive value becomes insufficient to sustain the baby. Alternatively, the demand for nutrient increases and breast milk alone becomes insufficient to sustain the baby. Hence it is imperative that the gruel should be freshly prepared each time and its nutritive value becomes insufficient to sustain the baby. Alternatively, the demand for nutrient increases and breast milk alone becomes insufficient to sustain the baby. Hence it is imperative that the gruel should be freshly prepared each time and its nutritive value becomes insufficient to sustain the baby. Alternatively, the demand for nutrient increases and breast milk alone becomes insufficient to sustain the baby. Hence it is imperative that the gruel should be freshly prepared each time and its nutritive value becomes insufficient to sustain the baby. Alternatively, the demand for nutrient increases and breast milk alone becomes insufficient to sustain the baby. Hence it is imperative that the gruel should be freshly prepared each time and its nutritive value becomes insufficient to sustain the baby. Alternatively, the demand for nutrient increases and breast milk alone becomes insufficient to sustain the baby. Hence it is imperative that the gruel should be freshly prepared each time and its nutritive value becomes insufficient to sustain the baby. Alternatively, the demand for nutrient increases and breast milk alone becomes insufficient to sustain the baby. Hence it is imperative that the gruel should be freshly prepared each time and its nutritive value becomes insufficient to

is melon-like, oval to nearly round, elongated club shaped, 15-50 cm long and 10-20 cm thick but fairly tough. When the fruit is immature (unripe), it is rich in white latex and the skin is green and hard. As it ripens, it becomes light orange or deep yellow externally and the thick wall of succulent flesh becomes aromatic yellow-orange or various shades of salmon or red. The fruit is then juicy, sweetish and some what like a cantaloupe (musk melon with orange flesh) in flavor but some types are quite musky (Morton 1987).

Pawpaw contains many biologically active compounds, these includes alkaloids, carpine, pseudocarpaine, flavonols, butanoic acid, tannins, linanool, benzylglucosinolate, cis and trans-linalool, terpenoids, alpha-linolenic acid, methyl butanoate, nicotine, lysozyme, malic-acid, oleic acid, carpasamine and palmitic acid, etc. C. papaya fruits consist mostly of water, carbohydrate, low in calories and rich in natural vitamins (A and C), minerals (potassium) (Chan and Tang 1979; Gebhardt and Thomas 2002; Oloyede 2005; Abdelkafi et al. 2009). In tropical folk medicine, pawpaw provides various culinary, medicinal, molluscicidal, biotechnological application and cosmetic properties (Nakamura et al. 2007; Jaiswal and Singh 2008; Cambon et al. 2008; Gurung and Salko-Basnet 2009). In view of the wide benefits that are available in pawpaw, authors seek to investigate supplementation of ogi with this fruit with intention to improve the nutritive value of the porridge used as food for infants in this part of the world where food supplies are limited. Furthermore, the aim of this present study is to prepare sorghum-ogi powder co-fermented with pawpaw; evaluate the nutritive composition and sensory acceptance of the mixture (Table 1).

MATERIALS AND METHODS

Materials

Fresh ripe pawpaw fruits and Sorghum grains (Brown Variety) were obtained from IITA, Ibadan, Nigeria
Preparation of sorghum ogi and pawpaw slurries

The sorghum grain was cleaned and 2 kg were steeped in 5 l of tap water for 2 days at room temperature (28 ± 2°C). The steeped grains were recovered by draining off the steeping water and then wet-milled on a premier mill. Excess water was added and stirred to make slurry and passed through a vibrating shaker with a 600 nm sieve. This was followed by souring for 12 hrs and decantation of the supernatant to obtain sorghum-ogi (a fermented sorghum meal) slurry. For the preparation of pawpaw slurry, the fruits were washed and cut into halves. The seeds were then removed, followed by peeling, slicing and blending in a Kenwood mixer.

Preparation of sorghum pawpaw-ogi meal

100 g of sorghum-ogi (dry basis) was mixed with 0, 20, 40, 60, 80 and 100 g of pawpaw slurries (dry basis) as shown in Table 2. The slurries were blended in a Hobart mixer for 5 minutes after adding 1 litre of the supernatant (souring water) earlier obtained from the ogi. After blending, the sorghum pawpaw ogi slurry was allowed to ferment for 2 days at room temperature, after which the supernatant was discarded and the slurry pressed to dryness. The cake so obtained was dried at 45-50°C for 24 hrs in a cabinet dryer, cooled, milled and packaged in thick polythene bags and labeled appropriately.

Experimental

Moisture content, ash content, crude fat and total nitrogen by the standard micro-Kjeldahl method were determined using the method of AOAC (1984, 1975). The percentage nitrogen was converted to crude protein by multiplying with a factor of 6.25. The carbohydrate was determined by difference. The pH of the sample blends were measured on a Unican model pH meter which had been previously standardized with buffer solutions of pH 4 and 9. Titratable acidity was determined by method of Banigo and Muller 1972. Diastatic activity was determined using Blish and Sandsted method as described by Kent-Jones and Amos (1967). Sugar analysis was determined using the AOAC (1975) method. Vitamin C (ascorbic acid) was determined by the oxidation-reduction method based on the reduction of indophenol dye by an acid extract of the ascorbic acid. The bulk density of the samples was determined by method of Narayana and Narasina-Rao (1984) while Water Absorption Capacity was calculated by method of Solsulsiki (1962). Pasting viscosity was determined on a brabender Amylograph by method described by Banigo et al. (1974) and Adeyemi (1983). Assessment by a 10-person panelist comprising of tasters who were familiar with the product was carried out on the ogi porridge prepared from the samples. Assessment was done on a 7-point Hedonic scale for taste, appearance, texture, colour and acceptability. The data obtained were subjected to analysis of variance.

RESULTS AND DISCUSSION

Fortification with blended legumes has been utilized in enrichment processes for the cereal food (Osundahunsi et al. 2003). However, pretreatment of cereals utilized for porridge largely depended on the type of cereal, the desired product and the processes involved. Conversely, the processes are rigorous thus affecting the nutritional status of the desired product (Aminnigo and Akingbala 2004). The major drawback to the use of ogi as a staple food is its low nutritional value. Several attempts were made to improve the nutritional status of ogi, by fortifying it with protein rich substrates (Banigo 1972; Bamiro et al. 1994; Osungbade 2009). A protein-enriched ogi containing 10% soya flour was developed by the Federal Institute of Industrial Research (FIIRO), Lagos, Nigeria (Akinrele 1970). The utilization of high lysine maize for the manufacture of ogi using improved processing system had also been attempted (Banigo et al. 1974; Adeniji and Potter 1978). Development of an ogi (dogi), having the therapeutic properties on the basis of its ability to control diarrhoea among infants has also been reported (Olukeya et al. 1994). In an attempt to improve the nutritive composition and sensory properties of ogi, Aminnigo and Akingbala (2004) fortified maize ogi with okra seed meal. Okra seed fortification at 20% level using defatted and roasted meals increased crude protein content by 122 and 106%, respectively. These workers were also able to raise ash content by 2-5 fold and fat content was increased by 1.5-2.2%.

Effect of pawpaw addition on the proximate composition of ogi

The result of the proximate composition of the sorghum/pawpaw ogi blends is presented in Table 3. The moisture content of the samples did not show any definite trend but were in the range of 8 and 11%. At this moisture range, the samples might be kept for at least 6 months if properly stored. The fat content of the sorghum grain, as expected, was higher than that of the ogi samples because of removal, through wet sieving, of the germ where most of the fats are concentrated. It could be inferred from the results obtained that additions of pawpaw might not have any significant effect on the fat content of ogi. There was an increase in the ash content with increasing level of pawpaw addition. This was expected since one of the most important contributions of fruits to human diet is the provision of minerals. However, the ash content obtained for sorghum grain was higher than that of pure ogi sample due to removal of most of the minerals which are concentrated in the bran and germ by the wet-sieving process. The protein content did also increase significantly with pawpaw addition in the blends. The starch content in all the ogi samples were higher than the starch content of the whole sorghum grain as the wet-sieving process must have removed the major part of the

---

Table 1 Nutrient content of ripe Carica papaya L.

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Approximate value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>89%</td>
</tr>
<tr>
<td>Calories</td>
<td>39 kcal</td>
</tr>
<tr>
<td>Protein</td>
<td>0.61 g</td>
</tr>
<tr>
<td>Fat</td>
<td>0.14 g</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>9.8 g</td>
</tr>
<tr>
<td>Calcium</td>
<td>24 mg</td>
</tr>
<tr>
<td>Iron</td>
<td>0.1 mg</td>
</tr>
<tr>
<td>Phosphorous</td>
<td>5 mg</td>
</tr>
<tr>
<td>Potassium</td>
<td>257 mg</td>
</tr>
<tr>
<td>Magnesium</td>
<td>10 g</td>
</tr>
<tr>
<td>Sodium</td>
<td>3 mg</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>1094 IU</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>0.73 mg</td>
</tr>
</tbody>
</table>


Table 2 Various proportion of each component in each mixture blend (g).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pawpaw (g)</th>
<th>Sorghum (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 3 Proximate composition of pawpaw-ogi blends.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Moisture (%)</th>
<th>Fat (%)</th>
<th>Ash (%)</th>
<th>Protein (%)</th>
<th>Carbohydrate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11.10 ± 0.10</td>
<td>0.36 ± 0.01</td>
<td>0.10 ± 0.03</td>
<td>4.10 ± 0.18</td>
<td>84.50 ± 5.21</td>
</tr>
<tr>
<td>B</td>
<td>9.10 ± 0.90</td>
<td>0.49 ± 0.02</td>
<td>0.63 ± 0.27</td>
<td>4.89 ± 0.33</td>
<td>84.91 ± 4.54</td>
</tr>
<tr>
<td>C</td>
<td>10.65 ± 0.10</td>
<td>0.76 ± 0.21</td>
<td>0.86 ± 0.16</td>
<td>6.67 ± 0.06</td>
<td>80.95 ± 5.26</td>
</tr>
<tr>
<td>D</td>
<td>8.50 ± 0.90</td>
<td>0.99 ± 0.01</td>
<td>0.92 ± 0.01</td>
<td>7.10 ± 0.01</td>
<td>82.40 ± 3.80</td>
</tr>
<tr>
<td>E</td>
<td>11.60 ± 0.29</td>
<td>1.67 ± 0.11</td>
<td>1.14 ± 0.25</td>
<td>8.26 ± 0.25</td>
<td>77.90 ± 3.12</td>
</tr>
<tr>
<td>F</td>
<td>8.24 ± 0.70</td>
<td>1.69 ± 0.16</td>
<td>1.78 ± 0.55</td>
<td>8.96 ± 0.46</td>
<td>78.21 ± 4.10</td>
</tr>
</tbody>
</table>
The results of the ascobic acid and sugar content of blended samples are presented in Table 4. The addition of pawpaw significantly increased the vitamin C content of ogi. Hence, it could be inferred that the incorporation of pawpaw to sorghum-ogi could improve the vitamin C content of the ogi. The total sugar, the summation of both the reducing and non-reducing sugar, increased with an increase in the level of added pawpaw having highest value of 1.25 ± 0.04 mg/100 g in 100% blend. The pH, titratable acidity, diastatic activity, water absorption capacity and bulk density of pawpaw-ogi blends are presented in Table 5. The results of the ascobic acid and sugar content of blended samples are presented in Table 4. The addition of pawpaw significantly increased the vitamin C content of ogi. Hence, it could be inferred that the incorporation of pawpaw to sorghum-ogi could improve the vitamin C content of the ogi. The total sugar, the summation of both the reducing and non-reducing sugar, increased with an increase in the level of added pawpaw having highest value of 1.25 ± 0.04 mg/100 g in 100% blend.

The pH and titratable acidity of ogi samples were found to range between 3.52 and 4.25, and 3.02 and 3.72 mg/mg/100 g in 100% blend.

bran and germ leaving mainly the starch fraction.

The results of the ascobic acid and sugar content of blended samples are presented in Table 4. The addition of pawpaw significantly increased the vitamin C content of ogi. Hence, it could be inferred that the incorporation of pawpaw to sorghum-ogi could improve the vitamin C content of the ogi. The total sugar, the summation of both the reducing and non-reducing sugar, increased with an increase in the level of added pawpaw having highest value of 1.25 ± 0.04 mg/100 g in 100% blend.

The pH and titratable acidity of ogi samples were found to range between 3.52 and 4.25, and 3.02 and 3.72 mg NaOH/100 ml of filtrate, respectively (Table 5). There was no apparent effect of pawpaw addition on the pH and titratable acidity of ogi. Changes in diastatic activity of ogi samples were observed with increasing level of pawpaw addition, with values of 21.8 ± 2.02 to 110.8 ± 2.04 mg maltose/100 g respectively for sorghum ogi at 0% level of substitution and sorghum pawpaw-ogi at 100% level of blending. The bulk density of the samples obtained are nearer to each other in the range of 0.698 and 0.950 g/ml, with 0% blend having the smallest bulk density, which implies that it will occupy the smallest space (Table 5). The water absorption capacity of pawpaw-ogi blends also decreased with increasing additional level of pawpaw.

Taste panel assessment of pawpaw-ogi blends

The taste panel assessment of the blends is shown in Table 6 for quality attribute of all the samples. The results were treated with the analysis of variance method. For sourness, 0% and 20% blends were found to be significantly different from the other samples at 5% confidence level and 0% only was significantly different from other samples for texture. Also, 0 and 100% blends were significantly different from the other samples for taste while 100 and 80% blends were significantly different for flavour. For colour and appearance, there was no significant difference in all the samples.

Amylograph pasting viscosity of pawpaw-ogi blends

Amylograph pasting viscosity data of the samples is presented in Table 7. The peak viscosity (Vp) ranged between 70 and 320 BU; indicating that addition of pawpaw did not significantly alter the swelling property of ogi. Stability value of the starch (Vp – Vr) decreased from 110 BU to 51 BU at 60% level of pawpaw addition, which would appear to indicate that pawpaw tends to improve stability of sorghum-ogi. Set back values (Ve – Vp) ranged between 430 and 600 BU while the gelatinization index (Ve – Vr) ranged between 510 and 710 BU. Therefore, it could be inferred that the pasting characteristics of sorghum pawpaw-ogi are not significantly different from the normal sorghum-ogi. The factors that can affect the pasting viscosity of sorghum-ogi include grain variety, processing conditions and manufacturing methods in accordance with the reports of Banigo et al. (1974).

CONCLUDING REMARKS

Pawpaw, like other fruits, is not accorded with the importance it deserves in the diets. This is probably because of ignorance of its nutritive value and the difficulty in storage.
and utilization. This work has revealed the utilization of pawpaw fruit as a constituent of traditional weaning meal and as an enriched adult food (ogi). An indication from this study is that pawpaw fruits, which are valuable nutritionally because of the vitamins and minerals, which they contain, as well as for their bulkiness and laxative properties could be beneficial as constituent of a staple diet thereby enhancing its use in food industry.

REFERENCES


Banigo EO, Muller HG (1972) Carboxylic acid pattern in ogi fermentation. Journal of Science Food and Agriculture 23, 101-111.


