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Abstract- In the Schwartz and Moon growth option 
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well posed and necessary adjustments made, our 

derived equation could be solved by a stochastic partial 

differential equation. 

 

Key words: Ito Lemma, Stochastic Equation, Stochastic 

Partial Differential Equation, Monte Carlo. 

Introduction 

We considered an extended version of [7], 

Internet company valuation model, and a 

special case of [2]. 

Assumptions of the model in [7] which 

applies to [2]: 

 Revenue, growth rate of revenue and 

variable cost are stochastic and is a 

Brownian motion process. 

 There are no correlation between 

Brownian motion processes of 

revenues, growth rate of revenues 

and variable costs. 

 Only revenues have a risk premium 

associated with them. 

 Growth rate of revenue and 

volatilities of revenue and variable 

cost is a mean – reverting process to 

a long –term average drift. 

 In the long run revenue will become 

stable. 

 In the long run, when the company 

has no more growth, volatility of 

growth rate of revenue is assumed to 

be zero. 

 The company can have future equity 

and debt financing when its cash 

available become negative. 

 The interest rate is assumed to be 

static 
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 After the initial period, the capital 

spending is assumed to be a fixed 

percentage of revenue. 

 Depreciation in period t  is assumed 

to be a fixed portion of the 

accumulated property and equipment 

at period .1nt    

In the [7], [8] model and in other literatures, 

[1], [3], [6] etc where the model has been 

used, a discrete version of the continuous- 

time process is used to simulate the value of 

a company. The said value of the company 

can be expressed as a function of several 

variables 

)1(),,,,,,( tPXLRVV   

 where, 

R = revenues 

revenuesofrategrowth  

tsiable cosvar  

L = loss carry forward 

X = cash balances 

P = property and equipment 

t = time 

 

We are of the opinion that if equation (1) 

is well posed and necessary adjustments 

made, the resultant equation as in 

equation (26) can be solved by a 

Stochastic Partial Differential Equation. 

Mathematical Formulation of the 

extended case: 

According to [2], the main sources of 

revenue for banks come from interest spread 

between loans and deposits. Assume a bank 

loan at time t  is given by tL  . We assume 

that the dynamics of these loans are given by 

the stochastic differential equation: 

)2(1

LL

t

L

t

t

t dWdt
L

dL
   

where, 

tperiodinLoanLt   

loansinrategrowthL

t   

loansinvolatilityL

t   

processWieneneadW L 1
 

Meanwhile, the volatility of loan, ,L

t  is 

assumed to converge to a normal level in the 

long – term, and can be defined as: 

)3()(1 dtkd L

t

LL

t  
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where, 

tcoefficienreversionmeank 1  

loansofvolatilityaveragetermlongL 

 

loansofvolatilityinitialL

t   

Similarly, assume the bank deposit at time t  

is given by .tD  We also assume that the 

deposit are given by the stochastic 

differential equation: 

)4(2

DD

t

D

t

t

t dWdt
D

dD
   

where, 

tperiodinDepositDt   

depositsinrategrowthD

t   

depositsinvolatilityD

t   

processWieneradW D 2  

Meanwhile, the volatility of deposit ,D

t is 

assumed to also converge to a normal level 

in the long – term, and can be defined as: 

)5()(2 dtkd D

t

DD

t  

 

where, 

tcoefficienreversionmeank 2  

depositsofvolatilityaveragetermlongD 

 

depositsofvolatilityinitialD

t   

Growth rate of Loans: 

The growth rate of loans in equation (2) can 

be expressed as the following stochastic 

differential equation 

  )6(33

LL

t

L

tL

L

t dWdtd    

where, 

loaninrategrowthinitialL   

tcoefficienreversionmeank 3  

loaninrategrowthtermlong  

loaninrategrowthofvolatilityL

t   

processWieneradW L 3  

In the long run, the unanticipated volatility 

of growth rate in loan is assumed to 

converge to zero, which means that equation 

(6) can be written as follows: 

)7(4 dtkd L

t

L

t    

where, 
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loansofrategrowthofvolatilityL

t   

tcoefficienreversionmeank 4  

 

Growth rate of Deposits 

Similarly, the growth rate of deposits in 

equation (4) can be expressed as the 

following stochastic differential equation: 

  )8(45

DD

t

D

tD

D

t dWdtd    

where, 

depositinrategrowthinitialD   

tcoefficienreversionmeank 4  

depositinrategrowthtermlongD   

rategrowthofvolatilityD

t   

processWieneradW D 4  

In the long run, the unanticipated growth 

rate in deposit is assumed to converge to 

zero, which means that equation (8) can be 

written as follows: 

)9(5 dtkd D

t

D

t    

  where, 

depositinrategrowthofvolatilityD

t   

.5 tcoefficienreversionmeank   

In equations (3), (5), (6), (7), (8) and (9), the 

mean reversion coefficient (k) influences the 

process of initial growth rate converging to 

the long – term growth rate of loans and 

deposits.  The half – life of the deviation is 

,
)2ln(

k
which means that any deviations in 

the growth rate are expected to be halved in 

the time period. 

 

Interest Spread 

The interest spreads relates to changes in the 

interest rate on loan and interest rate on 

deposits. Although there are different kinds 

of deposit rate, we make use of the average 

for a proxy. The loans and deposits rates 

follow two stochastic processes. We define 

loans interest as a spread tS above the 

average deposits rate tr , and they both 

follow the square-root process of CIR 

(1985): 

)10()( 5

r

tttt dWrdtrbadr   

)11()( 6

Ss

tt

ss

t dWSdtSbadS   

where, 

parametersspeedreversiontheaanda s   
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timeoverrevertrate

ersestthetowardsvaluesthebandb s int

 

deviationdardstheand s

tt tan  

processesWienerdWanddW sr 65  

Net Income 

We define the net interest income 

  )12(tttttt rDSrLR 

  

where, 

incomeerestnetRt int
 

tperiodinloanLt   

ratedepositrt   

spreaderestSt int
 

tperiodindepositDt   

In defining all the parameters about net 

interest income, there are seven standard 

Wiener processes, 


7654321 ,,,,, dWdWdWdWdWdWdW SrDL  and 

each Wiener process is instantaneously 

correlated with each other as follows: 

)1.13(31 dtdWdW LLg

LL   

)2.13(21 dtdWdW
LD

DL   

)3.13(41 dtdWdW DLg

DL   

)4.13(51 dtdWdW Lr

rL   

)5.13(61 dtdWdW
LS

SL 
 

)6.13(71 dtdWdW L

L


   

)7.13(23 dtdWdW LDg

DL   

)8.13(43 dtdWdW DLgg

DL   

)9.13(53 dtdWdW
rLg

rL   

)10.13(63 dtdWdW
Sg

SL
L

 

)11.13(73 dtdWdW Lg

L



   

)12.13(42 dtdWdW DDg

DD   

)13.13(52 dtdWdW Dr

rD 

 

)14.13(62 dtdWdW DS

SD 
 

)15.13(72 dtdWdW D

D


   

)16.13(54 dtdWdW
rg

rD
D  

)17.13(64 dtdWdW
Sg

SD
D

 

)18.13(74 dtdWdW Dg

D



 
 

)19.13(65 dtdWdW rs

Sr 
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)20.13(75 dtdWdW r

r


 

 

)21.13(76 dtdWdW S

S


 

 

where 
LLg

 is the correlation between loans 

and loan growth rate; LD is the correlation 

between loans and deposits; 
DLg

 is the 

correlation between loans  and deposit 

growth rate; Lr  is the correlation between 

loans and deposits rates; LS is the 

correlation between loans and interest 

spread;  L  is the correlation between loans 

and variable cost; 
LDg

 is the correlation 

between deposits and loans growth rate; 

DLgg
  is the correlation between loan 

growth rate and deposit growth rate; 
rLg

 is 

the correlation between loan growth rate and 

deposit rate; 
Sg L

 is the correlation between 

loan growth rate and interest spread; 


 Lg
 is 

the correlation between growth in loan and 

variable cost;
DDg

 is the correlation between 

deposit and deposit growth rate; Dr is the 

correlation between deposit and deposit rate; 

DS is the correlation between deposit and 

interest spread; D  is the correlation 

between deposit and variable cost;
rg D

 is the 

correlation between deposit growth rate and 

deposit rate, 
Sg D

 is the correlation between 

deposit growth rate and interest spread;
 


 Dg

 

is the correlation between deposit growth 

rate and variable cost; sr is the correlation 

between the deposit rate and the interest 

spread;  r is the correlation between 

deposit rate and variable cost and  s is the 

correlation between interest spread and 

variable cost. 

Variable costs 

The total cost of bank will consist of two 

components, the variable cost and fixed cost. 

The variable cost can be defined as the non 

– operating loan, which is a percentage of 

the total amount of loans. The fixed cost is 

the building and operating equipment cost, it 

is assumed to be constant. 

The total cost of bank can therefore be 

presented in the following equation 

)14(FLC ttt  

 

where, 

ttotalCt cos
 

ttimeattiablet cosvar  
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ttimeatloanLt 
 

tfixedF cos  

In Schwartz and Moon (2000, 2001) models, 

the cost function should be stochastic to 

reflect the uncertainty of future technology 

advancement and competition. Since only 

the variable cost would allow the stochastic 

process, equation (14) can be written as  

 )15()( 76

 dWdtkd ttt   

where, 

tiableinitial cosvar  

tiableofaveragetermlong cosvar  

tiableofvolatilityt cosvar
 

ntcoeffieciereversionmeank 6  

processWieneradW 
7  

The mean reversion coefficient 6k  is similar 

to the one described earlier on, it describe 

the rate at which the variable cost are 

expected to converge to its long – term 

average. The volatility of variable costs is 

also assumed to converge to a normal level 

in the long run. Equation (15) can be 

expressed as follows 

)16()(7 dtkd tt    

where, 

tsiableofvolatilityialt cosvarint  

coeficientreversionmeank 7  

tsiableofvolatilityaveragetermlong cosvar  

Loss carry - forward 

With the bank revenue and cost known, we 

define the after –tax net income as tY  given 

by: 

    )17(,1 ttttt DepCRY 

 

where 

incomenettaxafterYt   

incomeerestnetRt int  

ttotalCt cos  

ondepreciatiDep   

 ratetaxcorporatet    

The company only has to pay taxes where 

there is no accumulated loss carry –forward 

).( tF  

The condition can be defined as: 
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)18(0)0,(

0





ttt

ttt

FifdtYMaxdF

FifdtYdF

 

Accumulated property, plant and 

equipment 

There are two elements that affect 

accumulated property, plant and equipment: 

the rate of capital expenditures and 

corresponding rate of depreciation. 

Therefore, the accumulated property, plant 

and equipment can be expressed as, 

tt

tt

ttt

PDRDep

ttforCXCapx

dtdepCapxdP







/
/

)19(

 

where, 

P = accumulated property plant and 

equipment 

Capx = capital expenditures 

Dep = depreciation 

CX = planned capital expenditures 

DR = percentage of depreciation 

t = initial period of time 

The planned capital expenditures are 

assumed to be fixed at the beginning, after a 

certain period of time, it will become a 

percentage of planned capital expenditures. 

Depreciation is also assumed to be certain 

percentage of accumulated property, plant 

and equipment. 

 

Amount of cash available 

The total amount of cash available for the 

company can be defined as: 

)20()( dtCapxDepYRX ttttt   

where, 

X = cash balance 

R = net interest income 

Y = after tax net income 

Dep = Depreciation 

Capx = capital expenditure 

To simplify the model, [7] and [8] assumed 

a zero dividend policy at the initial stage. In 

other words, all profits generated will be 

retained and grow at risk free rate of 

interest. After the initial volatile start up 

period, when the company is now 

sustainable, then it can distribute all its 

accumulated profits to its shareholders. 
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The value of the Company 

The objective of the model is to determine 

the value of the firm at the current time. 

According to standard theory this value is 

obtained by discounting the expected value 

of the firm at time horizon under the risk 

neutral measure (the equivalent martingale 

measure) at the risk free rate of interest. 

After defining all the variables in the model, 

the value of the company at time T, 

],0[ TT   has two components. First, the 

cash balance outstanding and the second the 

value of the firm as a going concern, the 

value which is assumed to be a multiple M 

of the Earning Before Interest, Taxes, 

Depreciation and Amortization (EBITDA):  

)21())([(0

rT

TTTQ eCRMXEV   

where, 

timepresentatcompanytheofvalueV 0

 

TtimeatbalanchcashdingoutsXT tan  

M = multiplier 

TtimeattCT cos  

ratefreeriskr   

TtimeatincomeerestnetRT int  

factordiscountcompoundedlycontinuouse rT 

 

measuremartingaleequivalentEQ   

In this model, the value of a bank is a 

function of the state variables (loans, 

expected growth in loans, deposit, expected 

growth in deposits, variable cost, interest 

rates, interest spread, loss – carry forward, 

accumulated property, plant and equipment, 

cash balances) and time. This can be written 

as  

  )22(,,,,,,,,,, tPYXSrDLVV DL 

 

Applying Ito’s Lemma to (22) yields an 

expression for bank value dynamics: 

)23(.
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VV
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VV
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dDd

D

VV

dLdS
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Now, applying equations (2, 4, 6, 8, 10, 11, 

15, 17, 19 and 20) and the correlated Wiener 

processes, equations (13.1 – 13.21) to 

equation (23), we have that 
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Rearranging equation (24) we have, 
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Conclusion 

Taking the integral of both sides of equation 

(25) and with the necessary adjustments, 

gives the value of the company. It is when 

these adjustments cannot be made that we 

adopt the discrete time approximation of the 

model and apply the Monte Carlos 

simulation in solving the problem. 
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