Deadline for Proposals for SOT 2014 Annual Meeting
Sessions: April 30, 2013

Why Submit a Proposal?
1. To present new developments in toxicology.
2. To provide attendees an opportunity to learn about state-of-the-art technology and how it applies to toxicological research.
3. To provide attendees an opportunity to learn about the emerging fields and how they apply to toxicology.

Session Types

Continuing Education—Emphasis on quality presentations of generally accepted, established knowledge in toxicology

Note: CE courses will be held on Sunday.

Symposia—Cutting-edge science; new areas, concepts, or data

Workshops—State-of-the-art knowledge in toxicology

Roundtables—Controversial subjects

Historical Highlights—Review of an historical body of science that has impacted toxicology

Informational Sessions—Scientific planning or membership development

Education-Career Development Sessions—Sessions that provide the tools and resources to toxicologists that will enhance their professional and scientific development

Regional Interest—Central topics of relevance that describe public health and/or ecological problems of a particular region

Submit your proposal online at www.toxicology.org
Preface

This issue is devoted to the abstracts of the presentations for the Continuing Education courses and scientific sessions of the 52nd Annual Meeting of the Society of Toxicology, held at the Henry B. Gonzalez Convention Center, March 10–14, 2013.

An alphabetical Author Index, cross referencing the corresponding abstract number(s), begins on page 536.

The issue also contains a Keyword Index (by subject or chemical) of all the presentations, beginning on page 561.

The abstracts are reproduced as accepted by the Scientific Program Committee of the Society of Toxicology and appear in numerical sequence.

The New Mobile Event App

Use these new planning and networking tools to access the latest meeting information, connect with fellow attendees, build your own schedule, view presentation details and abstracts, request meetings with attendees and exhibitors, and navigate ToxExpo with an interactive floor plan. In addition to these networking and meeting planning tools, use the app and website to access a complete San Antonio city guide including hotels, restaurants, attractions, nightlife, and shopping. One-on-one technology training and support is available during the meeting; visit the @SOT Center—Internet Access and Technology Training just across from Registration at the convention center or the SOT Pavilion in ToxExpo.

Copies of The Toxicologist are available at $50 each plus $5 postage and handling (US funds) from:

Society of Toxicology
1821 Michael Faraday Drive, Suite 300 • Reston, VA 20190

www.toxicology.org

© 2013 Society of Toxicology

All text and graphics are © 2013 by the Society of Toxicology unless noted. Some San Antonio photos are courtesy of the San Antonio Convention & Visitors Bureau. For promotional use only. No advertising use is permitted. Some photos by Stephanie Colgan, Steve Moore, and Richard Nowitz.
The presentation will review the immunobiology of antibodies and Fc receptors and explore the field of therapeutic antibody development and advances in "anti-body engineering" leading to the development of improved therapeutics. A basic overview will be provided on the structure and function of antibodies, as well as the various types and formats of antibody therapeutics and technological methods of production. In addition, the immunobiology of human leukocyte Fc receptors will be discussed. These receptors serve to link humoral immune responses to cellular activities within the immune system, and generally function as either antibody-binding receptors that trigger immune cell effector functions, or as transport receptors (FcRn). Highlights will include how immunoglobulin Fc sequences are now being tailored to trigger specific Fc receptors to improve therapeutic outcomes by introducing amino acid mutations, glycoengineering, or other approaches leading to next generation formats. Known species differences in immunoglobulins and Fc receptors that may be important for pharmacologic and toxicologic evaluations will be explored, as well as other challenges in assessing the nonclinical toxicities of new antibody formats. Building upon these basic themes, the presentation will explore the current landscape of approved therapeutics and forecasts for future developments in the field. The course will provide something for those seeking basic knowledge in the field of immunology and therapeutic antibody development, as well as those seeking to refresh and enhance their knowledge of recent advances.

2 Basic Principles of Human Risk Assessment.

O. Zhao1 and M. Meck2; 1US EPA, Cincinnati, OH; 2University of Ottawa, Ottawa, ON, Canada.

An overview of the fundamental, evolving guiding principles, and general methods used in chemical risk assessment will be provided. These principles and methods are addressed in presentations and discussions organized by the four components identified by the National Research Council in the Risk Assessment Paradigm: Hazard Identification and Characterization; Dose-Response Assessment; Exposure Assessment; and Risk Characterization. Guiding principles and key concepts in risk assessment will be illustrated by examples from the literature and sample calculations for dose-response assessment, exposure assessment, and risk characterization will be presented.

3 Recent Developments in Cardiovascular Physiology-Based Toxicology.

T. L. Knuckles1 and W. McGaun2; 1West Virginia University, Morgantown, WV; 2US FDA-CDER, Columbia, MD.

Contemporary drug development and toxicity assessments are focused on exploiting specific molecular targets that can improve disease outcomes with minimal unwanted effects. Unfortunately, modern training in toxicology and pharmacology is directed primarily at specific ligand-receptor interactions at the expense of systems physiology. An overview of cardiovascular physiology, with a thematic focus on toxicology, will be provided. The presentations will include: overall physiological changes that manifest at the whole-animal level following toxicant exposure; in vivo, in vitro and ex vivo cardiac testing protocols in the regulatory environment, and how current testing strategies may potentially miss cardiac effects that manifest chronically; vascular and microvascular effects that result from toxicity initiated in other tissues; and microvascular physiology and toxicology in the context of model development, application, and underlying pathology. The course will be of interest to a broad scope of scientists that are increasingly being requested to consider the impact of novel compounds and toxicants on the physiology of the entire cardiovascular system.

4 Approval of Biosimilar Monoclonal Antibodies: Scientific, Regulatory, and Legal Challenges.

L. LeSauter1 and J. D. Urban2; 1ToxStrategies, Inc., Austin, TX; 2Charles River Laboratories, Sennville, QC, Canada.

Technological advances have resulted in the development of a wide range of innovative monoclonal antibodies (mAb). As the patents for these monoclonal antibodies expire, there has been a growing interest in the market of “generic” follow-on products, or biosimilars. These biosimilar drugs, however, are not generic in the same sense as small molecule drugs since they do not have identical active compo-
Human exposures to metals are a daily occurrence because of their natural presence in the environment—their use in production of many commercial products—are byproducts of energy production and are found in many hazardous waste sites. The objective of the course is to highlight the fundamentals of metals toxicology. Metals have unique chemical and physical properties that distinguish them from organic-based chemicals. Even though some metals are essential to life, overexposure to these and other metals may result in a toxic effect in one or more organ systems. Upon exposure, metals may be absorbed, distributed throughout the systemic circulation, metabolized, and eliminated. The response of an organism following exposure to metals may be protective (e.g., induction of the metal-binding protein metallothionein), or toxicological by several mechanisms including oxidative stress. Key organ systems such as the central nervous system, the vascular system, as well as the skeleton system are affected by metals including manganese, lead, aluminum, and others. Accumulation of metals in bone has recently gained renewed interest as an eventual source of internal exposure. Noninvasive methods such as neutron activation are now being used to quantitate bone metal levels. Metals can influence gene expression, signal transduction, and epigenetics. Various toxic and carcinogenic metals such as arsenic and chromium alter the epigenetic program in cells; these effects on DNA methylation, histone tail modifications, and microRNA may be involved in metal-induced toxicity. Metals are known to cause cancer by several proposed mechanisms, including oxidative stress and the cancer stem cell hypothesis. Recent evidence suggests that developmental exposure to metals may affect stem cell population dynamics, which could result in adult onset of cancer. Overall, this is intended to be a basic course on metals toxicology, and is ideal to those who desire knowledge on the health effects of metals and useful tools used in metals toxicology research.

Recent developments in nanotechnology have generated a degree of apprehension concerning the potential risk to human health and the environment from manufactured nanomaterials (MN). The unique chemical and physical properties of MN, coupled with their high surface area per unit mass, require an extensive suite of characterization tools to effectively assess the toxicity of MN. Not only must the size and surface area of the MN be characterized prior to cellular exposure, but also a number of other specific features must be additionally evaluated, such as the size distribution, chemical composition, crystallinity, surface structure, shape, and solubility. The ionic strength of biological fluids may produce MN instability, resulting in environmental-specific aggregation tendencies that may impact toxicological results. Since aggregation of MN can modify uptake rates, transport properties, and clearance by the cell model or organ system, it is critical to interpret the data from MN toxicity experiments with a detailed knowledge of the physicochemical properties of the MN at all experimental time points. Due to the lack of standardized methods to determine the physicochemical behavior of MN in biological systems, the mechanisms and nature of acute or chronic toxicity of engineered MN cannot be fully understood at this time. An understanding of a proper manner by which MN should be introduced to a biological environment has yet to be established, and consistency between cellular assay techniques has not been verified—both situations presenting clear challenges that must be addressed. This course raises issues to consider for the toxicity assessment of MN, and addresses recent advances and technical obstructions associated with conducting or interpreting in vitro or in vivo toxicity studies. The goal is to provide a comprehensive understanding of MN characterization, as well as facilitate valuable discussions of key challenges and advancements in the newly emerging field of nanotoxicology.

The course objectives are to provide the basic tools for toxicologists who desire a better understanding of how to assess the effects of toxicants on the male and female gonads from development through adulthood. A focus on reproductive biology, study design considerations, reproductive endpoints, data interpretation, and use of data in risk assessment will be highlighted. Reproductive toxicity studies are among the most complex and challenging studies in the field of toxicology. The studies assess multiple interrelated endpoints of male and female reproductive development and function. To properly design, conduct, and interpret these studies, a fundamental knowledge of male and female gonadal development, anatomy, physiology, and endocrinology is required. Individual lectures will discuss the anatomy and physiology of the male and female gonads, as well as endocrine regulation of these systems. Evaluation of toxicity endpoints to assess male and female reproductive function will also be discussed, including folliculogenesis, spermatogenesis, hormone analysis, cyclicity, fertility, histopathology, and proper use of statistical analysis. The regulatory expectations related to reproductive toxicity testing, interpretation of results, and how these results are ultimately used to assess potential risks to human reproduction, will be presented. The course will conclude with methodologies for in vitro reproductive toxicity assessments for screening and investigation of mode of action. In summary, key information required for the design of reproductive toxicity studies and interpretation of reproductive toxicity data, and provide guidance for use of the data for risk assessment of reproduction, will be presented.
Understanding Toxic Neuropathy in Drug Development: Both Clinical and Nonclinical Perspectives.

M. Kullman1 and J. Benitez2, 1Covance Research Laboratories, Greenfield, IN; 2Vanderbilt University, Nashville, TN.

The topic of risk assessment of peripheral neuropathies is timely due to the increased clinical incidence of challenges related to multiple antecedents for the clinical presentation of neuropathies. The integration of both nonclinical and clinical dialogue on peripheral neuropathies will provide greater possibilities for successful drug development and improved patient outcomes. Peripheral nervous system toxicity is a common complication of exposure to industrial chemicals and drugs such as chemotherapeutics. Neuropathy can be caused by either limited or long-term exposure to drugs or chemicals, and toxic neuropathies can be classified by their presentation (e.g. motor vs. sensory), their electrophysiologic features or their neuroanatomical location within the peripheral nerve. Identification of toxic neuropathology prior to human exposure in the drug development process requires a multidisciplinary approach. Presentations will include information on the preclinical and clinical syndromes that have been characterized and the specific techniques for assessment. The preclinical presenters will focus on the application of preclinical data to provide risk assessment and to direct clinical assessment possibilities. The clinical presenters will emphasize the clinical situation and current treatment approaches. The course will conclude with open discussion between the presenters and the audience about opportunities for future risk assessment and the application to clinical management.

D. M. Wilson1 and A. L. Slitt1, 1The Dow Chemical Company, Midland, MI; 2University of Rhode Island, Kingston, RI.

There has been an exponential increase in the attention focused on the potential role of nutrition in reducing the risk for numerous health complications, ranging from birth defects to age-associated vascular disease. Understanding the above is the increasing number of presentations and publications related to this subject, and hallmarks such as the recently revamped Food Pyramid into a Plate Icon. Chronic nutritional diseases are accepted to be a current crisis in our society; three nutrition-related diseases alone, obesity, Metabolic Syndrome, and Type 2 Diabetes, affect over one-third of the American population. To better understand the components and etiology of nutritional diseases, it’s essential for toxicologists to be well versed in the science of nutrition. A comprehensive understanding of nutrition has broad applications in toxicology, especially considering that many of us have roles in investigating the safety of nutrients, food additives or food ingredients, studying nutritional disease, or designing and interpreting preclinical or clinical studies wherein the need to consider and understand nutritional homeostasis is essential. The potential for intersection of normal nutritional metabolic pathways with adverse outcomes is becoming even more important to delineate. This course on general nutrition, the biochemistry of nutritional pathways, the essential role of vitamins, the channeling of nutrients such as carbohydrates, proteins and fats, cellular and molecular details of nutrition, and nutritional aspects of development and reproduction, will heighten awareness of their importance in human and animal health at multiple levels. The focus will be on relevant information, starting with an introduction to nutrition, followed by a review of biochemical and metabolic reactions in nutrition, with an emphasis on their relation to toxicology. How the nutritional status of a woman can modulate the developmental toxicity of a number of diverse toxicants, including alcohol, will be presented.

Genetic and Epigenetic Determinants of Susceptibility to Environmental and Occupational Toxics.

V. L. Johnson1 and B. Yucесöz1, 1BRT-Burleson Research Technologies, Morrisville, NC; 2Toxicology and Molecular Biology Branch, NIOSH/CDCE, Morgantown, WV.

The most common chronic disorders are multifactorial in nature, influenced by complex interactions of genetic and gene-environment interactions. While gene expression is a dynamic process that varies in response to a myriad of internal and external triggers and the surrounding microenvironment, the epigenetic mechanisms play a key role in mediating environmental influences on gene expression and epistatic interactions. In this respect, the expression of complex phenotypes should be assessed in a functional context that would look at the interplay between environmental, genetic, and epigenetic factors. Recent advances in genetic and epigenetic research offer new opportunities to integrate experimental approaches, including animal models and in vitro/vivo translational research, with computational strategies to predict such interactions at multiple levels of complexity. The focus of this session will be on current research investigating the role of genetic factors, epigenetic factors, and gene-environment interactions in the development and outcomes of complex diseases caused by environmental and occupational toxicants.

Genetic Susceptibility to Occupational and Environmental Exposures.

D. C. Christiani. School of Public Health, Harvard Medical School, Boston, MA.

Due to their high prevalence in the general population, genetic polymorphisms in the susceptibility genes may predispose community members exposed to toxins. Studies in genetic susceptibilities can eventually provide the following benefits: (1) to provide mechanistic insight of the etiology of disease; (2) to identify the more susceptible subpopulations with respect to exposure; (3) to provide valuable input in setting exposure limits by taking into account individual susceptibility. Research in this area has provided promising insights to occupational medicine, such as those illustrated by the NAT2 polymorphisms-aniline dyes and bladder cancer, and the HLA-DPB1Glu69 in chronic beryllium disease, a hypersensitivity-mediated inflammatory disorder. Nonetheless, even for the genetic susceptibility markers that have been shown scientifically to have a clear role in disease risk, the value of wide-scale genetic screening in occupational settings remains limited. In the general environmental setting, there are limited, but growing data on the role of common gene polymorphisms in predisposing children and adults to inflammation-related respiratory disorders induced by air pollution, and to heavy metal toxicity. The purpose of this presentation is to discuss state of knowledge with regard to gene variants interacting with environmental exposures in causing cancer and inflammatory disorders.

Toxicogenomic and Systems Biology Approaches in the Understanding of Toxicity and Leukemogenesis Induced by Benzene.

C. McKhail1, L. Zhang1, Q. Lan2, R. Thomas1, A. E. Hubbard1, R. Vermeulen1, G. Li1, S. M. Rappaport1, S. Yin1, M. T. Smith1 and N. Rothman2, 1School of Public Health, University of California Berkeley, Berkeley, CA; 2Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD; 3Institute of Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands; 4Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.

Benzene is an established cause of acute myeloid leukemia (AML) and may cause one or more lymphoid malignancies in humans. Occupational exposure to benzene, even at levels below the current U.S. occupational standard of 1 ppm, causes hematotoxicity. Toxicogenomics (e.g. genomics, transcriptomics and epigenomics) and systems biology (study of the interactions among toxicogenomic endpoints using bioinformatics) approaches in human populations, animals, and in vitro models, exposed to a range of benzene levels, are key to understanding gene-environment interactions in benzene toxicity and can identify biomarkers of exposure, early effect and susceptibility. Through analysis of the peripheral blood mononuclear cell (PBMC) transcriptomes of 125 workers exposed to a wide range of benzene levels, we recently reported highly significant widespread perturbation of gene expression at all exposure levels, as well as alterations in AML and immune response pathways. Sequencing of the PBMC transcriptomes from a subset of the study subjects revealed additional alterations in gene expression. From preliminary epigenomic data in the human subjects, we have identified benzene-induced alterations in the DNA methylome and miRNome. Using genomic screens in yeast, with subsequent confirmation in human cells, we have identified potential biomarkers of susceptibility. We are developing bioinformatic methods to integrate these and future toxicogenomic datasets, in a systems biology approach, to further understand pathways of benzene toxicity and to reveal potential biomarkers associated with a range of exposures. Supported by NIH grant R42ES04705.

Integrated Genetic and Genomic Approaches to Understand Susceptibility to Toxicant-Induced Lung Disease.

S. R. Klebeageer. Laboratory of Respiratory Biology, NIEHS, Research Triangle Park, NC. Sponsor: V. Johnson.

Genetic background has an important role in susceptibility to complex lung diseases, and the genetic contribution to disease phenotypes varies between populations. Understanding the mechanisms of interactions between genetic background

SOT 2013 ANNUAL MEETING 3
and exposures to environmental stimuli are critical to disease prevention. Animal models, particularly inbred mice, provide important insight to understand disease etiologies because genetic background and environmental exposures can be controlled. Tools including in silico haplotyping, collaborative cross and diversity outcross mouse panels, bioinformatic applications, and -omics technologies have enhanced our ability to identify disease genes and pathways to guide translational investigations that apply these discoveries to human populations. Epigenetic and genomic approaches have yielded important insight to mechanisms of susceptibility to many complex traits and diseases. We have integrated inbred mouse and cell-based models with haplotype association mapping (genetic), global gene expression analyses (genomic), and expression quantitative trait locus mapping (eQTL or genetical genomics) to identify candidate susceptibility genes and associated gene networks important in toxicant-induced lung injury. The overarching goal of these investigations is to determine whether human homologues of these susceptibility genes associate with disease risk in human populations. Efforts to identify and validate susceptibility genes in mouse models of environmental disease with a goal towards translational application have enabled identification of individuals who are susceptible to disease. For example, epidemiological and clinical investigations have associated functional polymorphisms in human

S 18 Developmental Exposure to Bisphenol A and Lead: Effects on Metabolic Homeostasis and the Epigenome.

D. Dolinoy, University of Michigan, Ann Arbor, MI.

Environmental exposures during early development and other critical life stages may induce changes to the epigenome resulting in potentially deleterious phenotypic effects including metabolic disease, cancer, and neurological disorders. The field of epigenetics is experiencing a rapid advancement in technology, methodology, and data acquisition that now allows for the identification of the constellation of genomic loci with altered epigenetic status following dose-dependent exposures. Thus, epigenomic profiling facilitates the identification of biomarkers of exposure, enabling clinicians to identify-at-risk individuals prior to disease onset. Utilizing a multi-pronged approach with an in vivo mouse model, human clinical samples, and an ongoing 15-year longitudinal epidemiological study, the overall goal of this presentation is to elucidate the impact of perinatal bisphenol A (BPA) and lead (Pb) exposure on metabolic homeostasis and DNA methylation, and the interplay between the two. Developmental exposure to environmentally relevant levels of BPA has been shown to affect both global and gene-specific DNA methylation patterns in rodents. We now draw upon data from multiple whole-epigenome platforms to show that multiple dose levels of BPA affect DNA methylation in mice and humans and that these epigenetic effects are non-monotonic in dose response. Preliminary studies also indicate that Pb exhibits epigenetic effects that may contribute to its known neurotoxic and obesogenic activities.

S 19 Predictive Toxicology Paradigms for Understanding Carbon Nanotube Toxicity in the Lung.

L.C. Bonner1, A. Nel2, D.W. Porter3, V. Castranova4 and K.E. Pinkerton5.

1NCSU, Raleigh, NC; 2UCLA, Los Angeles, CA; 3NIOSH, Morgantown, WV; 4UC Davis, Davis, CA.

Nanotechnology is rapidly developing, resulting in the production of a variety of engineered nanoparticles. Carbon nanotubes (CNTs) represent an important family of nanoparticles because they have many potential uses in engineering, electronics, and medicine due to their ease of functionalization, unusual strength, and electrical conductivity. However, these novel nanostructures also represent a potential human health risk, due to the possibility of inhalation exposure and evidence that the lung and cardiovascular systems are targets for hazardous effects. Inhalation studies in rodents show that CNTs deposit within the distal regions in the lungs and migrate to the pleura to cause inflammatory and/or fibrotic effects. Presentations in this session are aimed at elucidating the pulmonary and cardiovascular effects of CNTs, and how an increasing variety of functionalized CNTs can be evaluated using single and multi-wall single-walled CNT test materials that can be screened by robust cellular assays to perform hazard ranking and SAR analysis. We are looking at the role of CNT dimensions (including length, diameter and aspect ratio), dispersability, catalytic surface chemistry, electronic properties and purity in initiating cooperative cellular interactions in macrophages and cells of the epithelial-mesenchymal transition (EMT), which are involved in the pathogenesis of pulmonary inflammation and fibrosis. The above physicochemical characteristics impact the lysosomal stability in macrophages in a hierarchical fashion, leading to cathepsin B release and assembly of the subunits of the NALP3 inflammasome. This leads to IL-1 beta release, which primes the EMT unit and initiates a march of events leading to TGF-beta and PDGF production and subsequent induction of chronic inflammation and fibrosis in the lung. Utilizing myeloid and epithelial cell lines, it is possible to study the induction of these biomarkers in relation to the property variations of the CNT materials, predicting the SARs that are associated with pulmonary inflammation and fibrosis. Moreover, we have also implemented surface chemical and functionalized CNT test materials to understand the potential of novel nanostructures that may induce changes in the lung and determine pulmonary and cardiovascular toxicity. The outcome of this session is to gain a better understanding of the structure-activity relationships, target organs, and susceptibility factors that will aid the development of predictive toxicology paradigms for understanding CNT toxicity.

S 20 Time Course of Pulmonary Responses to Inhaled Multiwalled Carbon Nanotubes.

D.W. Porter1, A.E. Hubbs1, R.R. Mercer2, N. Wu3, W. McKinney1, B.T. Chen1, M.G. Wolffarth1, L.A. Battelli1, J.F. Scabilloni1, D. Schwegler-Berry1, S. Friend1, S. Tsuuroka1, M. Endo1, D. Frazer1 and V. Castranova1.

1NIOSH, Morgantown, WV; 2Department of Mechanical & Aerospace Engineering, West Virginia University, Morgantown, WV; 3Research Center for Exotic Nanocarbons, Shinshu University, Nagano, Japan.

In the present study, an aerosol of multi-walled carbon nanotubes (MWCNT) was produced with an acoustical generator, and airborne concentration and size distribution was determined. Mice were exposed by whole body inhalation to MWCNT (5 mg/m3, 5 hours/day, 12 days) and pulmonary responses were monitored at 1 day, 2, 4, 12, 24 and 48 weeks post-exposure. Pulmonary responses were investigated using whole lung lavage, histopathology, morphometry, and enhanced darkfield light microscopy studies. MWCNT lung burden was also measured to assess MWCNT clearance. Data indicate that the lung burdens of MWCNT in this study represent lung burdens relevant to estimated human occupational exposures and caused time-dependent pulmonary inflammation, damage and pulmonary fibrosis. Using enhanced darkfield microscopy, MWCNT fibers were found in lavage of the pleural space, parietal pleura, and respiratory muscles of the diaphragm and chest wall. The time course of pulmonary responses and their relationship to MWCNT lung burden and clearance will be discussed.

S 21 Establishment of Carbon Nanotube Structure-Activity Relationships (SARs) That Can Be Used to Understand Pulmonary Toxicity and Safer Design.

A. Nel, UCLA, Los Angeles, CA.

There is a fundamental gap in understanding how the physicochemical properties of carbon nanotubes (CNTs) contribute to hazard generation in the lung. Without this knowledge, it is difficult to evaluate CNT safety in a predictive manner. Our goal is to develop a predictive toxicological paradigm for CNT safety assessment in which we define the structure-activity relationships (SARS) leading to hazard generation at the nano/bio interface, including ways to design safer materials that do not induce chronic inflammation and fibrosis. To achieve this goal, we are developing a series of single-wall and multi-wall CNT test materials that can be screened by robust cellular assays to perform hazard ranking and SAR analysis. We are looking at the role of CNT dimensions (including length, diameter and aspect ratio), dispersability, catalytic surface chemistry, electronic properties and purity in initiating cooperative cellular interactions in macrophages and cells of the epithelial-mesenchymal transition (EMT), which are involved in the pathogenesis of pulmonary inflammation and fibrosis. The above physicochemical characteristics impact the lysosomal stability in macrophages in a hierarchical fashion, leading to cathepsin B release and assembly of the subunits of the NALP3 inflammasome. This leads to IL-1 beta release, which primes the EMT unit and initiates a march of events leading to TGF-beta and PDGF production and subsequent induction of chronic inflammation and fibrosis in the lung. Utilizing myeloid and epithelial cell lines, it is possible to study the induction of these biomarkers in relation to the property variations of the CNT materials, predicting the SARs that are associated with pulmonary inflammation and fibrosis. Moreover, we have also implemented surface chemical and functionalized CNT test materials to understand the potential of novel nanostructures that may induce changes in the lung and determine pulmonary and cardiovascular toxicity. The overall utility of this research exploration is to establish a predictive and quantitative toxicological paradigm for the safety assessment of CNTs and their safe implementation in the marketplace.
"Cardiovascular Responses to Pulmonary Inhalation of Nanoparticles.

V. Castranova, Pathology & Physiology Research Branch, NIOSH, Morgantown, WV.

Pulmonary exposure to various nanoparticles has been reported to cause lung inflammation and in some cases fibrosis. This presentation describes cardiovascular responses which occur following inhalation of titanium dioxide nanoparticles or multi-walled carbon nanotubes in rats. Pulmonary exposure to nano titanium dioxide inhibits the ability of systemic and coronary arterioles to respond normally to adenergic agonists 24 hours post-exposure. This microvascular dysfunction is associated with adherence of polymorphonuclear leukocytes and generation of reactive species at the vessel walls, and resultant scavenging of nitric oxide secreted from dilator-stimulated endothelial cells, and resultant scavenging of nitric oxide secreted from dilator-stimulated endothelial cells. Neutrophil depletion or antioxidants partially reverse this vascular dysfunction. There are also appears to be a neurogenic component to these cardiovascular changes, since inhibition of pulmonary sensory neurons or neuronal input to the arteriolar smooth muscle partially reverses these effects. Inhalation of multi-walled carbon nanotubes inhibits coronary arterial responsiveness to dilators. This dysfunction occurs 24 hours after exposure and declines over several days thereafter. Human relevance of these rat data will be discussed.

"Biomarkers of Testicular Injury: Where Have We Been.

B. McIntyre, NIEHS/NTP, Research Triangle Park, NC.

Toxicological findings in the male reproductive system are one of the most challenging events to put into perspective during nonclinical drug toxicity testing. These findings in animal models often consist of adverse changes in testicular histopathology and decreases in male fertility. Understanding the toxicological relevance of these findings to men enrolled in clinical trials is necessary for patient safety and is often paramount for continued development of the drug candidate. The presentation will focus on the utility of biomarkers of testicular injury. Serum inhibin B is a product of the Sertoli cell, and levels fall in response to testicular injury. Testis-specific miRNAs may be released upon testicular injury, and their measurement in serum may be a measure of effect. Sperm mRNA transcripts and DNA methylation may be indicators of testicular toxicity because they are easily measured and persistently altered after testicular injury. Developing reliable and predictive translatable indicators of testicular toxicity would be valuable for drug development in the pharmaceutical industry, and for monitoring men in occupational settings where exposure to potential testicular toxins is a concern.

"Translatable Indicators of Testicular Toxicity: Inhibin B, microRNAs, and Sperm Signatures.

K. Boekelheide1, B. Melnyk3, M. Coulson4 and R. E. Chapin3. 1Brown University, Providence, RI; 2Pfizer Drug Safety, DART Group, Groton, CT; 3National Toxicology Program, NIEHS, NIH, Research Triangle Park, NC; 4AstraZeneca R&D, Alderley Park, United Kingdom.

The typical endpoints used in preclinical animal models for reproductive toxicity testing, such as histopathology, are not translatable for human clinical assessment, which typically focuses on the analyses of semen and serum hormones. Therefore, when testicular toxicity arises in preclinical toxicity testing, the methods currently available to monitor this liability in clinical trials are limited. Because of these limiting events is a need to develop sensitive and translatable indicators that reliably reflect testicular function. In this symposium, an introductory talk will set the stage by describing testicular physiology, preclinical tests of male reproductive toxicity, and current methods for assessing testicular function in men in clinical trials. The following three talks will discuss currently active efforts to develop improved translatable indicators of testicular injury. Serum inhibin B is a product of the Sertoli cell and levels fall in response to testicular injury. Testis-specific miRNAs may be released upon testicular injury, and their measurement in serum may be a measure of effect. Sperm mRNA transcripts and DNA methylation may be indicators of testicular toxicity because they are easily measured and persistently altered after testicular injury. Developing reliable and predictive translatable indicators of testicular toxicity would be valuable for drug development in the pharmaceutical industry, and for monitoring men in occupational settings where exposure to potential testicular toxins is a concern.

"Circulating microRNAs As Biomarkers of Testicular Damage?

R. E. Chapin, DART, Drug Safety R&D, Pfizer, Inc, Groton, CT.

MicroRNAs released into the blood following injury of specific tissues are emerging as promising biomarkers of toxicity, and the assays is no exception. A large multi-company effort under the auspices of the Predictive Safety Testing Consortium has
been working to define which miRNAs are testis-specific or -enriched, and to de-
finite their changes in the blood during testicular toxicant-induced injury. This pres-
entation will briefly review the underlying biology and present an update of the
work in this fast-moving area.

29 SpermidRNA Transcripts and DNA Methylation Marks As
Indicators of Testicular Injury.
K. Boekelheide, Brown University, Providence, RI.

As a pure population of cells that have matured and differentiated within the semi-
nuliferous epithelium, sperm carry all of the information needed to fertilize an oocyte
and initiate embryogenesis. Sperm deliver small and large RNAs and DNA to the
ovocyte. Using high throughput array technology, a panel of altered sperm miRNAs
has been identified after exposure of rats to testicular toxicants. In men, the extent
of sperm DNA methylation is related to sperm motility. The ultimate goal is to
identify translatable sperm molecular signatures that will allow the rapid assessment
of sperm effects in preclinical test species and exposed men.

30 Biology of Low-Dose Response for DNA- Reactive Chemicals.
J. Klapacz1 and B. P. Engelward2. 1 TERC, The Dow Chemical Company, Midland,
MI; 2 Department of Biological Engineering, Massachusetts Institute of Technology,
Cambridge, MA.

In the risk assessment process, DNA-reactive agents are generally considered to
have no thresholds for their biological effects and this assumption formed the basis
for linear low-dose extrapolation of any carcinogenic effects induced by these
agents. On the other hand, cells have evolved to handle DNA lesions from endoge-
nous and many exogenous DNA-reactive agents. In fact, DNA-repair processes are
strictly conserved from bacteria to humans underlying their importance in protec-
tion against the effects of these agents, such as disease and aging. In recent years,
low-dose response for DNA-reactive agents has been an active domain for research
in toxicology, with publication of several datasets with large numbers of doses fo-
cused on the determination of no-observed-genotoxic-effect-level (NOGEL) val-
ues. This effort has included dose-response modelling to identify the best fit be-
tween linear and non-linear models, such as bilinear (hockey-stick) and the benchmark
dose (BMD) suite of models, and most datasets have supported a bilin-
ear or non-linear/threshold dose response as providing best fit based on statistical
criteria. However, empirical demonstration of statistically-supported nonlinear/threshold dose response alone is not sufficient to achieve a paradigm shift
in risk assessment. A clear understanding of the biological processes behind the
shape of the low-dose response curve is similarly a critical piece of this journey, and
one where less effort has been focused to date within toxicology. This workshop will
explore some of the questions that need to be addressed to understand and bridge
DNA-repair processes and cellular responses with the mode-of-action driving these
nonlinear/threshold dose responses for genotoxic effects. The workshop will exam-
ine existing knowledge from the field of DNA repair and link it with response to
low doses of DNA-reactive agents, in order to draw specific recommendations on a
path forward.

31 Genotoxic Effects and Dose Response: What Do We Know
So Far?
L. H. Pottenger, TERC, The Dow Chemical Company, Midland, MI.

Low-dose genotoxic response for DNA-reactive alkylating agents has been actively
investigated recently, with large datasets focused on low-dose response and determi-
nation of no-observed-genotoxic-effect-level (NOGEL) values. Most of these rec-
tent datasets include dose-response modelling analyses and have demonstrated a bi-
linear or non-linear/threshold dose-response as the statistically supported best fit,
including datasets for directly DNA-reactive chemicals such as MMS, MNU, EMS,
and ENU. Recent data have demonstrated the ubiquitous presence of endoge-
nously-derived DNA adducts, some of which are identical to ones induced by ex-
egenous exposure to DNA-reactive chemicals. Use of stable isotopes has permitted
differentiation between the identical endogenously- and exogenously-induced DNA
adducts, demonstrating that the exogenously-induced DNA adducts can have non-linear
dose-responses at low doses; examples include formaldehyde and EO, both of which show that endogenous adduct levels can swamp the exoge-
nously-induced ones at low exposures. Thus the available empirical evidence sup-
porting the existence of non-linear/threshold dose-response for mutagenic effects
from DNA-reactive agents is already compelling, while a growing body of evidence
is demonstrating similar non-linear/threshold dose-responses for exogenously-in-
duced DNA adducts. However, statistically supported demonstration of non-lin-
ear/threshold dose-response alone is inadequate to achieve a paradigm shift in risk
assessment. A clear understanding of the biology behind the shape of the dose-re-
sponse is a critical piece for this journey, especially at low doses, although consider-
ably less effort has transpired on this aspect to date. Addressing the biology and bi-
ochemical and molecularly-modulated non-linear/threshold dose-responses for genotoxic effects is the next task, one in which DNA repair
mechanisms are likely to play a key role, both for adducts and for impact on dose-
response for any resulting mutagenic effects.

32 CometChip and Recombinome Shed Light on Gene-Environment Interactions That Impact Genomic Stability.
B. P. Engelward, Department of Biological Engineering, Massachusetts Institute of
Technology, Cambridge, MA.

We are interested in homologous recombination (HR) and base excision repair
(BER) and the interaction between these DNA repair pathways. To explore HR in
mammals, we created mice with recombination reporter systems (Recombinomice) in
which cells that have undergone an HR event fluoresce by combining tandem re-
peat of truncated copies of ÊYPF or EGFp gene. Here, we explore genetic and en-
environmental factors that modulate susceptibility to HR in vivo. In particular, the
impact of inflammation, producing endogenous oxidative and alkylating DNA
damage, as both a modulator and an inducer of HR is presented. Exposure to low
dose and high dose radiation causes many of the same changes to DNA as exposure
to inflammation and can lead to severe inflammatory responses. Consequently,
our inflammation studies have broad relevance. In addition, we have developed Comet
assay called ‘CometChip’ for DNA damage analysis in single cells in an automated
fashion. The approach increases throughput and improves reproducibility. Here, we
show proof of principle of the technology as well as several applications of the
CometChip for studies of gene-environment interactions. Together, this work and
the technologies generated new biological insights.

HR has emerged as an important driver of carcinogenic sequence rearrangements.
HR repairs double strand breaks in the S/G2 phases of the cell cycle resulting from
endogenous and exogenous processes. While usually homologous recombination may result in sequence rearrangements and loss of heterozygos-
ity, both of which are prominent features of cancer cells. BER is also a key DNA re-
pair pathway. In this case, damaged bases are removed, the DNA backbone is
claved, the ends are processed and the resulting gap is filled from the opposite
strand. Both pathways are usually error-free, but there are still some events where
there are misalignments during HR, and misinsertions during BER. Also, both
pathways are active in response to spontaneous DNA damage, and thus would be
expected to be active in response to low dose radiation.

33 Role of Mismatch Repair in Mutagenesis, Cancer, and DNA-Damage Signaling.
W. Edelmann, Department of Cell Biology, Albert Einstein College of Medicine,
Bronx, NY; Sponsor: J. Klapacz.

The DNA mismatch repair (MMR) system is essential for maintaining the integrity
of mammalian genomes by removing misincorporated nucleotides that result from
errorous replication. In addition, MMR participates in the early steps of check-
point activation and apoptosis during the cellular response to alkylation induced
O-7MeG:T mismatches and many other DNA lesions, particularly relevant at low-
dose, clinically-relevant exposures. Mutations in mammalian MMR genes result in
increased spontaneous mutation rates and strong predisposition to colorectal can-
cers and other cancers. Eukaryotic MMR is a complex system that requires the in-
tegration of several Muc6 and Muat proteins for the initiation of the repair reac-
tion. Subsequent to mismatch recognition, downstream events are activated that
lead to the excision of misincorporated or damaged nucleotides and the signaling of
DNA damage-induced cell cycle arrest and apoptosis. The loss of the MMR-depen-
dent DNA damage response is of significant clinical relevance as it results in in-
creased resistance to many alkylating and chemotherapeutic agents. Our research
program focuses on elucidating the functions of the individual Muc6 and Muat ho-
mologs in mammalian MMR and on assessing their importance for tumor suppress-
sion and the DNA damage response. Our results show that the DNA damage sig-
aling by MMR is important for the suppression of tumorigenesis in the initial
stages of the process. In addition, we found that MMR misense mutations can ef-
cfectively separate the DNA repair and damage response functions and result in
more heterogeneous cancer phenotypes than those caused by complete loss of func-
tion mutations.
Homeostasis with cellular stress response pathways involves negative feedback acting through a series of steps to reduce stressor concentrations. Many stress response pathways have rapid response, post-translational signaling and slower signaling through transcriptional upregulation of gene families. Our laboratory, in close collaboration with scientists from Unilever Safety and Environment Assurance Centre (SEAC), UK, has examined multiple biological read-outs in cells treated with several DNA-damaging compounds in order to create mechanistic computational models for micronuclei (MN) formation across wide dose ranges. The readouts in several cell types – AHH-1, HT-1080 and TK6 - included dose and time-dependent examination of whole genome gene expression, high content imaging of DNA-damage markers (H2AX and p53), semi-quantitative measures of key phospho-proteins (ATM, ATR, p38, Chk2, and p53), and MN as a measure of DNA-damage. Transcriptional upregulation only occurred in the regions of dose-response with clear increases in MN formation. Post-translational activation of rate constants for DNA-repair processes acting through activation of specific kinases appears to be the main contributor to regulation of DNA-damage at lower doses of these compounds. This talk describes stress pathway homeostatic feedback loops, shows our steps to populate high- and low-dose models for DNA-damage response pathways with etoposide, quercitin and methylmethansulfonate, notes our progress in creating mechanistically-based low dose threshold models and discusses the value of these computational models in guiding new experimental approaches for assessing thresholds.

Do Alkylating Agents Cause Genotoxic Thresholds through a DNA Repair Mode of Action?

G. E. Johnson, S. H. Douak, B. J. Rees, A. D. Thomas, J. R. Verma, Z. M. Zait and G. J. Jenkins. College of Medicine, Swansea University, Swansea, United Kingdom.

The long standing theory that linear dose responses exist for all DNA reactive genotoxic agents has recently been challenged. This paradigm shift towards accepting thresholds has been initiated by the scientific and regulatory community. High power non-linear dose responses are being produced in robust test systems. However, for the scientific community to accept a range of low doses as biologically irrelevant, a plausible mechanism of action must be shown experimentally. Many different research groups are tackling this issue for methyl- and ethyl-methane sulphonate (EMS and MMS) and methyl- and ethyl- nitrosourea (MNU and ENU) which have all been shown to exhibit non-linear dose responses for both mutagenicity and clastogenicity in vitro and in vivo. These alkylating agents induce specific DNA adducts (O6-alkylG, N7-alkyl-G and N3-alkyl-A), and recent work has been to investigate the roles of DNA repair in relation to their genotoxic thresholds. Specific DNA repair enzymes (N-methyl DNA purine glycosylase [MPG] and O6-alkyl guanine transferase [AGT]) have been shown to be up-regulated by low dose alkylating agents, and knocking down these specific DNA repair enzymes in vitro alters the shape of the dose response e.g. to EMS and MNU. Therefore, mono-functional alkylating agents have threshold dose responses through a DNA repair mode of action.

Incorporation of Exposure Data and Chemical Properties into Early In Vitro Screening Studies: Putting Early Hazard Identification into Appropriate Context.

R. T. Dunn and Y. Will. 1 Discovery Toxicology, Amgen Inc, Thousand Oaks, CA; 2Compound Safety Prediction, Pfizer Re&D, Groton, CT.

Over the past several years, a multiplicity of innovative early-screening assays have been adopted to improve our ability to select drug candidates with the maximal opportunity to eventually succeed in later development. Examples of medium and high-throughput assays that can enable early hazard identification include ion channels related to cardiovascular safety (hERG, NaV1.5, and others), assays to understand CNS permeability and hepatobiliary transport (Pgp, BSEP, etc.), and receptor and kinase screens, as well as screening ADME assays. These assays are typically employed early in the drug discovery process when little other data are available to help contextualize the early-screening result. Data output from these early screens is often produced, then utilized by project teams to select molecules for advancement, deprioritization, or to accumulate the knowledge base around a compound. In this mode of early-screening, each assay may have a safety threshold such as an IC50 value, which is then stored in a database often without further consideration or re-evaluation. There is a possibility that early-screening data in such a model is underutilized or potentially misleading. An inherent problem with generating screening data is that it is often produced in the absence of accompanying data (e.g., in vivo exposure), which is information that can be leveraged to place these data into better context and enable more accurate predictions. In this workshop, several use case examples will be presented where in vivo exposure information and chemical compound properties have been woven into early in vitro toxicity screening data enabling the discovery toxicologist to conduct a more robust assessment of the hazard identification assay data.

Inclusion of Exposure Data to Early Toxicity Screening: Using the Bile Salt Export Pump (BSEP) Screen As an Illustrative Example.

Inhibition of the bile salt export pump (BSEP) is a recognized risk factor in the development of drug induced hepatic toxicity. To date there has not been an animal model that can be reliably used to predict toxicity arising from inhibition of bile salt transport. Thus, in order to provide project teams with an early hazard identification tool for BSEP inhibition, a vesicle-based BSEP assay was developed. Guidance for decision making or prioritization was initially based on a series of cutoff values, where potency on BSEP was used as a singular criterion for hazard flagging. As part of an effort to refine how early screening data are used, BSEP inhibition data was obtained from a compendium of approved and withdrawn drugs. The available human exposure data was then applied in a ratio calculation (BSEP IC50/Exposure) in order to provide an estimate of the safety multiple. Using the ratio-based data, a more robust evaluation of the IC50 data is now possible and the decision making power is enhanced. In addition, both false positive and false negative compounds were further analyzed and hypotheses generated to refine judgment around the hazard for individual molecules.

High-Content Mechanistic Screening (HCMS) Technology to Impact Safety in the Context of Efficacy, Exposure, and Toxicity.

K. Tsaioun. Apredica, Watertown, MA.

High content mechanism screening (HCMS) is a powerful platform that images numerous mechanistic toxicity endpoints in full dose response at various time points in cells of choice to generate IC50 based toxicity profiles presented as heatmaps. This allows to compare toxicity profiles of compounds across chemical series or within a series, with the goal to only take compounds forward that meet an acceptable safety profile and minimize the probability of attrition in later stages of development. We have successfully applied this approach to retrospective analysis for organ toxicity prediction as well as within our own portfolio. This work demonstrated that accurate prediction of clinical safety outcome depended on the availability of accurate information on clinical exposure levels. Rank ordering of compounds should be done in the context of exposure to most accurately define the safety window. When adjusted for clinical Cmax, retrospectively, the rank ordering of compounds fell in line with the FDA status and known clinical adverse events observations. This information was available to us for retrospective validation of the HCMS technology, but is not available for discovery compounds. To address this problem, as part of retrospective validation, we used industry-standard approach of using pharmacologically-based pharmacokinetic (PBPK) model and predicted human Cmax to normalize HCMS toxicity data. We demonstrated that when HCMS data were adjusted for predicted Cmax, that was calculated using PBPK model ClocPK, rank order of the compounds fell in the same range as when we used clinical Cmax. In order to generate PBPK predictions a set of standard ADME data is used as an input.

Lead Optimization Against Toxicological End Points in Drug Discovery: Recognition of Structural Determinants of Small Molecule Target Organ Exposure and Toxicity.

D. P. Hartley. Array Biopharma, Boulder, CO.

Target organ toxicity is a leading cause of attrition for novel small molecules in non-clinical drug discovery and early clinical development. Given the demands on drug discovery teams to produce molecules devoid of toxicity concerns, a paradigm shift has occurred such that toxicologists are now integral members of these teams with new responsibilities geared toward lead optimization. As such, it is no longer sufficient for the toxicologist to simply describe the observed organ toxicities of a new
compound, it is expected that we assess risk for toxicity in a predictive manner, or ascribe a mechanism to early toxicity findings, link the findings to an offending moiety within the structure, and assist in defining the chemical lead optimization path. In many instances, simple modifications to structural or physical chemical properties to molecules with insufficient safety profiles can quickly lead to new candidates with improved exposure and target organ toxicity profiles. Examples will be presented where recognition and subsequent modification of structural and physical chemical features were employed to reduce attrition of small molecules due to undesirable safety pharmacology or target-organ toxicity.

W 40 The Challenges of Putting In Vitro Safety Assays into Context with In Vivo Data.

N. Greene. Compound Safety Prediction, Pfizer, Inc., Groton, CT.

In the quest for higher-throughput, lower cost assays for safety assessment, many efforts have focused on cell based in vitro assays that generate a effect at a certain concentration level readout such as an LC50 etc. However, most of the efforts on correlating these in vitro concentration responses to in vivo effects have looked at the simple presence or absence of a phenotypic response in the in vivo study resulting in the potential misinterpretation of a result. In this presentation, we will describe efforts to more fully describe the in vivo responses in the context of compound exposure to enhance the interpretation and correlation of in vitro assays. We will highlight some of the issues in working with in vivo data such as the loosely controlled vocabularies used in describing the findings observed in a study and approaches we have taken to overcome these. Finally, we will show how this may then enhance the predictive value of an in vitro assay such as a simple ATP depletion assay.

W 41 Relating Molecular Properties and In Vitro ADME/Tox Surrogate Assay Results to In Vivo Outcomes.

D. E. Watson. Lilly Research Laboratories, Indianapolis, IN.

A primary goal of lead generation and lead optimization is to identify compounds with good pharmacological properties and optimal absorption, distribution, metabolism, excretion and toxicological (ADMET) characteristics. Chemists routinely consider molecular properties in designing compounds and utilize in vitro ADMET surrogate assays to select promising compounds for in vivo studies. A number of recent reports have investigated the relationship between computed molecular properties and in vivo ADMET outcomes. Although there is consensus that compound properties are important, one limitation of these analyses is a lack of controls for possible covariates (i.e. correlation vs. causation). We have examined the relationship between molecular properties and in vitro ADMET surrogate assays vs. in vivo properties within 175 chemical series identified from a database of 3792 compounds for which short term rodent pharmacokinetic and toxicology data are available. The role of confounding covariates was minimized by focusing on those variable associated with large differences in outcomes between compound pairs within chemically similar series of molecules. The analysis identified the following pairs of surrogates as most predictive among those examined: rat primary hepatocyte (RPH) cytotoxicity / volume of distribution (Vd) for in vivo toxicology outcomes, scaled microsome metabolism / calculated logP for in vivo unbound clearance, and calculated logD / kinetic aqueous solubility for thermodynamic solubility. An important practical outcome of the analysis is a set of guidelines defining the utility of specific surrogates for several in vivo ADMET endpoint and the magnitude of change required in a surrogate endpoint to achieve a desired in vivo result for novel drug candidates.

Although regulated individually, the criteria air pollutants, NOx, Sox, CO, PM, Pb, and O3, exist as a complex mixture in the atmosphere. Thus, the interactions and cumulative effects of multiple pollutants are important to consider when assessing the impact of ambient air exposures on health. The criteria air pollutants act through complex biological pathways to elicit health effects, but many share common modes of action, including oxidative stress and inflammation. Mode of action for a given toxic agent is defined as the set of key events involved in a given toxic effect. Key events are measurable endpoints along a continuum from exposure to effect, and are consistent with emerging concepts of how to use biomarkers, surrogate endpoints, and toxicity pathways to characterize health risks. Recent discussions have proposed the use of mode of action to develop a unifying framework for the evaluation of mixtures containing multiple pollutants. This session convenes experts in the modes of action of criteria air pollutants to examine how this information can be organized, beginning with a description of an emerging framework for integrating mechanistic and biological plausibility information regarding the criteria air pollutants and a subset of ambient air toxics. Attendees will gain knowledge of how a mode-of-action framework can be used to consider mixtures, as well as emerging and established mechanisms of toxicity of air pollutants, focusing on potential interactions between pollutants encountered in a multipollutant context.

B. Buckley. National Center for Environmental Assessment, US EPA, Durham, NC.

To better understand the health effects resulting from exposures to mixtures of criteria pollutants (PM, particulate matter; sulfur oxides, SOx; nitrogen oxides, NOx; ozone, O3; lead, Pb and carbon monoxide, CO) that actually occur in ambient air, we are developing a framework for integrating information provided by toxicological, epidemiologic, and controlled human exposure studies based on mode of action. Mode of action for a given agent is defined as the set of key events which result in a toxic effect. Key events are measurable endpoints along the continuum from exposure to effect, and are consistent with emerging concepts of how to use biomarkers, surrogate endpoints, and toxicity pathways to characterize health risks. The approach elucidates commonalities in key events and pathways triggered by exposure to multiple pollutants. Available literature regarding the respiratory health effects of PM, SOx, NOx and O3 indicates that all four pollutants activate neural reflexes, increase bronchial reactivity, initiate inflammation and modulate immune responses which may lead to the exacerbation of allergic responses, asthma and altered host defenses. Emerging evidence also demonstrates that exposure to either PM or O3 may result in systemic inflammation, oxidative stress and impaired vasomotor function while exposure to NOx may result in pro-inflammatory circulating factors; all of which may lead to cardiovascular health effects. Exposure to CO may impair vasomotor function or lead to myocardial ischemia, while exposure to Pb may result in hypertension. Incorporation of important considerations for extrapolation in risk assessment such as adaptive responses, susceptibility factors, dose and duration of exposure, toxicokinetics, toxicodynamics and endogenous species this framework is explored.

W 44 The Effects of Criteria Pollutants in the Brain.

M. L. Block. Anatomy and Neurobiology, Medical College of Virginia, Richmond, VA.

Increasing evidence links air pollution to central nervous system (CNS) disease, but the mechanisms remain poorly understood. Experimental studies and human case reports reveal that neuroinflammation and oxidative stress have emerged as a common deleterious pathway triggered by exposures to diverse criteria pollutants, including ozone and particulate matter. Thus, evidence indicates that not only does the brain’s innate immune system respond to criteria pollutants, but that this has been linked to neurodegenerative-disease-like pathology in cell culture, rodent models, and humans. This presentation will focus on the cellular and peripheral mechanisms that may be driving the CNS effects of air pollution, as our work with diesel exhaust shows that both the peripheral immune system and microglia, the brain’s resident innate immune cell, may be key to this process. In addition to providing new information on specific mechanisms of CNS disease development related to criteria air pollutant exposure, a mode of action framework will be used to describe the pathways leading to emerging health effects with uncertain mechanisms.

W 45 Air Pollution and Pattern Recognition Receptors: Like a Wise LCMS in Every Mouse.

M. J. Campen. College of Pharmacy, University of New Mexico, Albuquerque, NC.

Distinguishing among the toxicities of the numerous criteria pollutants and other unregulated air hazards that exist in the multipollutant environment challenges the most sophisticated human and animal studies. To adopt a more refined approach to assessing the effects of multipollutant exposures, it will be essential to better understand the shared mechanisms driving toxicity. One common pathway that several labs have recently elucidated relates to a class of receptors known as pattern recognition receptors (PRR). Research will be presented looking at the role of PRR in
driving allergic airway response, cardio-metabolic response, and the systemic vascular inflammatory response to combustion-source mixtures, such as gasoline and diesel emissions. These findings, combined with results from other laboratories, indicate a role for PRRs that may help refine our understanding of the link between the chemistry of pollutant interactions at the lung surface and the ultimate pathophysiologic outcome.

Differential Effects of PM Components: Toward a Better Understanding of Underlying Mechanisms.

A. Rohr. Air Quality, Electric Power Research Institute, Palo Alto, CA.

Multiple epidemiological and toxicological studies have reported differential responses to fine particulate matter components, such as elemental carbon, organic carbon, sulfate, nitrate, and individual elements. While different PM components likely invoke unique pathophysiological pathways, it is also likely that there is overlap between mechanisms of action. For example, oxidative stress is a likely pathway for both organic PM components as well as trace elements. In a multipollutant setting, it is critical to understand the underlying mechanisms of adverse biological responses to these materials. This presentation will review what is currently known about pathophysiological pathways of response to PM components, with an emphasis on shared pathways.

Toxicological Challenges in Food Production in Texas and the Gulf Coast.

L. M. Plunkett. Integrative Biostrategies LLC, Houston, TX.

With recent media attention on episodes of food contamination and the impact of chemicals in the environment on the food supply (i.e., bacterial contamination of food, as well as the 2010 BP oil spill), public awareness of food safety issues has grown. This symposium will explore the topic of food safety as it relates to unique features of food production in Texas and the Gulf Coast. Texas is a major source of fresh fruit and vegetable production for both regional and countrywide consumption, while the Gulf Coast is a major source of fresh fish and seafood for many parts of the United States. Topics covered in the symposium will include recent legislative initiatives such as the Food Safety and Modernization Act of 2010, current regulatory overviews of food production and safety in the Gulf Coast region, and key public and/or worker health issues associated with food production in the region. The goal of the symposium is to describe the strengths and weaknesses of current regulations and practices to ensure a safe food supply as well as worker safety, and provide dialog for ways to address unique concerns related to food production in Texas and the Gulf Coast. Symposium speakers work in academia, for the United States government (US FDA), and an organization representing the interests of the public (Center for Science in the Public Interest), which will allow for discussion of the topics from a variety of perspectives.

Multiagency Response to Seafood Safety Concerns following the 2010 Deepwater Horizon Oil Spill.

The April 20, 2010 explosion and sinking of the Deepwater Horizon oil drilling platform (DWH) resulted in the largest oil spill in U.S. history. For a period of 87 days roughly 53 thousand barrels of oil per day flowed into the Gulf of Mexico (GOM). The U.S. Coast Guard estimated 4.9 million barrels of crude oil escaped before the damaged wellhead was sealed on July 15. The DWH spill threatened all States bordering the GOM, and crossed Federal and State jurisdictional boundaries. Agencies responded to the spill in a coordinated manner to execute a unified seafood safety protocol. Most seafood samples that were tested after the oil spill had dissipated, and before waters were reopened for fishing, did not contain measurable levels of oil or dispersant residues. The samples that did contain measurable residues were consistently 100 to 1000-fold below levels of concern established in the unified seafood safety protocol.

Differential Effects of PM Components: Toward a Better Understanding of Underlying Mechanisms.

A. Rohr. Air Quality, Electric Power Research Institute, Palo Alto, CA.

Multiple epidemiological and toxicological studies have reported differential responses to fine particulate matter components, such as elemental carbon, organic carbon, sulfate, nitrate, and individual elements. While different PM components likely invoke unique pathophysiological pathways, it is also likely that there is overlap between mechanisms of action. For example, oxidative stress is a likely pathway for both organic PM components as well as trace elements. In a multipollutant setting, it is critical to understand the underlying mechanisms of adverse biological responses to these materials. This presentation will review what is currently known about pathophysiological pathways of response to PM components, with an emphasis on shared pathways.

 Toxicological Challenges in Food Production in Texas and the Gulf Coast.

L. M. Plunkett. Integrative Biostrategies LLC, Houston, TX.

With recent media attention on episodes of food contamination and the impact of chemicals in the environment on the food supply (i.e., bacterial contamination of food, as well as the 2010 BP oil spill), public awareness of food safety issues has grown. This symposium will explore the topic of food safety as it relates to unique features of food production in Texas and the Gulf Coast. Texas is a major source of fresh fruit and vegetable production for both regional and countrywide consumption, while the Gulf Coast is a major source of fresh fish and seafood for many parts of the United States. Topics covered in the symposium will include recent legislative initiatives such as the Food Safety and Modernization Act of 2010, current regulatory overviews of food production and safety in the Gulf Coast region, and key public and/or worker health issues associated with food production in the region. The goal of the symposium is to describe the strengths and weaknesses of current regulations and practices to ensure a safe food supply as well as worker safety, and provide dialog for ways to address unique concerns related to food production in Texas and the Gulf Coast. Symposium speakers work in academia, for the United States government (US FDA), and an organization representing the interests of the public (Center for Science in the Public Interest), which will allow for discussion of the topics from a variety of perspectives.

Multiagency Response to Seafood Safety Concerns following the 2010 Deepwater Horizon Oil Spill.

The April 20, 2010 explosion and sinking of the Deepwater Horizon oil drilling platform (DWH) resulted in the largest oil spill in U.S. history. For a period of 87 days roughly 53 thousand barrels of oil per day flowed into the Gulf of Mexico (GOM). The U.S. Coast Guard estimated 4.9 million barrels of crude oil escaped before the damaged wellhead was sealed on July 15. The DWH spill threatened all States bordering the GOM, and crossed Federal and State jurisdictional boundaries. Agencies responded to the spill in a coordinated manner to execute a unified seafood safety protocol. Most seafood samples that were tested after the oil spill had dissipated, and before waters were reopened for fishing, did not contain measurable levels of oil or dispersant residues. The samples that did contain measurable residues were consistently 100 to 1000-fold below levels of concern established in the unified seafood safety protocol.

Seafood Safety Challenges for the Texas Gulf Coast.

Potentially toxic chemistry from the 2010 BP oil spill and clean-up efforts generated widespread public concern over the safety of seafood harvested from the Gulf of Mexico. Government agencies swiftly opened and closed federal and state waters to ensure a safe food supply as well as worker safety, and provide dialog for ways to address unique concerns related to food production in Texas and the Gulf Coast. Symposium speakers work in academia, for the United States government (US FDA), and an organization representing the interests of the public (Center for Science in the Public Interest), which will allow for discussion of the topics from a variety of perspectives.

Occupational Heat Stress in Agricultural Settings.

J. L. Levin. Occupational Health Sciences, The University of Texas Health Science Center at Tyler, Tyler, TX. Sponsor: E. Bruce.

Occupational heat stress and heat illness disproportionately affect agricultural workers compared with other occupations, including migrant and seasonal farmworkers. From 1992 to 2006, there were 423 occupational heat-related deaths in the United States. The mortality rate from occupational heat-related illness among crop workers was nearly twenty times as high as for all industries during that time frame. This presentation will review underlying causes and risk factors for occupational heat stress, recognition of the continuum of heat illness, and recommendations for monitoring and prevention. Presently, there is no federal occupational regulatory standard specifically regarding heat exposure. This presentation will also review fundamental differences between OSHA and NIOSH and emphasize the complexities of understanding recommended exposure limits. Case examples from outdoor work environments will be presented including one which culminated in adjudication before the Occupational Safety and Health Review Commission.

SOT 2013 ANNUAL MEETING
52 Developmental Toxicity and Neurobehavioral Effects of Dietary Flavonoids.

S. M. Bugel and R. L. Tanquary, Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR.

Flavonoids are a structurally diverse group of phytochemicals that are known hormone mimics (phytoestrogens), and are thought to have therapeutic properties. Humans are exposed to flavonoids through consumption of fruits, vegetables, and dietary supplements. These ubiquitous chemicals are found in baby formulas and foods, and are detected in human urine, plasma, and breast milk. Therefore, the potential for developmental effects should be explored. Using zebrafish (Danio rerio) as a model vertebrate, we tested the hypothesis that flavonoids exhibit structure-dependent effects on development. Embryos were treated with 5 representative flavonoids (apigenin, biochanin A, S-equol, galangin and kaempferol), 1-50 μM, from 6 hours post fertilization (hpf) to 120 hpf. At 120 hpf, effects included yolksac and pericardial edemas, axis curvature, fin dysmorphogenesis and craniofacial abnormalities. For all 5 compounds, we also observed spastic pectoral fin and caudal tail movements at 72 hpf, suggestive of neurotoxicity. To test the hypothesis that flavonoids are stimulants, we assessed acute effects on neurobehavior in naïve 120 hpf larvae challenged with 16 flavonoids: apigenin, biochanin A, chrysin, daidzein, S-equol, fisetin, formononetin, galangin, genistein, kaempferol, luteolin, myricetin, naringenin, puerarin, quercetin and resveratrol. With the exception of puerarin, all induced hyperactive swimming behavior suggesting that flavonoids have psychostimulant and stimulant properties. This zebrafish larval bioassay is amenable to rapid throughput screening for anxiogenic and anxiolytic properties, which we validate using neurotoxics chosen to represent diverse mechanisms (e.g. nicotine, chlorpyrifos, picrotoxin, etc.). Using pharmaceutical intervention with receptor specific chemicals, this screen will be valuable for identifying interaction of dietary flavonoids and other chemicals of interest with neuro-receptors to identify the mechanism of toxicity in vivo. This research is supported by NIEHS grants P30 ES00210, RC4ES019764 and T32 ES07060.

53 Perinatal Toxicity and Carcinogenicity Studies of Styrene Acrylonitrile Trimer, a Ground Water Contaminant.

Division of the National Toxicology Program, NIEHS, Research Triangle Park, NC; *Kellie Government Solutions, Research Triangle Park, NC; 2 Battelle Memorial Institute, Columbus, OH.

Styrene Acrylonitrile (SAN) Trimer is a by-product of the production of acrylonitrile-styrene plastics. Following the report of a childhood cancer cluster in the Tom's River section of Dover Township, New Jersey, SAN Trimer was identified as one of the groundwater contaminants at Reich Farm Superfund site in the township. The contaminants from the Reich Farm site's ground water plume impacted two wells at the Parkway well field. The National Toxicology Program (NTP) studied the toxicity and carcinogenicity of SAN Trimer in F344/N rats exposed during their perinatal developmental period and adulthood. The chronic toxicity and carcinogenicity studies in rats were preceded by 7 and 18-week perinatal toxicity studies to determine exposure concentrations for the 2 year studies. Pregnant dams were exposed to SAN-Trimer in the diet at 400, 800, or 1600 ppm during gestation, nursing and weaning periods of offspring followed by two years of adult exposure to both male and female pups. There was no statistically significant evidence of carcinogenic activity following SAN-Trimer exposure; however, rare neoplasms in the brain and spinal cord were noted in males and to lesser extent in female rats. These incidences were considered within the range of historical control background in the animal model used in the current studies. The major finding was a dose-dependent peripheral neuropathy associated with the sciatic nerves in females and spinal nerve roots in males and females, thereby suggesting that SAN-Trimer is a potential nervous system toxicant. Other non-neoplastic lesions included increased incidences of some lesions in the bone marrow and liver in males and females, and in the urinary bladder in females.

54 Does Developmental Hypothyroidism Produce Lasting Effects on Adult Neurogenesis?

US EPA, Research Triangle Park, NC; 2NeuroScience Associates, Knoxville, TN.

The subgranular zone of the dentate gyrus (DG) of the adult hippocampus generates new neurons throughout life. Thyroid hormones (TH) are essential for brain development, but impaired neurogenesis with adult hypothyroidism has also been reported. We investigated the role of milder degrees of TH disruption on adult neurogenesis following hypothyroidism induced during development, in adulthood, or both. Pregnant dams were administered the TH synthesis inhibitor, propylthiouracil (PTU) (10 or 3ppm in drinking water) from gestational day 6, and pups were weaned to control water on postnatal day (PN)21. On PN60, offspring from control or PTU dams were either re-exposed to PTU (3ppm) for 1 month or maintained on control, Bromoethoxyuridine (BrdU 50 mg/kg, ip, twice daily) was administered to all animals on the last 5 days of the re-exposure period, and animals sacrificed 28 days later. Animals were perfused intracardially, the brains removed and embedded in a MultiBrain (NSA) array and freeze sectioned. Every 8th section throughout the hippocampus stained with an antibody against BrdU to mark active neuronal cell division. Preliminary findings indicate that developmental exposure to PTU produced a persistent reduction in the volume of the adult DG. BrdU cell counts were reduced similarly in all PTU-exposed groups. These data suggest that moderate levels of hypothyroidism decrease cell survival in the adult brain and that transient developmental hypothyroidism leads to persistent decreases in DG volume and cell survival. The degree to which these findings are determined by reductions in cell proliferation is currently under investigation. As neurogenesis in the adult recapitulates developmental processes of proliferation, differentiation, and migration, study of this neurogenic niche in the adult may provide a simpler means to assess the consequences of TH insufficiency on neurodevelopment. (Does not reflect EPA policy).

N. Sturgess, P. Botham, M. Butt, D. Minnema, J. Smith and J. Wold.

Syngenta, Bracknell, United Kingdom; *Syngenta, Greensboro, NC; 3Tox Path Specialists, Frederick, MD; 4EPL, Sterling, VA.

A number of publications have reported that i.p. administration of paratrazad (PQ) to rodents (e.g. C57Bl6J mice) at high doses results in a loss of dopaminergic neurons from the substantia nigra pars compacta (SNpc), the primary area of neuropsychological damage in Parkinson’s disease (PD). Such studies have been used to indicate mechanistic plausibility for epidemiological claims of a link between PQ exposure and PD. A major criticism of the i.p. mouse model is that it uses a route of administration which is not relevant to occupational exposure. PQ exposure results in a high magnitude of depletion in a short time. To better understand the relevance of the reported findings from the i.p. mouse model we have conducted a study where male C57Bl6J mice were exposed to PQ in the diet for 13 weeks, and the brains examined for evidence of dopaminergic neuronal cell loss using stereology, changes in striatal neurochemistry and pathological changes using stains to detect neuronal cell damage and inflammatory responses. Dietary concentrations of 10 & 50 ppm paraquat dichloride salt were used which resulted in achieved doses of 2.4 & 14.1 mg/kg/day. A low dose of N-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 10 mg/kg administered i.p. to a separate group of male mice 4 times in a single day at 2 hr intervals, 7 days prior to the end of the dietary study) served as a positive control. PQ at either dose level did not induce a loss of tyrosine hydroxylase positive (TH+) dopaminergic neurons in the SNpc, alter the concentration of striatal dopamine and its metabolites or result in evidence of neuronal cell damage or astrocyte/microglial activation in the SNpc. In the MPTP group the number of TH+ neurons in the SNpc and striatum was reduced, there was significant pathological changes including neuronal necrosis and astrocyte/microglial activation. This study further brings into question the relevance of the findings from previous i.p. mouse studies as evidence for a link between PQ exposure and PD/parkinsonism.

56 Neurodevelopmental Effects of Inhaled Vapors of Gasoline and Ethanol in Rats.

NIEERL/ORD, US EPA, Research Triangle Park, NC; 2MMT Inc, Durham, NC.

Gasoline-ethanol blends comprise the major fraction of the fuel used in the US automotive fleet. To address uncertainties regarding the health risks associated with exposure to gasoline with more than 10% ethanol, we are assessing the effects of prenatal exposure to inhaled vapors of gasoline-ethanol blends. Pregnant Long-Evans rats are exposed to fuel vapors, 6.5 hr/day, on days 9–20 of gestation, and pups were weaned to control water on postnatal day (PN)21. On PN60, offspring from control or PTU dams were either re-exposed to PTU (3ppm) for 1 month or maintained on control. Bromoethoxyuridine (BrdU 50 mg/kg, ip, twice daily) was administered to all animals on the last 5 days of the re-exposure period, and animals sacrificed 28 days later. Animals were perfused intracardially, the brains removed and embedded in a MultiBrain (NSA) array and freeze sectioned. Every 8th section throughout the hippocampus stained with an antibody against BrdU to mark active neuronal cell division. Preliminary findings indicate that developmental exposure to PTU produced a persistent reduction in the volume of the adult DG. BrdU cell counts were reduced similarly in all PTU-exposed groups. These data suggest that moderate levels of hypothyroidism decrease cell survival in the adult brain and that transient developmental hypothyroidism leads to persistent decreases in DG volume and cell survival. The degree to which these findings are determined by reductions in cell proliferation is currently under investigation. As neurogenesis in the adult recapitulates developmental processes of proliferation, differentiation, and migration, study of this neurogenic niche in the adult may provide a simpler means to assess the consequences of TH insufficiency on neurodevelopment. (Does not reflect EPA policy).
E100, E0 vapors caused no overt maternal toxicity, changes in litter size or weight, or weight gain of the pups. In contrast to E100, E0 did not alter locomotion activity of adults. Both E0 and E100 produced a few minor, unsystematic changes in the functional observational battery. In water maze tests, E100 altered search strategies (not dose-related) and impaired memory in females (no-platform probe trials, all doses); in contrast, E0 was essentially ineffective. No treatment affected working memory, as assessed in a spatial delayed-matching-to-position test. In an operant reaction-time test, 21000 ppm E100 and 9000 ppm E0 increased hold failures, a measure of impulsivity, and increased decision times at the lower doses. Responses to a conditioned audiovisual cue were reduced in females at all doses of E100, but were not affected by E0; neither agent affected conditioning to context. Telemetered mean blood pressure (BP) was increased in male offspring by 9000 ppm E0 at PND 90 and 180; tail cuff tests corroborated these results at PND 180 only. E100 increased BP (tail cuff) in males at all doses on PND90 only. This abstraction does not reflect EPA policy.

PL 57 Postnatal Trichloroethylene Exposure Is Associated with Abnormal Behavior and Alterations Global DNA Methylation Patterns in Mouse Cerebellum.

S. Blossom, J. L. Rau, S. B. Melnyk, C. A. Cooney, S. J. James and W. D. Westinger. 1Pediatrics, Arkansas Children’s Hospital Research Institute, Little Rock, AR; 2Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR.

Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally-relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione (GSH) depletion in the cerebellum indicating increased sensitivity to oxidative stress. Here we extend these findings to further characterize the impact of TCE exposure on redox homeostasis, biomarkers of oxidative stress, transmethylation metabolites and global DNA methylation patterns in mice exposed to water only or two doses of TCE in the drinking water postnatally from birth until 6 weeks of age. The mice were subjected to a variety of open field behavioral tests in order to correlate behaviors with metabolic and methylation patterns observed in our model. Our results show that the cerebellum from male mice exposed to TCE have lower GSH and increased markers of oxidative stress compared with controls. Methionine levels were also significantly reduced in the TCE-exposed mice which suggested compromised cellular methylation. Global DNA methylation, including hydroxymethylation patterns, were significantly lower in the cerebellum of TCE-exposed mice, compared to controls. Mice exposed to TCE exhibited increased locomotor and exploratory activity compared to control mice suggesting increased anxiety behavior. Understanding the mechanisms of TCE neurotoxicity during sensitive periods of development are of major public health importance.

PL 58 Perfluorohexane Sulfonate (PFHxS) Causes Adult Behavioral Disturbances in Male and Female Mice, after Neonatal Exposure.

Perfluorohexane sulfonate (PFHxS) is a perfluorinated compound (PFC) used as an industrial additive. PFC chemical properties make them suitable as surfactants and oil- and water repellents, which are frequently used in products for packaging and as protective coatings. However, the same properties also account for their extreme physico-chemical stability, making them practically non-biodegradable, accumulating in the global environment, causing concern, since little is known about the toxicity of the compound. We recently have seen that other PFCs, like perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), can induce developmental neurotoxic effects and the purpose of the present study was to explore if neonatal exposure to PFHxS can affect behavior and cognitive function. In the present study we exposed male and female mouse pups to a single dose of PFHxS (0.61-9.2 mg/kg bw) during the defined critical period of brain development, on postnatal day 10. At two months of age male and female mice showed altered spontaneous behavior in a novel home environment, affecting cognitive function. Furthermore, these functional behavioral effects were long-lasting or irreversible since they were once again seen at four month of age. The nicotine-induced behavior test revealed that male and female mice neonatally exposed to PFHxS responded differently compared to control animals, when challenged with a dose of nicotine. The present findings show that PFHxS can cause developmental neurotoxicity effects similar with effects earlier reported after neonatal exposure to PFOS and PFOA and other persistent pollutants, such as PBDEs and PCBs.

PL 59 Acute Ozone-Induced Impairment of Glucose Regulation: Age-Related and Temporal Changes.

Ozone (O3) is associated with adverse cardiopulmonary effects in humans and thought to produce metabolic effects, such as insulin resistance. We showed that episodic O3 exposure increased insulin levels in aged rats. We hypothesized that O3 could impair glucose homeostasis by altering insulin signaling and/or causing an unfolded protein response (UPR) in the liver. Brown Norway rats, 1, 4, 12, 21, and 24mo old, (a model of non-obese aging) were exposed to O3 at 0.5, 0.25 and 1ppm, 6h/day for 2 consecutive days. As a follow-up study, 4mo old rats were exposed to 0 or 1ppm O3 over 2 days to examine the time course of response. Glucose tolerance tests (GTT) directly followed exposure in all studies and additionally at 24h post-exposure in the time-course experiment. Liver gene expression was examined using Affymetrix RG-230PM Array strips. Liver and adipose tissues were also analyzed using RT-PCR for metabolic and UPR markers. Phospho-protein analysis to assess insulin signaling was done in the liver, adipose tissue, and muscle. GTT showed a marked impairment of glucose clearance among 1ppm O3 exposed rats of all ages. The reduction in insulin regulation after O3 exposure was most apparent in 1mo rats, who exhibited no baseline glucose intolerance. The 24mo rats exhibited glucose intolerance at baseline. Analyses of metabolic and acute phase response (APR) biomarkers show that the insulin signaling pathway is altered by O3 in all three tissues and serum APR proteins were increased. Selected UPR genes were upregulated in the liver. Serum leptin increased acutely following 1 day (6h) O3 exposure. Maximum effects of O3 on insulin signaling and APR were seen directly following the second day of exposure. Our results suggest that glucose intolerance is a result of metabolic changes in response to O3. These findings raise concern about ambient O3’s potential to cause predisposition towards metabolic impairment. (Does not reflect US EPA policy).

PL 60 Fine Particulate Matter (PM2.5) Exposure Impairs Vascular Insulin Signaling and Exacerbates Diet-Induced Systemic Insulin Resistance in Mice.

P. Halverstek, J. McCracken, J. Lee, A. Bhatnagar and D. J. Conklin. University of Louisville, Louisville, KY.

Recent epidemiological studies suggest that increases in fine particulate matter (PM2.5) air pollution contribute to the rapidly evolving epidemics of obesity and diabetes. Because metabolic syndrome, diabetes and air pollution all induce endothelial dysfunction, and because we recently showed that short-term exposure to centimeter ambient PM2.5 (CAP) impairs endothelial VEGF signaling and decreases circulating endothelial progenitor cells (EPCs), we examined the effects of CAP exposure (9-30 consecutive days, 6h/d) on endothelial and systemic insulin resistance and inflammation, adiposity and vascular function in mice fed normal chow or high-fat diet (HFD). Surprisingly, CAP exposure impaired vascular insulin signaling after only 9 or 30 days, and exacerbated HFD-induced systemic insulin resistance after 30 days without increasing adiposity. Insulin sensitivity and inflammation in adipose and liver were unaltered by CAP or HFD. In contrast, CAP exposure (30 days) impaired endothelial insulin signaling diet-independent in heart and aorta, but HFD-dependent skeletal muscle. Changes in insulin sensitivity were accompanied by organ-specific but not systemic inflammation and a decrease in circulating EPCs. Collectively, our results suggest that short-term CAP exposure provokes HFD-induced systemic insulin resistance by inducing inflammation and endothelial insulin resistance accompanied by decreased circulating EPC levels. Impaired vascular maintenance due to EPC suppression could contribute to vascular insulin resistance (or vice versa) thereby increasing systemic insulin resistance and the risk for the development of T2D and CVD by PM2.5.

PL 61 Ozone (O3): A Potential Contributor to Metabolic Syndrome through Altered Insulin Signaling.

Air pollutants have been associated with diabetes and metabolic syndrome, but the mechanisms remain to be elucidated. We hypothesized that acute O3 exposure will produce metabolic impairments through endoplasmic reticular stress (ER) stress...
Inhaled Ozone Induces Metabolic Abnormalities in Mice Fed a High-Fructose Diet.

K. M. Allen1–2, P. Brooks1, M. Dereksi1, R. Lewandowski1–2, I. Hothchikis1, D. Jackson-Humbles1, C. Brandenberger1, L. Bramble1–2, J. G. Wagner1–2 and J. Harkema1–3. Pathobiology, Michigan State University, East Lansing, MI. 1Great Lakes Air Center for Integrated Environmental Research, Michigan State University, East Lansing, MI.

Results of recent inhalation toxicology studies have indicated that long-term exposure of mice to concentrated ambient particulate matter induces insulin resistance and potentiates other adverse metabolic effects brought on by consumption of a high fat diet. Similar adverse metabolic effects on insulin signaling and glucose homeostasis caused by gaseous air pollutants, such as ozone (O3), have not been investigated. In the present study, we tested the hypothesis that subacute inhalation exposure to O3 enhances metabolic abnormalities, caused by a high fructose diet (HFrD), in mice. C57/B6Tc3 male mice were maintained on either a normal chow (NC) or a HFrD (from which 60% of the calories were derived from fructose) for the duration of the study. Mice were exposed to 0 (filtered air controls; FA) or 0.5 ppm O3, 4 h/day for 24 consecutive weekdays. No combination of exposure or diet caused changes in glucose metabolism, as measured by oral glucose tolerance tests conducted immediately following each day or one day after 2-day exposure. Tissues were analyzed for insulin and ER stress signaling and serum for inflammation and metabolic biomarkers. O3 produced severe hyperglycemia and glucose intolerance that was reversible following 1 day recovery. Phosphorylation of insulin receptor substrate (pIRS) decreased after 2nd day O3 in all three organs. Downstream mediators, phospho-serine/threonine kinase and phospho-glycogen synthase kinase also decreased but only in adipose tissue. Serum insulin changes were correlated with tissue levels of pIRS. Serum IL-6, thought to link oxygen-in- duced inflammation and metabolic alterations, did not increase at any time; however lipocalin and acute phase proteins increased after O3. Serum leptin was also increased sharply after 1-day O3 exposure and it was correlated with O3-induced hyperglycemia, but not glucose intolerance. Genes downstream of unfolded protein response were changed in the liver indicating ER stress. To examine the role of liver ER stress in O3 induced impairment of metabolism, we treated rats with ER-stress inhibitor, salubrinal prior to air or 1ppm O3. Salubrinal did not diminish O3-in- duced hyperglycemia and glucose intolerance, suggesting that hyperglycemia likely did not result from ER stress. In conclusion, acute O3 exposure alters insulin sig- naling in metabolic organs causing hyperglycemia and glucose intolerance, which might contribute to increased incidences of diabetes and metabolic syndrome. (Does not reflect USEPA policy).

Oxidative Stress and the Acceleration of Atherosclerosis in Susceptible Mice after Exposure to Semivolatile Components of Ultratrace Particulate Matter.

A. J. Keebaugh1, P. Paklin2, L. B. Mendez1, Z. Ning1, G. Gookin1, C. Sioutas2 and M. T. Kleinman1. 1Community and Environmental Medicine, University of California Irvine, Irvine, CA; 2Environmental Engineering, University of Southern California, Los Angeles, CA.

Exposure to ultrafine particulate matter (UF-PM) has been associated with adverse cardiovascular health effects. UF-PM contains semi-volatile organics (SVOCs) that are bound to particles but can partition to the vapor phase after emission. SVOCs contain species such as polycyclic aromatic hydrocarbons and quinones that can in- duce oxidative stress and may contribute for the cardiovascular disease caused by UF-PM. Therefore, we hypothesized that the removal of SVOCs from an aerosol should decrease the ability of the particle to cause oxidative damage and consequently the acceleration of atherosclerotic plaque formation. ApoE−/− mice, which are prone to developing atherosclerosis, were exposed to UF concentrated ambient particles (CAPs), CAPs with the SVOC components removed, or SVOC components without the particle core. A control group was exposed to purified, filtered air. Particles were concentrated using sieves, and SVOCs were separated from the particle core using a thermal denuder. The exposures took place 5 hours/day, 4 days/week for 8 weeks in downtown Los Angeles, 100m downwind of a major freeway. Plaque formation in the aortic arch and total and LDL cholesterol in the serum was measured to evaluate the progression of atherosclerosis. Serum concentrations of lipid peroxidation, protein carbonyl content, and glutathione were assessed to determine systemic oxidative stress. Aortic plaque formation in mice exposed to unmodified CAPs was higher than in those exposed to CAPs with no SVOCs. Similarly, higher levels of lipid peroxidation were measured in mice ex- posed to unmodified CAPs and SVOC components of CAPs compared to those ex- posed to CAPs without SVOCs. The corresponding trends in plaque formation and lipid peroxidation support the notion that exposure to SVOCs may contribute to the acceleration of atherosclerosis via an oxidative stress pathway.

Acrolein-Induced Increases in Blood Pressure and Heart Rate Are Coupled with Decreased Blood Oxygen Levels during Exposure in Hypertensive Rats.

C. M. Perez1, A. D. Ledbetter2, M. S. Hazari3, N. Haykal-Coates4, A. P. Carll5, D. W. Winesett1, D. J. Costa1 and A. K. Farraj1. 1University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Environmental Public Health Division, US EPA, Research Triangle Park, NC; 3ORD, US EPA, Research Triangle Park, NC.

Exposure to air pollution increases the risk of cardiovascular morbidity and mortality, especially in individuals with pre-existing cardiovascular disease. Recent studies link exposure to air pollution with reduced blood oxygen saturation suggesting that hypoxia is a potential mechanism that mediates the adverse cardiovascular effects of air pollution. The purpose of this study was to characterize the cardiovascular ef- fects of exposure to acrolein, a potent irritant and component of cigarette smoke and diesel exhaust and determine if acrolein exposure causes decreased blood oxygen levels. We hypothesized that hypertensive rats would be more sensitive to the adverse cardiovascular effects of acrolein and that the cardiovascular effects of acrolein would be coupled with decreased arterial blood oxygen levels during exposure. Spontaneously hypertensive (SH) and Wistar Kyoto (WKY; rats with normal blood pressure) rats implanted with biopotential radiotelemetry transmitters were exposed once for 3 hours to 3 parts per million acrolein gas or filtered air (control) in whole body plethysmograph chambers while cardiovascular and ventilatory pa-rameters were monitored. In a separate cohort of rats, arterial blood samples were drawn before, during, and after exposure to acrolein to monitor blood oxygen satu-ration. We found that hypertensive, but not normal rats, had significant increases...
in heart rate, blood pressure, breathing frequency, and minute volume during acrolein and endotoxin dosing. These effects were coupled with significant decreases in arterial blood pO2 and K+ levels and significant increases in pCO2. The data suggest that hypoxia may have an important role in mediating these physiologic responses (This abstract does not reflect EPA policy).

PM2.5 Exposure and Rage: Insight into an Emerging Risk for Diabetes.

Diabetics are a particularly vulnerable population to the adverse cardiopulmonary effects of particulate air pollution (PM)—often attributed to enhanced inflammation and endothelial dysfunction. Recent reports have implicated activated receptors for advanced glycation end-products (RAGE) as an integral factor in the inflammatory processes of cardiovascular dysfunction and diabetes; nonetheless, it is unclear whether ambient PM alone/or in combination w/ other endogenous factors may contribute to RAGE activation. Levels of soluble RAGE (sRAGE) were measured in human serum samples (n=60) from two cities in Gansu, China (Jinchang (JC) and Zhangye (ZH)—albeit similar ambient levels of PM; Ni, Cu, As, and Se in JC were 76, 25, 17, and 7 fold higher than ZH, respectively). In addition, human pulmonary endothelial cells were exposed to PM (collected from the same region) to investigate RAGE-mediated vascular dysfunction. Lastly, to examine the link between PM and overt diabetic endpoints, B6C3/F2 mice were exposed to concentrated ambient PM (CAPS). Results: sRAGE was significantly higher (p=0.04) in residents of JC (538.7±37.5ng/ml) vs. ZH (452.6±32.9ng/ml). Multiple regression analyses revealed PM2.5 concentration as a significant (p<0.03) predictor of RAGE outcome. In the in vitro work, after 48h of PM2.5 exposure, a dose dependent increase in cell proliferation and small increases in sRAGE activity at higher doses of PM was evident. Immunofluorescence detection showed an elevation in cells positive for membraneous RAGE expression; accompanied w/ a 2-fold increase in mRNA for RAGE & NF-κB and >2 fold increase of ATF4 & NF-κB in cells treated w/ PM-BSA. These findings suggest plausible interaction between PM & RAGE resulting in enhanced expression of NF-κB, ATF4 and RAGE. Finally, preliminary mouse exposures have yielded supportive findings: pregnancy of CAPS exposed pregnant mice have shown significantly decreased glucose tolerance compared to controls (p=0.03). Collectively, these data offer valuable insight into PM-mediated RAGE activation / its influence on diabetes.

Integration of Telemetered Hemodynamics in a Toxicology Study Design: Assessment of Sensitivity and Distribution and Impact of Errors.
H. Holzgreve, S. Tichenor, R. Kaiser and D. Meyer. Toxicology, Charles River Laboratories, Reno, NV.

Integration of telemetered hemodynamics in toxicology studies is an emerging trend which offers detailed information on potential cardiovascular safety issues that are only identified with repeat dosing. Jacketed external telemetry (JET) is an enabling technology for which the intrinsic variability of the associated minimally invasive blood pressure (BP) device (PA-C10, DSI, St. Paul, Minn.) has not been extensively characterized. Accordingly, we evaluated the intrinsic and extrinsic beat-to-beat pressure measurement errors of JET BP in 10 male cynomolgus monkeys (2.7-3.7 yrs, 3.0±0.2 kg). BP catheters were advanced to the descending aorta via the femoral artery. BP (24 h) was continuously digitized (500 Hz) in a quiet radio frequency environment and retrospectively analyzed in beat-to-beat increments (Life Sciences Suite, ver. 5.0, DSI). Data are presented as mean±SD. Sham dosing occurred at 2.5 h post acquisition start to mimic a typical toxicology study design. Error rates were categorized as beats where either systolic pressure, pulse rate, or both were >± 3 mmHg away from the receiver reference. When PTZ administrated i.v at 1.5mg/kg/min and 1.5mL/min, both dogs and monkey showed similar level of paroxysmal spike-and-wave activity associated with clonic convulsions occurred between 17 and 36 min after the start of infusion at 4.5Hz. The data indicate that the electroencephalogram (EEG) and electromyogram (EMG) are the most sensitive and valuable biomarkers in identifying pathologic CNS activity, in particular for safety pharmacology evaluation and translational application.
selected drug-induced changes in HR.

Internal telemetry in non-clinical safety dog studies allows new perspectives for a bet-

prolongation was low, i.e. 10 to 15 ms for QT shift and QTh methods. Thus, ex-

accurate and reliable results. The statistical sensitivity threshold detection of QT

cally significant overcorrection for QTvdw whereas QT shift and QTh gave more

T erfenadine effect than QTvdw. As expected, the marked increase in heart rate

Moxifloxacin. The QT shift and QTh methods gave more evidences for

probabilistic method (QTh, using a minimum 250 beats/timeslot) were also per-

QT shift calculations and an analysis based on the principles of the Holzgrefe's

Tertadine at 30 mg/kg/d). Electrocardiograms were recorded during a treatment-

study used a different vehicle and an air (sham) control was administrated to test

Administration of the vehicle produced no effects on blood pressure, heart rate, body

temperature, respiratory rate, tidal volume and minute volume during pre-

dose, exposure period and for the 24 hour post dose recording period when com-

pared to air (sham) control in all 3 studies. Very similar patterns in blood pressure and

heart rate were noted in all 3 studies; however, each study has a specific pattern for

body temperature and respiratory parameters, which was attributed to individ-

ual variation in these parameters. This poster presents a consistent and reliable

method of collecting cardiorespiratory data from conscious beagle dogs prior to,

during and after inhalation exposure in our Testing Facility.

Article. This is especially challenging when the test article is administered via in-

halation. This poster describes the method for achieving a successful outcome in

these types of studies, including the factors that must be considered in the design

and execution. Effects of proper habituation to equipment and carefully scheduled

study activities were assessed based on the overall character of cardiorespiratory re-

sponse from 3 different studies.

Prior to the first data collection, all animals were surgically implanted with DSI

telemetry transmitters and habituated to the exposure/data collection system.

Respiratory parameters were collected using respiratory inductance plethysmogra-

phy (RIP). Telemetry data were collected continuously while animals were in their

home cage, after transfer to the exposure suite but prior to either air or the vehicle,

during the exposure period, and for 24 hours post dose in 3 different studies. Each

study used a different vehicle and an air (sham) control was administrated to test

the vehicle effect.

The detection of delayed ventricular repolarization, characterized by a QT interval

prolongation, is one of the main issues for the preclinical evaluation of potential

risk of pro-arrythmia for a new drug candidate. This study was designed to compare

different methods of QT interval prolongation assessment in conscious beagle dogs

using external telemetric device. The same 6 dogs (3/sex) were given vehicle or ref-

ence compounds known to induce QT interval prolongation using a sequential

design (single oral dosing of Sotalol at 30 mg/kg and Moxifloxacin at 30 then 90

mg/kg or repeated oral dosing for 6 days of Thioridazine at 20 mg/kg/d and

Tertadine at 30 mg/kg/d). Electrocardiograms were recorded during a treatment-

free period and on day 1 and/or day 6 for approximately 20 h post dosing. QT in-

tervals were measured from a beat to beat analysis over 10-min periods centred on

selected timeslots and corrected according to the Van de Waters formula (QTvdw).

QT shift calculations and an analysis based on the principles of the Holzgrefe's

probability method (QTh, using a minimum 250 beats/timeslot) were also per-

formed. All methods allowed an accurate evidence of QT effect for Sotalol and

Moxifloxacin. The QT shift and QTh methods gave more evidences for

Tertadine effect than QTvdw. As expected, the marked increase in heart rate

(HR) induced by Tertadine resulted in no apparent effect on QT and a statisti-

ically significant overcorrection for QTvdw whereas QT shift and QTh gave more

accurate and reliable results. The statistical sensitivity threshold detection of QT

prolongation was low, i.e. 10 to 15 ms for QT shift and QTH methods. Thus, ex-

ternal telemetry in non-clinical safety dog studies allows new perspectives for a bet-

terty to assess QT prolongation when associated to QT shift and Holzgrefe's

probabilistic methods, especially in case of slight drug-induced QT effect or

marked changes in HR.
hearts showed a coronary artery distribution comparable to human. The right coro-
nary internal diameters ranged from 1.44 to 1.79 mm and were comparable to
human (3.9 mm) when adjusted to body surface area (weight range: 10-30 kg).
External femoral blood flows at rest averaged 93 mL/min and were slightly lower
than human (260 mL/min) when adjusted to body size. Electrophysiological heart
segments duration (e.g., RR ranged from 360 to 662 msec) and their ratio (QT/RR)
were proportional to human and well-adjusted to body size. Macroscopic lesions
were nonexistent. Histopathology findings were rare and limited to sub-level my-
ocardial inflammation with low incidence in the Hanford lineage. In conclusion,
the similarities between the cardiovascular systems make these three lineages of
miniature swine suitable animals to model the human counterpart.

75 Whole Heart Energies and Stress Test As an Indicator of
Drug-Induced Cardiac Toxicity.

K. A. Henderson1, R. Borders1, J. Ross1, A. Jalil1, W. Brandon1, J. Ma1 and
R. M. Brian1.1 Battelle Memorial Institute, Columbus, OH; 2Ohio State University,
Columbus, OH.

Cardiac toxicity, manifested as compromised contractility or ischemic heart disease,
comprises 26.9% of post-approval drug failures. The heart has a high demand for a
constant energy supply which can be affected by many sources of stress and thus
may be a good indicator of potential toxicity. The purpose of this research was to
utilize the ex vivo heart model to assess contractility and whole heart energetics in
response to drugs with known/unknown mechanisms of toxicity. We used FCCP
and verapamil as positive and negative controls and doxorubicin (dox), doxoru-
binic-ol, sunitinib, and sorafenib as the chemotherapeutics associated with latent
toxicity. Rat hearts were removed, perfused with Modified Henseliet Krebs, and LVP
was monitored via insertion of a fluid-filled balloon. The perfused heart was in-
serted into an 11.7 NMR magnet. Whole heart phosphorus content was assessed
before and during 60 min of drug exposure and then during 20 min of 0.1 mM iso-
proterenol (iso) with drug to assess energy reserve. Control heart contractility and
energetics were stable throughout the experiment until the iso challenge, where
contractility increased as expected and PCr and ATP decreased and Pi increased.
FCCP treated hearts showed a decline in contractility and PCr and reduced reserve
during the iso challenge. Verapamil treated hearts did not change in energetics dur-
ing treatment or during the iso challenge. Dox increased contractility, while the
other chemotherapeutics showed very little change in contractility during drug treat-
ment. Dox treated hearts demonstrated a drop in Pi, PCr, and ATP. In addition,
during the iso challenge contractility increased compared to control and PCr de-
creased. Dox and sorafenib may be enhancing part of the beta–agonist pathway,
causing a more pronounced response to iso and thus resulting in an increased work
load for the heart. This may be a possible pathway to investigate as a mechanism for
latent toxicity, as well as an early indicator of potential drug induced cardiac issues
after treatment.

76 Simultaneous Recording of Action Potentials and Calcium
Transients from Stem-Cell Derived Cardiomyocytes:
Applications for Cardiotoxicity Testing.

R. Whittaker1, F. Cerignoli1, R. Vega1, R. Ingermanson1, R. Torrow1,
D. Gallagher1, M. Mercola3 and J. Price1, 2, 3.1 Yale Sciences Inc, San Diego, CA;
2Center of Excellence for Cardiovascular Safety Research, Janssen Pharmaceuticals,
Beerse, Belgium; 3Sanford-Burnham Medical Research Institute, La Jolla, CA.

Current methods for preclinical cardiotoxicity testing generally examine the effects
of candidate compounds on the activity of single ion channels using manual or pla-
nar patch clamp methods. Limitations in these assays require that the tests be per-
formed with cell lines which stably express the ion channel of interest. This reduc-
tionist approach grossly underestimates the complexity of cardiomyocyte excitability
and physiology. We have developed a new automated image cytometer and
associated software which facilitates a more physiologically relevant test of
compound effects on cardiomyocyte excitation-contraction coupling. This new ap-
proach utilizes a dual channel automated image cytometer that allows for simulta-
aneous measurement of the cardiomyocyte action potential and calcium transient
using voltage and calcium sensitive dyes. By using these advanced imaging tech-
niques this system frees the need for the assay apparatus to interact physically with
the cells, allowing the use of a wide array of cell types including more clinically rel-
vant models such as cardiomyocytes derived from human induced pluripotent
stem cells (hiPSC). Here we demonstrate the application of this system to a small
scale screen of known cardiotoxic compounds in hiPSC derived cardiomyocytes.
Our results suggest that the ability to identify perturbations in the cardiomyocyte
action potential and/or calcium transient due to exposure to cardiotoxic com-
pounds is on par with existing technologies. However, this system demonstrates a
much higher throughput than existing systems and provides a more complete
analysis of compound effects on excitation-contraction coupling in the cardiom-
myocyte.

77 Effect of Cell Culture Media on the Growth and Viability of
Neonatal Rat Cardiomyocytes.

FDA, Silver Spring, MD.

We studied the suitability of serum-free medium, reduced serum medium, and
chemically defined medium with serum replacement for growing rat neonatal car-
diomyocytes. The cardiocytes were grown for up to 48 hours under six different
conditions: the base make up (Dulbecco’s Modified Eagle Medium (DMEM) containing
100 μM BeD-U, 10 mM HEPES, 50 μM penicillin and
500 μM streptomycin) with 10% Fetal Bovine Serum (FBS) (A), or 10% Goat Serum
(C), or 10% Knockout Serum Replacement (KRS) (D) or no serum – (B); Knockout
DMEM(Gibco) (E) and Advanced DMEM(Gibco) (F) were supplemented with
15% KSR and 2% FBS, respectively. The beating rates and viabilities of the cells were
evaluated by counting the beats of cells under a phase contrast microscope and
Neutral Red Assay method, respectively. The cell damage and cytotoxicity were de-
termined by measuring lactate dehydrogenase (LDH) activity and the troponin I
release from the cardiomyocytes were examined by rat cardiac Troponin ELISA.
The results indicate poor cell beating and viability for medium C without serum. The
media D, E, and F had relatively low background troponin level, provided good
viability and morphology and low cytotoxicity, and may be used for the car-
diotoxicity study.

78 Understanding the Relationship of PI3K Inhibition to
HERG Liabilities and QT Prolongation.

D. Puppala1, H. Cheng1, A. Rosado3, K. McKiernan1, S. Sun2, B. Fermi2 and
K. Leach1.1 Compound Safety Prediction, Pfizer Inc, Groton, CT; 2Global Safety
Pharmacology, Pfizer Inc, Groton, CT; 3Oncology Medicinal Chemistry, Pfizer Inc,
Groton, CT.

Off target promiscuity is one of the biggest issues that kinase targeting drug dis-
cover teams have to overcome in order to achieve efficacy with limited toxicity. In a
current paper, Zhongia Lu et al (Science Translational Medicine 25 April 2012 Vol 4
Issue 131) showed that suppression of Phosphoinositide 3-Kinase(PI3K) signaling
directly or indirectly via tyrosine kinase inhibition prolongs the QT interval by af-
fec ting multiple ion channels, including HERG. In an effort to understand the role
of PI3K inhibitors and HERG channels, we investigated the effects of Pfizer PI3K
inhibitors both in a Doxifelide binding assay that determines their affinity for
HERG channels as well as in a patch clamp assay that assesses their functional ac-
tivity on these channels. Out of 48 PI3K inhibitors selected from four structurally
distinct series and with PI3Ka Ki less than 1 nM, 47 exhibited Doxifelide Ki values
> 10 μM, and one demonstrated a Ki value of ≈ 2.0 μM, a concentration > 2000-
fold above its kinase activity. 8 compounds, including the one with a Doxifelide Ki of
2.0 μM, were tested in the HERG functional assay and all showed IC50 values > 30
μM.
In addition, 16 marketed drugs, which are known HERG blockers and that have
been shown to induce QTc prolongation (14/16) and/or cause Torsades de Points in
the clinic (8/14), were tested in a PI3Kα enzyme assay. Only Verapamil, a cal-
cium channel blocker that inhibits HERG current (IC50: 0.2 μM) but does not prolong
the QTc interval or cause TdP in the clinic exhibited activity on PI3Kα
(IC50: 33 μM), while the rest showed IC50 > 100 μM. In summary, the data obtained from both Pfizer potent PI3Kα inhibitors and mar-
keted drugs demonstrate the absence of the correlation between PI3Kα inhibition
and HERG activity.

Furthermore, our results support the notion that HERG inhibition, in the absence
of PI3K inhibition, is sufficient to prolong the QT interval.

79 Characterization of Cell Signaling Events in Human
Cardiomyocytes.

S. Eldridge1, M. Davis1, J. Mussio2 and R. Parchment2. 1DCTD, NCI, Bethesda,
MD; 2SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick,
MD.

Cardiotoxicity is a significant concern for anti-cancer therapeutics. “On-target” tox-
icity may result when a drug target that regulates cancer growth also serves an im-
portant role in normal cardiac function. To explore mechanisms of cardiotoxicity

SOT 2013 ANNUAL MEETING 15
Cardioxicity is the leading cause for late stage drug attrition and withdrawals from the market. Serious adverse cardiac events have emerged as a prevalent risk for kinase inhibitors (KI). Although current in vivo screens can reduce known risks due to arrhythmia, there is urgent need for novel in vitro assays with sufficient throughput to identify risks and support the development of SAR against other prevalent cardiovascular (CV) toxicities. Recently, cellular impedance technology has been adapted for detecting spontaneous, synchronized beating of cultures of cardiomyocytes (CM) in a real-time, label-free format. Impedance technology is a good candidate for detecting the pleiotropic cellular effects of kinases since it detects morphological changes thereby giving a readout that is downstream of key toxicity targets in the contraction cascade (i.e., cardiac action potential, calcium flux, mechanical elements of contraction). We evaluated the application of impedance-based assays for screening KI effects on rat neonatal CM. We selected compounds from a MAP-microtuble affinity-regulating kinase (MARK) inhibitor program that failed in late-stage preclinical development with dramatically decreased blood pressure in anesthetized dogs as an example for the earlier detection of CV toxicity. Two MARK inhibitors were tested and both dose-dependently induced CM beat rate and amplitude without causing cell death as judged by cell index, cellular ATP levels, or cardiac troponin release assays. The relative potency of the two compounds on reducing beat amplitude in impedance assays (EC50 = 4.31 μM and 0.55 μM; 20 min exposure) aligned with the -10-fold difference in affinity for MARK isoforms 1-4. Knockdown of pan-MARK expression reduced beat amplitude by 40%. These MARK data indicate that impedance assays can specifically detect non-cytotoxic functional effects of KIs on CM. Our data support the validation of cellular impedance-based assays for an early preclinical CV toxicity screening of KIs.

81 Evaluation of Cellular Impedance Assays for Drug Screening in Cardiomyocytes.

Cardiovascular (CV) toxicity is a leading contributor to drug withdrawal and late-stage attrition. Earlier screening is a validated approach to build-in CV safety, as demonstrated for hERG screening to reduce arrhythmia. There is an urgent need for novel in vitro assays to extend this success to contractility, heart rate, hypertrophy, structural damage, and non-hERG arrhythmia. Advances in cellular impedance technology enables label-free tracking of spontaneous synchronized beating of cultured cardiomyocytes (CM). To validate and translate CM impedance assays, we tested a set of drugs with established CV effects in humans: 22 neg. inotropes, 8 pos. inotropes, and 21 inactives (previously tested in canine CM Tox Appl Pharm 260(2):162). The data clearly indicated that beat rate and amplitude are independent variables, capable of providing robust potency data. Consistent with the balance of negative inotropes, the most frequent response was a dose-dependent decrease in amplitude until beating stopped. The cessation of beating was not linked to cytotoxicity (judged by ATP and CMFDA fluorescence). Since rat neonatal (and stem cell-derived) CMs have a negative frequency-force relationship, it is not surprising that the decrease in amplitude was linked to a concomitant increase in rate. However, for another subset of validation compounds, rate initially decreased, whereas amplitude showed no associated change until higher drug concentrations. Moreover, for a test compound near the validation set (that was selected for inducing myocarditis in 2 days), beat rate increased with no change in amplitude or cytotoxicity. Together this data demonstrates that impedance assays can detect and differentiated functional changes in CMs. The changes are sensitive to electrical and mechanical aspects of contraction, yield robust data, and offer a versatile format with moderate throughput making this platform a candidate for addressing gaps in early phase screening for CV toxicity.

82 Cellular Impedance Assays for Predictive Preclinical Drug Screening of Kinase Inhibitors in Cardiovascular Toxicity.

Drug induced cardiotoxicity can manifest itself through a variety of mechanisms including mitochondrial toxicity, apoptosis, oxidative stress and ion channel disturbances. However, cardiac hypertrophy is the most common safety finding. Here, we aimed at establishing an in vitro platform which could reliably characterize hypertrophic responses. Fifty drugs reported to cause hypertrophy in vivo were utilized in this study and consistent of a variety of drug classes such as antraclacin, statins, kinase inhibitors and catecholamines. Compounds were characterized in H9c2 cell assessing the following endpoints: cell size, protein synthesis, fetal gene expression (ANP, BNP, MYH7), cell viability and reactive oxygen species (ROS). Our results indicate that unlike the traditional cardiac hypertrophy which is driven by ventricular wall stress and hormonal factors including angiotensin II, endothelin-1, and catecholamine, compound-induced cardiac hypertrophy (increase in protein and cell size) may be initiated by the same mechanisms that drive hypertrophy. In contrast, fetal gene expression is different from the mechanisms that drive cell size and protein increase.

Specifically, our results demonstrate that: 1) all protein synthesis-inducing compounds (23) caused significant cytotoxicity; 2) all compounds causing increase in cell size also induced protein synthesis; 3) both protein and cell size increase were compound-concentration dependent with protein increase occurring always ahead of cell size increase; 4) of the total of 50 drugs known to cause hypertrophy in vivo, 28 compounds induced fetal gene expression; 5) Oxidative stress was associated with the hypertrophic response (25%).

In summary, our data suggest the initial trigger(s) of compound-induced hypertrophic response are multi factorial; one of which shares the same mechanism that induces cytotoxicity. Not all compounds known to cause hypertrophy in vivo were accurately characterized by our in vitro approach. Whether stem cells and additional mechanistic parameters can improve our assay is subject to future studies.

5 Mechanistic Studies of Drug-Induced Cardiac Hypertrophy in H9c2 Cell.

Z. Lin and Y. Will. Compound Safety Prediction, Pfizer Global Research & Development, Groton, CT.

Highly predictive in vitro assays suitable for high throughput screening (HTS) for potential cardiotoxicity are critical to drug safety testing. Adult human stem cell derived cardiomyocytes show promise for screening compounds during early drug development. We developed methods for measuring the impact of drug candidates on the beating rate of human iPSC derived cardiomyocytes using fast kinetic fluorescence imaging. Cardiomyocyte contraction rate and pattern are characterized by monitoring changes in intracellular Ca2+ measured using calcium sensitive dyes. The assay was optimised for HTS and allows characterization of beating profiles by using multi-parameter analysis outputs such as beating rate, peak frequency and width, or waveform irregularities. The assay is suitable for assessment of short-term (minutes) and delayed (days) effects. Next, we tested known cardiotoxic compounds including alpha and beta blockers, hERG inhibitors, ion channel blockers, etc., as well as control drugs. IC50 values showed a significant rank correlation with published values determined by other cardiotoxicity models as well as good concordance with reported human plasma Cmax values. The assay was further tested using commercially available cardiotoxicity library representing different classes of compounds including receptor antagonists, ion channel blockers, anti-cancer and anti-inflammatory drugs, and kinase inhibitors. The estimated balanced prediction accuracy of the assay was greater than 80%, and multi-parameter characterization of beating profiles allowed identification of specific patterns defining hERG or Na channel blockers. We conclude that this assay shows utility in screening compounds for potential to cause arrhythmic and non arrhythmic cardiotoxicity.

56 Multiple Mechanism Studies of Drug-Induced Cardiac Hypertrophy in H9c2 Cells.

A. Martin-Pardillos1, A. Millan2 and V. Sorribas1.

Pan optic, USA; 2Laboratory of Molecular Toxicology, University of Zaragoza, Zaragoza, Spain; 3Institute of Materials Science, CSIC, Zaragoza, Spain. Sponsor: A. Anadon.

Fluoride Prevents Ectopic Calcification of Vascular Cells through Inhibition of Crystal Nucleation.

A. Martin-Pardillos1, A. Millan2 and V. Sorribas1. Laboratory of Molecular Toxicology, University of Zaragoza, Zaragoza, Spain; 3Institute of Materials Science, CSIC, Zaragoza, Spain. Sponsor: A. Anadon.

Fluoridation of public water to improve dental and bone health can involve a risk during degenerative processes such as ectopic calcification. We have analysed the effect of fluoride (F) on the calcification of rat aortic vascular smooth muscle cells. Cytotoxicity in vitro was determined by a lactate dehydrogenase (LDH) assay. F did not affect cell viability at the normal plasma concentrations of fluoridation (2.5-10 μM), but surprisingly, it reduced the cell death generated during calcification conditions. 5 and 10 μM fluoride also decreased the
Development of an In Vitro Multwell Cardiovascular Microelectrode Array (MEA) Toxicity Assay with Human IPS-Derived Cardiomyocytes.

Cardiotoxicity represents the most common reason for attrition of compounds due to toxicity. Current in vitro assays fail to predict the many causes of cardiac toxicity. Cytotoxicity assays only identify the most overtly toxic compounds, while assays to measure more specific liabilities such as hERG or other ion channels measure only a specific side effect, potentially missing the overall physiological response a compound elicits in cardiac cells. Additionally, in vivo animal studies rely on determination of compound activity in a different species, which does not always model human responses. Therefore, an ideal assay would screen compounds in human cardiomyocytes and provide a comprehensive assessment of their effects on electrophysiology. Here we demonstrate the successful use of multiwell MEAs to screen for cardiotoxic liabilities in human IPS-derived cardiomyocytes (huCM). MEAs measure the electrical activity in cells and therefore can be used to capture the field potential of the cardiomyocytes, producing a virtual EKG. This data can then be extracted to report effects of test compounds on the different phases of the heartbeat. Response endpoints that can be reported include: field potential duration and the implications that they could confer in the cardiovascular physiology.

Development of Improved hESC-Based High-Throughput Screening Assays for Cardiotoxicity Assessment.

The limitations of current pre-clinical drug testing systems contribute to the high failure rate of drugs. Unexpected human cardiotoxicity is one of the two major reasons for failure of drugs and drug candidates due to safety concerns. Incorporating human embryonic stem cell-derived cardiomyocytes (hESC-CMs) assaying into the pre-clinical drug development offers the potential to improve the predictability of toxicity and efficacy testing and to decrease drug development costs. Our goal is to utilize hESC-CMs to develop reproducible and predictive assays for cardiac function and toxicity prediction. We have developed protocols that, without selection, reproducibly yield >80% hESC-CMs that function reliably in various established, and newly developed, assays relevant to cardiac drug effects. In addition, the CD172a cell surface marker enables the production of substantially pure (>95%) hESC-CMs. Here we expand our previous electrophysiological analyses, and describe the development of a series of fluorescence or luminescence based high-throughput assays that were used to assess drug-induced necrosis, apoptosis, mitochondrial toxicity and oxidative stress of hESC-CMs. These assays were validated using well-known cardiotoxic compounds. These compounds include inhibitors of various kinases, DNA intercalating agents, hERG trafficking blockers and K+ channel blockers. These assays were able to measure drug effects, with high sensitivity, consistent with known biology of the compounds. In addition, a medium throughput multi-electrode array (MEA) system was used to evaluate electrophysiological functions of the hESC-CMs. The effects of selective ion channel blockers and compounds associated with QT prolongation on field potentials and beat rates were assessed. The observed cardiac electrophysiology was reproducible and consistent with the known effects of the compounds. Our data suggest that these hESC-CM based screening systems are valuable tools for preclinical cardiac safety screening, which we believe will contribute to the efficient and rapid identification of safer drugs.

Vascular Effects Induced by 15nm Gold Nanoparticles in Isolated Rat Aortic Rings.

Gold nanoparticles (AuNPs) have been used in biomedicine as therapeutic tool. However, their role on the vascular physiology, have not been fully studied. The purpose of the present work was to evaluate the effects of 15 nm AuNPs on the vasculature, using a rat aortic rings model, pre-contracted with phenylephrine, a well known contractile agent. Adult male Sprague Dawley rats were sacrificed; aorta was excised, and maintained in an organic bath chamber with physiological solution. Each individual aorta rings were treated under isometric conditions, in presence and absence of endothelium (E), along with increasing concentrations (0.1-100 μg/mL) of AuNPs. AuNPs exerted a vasodilator effect independent on E, the relaxation was exerted in the same magnitude that was found in presence of E. Relaxation induced by the Au-NPs were not dependent on nitric oxide (NO), since, L-Nitro-arginine methyl ester (L-NAME), an inhibitor of the NO production and a potent vasodilator mediator, did not block this effect. However, a pretreatment with indomethacin, an inhibitor of prostanooids synthesis, blocked partially the vasodilation induced by AuNPs, suggesting that prostanooids could be, at least in part, mediators of these actions. Further studies are underway to evaluate the mechanisms of action which are underlying the relaxation induced by AuNPs, and the implications that they could confer in the cardiovascular physiology.

Nano-Cerium Dioxide Exposure and Arteriolar Dysfunction: Exposure Route Dependency.

Nano-cerium dioxide (CeO2) is being used or developed as a fuel catalyst (diesel), a protective drug (radiation and ischemia) and as a contrast agent (medical imaging). These diverse uses possess the potential for human exposures that are beyond the well studied pulmonary route. Our laboratory has assessed the arteriolar effect of nano-CeO2, 24hrs post-pulmonary exposure; however, other routes of exposure such as systemic and gastrointestinal have not been investigated. Therefore, our aim was to analyze the microvascular effects of nano-CeO2 via instillation, injection, and gavage, Sprague-Dawley rats were intratracheally instilled (100 μg), intravenously injected (100 or 900μg), or gavaged (100 or 600μg) with nano-CeO2 suspended in Normosol (5% serum). 24hrs later the mesentery was harvested, and 4th or 5th order arterioles were dissected and prepared for isolated vessel experiments. Arteriolar reactivity was evaluated by determining endothelium-dependent (acyethylcholine, 10-5-10-4 M), and -independent dilation (permeate NONOate, 10-5-10-4 M), vasosconstriction [phenylephrine (PE), 10-4-10-3 M], and mechanotransduction [myogenic responsiveness (0-105 mmHg) and shear stress (0-30μl/min)]. Endothelium-dependent and -independent dilation for all three exposure routes (instillation: 30% and 50%, injection: 45% and 55% and gavage: 36% and 64% vs sham arterioles, respectively) was significantly impaired. Arteriolar responsiveness to PE or pressure was unaltered for the exposure routes. There was an impaired dilation in response to flow for the rats injected or gavaged (53% and 35% vs sham, respectively). This arteriolar dysfunction was exposure route dependent because little to no arteriolar dysfunction was observed in rats injected or gavaged with 100μg of nano-CeO2, as compared in instilled rats. These results provide evidence that microvascular dysfunction is present 24hrs after nano-CeO2 exposure and is dependent on the exposure route.

NHI-R01-ES015022, RC1-ES018274(TRN) and NSF-1003907(VCM)
93 Simulated Metabolism in the Langendorff Isolated Rat Heart: A Comparison of Novel and Traditional Dosing Techniques for 5-Fluorouracil and Doxorubicin.

J. B. Ross, K. A. Henderson, R. Borders, P. S. Hong, W. M. Black and B. M. Roche. Battelle, Columbus, OH.

There is a clear need for more predictive and translatable assays in early drug discovery. It is important to take a multi-scale approach to translate data to pre-clinical and clinical trials. The Langendorff isolated heart model provides a tool to assess cardiotoxicity in the whole organ in the absence of in-vivo variables. We used the Langendorff to assess both acute and latent cardiotoxicity of 5-fluorouracil (5-FU) and doxorubicin. Physiologically Based Pharmacokinetic (PBPK) models were developed to determine clinically relevant doses. A reverse extrapolation from human physiological and physiochemical parameters to rat was performed. The resulting pharmacokinetic (PK) curves led to some challenging dose considerations; both 5-FU and doxorubicin are rapidly cleared in humans and rats, never reaching a steady state. Other PK parameters such as Area Under the Curve (AUC) and the maximum concentration (Cmax) pose problems as well. AUC will accurately represent the total amount of drug over a given period of time; however, a single concentration derived from the AUC could potentially underestimate a biological response. In contrast, Cmax would greatly overestimate the total amount of drug, potentially leading to false toxicity. Computer generated dosing schemes were developed and characterized in an effort to fit the modeled PBPK curves. Initial concentrations (Cmax) were diluted with deionized water and perfused through the Langendorff to assess both acute and latent cardiotoxicity of 5-fluorouracil (5-FU) and doxorubicin. We used the Langendorff isolated heart model to directly measure oxy- vs deoxy-hemoglobin (HbO vs HbR) to determine whether OX induced shunt paths resulted in heterogeneous oxygen of drug supply. A controlled thermal gradient model in the hamster cheek pouch tissue localized OX so that unequivocal control vs OX spatial locations could be observed. Adult male hamsters (N=10, isoflurane) were prepared for intravital microscopy of the cheek pouch tissue. Fluorescently labeled RBC flux markers confirmed shunt pathways after a thermocouple controlled 50 degree C 500um spot burn (same location as 5-FU). After 15min-1hr after burn, micro-pituitary-thyroid (HPT) axis, sodium perchlorate (which retards development) was established, and individuals selected necessary to allow tadpoles to develop from fertilisation to development stage 51 as defined by Nieuwkoop and Faber (1994) were established, and individuals selected for the exposure phase and transferred to test vessels. To establish the assay, 400 tadpoles were exposed to a range of levels of the three reference substances, thyroxine (T4) which produces stimulatory effects on the normal function of the hypothyroidic-thyroid (HPT) axis, sodium perchlorate (which retards development) and ipanionic acid (which affects hind limb development) and levels of each were verified using an appropriate analytical modal. At Day 7, 80 randomly selected individuals at each exposure level were removed and assessed (body weight, developmental stage, hind limb and snout to vent length). Exposure continued for a further two weeks and the study terminated on Day 21 when all the remaining individuals were assessed as on Day 7. Following developmental stage matching, 80 individuals were selected for thyroid removal and histopathological analysis.

We found that our results support the guidelines published by the OECD (Series on Testing and Assessment Document Number 77) and make a number of observations on methodology that may improve the reproducibility of these assays.

94 Oxidative Stress Uncovers β2-Adrenergic Mediated Dilation to Curcumin Mimicked by Preventing Clathrin Endosome Formation.

M. Frame1,2, B. Calizo1, A. M. Dewar1 and S. Scarlata1. Biomedical Engineering, Stony Brook University, Stony Brook, NY; 1Physiology/Biophysics, Stony Brook University, Stony Brook, NY. Sponsor: T. Nurkiewicz.

The nutraceutical, curcumin, has anti-oxidative properties, but also is a potent β-adrenergic receptor (AR) agonist, with an EC50 for dilation in the nM range (beta, bAR). Our goal was to determine how oxidative stress impacted vasoactive responses to curcumin. Intravital microscopy of small arterioles in the hamster cheek pouch was performed (N=10; pentobarbital 70mg/kg i.p.). Oxidative stress (OX) was induced by applying exogenous nitric oxide for 2 minutes in the tissue bath. Before OX, dilation to micropipette applied curcumin was dose dependent, with a maximum from 10-9 to 10-6M. After OX, dilation was eliminated in the nM and higher range, and significantly left shifted to a narrow peak from 10-15 to 10-10M, which was inhibited by the b2-adrenergic receptor inverse agonist, carazolol (1nM). We next tested whether preventing clathrin endosome formation with dynasore altered dilation to curcumin. Dynasore (80uM) alone eliminated dilation to curcumin in the nM range, and uncovered a dilation in the pM range. Dynasore with OX further increased the potency, and increased the efficacy of dilation to curcumin over the range 10-15 to 10-10M. To understand the mechanism of this OX induced narrow potency range, we tested whether curcumin and the bAR were internalized and co-localized using FRET in HEK cells. Before OX, curcumin was rapidly internalized (seconds), and co-localized with bAR. After OX (1nM CoG2), curcumin was internalized, but bAR remained at the plasma membrane. Thus, in cells, OX prevented internalization of curcumin with bAR. In situ, inhibition of clathrin endosome formation mimicked and enhanced the vasoactive responses after OX. (AHA 6655908T)

95 Diminished Oxygen Supply in Microvessels following Inflammatory Oxidative Stress.

Increased heterogeneity of flow accompanies many inflammatory states, including oxidative stress (OX) with toxicant exposure or thermal injury. Red blood cell (RBC) flux along nutrient flow paths is an indicator of oxygen delivery; many inflammatory mediators result in a specifically located arteriole-venule RBC shunt pathway. Our goal was to directly measure oxy- vs deoxy-hemoglobin (HbO vs HbR) to determine whether OX induced shunt paths resulted in heterogeneous oxygen of drug supply. A controlled thermal gradient model in the hamster cheek pouch tissue localized OX so that unequivocal control vs OX spatial locations could be observed. Adult male hamsters (N=10, isoflurane) were prepared for intravital microscopy of the cheek pouch tissue. Fluorescently labeled RBC flux markers confirmed shunt pathways after a thermocouple controlled 50 degree C 500um spot burn (same location as 5-FU). After 15min-1hr after burn, micro-pituitary-thyroid (HPT) axis, sodium perchlorate (which retards development) was established, and individuals selected necessary to allow tadpoles to develop from fertilisation to development stage 51 as defined by Nieuwkoop and Faber (1994) were established, and individuals selected for the exposure phase and transferred to test vessels. To establish the assay, 400 tadpoles were exposed to a range of levels of the three reference substances, thyroxine (T4) which produces stimulatory effects on the normal function of the hypothyroidic-thyroid (HPT) axis, sodium perchlorate (which retards development) and ipanionic acid (which affects hind limb development) and levels of each were verified using an appropriate analytical modal. At Day 7, 80 randomly selected individuals at each exposure level were removed and assessed (body weight, developmental stage, hind limb and snout to vent length). Exposure continued for a further two weeks and the study terminated on Day 21 when all the remaining individuals were assessed as on Day 7. Following developmental stage matching, 80 individuals were selected for thyroid removal and histopathological analysis.

We found that our results support the guidelines published by the OECD (Series on Testing and Assessment Document Number 77) and make a number of observations on methodology that may improve the reproducibility of these assays.

96 Validation of the Amphibian Metamorphosis Assay for Potential Endocrine Disrupting Chemicals with Xenopus Laevis.

The new European Union Plant Protection Products Regulation (PPPR 1107/2009) identifies the need to consider whether a substance is a potential endocrine disrupter in aquatic non-target organisms and the current draft of the PPP data requirements refers to three screening assays for ecotoxicological endocrine-disrupting potential. Of these, we describe in detail our experience in the establishment and validation of the amphibian metamorphosis assay (OECD 231; OPPTS 890.1100) with the African Clawed Frog. In this method, in order to satisfy validity criteria in the rearing phase, conditions necessary to allow tadpoles to develop from fertilisation to development stage 51 as defined by Nieuwkoop and Faber (1994) were established, and individuals selected for the exposure phase and transferred to test vessels. To establish the assay, 400 tadpoles were exposed to a range of levels of the three reference substances, thyroxine (T4) which produces stimulatory effects on the normal function of the hypothyroidic-thyroid (HPT) axis, sodium perchlorate (which retards development) and ipanionic acid (which affects hind limb development) and levels of each were verified using an appropriate analytical modal. At Day 7, 80 randomly selected individuals at each exposure level were removed and assessed (body weight, developmental stage, hind limb and snout to vent length). Exposure continued for a further two weeks and the study terminated on Day 21 when all the remaining individuals were assessed as on Day 7. Following developmental stage matching, 80 individuals were selected for thyroid removal and histopathological analysis.

We found that our results support the guidelines published by the OECD (Series on Testing and Assessment Document Number 77) and make a number of observations on methodology that may improve the reproducibility of these assays.

97 Mammary Gland Morphology and Gene Expression Signature of Prepubertal Male and Female Rats following Exposure to Exogenous Estradiol.

M. Ronai1,2, I. R. Moussei1,2, N. Sharma2, J. Vantrease2, L. Henning1, K. Shankar1,2, H. Gomez-Acevedo1,2, M. Cleves1,2 and T. M. Bader1,2.

1UAMS, Little Rock, AR; 2Arkansas Children's Nutrition Center, Little Rock, AR.

In order to properly understand whether xenestrogens act as true estrogen agonists, it is essential to possess a solid portrait of the physiological effects of exogenous 17β-estradiol (E2). Because the estrogen-dependent gene expression is one of the primary indicators of estrogenic action, we have assessed effects of three doses of exogenous E2 (0.1, 1, 10 and 10 µg/kg of body weight/day) on the mammary gland morphology and gene expression profiles of prepubertal male and female rats of both sexes compared to untreated controls. The mammary gland was more responsive to E2 treatment in males than in females with 1392 genes modulated >1.5-fold up or down relative to controls at the highest E2 dose compared to 463 genes. There

SOT 2013 ANNUAL MEETING 19
was an increase in the number of terminal end buds in males (P<0.05), and a corre-
sponding increase in the expression of the gene encoding amphiugelin (P<0.05), a
protein known to drive the differentiation of terminal end buds. In intact females, the highest dose of E2 tested induced an increase in the expression of genes encoding
mill components, as well as muscle proteins. Lower doses had limited effects on
gene expression. Therefore, the prepubertal rat male mammary gland is a very sen-
sitive tissue to evaluate estrogenicity using morphological changes coupled to mi-
croarray-analysis of gene expression. Intact prepubertal females were comparatively
poorly responsive to exogenous E2, although many modulated genes were common
to both sexes. Supported by USDA CRIS-6251-51999-007-04S.

98 Potential Endocrine Disruption of a Drinking Water Sample from the State of São Paulo, Brazil.
M. M. Solano1, C. M. Raimundo2, I. C. Pescara2, W. F. Jardim2, D. D. França2, G. A. Quinaglia1, J. A. Anselmo-Franç1, R. G. Carolino1, J. L. Luviutto1, G. A. Umbuzeiro1 and J. V. de Camargo1.1 Botucatu Medical School, Department of Pathology, São Paulo State University-UNESP, Botucatu, Brazil; 2Institute of Chemistry, University of Campinas- UNICAMP, Campinas, Brazil; 3Environmental Toxictology, Genotoxicity and Microbiology Division – CETESB, São Paulo, Brazil; 4School of Dentistry, Department of Morphology, Stomatology and Physiology, University of São Paulo- USP, Ribeirão Preto, Brazil; 5Faculty of Technology, University of Campinas- UNICAMP, Limeira, Brazil.

Many xenoestrogens, natural and synthetic estrogens may end up in the water bod-
ies through sewage discharges. Contaminated rivers are conventionally treated by
Water Treatment Plants (WTP) to produce drinking water, but emerging contami-
nates may remain. This study investigated the potential for endocrine disruption of a
drinking water sample from a São Paulo State WTP, using two harmonized bioas-
says. Female rats 21 days old were exposed by gavage to drinking water extracts dur-
ding 03 days (uterotrophic assay; OECD 440) or 20 days (pubertal development fe-

100 High-Throughput Detection of Estrogenic Compounds Using Autonomously Bioluminescent Human Breast Cancer Cells.
T. Xu1, D. Cloze2, S. L. Price2 and G. S. Sayles1,2.1 The University of Tennessee, Knoxville, TN; 2490 BioTech Inc., Knoxville, TN. Sponsor: S. Ripp.

Substantial public health concerns exist over the potential endocrine disrupting ca-
pabilities of a wide variety of untested or under-tested natural and industrial chem-
icals. It is clear that the development of accurate, high-throughput, and inexpensive
testing regimens will be key to mitigating public concern. Here we report on the de-
development of a novel screening assay for estrogenic activity that utilizes an au-
tonomously bioluminescent human cell line to provide direct bioavailability data.
To construct this cell line, estrogen-responsive human breast carcinoma cells (T-
47D) were genetically engineered to express the full bacterial bioluminescence gene

101 Cryopreserved Rainbow Trout Hepatocytes Model Endocrine Disruption As Detected by Protein and Gene Expression ofVitellogenin.
J. K. Markell, R. T. Mingoia, H. M. Peterson, J. P. Finn, D. L. Nabb and X. Han. DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, DE.

The toxicity of environmental pollutants may occur through modes of action that
alter normal endocrine functions, resulting in altered development, growth and re-
production of aquatic species. Consequently, there is a need to develop assay end-
points capable of identifying endocrine disruption in fish. Our lab has previously
shown the utility of cryopreserved trout hepatocytes. Here we use this cell culture
method to identify the potential estrogenicity of chemicals through vitellogenin
(VTG) expression. This biomarker indicates an estrogenic effect when the protein
is expressed by male trout hepatocytes, both in vivo in plasma and in vitro in cell
culture media. To test the performance of cryopreserved trout hepatocytes, refer-
ence chemicals estradiol (E2), estrone (E1) and diethylstilbestrol (DES) were used and
culture media was collected for ELISA 96-hrs post-treatment. Our results show
that the levels of protein detected with cryopreserved trout hepatocytes are similar
to results previously published using fresh trout hepatocytes, ranking the com-

102 Permethrin Does Not Have Endocrine Disrupting Properties As Evaluated by the US EPA's Endocrine Disruptor Screening Program (EDSP) In Vivo Assays.
L. Zorrilla1, S. J. Borghoff1 and T. G. Osmiriz2.1 Integrated Laboratory Systems, Inc, Durham, NC; 2Science Strategies, Charlottesville, VA.

Permethrin, a pyrethroid insecticide, was evaluated for potential endocrine activity in
3 of 4 in vivo US EPA EDSP assays. The maximum tolerated dose (MTD) of
permethrin used in these assays was selected based on the results of dose range find-
ing studies. Sprague Dawley rats were administered permethrin in corn oil by oral
gavage for 10 (Herschberger Bioassay, OPPTS 890.1400, castrated model), 21/2

99 Development of Medium-Throughput Thyroperoxidase
Inhibition Assays for Screening.

Thyroperoxidase (TPO), the catalyst for thyroid hormone (TH) synthesis, is a tar-
get for thyroid-disruptors, including methimazol (MMI), isoflavones, benzophe-
none-2, and malachite green; however, no medium- to high-throughput screening
methods for TPO inhibition are available. To adapt the low-throughput guaiacol

20 SOT 2013 ANNUAL MEETING
clearance appears evident. Similarly, results for thyroid effects in the pubertal assays were consistent with MoA data due to enhanced thyroxine clearance not relevant to humans. Furthermore, benefit was negative in the amphibian metamorphosis assay designed to detect thyroid agonists and antagonists. A high-degree of coherence and consistency is observed in results from the higher-tiered data and previous toxicity studies showing no direct interaction with the endocrine system. In conclusion, the vast majority of Tier 1 studies/endpoints were clearly negative and those few positive responses were seen only at high-dose levels and were either isolated (e.g., ERTA) in nature or secondary to other effects.

105 Endocrine Exposure at Environmentally-Relevant Concentrations.
K. C. Fusell1, S. Schneider1, S. Melching-Kolmuss2, S. Grötes1, V. Strauss1, B. Siddeek1, M. Benahmed1, M. Frenick3 and B. van Ravenzwaay1, 2Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany; 3Product Safety, BASF SE, Ludwigshafen am Rhein, Germany; 1UB95, équipe 5, Centre Hospitalier l’Arboret 2, Inserm, Nice, France.

Endocrine disruption has become an important topic of public concern. Despite an increasing amount of attention, little is understood about how doses of endocrine disrupting chemicals (EDCs) at environmental concentrations affect homeostasis. To address these concerns, we performed a pre-/post-natal reproductive toxicity study to measure the developmental toxicity of low doses of three anti-androgenic compounds: vinclozolin, flutamide, and prochloraz. The tested doses were selected to mimic low-effect levels, the no observed adverse effect levels (NOAEL) for endocrine effects, and the acceptable daily intake (ADI). Despite mild maternal toxicity in parental females treated with the top dose of prochloraz, sufficient offspring were produced to evaluate the developmental effects of the three EDCs. While female offspring developed normally, the male offspring showed effects known for anti-androgens. One sensitive clinical parameter was the retention of nipples and/or areolas by male animals on PND 12. This effect was largely transient, as all had regressed by PND 21, with the exception of the offspring exposed to the flutamide top dose. The young adult male offspring displayed additional anti-androgen effects including, delayed sexual maturation and reduced male sex organ weights. These alterations were observed at the effect doses of all three EDCs, and at the putative hormonal levels from the flutamide top dose group had an increased incidence of developmental sexual defects including hypospadias, short penis, and cryptorchidism. No effects at all were noted at the low doses, as expected for the ADI. Assessment of sexual steroid hormones and their precursors revealed no effects at any of the dose levels. Taken together, the weight of evidence of the clinical and pathological findings suggests a lack of a non-monotonic dose-response curve.

106 Assessment of Estrogenic and Androgenic Impairment of Iowa Surface Water by Chemical Analysis and Bioassays.
S. Eloit1, J. Vargo2 and G. Ludewig1, 1University of Iowa, Iowa City, IA; 2Iowa Hygienic Lab, Coralville, IA.

Limited data are available regarding the presence of hormones and steroids in Iowa surface water. To obtain more information about the hormonal impairment, river water samples were collected in October 2011 and data which support the Iowa City and Des Moines. Chemical analysis of water extracts was performed by LCMSMS using drinking water method EPA 539 that assesses equilin, estriol, 17α- and 17β-estradiol, estrone, 17α-ethinylestradiol, androstenedione, testosterone, progesterone, and 17β-trenbolone concentrations. For endocrine disrupting activity of the water extracts the E- and A-screen with human MCF-7 breast cancer cells (es-

trogenic and androgenic activity) and the H295R assay with adrenal cancer cells (interference with steroid hormone synthesis) were used. A goal of this study was to determine how well chemical testing for targeted hormones and steroids reflects the total androgenic and estrogenic activity determined by bioassay tests. Preliminary evaluation revealed that the added preservative 2-mercaptopyridine-1-oxide or a derivative that was formed during the extraction procedure was highly cytotoxic to the cells. However, extracts preserved with sulfuric acid could be used in the bioas-
says. The chemical analysis detected only a few hormones and those that were detected were found at low- or sub-ng/L concentrations in the Iowa surface waters. The Iowa River up- and downstream samples showed an estrogenic activity in the E- and A-screen and the Des Moines River extracts had a small androgenic and antiestrogenic activity. The H295R hormone concentration tests revealed no obvious changes in testosterone and cortisol levels in the medium but the extracts tended to increase the estradiol levels. Additional tests with synthetic samples prepared according to the analytical test results are needed to examine whether the detected hormones alone caused these biological effects or whether other, still undetermined endocrine disrupting chemicals were involved. (Funded by ES05605 from NIEHS)
Concurrent cell growth and gene expression studies are also being carried out. Cells were exposed to estradiol at different concentrations and times. Stimulation of cell growth was observed at 0.1 nM in association with changes in the metabolome at 6 and 24 hrs. A time course study at 100 nM estradiol revealed that some metabolites were significantly altered at various time points. The metabolites and pathways most affected included metabolites from cellular energy-related pathways (e.g. Mal- cantelesterol and amino acid synthesis pathways (e.g. Arginine, Valine, Ornithine, Leucine/Isoleucine, 2-Methylmalate)). Further investigation is underway and should give more insight into the identification of metabolism pathways affected by estradiol and endocrine disruptors.

Endocrine disruptor test programs in the US are moving forward to identify active compounds and prioritize them for subsequent in-life toxicity studies. Our focus is on developing in vitro tests for cellular responses to endocrine active substances that will be sufficient for health risk assessment without moving on to in-life toxicity tests. We have begun a research effort for the estrogen receptor (ER) pathway to: 1) map signaling pathways for estrogen mediated proliferation, 2) define the dose-response for perturbation of estrogen signaling by xenobiotics and 3) develop computational models to predict chemical effect on uterine epithelium. The first phase develops a cell-based assay in human Ishikawa endometrial cell line expressing the three major ERs: ESR1, ESR2 and G-protein coupled receptor GPER. The dose-response for 17β-estradiol (E2) and 17α-ethinyl estradiol (EE) (0.001 – 10 nM) were examined at 1, 2, 3, 4, 5, and 6 days of exposure for proliferation and induction of protein and gene targets of ESR1, including alkaline phosphatase (ALP), proliferation associated gene GREB1 and progesterone receptor (PGR). E2 and EE increased proliferation and ALP activity by day 3 at 0.01 nM, while gene induction (GREB1, ALP, PGR) occurred earlier (day 1). Cells were also treated with selective receptor agonists PPT, DPN, and G1 targeting ESR1, ESR2 and GPER. PPT increased proliferation, ALP activity and gene expression similar to EE. DPN induced proliferation and ALP only at higher doses associated with cross-reactivity with ESR1. GPER plays a role in regulating uterine proliferative response; however, we saw no change in proliferation upon treatment with G1 alone. This may result from low GPER expression in our cells. We also conducted expression analysis of studies with Ishikawa cells from our laboratory and published sources to evaluate dose-response of GO-categories by these receptor specific ligands. In vivo responses have been analyzed in light of in vitro rodent uterotrophic assay transcriptomic data to show consistency between in vitro and in vivo assays.

A roboticized MCF-7 cell proliferation assay currently undergoing validation by IC-CVAM/NICEATM was used to quantify the total estrogenic activity (EA) of chemical mixtures leaching from lab animal feed bags into feed over time. A standard open-formula (low phytoestrogen AIN-93G) feed was purchased from Harlan®, Research Diets™, and TestDiet®. The TestDiet® feed was packaged in EA-Free bags recently developed by PlastiPure for PMI® LabDiet® and other customers. Research Diets™, and TestDiet®. The TestDiet® feed was packaged in EA-Free bags recently developed by PlastiPure for PMI® LabDiet® and other customers. All diets were analyzed 0, 2, and 4 weeks after purchase. All leachates were quantified relative to the percentage of the maximum DNA produced per well induced by a test chemical with respect to the maximum DNA produced per well induced by the 17β-estradiol positive control (%RME2) and corrected by the cell response to the vehicle (negative) control. The significance level (p < 0.01) to detect EA was a %RME2 value 3 standard deviations more than the VC. According to this conservative criterion, EA levels in 72 hour ethanol extracts of commercial bags for TestDiet®, Harlan®, and Research Diets™ were non-detectable (ND), significantly positive, and significantly positive, respectively. In the feed study, there was no detectable EA activity in TestDiet® feed at any time point. Feed samples from Harlan® and Research Diets™ were ND at week 0 but significantly positive following storage for 2 and 4 weeks after purchase. EA readings for Harlan® and Research Diets™ increased from week 0 to week 2 and again from week 2 to week 4. These data suggest that leaching of chemicals having EA from the non-EA free plastic packaging can alter the estrogenicity of unpurified animal feeds. Such leaching of chemicals having EA from plastic packaging into animal feeds may impact research protocols that examine hormonally-responsive end-points.
Trifluralin was included on List 1 for the EPA’s Endocrine Disruptor Screening Program (EDSP). EDSP screens chemicals for their potential to interact with the estrogen, androgen, or thyroid pathways. A battery of 11 Tier 1 EDSP assays was completed for trifluralin and a Weight of Evidence (WoE) evaluation was conducted.

Estrogen pathway: Trifluralin was weakly positive in the estrogen receptor (ER) transactivation assay, but it did not affect other estrogen-sensitive assays (i.e., ER binding, uterotropic, estrogen-sensitive endpoints in the female pubertal, and vitellogenin levels in the fish short-term reproduction assay (FSTRA)).

Androgen pathway: Trifluralin was negative for androgen receptor binding and while positive in the Hershberger assay, this result was due to enhanced testosterone metabolism.

The male pubertal assay showed some indications of antiandrogenicity; however, we believe these effects were indirect. In a previous two-generation study, mating/reproductive indices, litter size/survival and reproductive organ histopathology were unaffected. The FSTRA was potentially positive; however, interpretation was complicated by overt toxicity and the absence of a cohesive link between study observations and known endocrine modes-of-action (MoA).

Thyroid pathway: The female pubertal assay was positive for thyroid changes due to liver enzyme induction and enhanced thyroid clearance. Thyroxine levels were decreased in the male pubertal assay, but other thyroid-related endpoints were not altered.

Trifluralin increased thyroid tumors in a previous carcinogenicity study via a mode-of-action that is understood to be not relevant to humans. The amphibian metamorphosis assay was negative. Trifluralin alters the rodent thyroid system via an indirect effect on the liver; these effects are not expected in humans, who are quantitatively less sensitive than rats.

Whole-transcriptome sequencing using next-generation sequencing technologies, i.e., RNA-Seq, has drawn a significant attention as a ground-breaking tool for clinical application and safety assessment. However, critical assessment of RNA-Seq to toxicology needs to be carefully conducted to understand whether the technology is robust and reproducible and how the choice of the bioinformatics approaches impacts study of the toxicity mechanisms and predictive toxicology. In this study, we conducted a specific study design to evaluate the impact of sequencing platforms and library preparation to the differentially expressed genes (DEGs) obtained, as well as the impact of different methods for DEG identification. Specifically, RNA samples from six rats’ livers were collected, three of them were treated with aflatoxin (AFL) and the other three were matched controls. Two libraries were separately prepared for the samples and two sequencing platforms (Illumina HiScanSQ and HiSeq2000 systems) were used. The investigation was based on the results derived from 6 different bioinformatics pipelines; each pipeline consists of a workflow including a specific genome template, mapping algorithm, quantification and normalization. Several methods for DEG identification were compared. The preliminary results show that library preparation introduces more variance than sequencing platform on gene expression quantification. Additionally, more variance has been observed for the low-expressed genes and thus increases the false positive rate in DEG identification among those genes. We proposed two filters for data reliability control prior to DEG analysis, one on the low expression level and another on high variance. Comparison was also carried out at functional module and pathway levels.

High-throughput screening (HTS) assays are seeing increasing use for identifying chemicals that can cause toxicity via key biological pathways. However, biological complexities often mean that a single assay will fail to correctly classify all compounds for pathway activity. Here we use multiple orthogonal HTS assays to classify chemicals for their ability to interact with the estrogen receptor (ER) pathway among a structurally diverse library of 1848 chemicals, including pesticidal actives and inerts, industrial chemicals, food additives, cosmetics and drugs. The assays are: reporter gene assays in HepG2 cells selected to maximize metabolic activity, HER293 cells, BG1 cells, CHO-K1 cells; cell-free binding assays (human, mouse, bovine); assays for ER dimerization (ERα-α, ERα-β, ERβ-ERβ) in HeLa cells; a transcription-factor/DNA binding assay in HeLa cells; and an ER-sensitive cell proliferation assay in T47D cells. Multiple assay readouts used (fluorescence, however, limit this approach as a comprehensive strategy to identify all NR modulators. For example, selective ER modulators can have cell type-specific activity dependent on the particular coregulator proteins expressed. We thus examined alternative, complimentary assay methodologies that provide unique functional information for chemical modulation of the ER pathway. We measured the ability of 1848 chemicals to induce ER dimerization and nuclear translocation, initial and required steps in ligand-induced activity of the ER pathway, using fluorescent imaging in intact cells at multiple time points. We also determined receptor selectivity using distinctly tagged ERα and ERβ receptors and found the great majority of compounds to have similar potency for both receptors. Secondly, we determined the activity of these 1848 chemicals in an ER/chromatin assay that visualizes active ER transcriptional loci and provides functional information as to the level of agonist versus antagonist activity of the ligand. Overall assay showed chemicals could be categorized into several groups. First, there were unequivocal ER agonists active under virtually all testing conditions. Second, antagonists and partial agonists with weak or no activity in TA assays run in agonist mode were readily detected by these assays. Finally, there are spurious or artifactual results for each assay that must be taken in to account when performing large scale assays such as this and are parent by looking at data across multiple assays and formats. These results demonstrate the value of multiple, complimentary assay approaches in understanding complex biological responses with in vitro systems.
in the pathway was the KEGG pathway "xenobiotic metabolism by cytochrome P450". Our assay results related to gene expression responses from a short-term dermal mouse study can predict C and NC petroleum streams, and that the AhR receptor pathway warrants further evaluation as a biomarker of exposure for petroleum-induced skin tumorigenesis.

D. Montes-Grajales and J. Olivero-Verbel, Environmental and Computational Chemistry Group Pharmaceutical Science, University of Cartagena, Cartagena, Colombia.

Tricoslan (TCS; 2,4,4′-trichloro-2′-hydroxy-diphenylether) is a broad-spectrum antimicrobial agent used in personal care products. It has cytotoxic and endocrine-disrupting properties, and may be bioaccumulated from daily use. However, its impact on human health is largely unexplored with little evidence for deleterious effects in humans. A total of 248 proteins involved in different pathological processes were evaluated by in silico virtual screening to find new possible human protein targets for TCS. The 3D-structures of the proteins were downloaded from PDB, prepared and optimized by Sybyl X-2.0. The TCS structure was optimized by DFT at the B3LYP/6-31G level in Gaussian 0.9. Docking studies were performed in AutoDockVina 2.0 using a blind docking strategy, exhaustiveness of 25 and 10 runs. Calculated binding affinities were then employed for ranking proteins. A re-docking step of 100 runs and exhaustiveness of 100, as well as the interaction analysis with Ligand Scout, LigPror and MMV were carried out on the complexes presenting the best docking results. The greatest affinity scores were found for CDC2-like kinase 4 (CLK4, -8.4±0.0 kcal/mol), oligomeric death domain complex (CRADD/PIDD, -8.3±0.1 kcal/mol); progesterone receptor (PGR, -8.1±0.1 kcal/mol); and estradiol 17-beta-dehydrogenase 1 (17-beta-HSD 1, -8.1±0.1 kcal/mol), proteins involved in endocrine disruption and breast cancer-related processes. Validation showed our protocol predicted the binding site for the 17-beta-HSD and PGR native ligands, in agreement with crystallographic data. Moreover, TCS interacts in the same binding site occupied by the 17-beta-HSD 1 native ligand, but in a different one from that used by progesterone in PGR.

120 Generation of In Vitro Margin of Exposure (MOE) Values to Support the Postulated Mode of Action (MOA) for Selected Tobacco Smoke Toxicants.

Over the last ten years there has been increasing interest in the identification and characterisation of tobacco smoke toxicants. We propose the use of a biologically relevant risk assessment framework incorporating both in vivo and in vitro data for the prioritisation of such toxicants. We have previously described the use of in vivo data in the generation of Margin of Exposure (MOE) values alongside Mode of Action (MOA) reviews. We have also proposed that individual toxicants are tested for activity in a battery of in vitro assays including in vitro micronucleus, Ames and mouse lymphoma assays.

MOE assessments are used as an initial tool to segregate tobacco smoke toxicants into high or low priority for risk reduction research. As recommended by EFSA, MOE values above 10,000 are considered a low priority for risk management actions. We have generated in vitro MOEs for a number of tobacco smoke toxicants in conjunction with MOA reviews and in vivo MOEs (where suitable data is available). Where the in vivo MOEs generated for individual toxicants do not provide a conclusive evaluation and are split across the critical value of 10,000 (e.g. NNK and arsenic) or where the available in vitro data is unsuitable for MOE generation (e.g. hydroquinone and catechol), the use of in vitro data can provide an alternative source of information. We present here MOE data for five different tobacco smoke toxicants:

- Benz(a)pyrene: in vitro: 42,469–3.0 x 10^5; in vivo: 16,805–2.4 x 10^8.
- Asencic: in vitro: 2.95 x 10^3; in vivo: 13–4.9 x 10^5.
The incorporation of in vitro data into our suite of assessment methods allows us to generate additional MOEs to support the IAAs and provide further mechanistic understanding of individual toxicants. There is also the potential to incorporate such in vitro data into the future development of PBPK models for individual toxicants.

J. McKone, A. N. Van, E. Lachenauer and D. Johnson, University of California Berkeley, Berkeley, CA.

Orofacial clefts (OFCs) are caused by malformations in the closing of the lip or the soft palate. Although OFCs are considered to be one of the most common congenital birth defects, the underlying mechanisms of its etiology have yet to be clearly elucidated. This study sought to systematically determine how candidate genes previously identified in the literature interact, potentially implicating specific pathways for nonsyndromic OFC formation. OFC gene candidates were derived from genome-wide association studies (GWAS), the Comparative Toxicology Database, and Thomson Reuter’s GeneGo. The compiled OFC genes were analyzed in conjunction with genes associated with the metabolic pathways of vitamin A and folic acid, factors shown to be implicated in OFC formation. Utilizing GeneGo and the candidate gene list, a gene-gene interaction network was constructed. Analysis of the network led to the identification of the TCF/LEF gene family, members of which regulate several downstream targets identified in the GWAS and/or are associated with vitamin A or folic acid metabolism. The TCF/LEF genes were shown in the network to be regulated by genes involved with the WNT signaling pathway, suggesting a mechanistic relationship between WNT signaling and orofacial cleft formation. Through computational analysis, this study proposes a potential gene-gene interaction mechanism for OFC formation via the WNT signaling pathway, potentially implicating the WNT signaling pathway in the development of nonsyndromic OFC formation. Further studies examining gene ontologies of populations exposed and not exposed to depleted uranium would offer a clearer picture of the relationship between uranium and spina bifida.

122 Role of Beta-Methylamino-L-Alanine in GRIK1-Mediated Amyotrophic Lateral Sclerosis Disease Pathway.

S. Firouzbakht, Y. Iizuka and D. Johnson, University of California Berkeley, Berkeley, CA.

Amyotrophic Lateral Sclerosis (ALS) is a debilitating neurodegenerative disease that affects about 30,000 people in the United States alone. Only a small fraction of cases are linked to genetics, making it likely that the overwhelming majority are induced by environmental factors. Therefore, the elucidation of a toxicity pathway is critical to the understanding of the vast majority of the ALS disease population. Amongst potential environmental exposures, neurotoxin beta-N-Methylamino-L-alanine (BMAA) has shown strong association with ALS in a small disease cluster in Guam. However, the several proposed mechanisms are insufficient in explaining the entire disease pathway. In this study, we utilized computational predictions with GeneGo, STITCH, BLAST, PubChem, and KEGG to generate the most feasible pathway for BMAA toxicity. The results from PubChem structure clustering between a highly kainate-specific ligand and BMAA-beta-carbamate revealed a statistically significant 3D Tanimoto score, implicating a comparable receptor repertoire. BLAST sequence comparisons between GRIK1-5 and GLUL, an ALS associated gene, showed significant overlap between the two nucleotide sequences, further suggesting that kainate receptors are crucial to the ALS disease pathway. Incorporating these computational studies with current knowledge, there is compelling evidence suggesting a primary disease pathway in which BMAA-beta-carbamate binds to the kainate receptor GRIK1 at the presynaptic motor neuron, leading to increased glutamate release and subsequent neurodegeneration.

123 Computational Analysis of a Potential Mechanistic Relationship between Depleted Uranium (DU) Exposure and Risk of Spina Bifida Cystica.

S. Aghaei, H. Ngo and D. Johnson, University of California Berkeley, Berkeley, CA.

Prolonged weapon use in war zones increases the environmental levels of potentially teratogenic metals which may have a direct relationship to increased incidences of birth defects. In Fallujah, Iraq since 2003, high levels of depleted uranium (DU) in the environment and in hair samples of residents suggests that constant exposure to DU may play a role in the alarming rates of congenital defects found in Iraqi children. One particular birth defect, Spina bifida, is a congenital defect of the spinal column with two major subclases: spina bifida occulta and spina bifida cystica. Cystica is the most severe form of the disease but also the least prevalent. However, this has not been the case in Fallujah, Iraq where from 2003 cystica has been found to be the most prevalent form of spina bifida. The purpose of this study was to search for any commonalities between the genes and biological pathways associated with exposure to uranium and development of spina bifida cystica. Computational methods and tools utilized included the Comparative Toxicogenomics Database (CTD), PubChem, ToxNet, Pathway Commons, and unpublished exposure/defect data from Iraq. Out of the 292 genes reportedly affected by uranium exposure, 155 were also associated with spina bifida cystica. Biological pathway analysis revealed three genes, NT5E, PED, and TALDO1, associated with uranium are also involved in upstream pathways of folic acid synthesis. Research has shown that a lack of folate is known to be related to spina bifida. This study provides a broad look at the genetic and molecular similarities between response to uranium exposure and spina bifida cystica and may offer potential targets for future interventions. Further studies examining gene ontologies of populations exposed and not exposed to depleted uranium would offer a clearer picture of the relationship between uranium and spina bifida.

124 Computational Analysis of Catechins in Teas and Potential Relationship to Cardiovascular Health.

C. Lei, M. Nhan, C. Ha and D. Johnson, University of California Berkeley, Berkeley, CA.

Consumption of green tea has been reported to have beneficial effects on a variety of health-related issues. Of interest is the beneficial differences between green, oolong, and black teas, all produced from the leaves of Camilla senesis. Of the five main groups of bioactive compounds in the Camilla sinensis plant, catechins were found to be the most bioactive. Of the six main catechins in tea, epigallocatechin-3-gallate (EGCG), the most abundant and bioactive of the catechins was found to be in the highest concentration in green tea as compared to oolong and black teas and subsequently was considered to be the most health-relevant component. The potential health benefits of tea depend on their level of fermentation, which is correlated to the amount of oxidation the catechins undergo during processing. EGCG is most abundant in green tea, which is not fermented, and highest in fresh unprocessed leaves from Camilla senesis. Green tea extract has also been reported to have increased biological activities. EGCG and pro-drugs have also been shown to be potential epigenetic modulators. DNA methylation is catalyzed by DNA methyltransferase (DNMT) with S-adenosyl-methione (SAM) as the methyl donor. EGCG has been shown to reduce DNMT indirectly by reducing SAM and increasing S-adenosyl homocysteine (SAH) and homocysteine levels in the MCF-7 breast cancer cell line. In this study, primarily utilizing Genego Metadrug and MetaCore we report a proposed overlap between EGCG affected pathways and the atherosclerosis disease pathway. EGCG was found to competitively block hydroxy-3-methyl-glutaryl-CoA, and non-competitively inhibit squalene epoxidase, two rate-limiting enzymes in the cholesterol biosynthesis pathway. In addition, previous animal studies have reported a decrease in LDL levels in rats given the three teas with the highest response coming from green tea treatment. This study provides an analysis of antioxidant compound levels found in tea and their relation to its effect on cardiovascular health, providing a possible explanation to the differences in beneficial effects found in different types of teas.

125 Computational Analysis of Environmental Factors Potentially Associated with Multiple Sclerosis Susceptibility.

Multiple Sclerosis (MS), an autoimmune disease of the CNS, may have associated environmental risk factors. A relationship between distance from the equator and MS risk reinforces the belief that UVB radiation and subsequent Vitamin D synthesis act protectively. The Human Leukocyte Antigen b chain, HLA-DRB1 is activated in the presence of UVB radiation and MS. In addition, recent MOEs to support this hypothesis have been provided. Although lead has been proposed as a risk factor for MS, no previous published studies have clearly linked lead and MS. To identify and investigate genes,
cellular pathways and disease interactions, CTD was utilized with STITCH to generate association networks between genes and proteins and to identify another intermediate protein, ALAD. Binding assays show that a polymorphism of ALAD, ALAD2, causes red blood cells to bind more tightly and previous research has implicated ALAD as an important factor in lead susceptibility. VDR polymorphisms are also associated with lead susceptibility. Although a correlation between VDR B and higher blood, urine, and plasma lead levels has been reported, the mechanism and systemic effect of the allele are not well understood. Maps of the frequency of haplotypes in different populations for VDR B, ALAD2 and HLA-DRB1 were obtained from GWAS and correlating biological pathways involving MHCII, ALAD, and VDR were constructed with Genego. In combination, the relationships identified suggest that ALAD2 and VDR B haplotypes confer an individual with heightened lead susceptibility. Furthermore, the results suggest that elevated levels of lead are associated with decreased expression of HLA-DRB1 and greater risk of MS.

127 Compound Toxicity Profiling and Prioritization Using Tox21 Phase I Quantitative High-Throughput Screening (qHTS) Cytotoxicity Data.

J. Hsieh1, A. Sedehki2, R. Huang3, M. Xia1 and R. R. Tice1, 1Division of the National Toxicology Program, NIJHS, NICH, Triangle Research Park, NC; 2University of North Carolina at Chapel Hill, Chapel Hill, NC; 3National Center for Advancing Translational Sciences, Bethesda, MD.

Using in vitro data to prioritize compounds for in vivo toxicity testing is a goal of Tox21. Phase I profiled 1408 NTP compounds against 126 cell-based qHTS assays; those that measured cytotoxicity record the ability of a chemical to adversely perturb multiple cellular pathways in a concentration-response fashion. The curves from 39 cytotoxicity assays (9 human cell types, 4 rodent cell types, 13 sets of identical twin lymphoblastoid cell lines) were curated to filter noise and remove artifacts. To quantify the activity of each compound in these assays, we calculated a weighted version of Area Under the Curve (wAUC) intended to capture potency and efficacy simultaneously, as well as the conventional half-maximal activity concentration (AC50) value. The average wAUC or AC50 values across the 39 cytotoxicity assays were used to rank compounds and the rankings were compared, for 880 compounds, with available rat acute oral toxicity data. The compounds were categorized as toxic or non-toxic based on various “Globally Harmonized System of Classification and Labelling of Chemicals” (GHS) acute toxicity thresholds (50, 300, 500, 2000 mg/kg). The wAUC approach consistently prioritized more toxic compounds than the acute oral toxicity (1% of compounds at all thresholds). The best receiver operating characteristic (ROC) enrichment value at 1% and AUC value are 1.43 [95% CI=1.8-26.8] and 0.73 [95% CI=0.65-0.80], respectively, at a threshold of 50 mg/kg. Also, some toxic compounds (e.g., actinomycin D, colchicine, daunomycin) had higher ranks based on wAUC due to their ill-fit curves in some of the cell lines, resulting in missing AC50 values. We conclude that the wAUC provides an additional and useful metric to estimate the toxicity potential of compounds for Tox21 qHTS assays. Based on this metric, compounds screened in Tox21 can be prioritized for more extensive testing.

128 Predicting Cellular Dynamics and Key Events in Developmental Toxicity with a Multicellular Systems Model.

Computer simulation of cellular networks is one possible solution for modeling key events in developmental toxicity. We constructed a multicellular agent-based model (ABM) of early limb-bud development in Compucell3D (www.compucell3d.org). The model simulates key cellular behaviors (mitosis, apoptosis, adhesion, migration, chemotaxis, shape, secretion), organizing centers (AER, ZPA) and signals (FGFs, SHH, BMBS, RA). It effectively emulates hindlimb-bud development during a 42h period in mouse (Thelier stages 16-19) and 160h in human (Carnegie stages 13-16). The ABM reflects biological variability across parallel simulations for spatio-temporal expression of biochemical gradients and cell behaviors, ultimately manifesting in trajectories of outgrowth. To evaluate the model as a tool for predictive toxicology, we selected 5-Fluorouracil (5FU) as a prototype. 5FU perturbed 13 of 650 ToxCast assays based on AC50s (or LEGs) at or below 15 uM. 5FU effects observed in the assays were disruption of stem cell (mES) growth and differentiation, suppression of TGFb1 signaling and mitochondrial density, p53-inhibition, mitotic arrest, reduced cell proliferation and increased cell death. Challenging the ABM with concentration-response data derived from mES cell membrane potential wave of mitotic arrest and apoptosis, disrupting outgrowth. Varying the dose and time of exposure localized the primary key event to arrest of SHH-expressing cells and their geometric relationships to cells expressing GREM1, a BMP antagonist maintained by SHH signals. Different outcomes emerged when perturbation of the SHH/GREM1/BMP loop was switched between mitotic arrest and excessive apoptosis, indicating the importance of considering both cellular consequences together. These findings support the application of multi-cellular ABMs as tools to translate cellular dynamics into simulation of emergent (higher order) tissue effects for predictive toxicology. [This abstract does not necessarily reflect EPA policy.]

129 Chemical Structure-Based In Silico Phototoxicity Prediction: An Approach from a Combination of Photophysical Properties.

Some photophysical chemical properties are essential factor for prediction of phototoxicity, since phototoxicity is caused by photo-activation of the compounds. Highest Occupied Molecular Orbital – Lowest Unoccupied Molecular Orbital Gap (HLG) is a photophysical property of needful energy for photo-activation, and HLG was reported to be related with phototoxicity based on in vitro 3T3 Neutral Red Uptake assay (3T3 NRU assay). However there are few reports to predict of phototoxicity using photophysical property including HLG. In this research, we established the stepwise approach using Maximum-Conjugated Electron-Charge-Number (PENMC) of the compounds in addition to HLG for in vitro phototoxicity prediction. HLG and PENMC were calculated by ChemDraw® and Chem3D® for total 64 compounds which were known the results of 3T3 NRU assay (32 positive and 32 negative). As step 1, we use the early line of HLG~1 follows; the compounds that have over 8.0 of HLG were determined as negative, and the compounds that have less than 5.2 of HLG were determined as positive. On the other side, the compounds that have HLG from 5.2 to 8.0 showed no predicting performance to phototoxicity, and then we defined this range of HLG as gray zone. As step 2, we employed PENMC for the gray zone compounds. We found that PENMC also indicated correlation to in vitro phototoxicity, and therefore we set the cut lines as four compounds that have 12 and more than more of PENMC were determined as positive, and 11 or less of PENMC were determined as negative. This stepwise approach for phototoxicity prediction
was validated by the resulting values: sensitivity (84.4%), specificity (81.3%), positive rate (85.3%), and concordance (82.8%). We concluded that the stepwise approach with combination of HLG and PENMC for prediction of photocytotoxicity is adaptable and useful for drug development as in silico screening, because it showed high sensitivity and negative rate from only chemical structure.

130 In Silico Models for Dermal Absorption from Complex Formulations.

K. Guth et al. 1, J. E. Rivièrë et al. 2, J. Brooks et al., M. Schäfer-Korting et al., M. Dammann et al., F. Fabian et al., B. van Ravenzwaay et al., and R. Lamsiedel et al. 1. Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany; Toxicology Research and Pharmacokinetics, North Carolina State University, Center for Chemical, Raleigh, NC; 1Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS; 2Institut für Pharmazie, Freie Universität, Berlin, Germany.

Dermal exposure is a relevant parameter for risk assessment of chemicals, cosmetics and pesticides. Here, we present potential in silico models for prediction of dermal absorption based on realistic exposure scenarios in complex mixtures. The calculations were based on 342 individual dermal absorption in vitro experiments using human or rat skin samples for 56 chemicals (mainly pesticides) in more than 150 different mixtures containing up to 20 ingredients like water, organic solvents, surfactants or thickeners. The first approach was based on the Abraham solute descriptors, mixture factors (MFs) as suggested by Rivièrë and Brooks and the logarithmic maximal permeability coefficient (logmaxKP) as response. Additionally, an indicator variable for the species (Spl) was introduced. In a second approach class variables – which bundled substance-specific information – were used in combination with mixture factors. Validation was performed in accordance with the OECD Guidance document for QSAR models. The final validated Abraham-based model comprised the solute excess molar refractivity of the penetrant, Spl and topological polar surface area of the mixture (R2:0.38, Q2Ext: 0.41). Despite the low correlation, the model was suitable to estimate Marzulli classes of penetration for unknown penetrants in specific mixtures. Furthermore, precise prediction of mixture effects on well-known substances was possible with the substance-based approach (R2:0.75, Q2Ext: 0.73). Taken together, both applications are suitable screening tools in early stages of product development.

131 High-Content Screening of ToxCast Compounds for Developmental Endpoints Related to Adiogenesis and Angiogenesis.

D. L. Filer et al., N. Kleinteuster et al., K. Martin, K. Houck and D. Reif. National Center for Computational Toxicology, US EPA, Research Triangle Park, NC.

The US EPA’s ToxCast research program gathers toxicity information for over 1000 chemicals utilizing high-throughput toxicity screening (HTS) assays with human gene and protein targets to inform prioritization of chemicals with little or no toxicity information for further testing. Vala Sciences provides high content multiplexed assays utilizing quantitative digital imaging of cultured cells, tissues and small model organisms. We measured the ToxCast Phase I_v2 chemical library, (293 unique compounds, primarily food-use pesticides with associated in vivo toxicity data), with 12 Vala Sciences assays in six-point concentration response from 0.013 μM to 100 μM. Assays examined chemical effects on embryonic stem cell differentiation, neuronal function, pancreatic β cell differentiation, germ layer proliferation, adiogenesis, adipocyte hypolysis, hepatic steatosis, and junctional proteins critical to developmental angiogenic processes and tumor progression. We subjected concentration response data to automated curve-fitting using modified Hill functions, outlier detection algorithms, and uncertainty analysis to determine the half-maximal activity concentration (AC50) and Lowest Effective Concentration (LEC) for each chemical/assay combination. Assays showed high reproducibility, both within triplicate replicate sets and in blinded compound replicate sets. Across the entire Phase I chemical set, 5% of chemical/assay combinations demonstrated significant (> 50% change over control baseline) activity. Early response targets in this data set provide toxicological and mechanistic insight to complement other ToxCast assays and lead to stronger predictive toxicity models. Collectively, these results add important data to the ToxCASTDB that will help identify and prioritize possible developmental toxicants, endocrine disruptors, liver toxicants, and carcinogens to inform targeted testing strategies. This abstract does not necessarily reflect U.S. EPA policy.

132 Development of Improved Salmonella Mutagenicity QSAR Models Using Structural Fingerprints of Known Toxicophores.

L. Stavitskaya et al., B. L. Minnier et al., R. Bendz and N. L. Kruhlak. 1US FDA, Silver Spring, MD; 2GlobalNet Services, Inc., Rockville, MD.

The current draft of the International Conference on Harmonisation (ICH) M7 guidance describes the use of in silico models to qualify genotoxic impurities during the drug safety evaluation and approval process. In order to attain the highest accuracy and improve the domain of applicability of the current Salmonella mutagenicity quantitative structure-activity prediction models, continuous updates to the training set must be made to accommodate new genotoxic findings. In this study, we first assessed our current Salmonella mutagenicity training set using fingerprints of known genotoxic structural alerts to determine the domain of applicability and performance characteristics of several commercial (QSAR) models. We then enhanced the previous version of our non-proprietary training database for Salmonella mutagenicity with data for 43 new compounds harvested from FDA approval packages and the published literature, to give a total of 3965 compounds. Of the 431 chemicals, 247 are drug molecules marketed between 1970 and 2011. Data gaps within the training set were identified and, using structural features derived from known toxicophores, 141 examples containing functional groups such as aliphatic amines, hindered epoxides, propiolactones, amine halides, diazines, azo compounds, diazonium salts, aziridine chlorides, nitrates, hydrazines, nitriles, isocyanates, and sulfur mustards were added. Moreover, the new training set was expanded to include over 40 compounds containing previously unmodeled atoms such as boron, silicon, selenium, and tin. A hierarchical clustering analysis of the final training set showed representation of an additional 44 structural clusters over which the model can make a prediction.

133 Evaluation of QSAR Models to Predict Evaporation Rates of Hazardous Chemicals from the Skin Surface.

T. Liu, M. Ruuma and G. Johanson. Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.

The skin serves as a barrier against hazardous agents in the environment. However, the barrier is incomplete in that chemicals may penetrate the skin and cause toxicity. The absorbed dose depends not only on the absorption rate but also the evaporation rate (assuming a fixed dose and skin area). The limited data available suggest that rates vary by several orders of magnitude between chemicals. However, there is a huge lack of data and new approaches are needed. One attractive possibility is to use quantitative structure-permeability relationship (QSPr) models. The aim of the present study was to examine different QSPr models addressing evaporation rates. We calculated evaporation rates for nine volatiles (methanol, n-propanol, acetone, methyl ethyl ketone, hexane, n-heptane, octane, benzene and toluene) at three air velocities and three air temperatures, using four semi-empirical models; McCready & Saghir, EPA, Mackay & Matsugu and BAU. The predictions were compared with experimental data published by the EPA. None of the four models were able to predict the evaporation rate at all wind speeds. For comparison, we also developed linear solvation energy relationships (LSER) and partial least squares projections to latent structures (PLS) models. Seven solvents were used for calibration and two to test predictive performance. The LSER and PLS models showed good correlation (R2 0.95 and 0.92) and predictive performance (Q2 0.86 and 0.97) and seem more suitable than the semi-empirical models to predict evaporation rate. The semi-empirical models, EPA and Mackay &Matsugu at higher air velocity (5.08 m/s) and lower temperature (280.35 K), showed a fair agreement between predictive and experimental values. As a result, evaporation rates can be adequately predicted from available physicochemical properties of the volatile organic compounds (VOCs).

Reference

134 Regulatory Targets of CDKN2A in Lung Epithelial Cells.

J. Mehta and G. Acquah-Mensah. Massachusetts College of Pharmacy and Health Sciences, Worcester, MA.

Cyclin Dependent Kinase Inhibitors 2A (CDKN2A) is a tumor suppressor protein in humans. It is capable of inducing cell cycle arrest in the G1 and G2 phases. p16INK4a is a major component of the RB pathway. p14ARF is part of an ARF-MDM2-TP53 system that exercises a negative control on hyper-proliferative signals originating from oncogenic stimuli. ARF binds to MDM2 and blocks its cytoplasmic transfer and thereby sequesters it in the nucleolus. This hinders the MDM2 action, thereby blocking degradation of p53 and thus enhancing transcriptional...
and apoptosis. The purpose of this study was to identify additional regulatory tar-
gets of CDKN2A in lung epithelial cells, using Bayesian networks. Using the Robust Multi-Array Average procedure, a compendium of lung epithelial cell mi-
croarray data was generated based on Gene Expression Omnibus datasets GSE
19027 and GSE 994. The best-scoring regulatory networks, given the gene expres-
sion data, were then learned using the Bayesian Network Inference with Java
Objects tool (BNJIO) for static Bayesian Network inference. A set of known
regulatory relationships involving CDKN2A was used as the initial network to
focus the search space. Two proposers concurred in predicting IL1RN, IL6ST,
II1RAPL1, IGFALS, and WNT10B as regulatory targets for CDKN2A. These
genes are known to interact with a range of chemicals, including certain environ-
mamental toxicants. Furthermore, CDKN2A was predicted to be a direct regulator
of RB1. These hypotheses warrant additional study as they lend valuable insights into
the functions of CDKN2A in Chronic Obstructive Pulmonary Disease (COPD)
and cancer. EZF3 was predicted, and validated in the literature, to be a regulator
of MDM2 and TP53. Thus, Bayesian networks are a valuable tool for drawing signal-
ing insights from gene expression data.

135 Irreversible Inhibition of Acetylcholinesterase by Soman.
G. S. Sirin1,1-3 and Y. Zhang2.1 ATSDR, Atlanta, GA;2 New York University, New York,
NY; Sponsor: P. Ruiz.

Acetylcholinesterase (AChE) is a key enzyme in the cholinergic nervous system that
hydrolizes acetylcholine and terminates synaptic signals. Organophosphate com-
ounds, such as nerve agents, can covalently inhibit AChE by phosphorylating the
enzyme's catalytic serine residue. The phosphorylated adducts can either be reacti-
vated to some limited extent by nucleophilic compounds with oxime functional unit or undergo an aging reaction. Phosphonylation and subsequent aging leads to
irreversible AChE inhibition, resulting in overstimulation of the nervous system. By
employing ab initio QM/MM molecular dynamics simulations with umbrella sam-
ping, we characterized the phosphorylation reaction mechanism between AChE and
the nerve agent soman (GD), as well as the aging mechanism of GD phospho-
nylated AChE. The phosphonylation reaction between AChE and GD follows an
associative nucleophilic substitution mechanism that is initiated when the nucle-
ophilic Ser200 attacks GD's phosphorus atom, with His440 acting as a general base.
In the elimination step, Try121 of the catalytic gorge forms hydrogen bonds
with the leaving fluoride atom prior to its dissociation from the active site. Once a stable covalent adduct is formed, the aging reaction begins with excision of the
alkoxy carbonyl bond connecting the bound GD's alkyl group to the phosphorylated
moiety. This cleavage is swiftly followed with a methyl group rearrangement of the
alkyl group resulting in a stable tertiary carbenium, which is hydrated to an alcohol
by a reactive water molecule facilitated by Try121. The characterized mechanisms
and simulation results provide new detailed insights into this important process.
Such mechanistic details are of significant interest for the development of novel
strategies to reduce the toxic effects of GD poisoning by facilitating the search and
design of novel compounds capable of slowing the aging of nerve-agent-inhibited
AChEs as well as effective reactivators for the aged conjugates. Lastly, this work may
also facilitate the design of aging-resistant pseudo-catalytic scavengers capable of se-
questering nerve agents.

136 Computational Elucidation of Energetic Trends for DNA
Intercalation.
Melbourne, FL; Sponsor: L. Valerio.

The prediction of general energetic trends from intercalation of polyacrylamide compounds with DNA can provide insight into these pertinent interactions from a
pharmacological and toxicological perspective. Compounds chosen for this study are
described by a GC/AA, and two novel intercalating agents (4-aza-
tryptanthrin and coralyne). Unfortunately, neither of these compounds have an es-

137 Efficient In Vivo Developmental and Neurotoxicity Screen of
ToxCast Phase I and II Compounds in Zebrafish.
L. Truong, C. Miller, D. Hargett, G. Gonnerman, L. Chalker, K. Nhan, B. L. Tangney, Environmental
and Molecular Toxicology, Oregon State University, Corvallis, OR; 1 Environment,
Health Sciences Center, Corvallis, OR; 2 Starnaker Aquatic Research Laboratory, Corvallis, OR.

The United States Environmental Protection Agency launched the Toxcast program
to begin to predict the potential chemical toxicity of 1,078 compounds made up of
pesticides, pharmaceuticals, "green" chemicals, chemicals in cosmetics and other
consumer products. Early life stages are often sensitive to chemical insult, which
make embryonic zebrafish an ideal platform to investigate the developmental
and neurotoxicity of these compounds. We developed an efficient in vivo phenotypic
screen using embryonic zebrafish to assess all 1,078 compounds. Using a wide
range of concentrations (0.0064 to 64 μM, 10 fold serial dilution); all compounds
were assessed for developmental toxicity beginning at 6 hours post fertilization
(hpf). We kept exposed embryos completely in the dark until 24 hpf, and assessed
photo-motor responses using the Photo-motor Response Assessment Tool (PRAT)
that we developed. PRAT quantifies individual embryonic photo-motor response
following two pulses of bright light. The initial pulse normally results in pro-
nounced movement, and the second light pulse usually produces no activity. At 120
hpf, using Viewpoint Zebrabox, we assessed photo-induced larval locomotor activ-
ity. The locomotor activity is tracked for 25 minutes (10 in the light, 10 in the dark,
and 5 in the light). Afterwards, each larva was assessed for changes in a suite of 20
morphological endpoints. We have successfully conducted the phenotypic screen
on all 1,078 compounds, and a summary of the results will be discussed. Collectively,
we have demonstrated the efficiency of the zebrafish model as a phe-
notypic screening platform to identify hazardous chemicals. This research is sup-
ported by NIEHS grants P30 ES00210 and RCHES019764.

138 In Silico and In Vitro Analyses of the Hormonal Activity of
Hydroxylated Polychlorinated Biphenyl on Human Thyroid
Receptor.
C. Dassuncao, O. Faroon, J. Wheeler and P. Ruiz, DTHHS, ATSDR/CDCDC,
Chamble, GA.

Hydroxylated polychlorinated biphenyl (OH-PCBs) may disrupt thyroid hormone
status because of their structural similarity to thyroid hormone. However, the mol-
ecular mechanisms of interactions with thyroid hormone receptors (TRs) are not
fully understood. The integrated application of omics studies, bioinformatics, and
computational modeling can provide to biological systems an enhanced under-
standing of the mechanisms underlying the toxicity of endocrine disruptor chemi-
cals and support the study of disease etiology and prevention. In the present study,
we examined the interactions between OH-PCBs and TRs to identify critical struc-
tural features and molecular properties of OH-PCBs related to their hormonal
activity and to develop quantitative structure–activity relationship (Q SAR) models
for the thyroid hormone activity of OH-PCBs. Molecular descriptors were com-
puted, selected, and used to characterize the ligand-receptor binding, and subse-
quently develop an in silico model. The in silico model had good robustness, pre-
dictive ability, and mechanism interpretability. Lipophilic distribution, hydrophobic and electrostatic interactions between OH-PCBs and TRs are impor-
tant factors governing thyroid hormone activities. The OH-PCBs with higher abil-
ity to accept electrons, ortho position of the hydroxyl group, low dipole-dipole in-
teractions tend to have weak binding with TRs and subsequently lower thyroid
hormone activities. Hence, this in silico model can be used as a screening tool for
further targeted toxicity testing and risk assessment, generate hypotheses about poten-
tial mechanistic pathways leading to adverse outcomes, and reduce time and
cost of OH-PCBs testing.
A Systematic Analysis of ToxCast In Vitro Assays Associated with In Vitro Hepatic Outcomes.

J. Liu1,2, M. T. Martin1, C. Corton3, C. Wood4 and J. Shah1, NCCT/EPA, Durham, NC; 1University of Arkansas, Little Rock, AR; 2NHEERL/EPA, Durham, NC.

The U.S. EPA's ToxCast(TM) program uses hundreds of high-throughput, in vitro assays to screen chemicals for bioactivity. The EPA Virtual Liver project combines ToxCastDB data with guideline rodent toxicology data to map hepatic adverse outcome pathways (AOPs). Here our objective is to reveal meaningful relationships between in vitro assays and in vivo liver outcomes. 289 ToxCast phase I chemicals were organized into 15 categories based on 272 histopathological lesions reported in guideline testing studies from ToxRefDB. Based on lesions reported at the study end, 242(83.7%) chemicals produced hypertrophy, 39(13.5%) chemicals resulted in hyperplasia, and neoplastic lesions were found for 79(24.9%). We compared the AC50 concentrations of chemicals for each of the 973 ToxCast assays and identified assays with at least 10 chemicals per category and the mean potency was significantly different (p<0.05). Out of the 973 assays, 28/147(19%) of the high-content imaging assays (APR) had associations with 7 liver injury categories. 6/83(7.2%) multiplexed transcription reporter assays (ATG) and 15/112(13.4%) protein complementation (OT) assays were also significant for liver injury. A number of the assays such as, cell loss, enzyme induction and enzyme inhibition, were generally significant across most categories. On the other hand, some assays were quite specific to certain categories. For instance, APR_StressKinase_72hr_pos (stress kinase pathway activation) and ATG_CRE_CIS (transcription factor DNA binding activity) were significant for chemicals that showed regeneration vs ATG_VDRE_CIS (nuclear receptor transcription activity for hyperplasia). The results suggest the utility of HTS assays for screening hepatotoxicity, and for linking biological events in the pathways to specific adverse outcomes. Such assays are not only mechanistically relevant but also aid in defining cell-based toxicity signatures for rapidly screening thousands of environmental chemicals. Abstract does not represent EPA policy.

Interpreting QSAR Toxicity Predictions in Hazard Assessments: An Acrylamide Case Study.

Toxicity predictions based on QSAR are used to screen large numbers of chemicals with little to no toxicity data into prioritized categories for further toxicity testing, development as “green” chemicals, or candidates for efficacious drug therapy. As databases incorporate more information on adverse pathways and potential targets, QSAR results may also contribute to hazard assessment for chemicals considered “data rich” (based on the availability of a full suite of traditional animal bioassays), but which are often “data poor” when it comes to characterizing the mode of action (MOA), severity progression, or potential adverse human clinical effects not monitored in animal bioassays. Presented here is an exercise to evaluate QSAR results within the context of extent hazard assessments on a data rich chemical, in this case, acrylamide (AA), and less well studied active metabolite, N-acryloyl glycine (GA). Results from four QSAR programs – two freeware programs (VEGA and OECD’s QSAR) and two proprietary programs (MetaCore™ and Discovery Studio/TopKat™) provided considerable new information in the areas mentioned above. Potential AA and GA induced adverse effects of clinical relevance to humans were identified as well as likely biological targets for AA, GA, and analogous chemicals. The results further supported the qualitative characterization of the MOAs, potential endpoints to consider in dose-response arrays, and identification of potentially important early biomarkers to aid future bioassay or human study design. Conversely, extant AA and GA ADME data and PBPK models helped assess the likelihood of AA or GA reaching biological targets predicted by the QSAR programs. This exercise demonstrated the value of integrating QSAR results into traditional hazard assessment for improved qualitative information. The next step is to integrate high throughput screening/content (HTS/HTC) assay results into the assessment to further quantify dose-response for a wider array of effects. [The views expressed are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA]

Health-Related Effects Reported by Electronic Cigarette Users in Online Forums.

M. Hua, M. Alfi and P. Talbot, Cell Biology and Neuroscience, University of California. Riverside, Riverside, CA.

Electronic cigarettes (e-cigarettes) are battery-operated devices that deliver aerosolized nicotine to users without burning tobacco. Because little data exists on their health effects, we explored the symptoms that e-cigarette use has on humans by analyzing online user posts from three e-cigarette forums with “health and safety concerns. Basic information (location, age, and gender) and health (symptoms and doctor diagnosed signs) information were collected. A total of 405 symptoms (78 positive, 326 negative and 1 neutral) were reported in three forums. Most data analysis was performed on Electronic Cigarette Forum (ECF) posts. A total of 12 systems/anatomical regions were affected in e-cigarette users. Systems most often affected include: mouth and throat, respiratory, neurological, sensory, and digestive. The majority of negative health effects occurred in the respiratory system. We further consolidated reported symptoms into categories to determine which anatomical regions/physiological processes were most affected for each system. For consolidated data, symptoms were most frequently reported for: bronchi/lungs (e.g., wheezing, shortness of breath, difficulty breathing, throat), gastrointestinal (headaches), intestine/digestion, and sight. To analyze interactions between systems, interactions were created with Cytoscape software. Interactions were most frequently seen between circulatory/neurological; respiratory/mouth and throat; respiratory/chest, and digestive/physiological systems. Increased blood pressure was the most frequently reported sign diagnosed by physicians treating e-cigarette users. While some positive health effects were reported, a significant proportion of the data showed a correlation with e-cigarette use and onset of adverse health effects. This study is the first to compile and quantitatively assess health data associated with e-cigarette use from online forums.

The Relationship Between T-Box Transcription Factors CAMK2B and PITX2 in the Expression of Collagen Protein COL4A3 in COPD.

The T-Box transcription factors are known have recently been highlighted for their expression role in epithelial cells in Chronic Obstructive Pulmonary Disease (COPD), which genes, including COL4A3, TBX2, TBX3, TRX5, PML, CFLAR, GULP1, CASP10, PA3, BOK, and PITX2 are connected in transcriptional regulatory networks of lung epithelial cells. The type IV, alpha 3, collagen gene (COL4A3) involves into extracellular matrix construction as the major structural component of basement membrane. COL4A3 is known to have suppressed expression in COPD3. The A polymorphism of the COL4A3 is also indicated of associated with the risk of developing COPD. COL4A3’s C terminus binds to autoantibodies at basement membranes in Goodpasture syndrome and is phosphorylated by calcium/calmodulin-dependent protein kinase II beta (CAMK2B), which is activated by the promyelocytic leukemia protein (PML). The paired-like homeodomain 2 (PITX2) regulates the expression of N-cadherin. N-cadherin changes the adhesion of extracellular matrix (ECM) by interacting with collagen proteins. PITX2 gene is regulated by different kinase pathways, such as MAPK and Akt. However, the relationship between these factors is still not well studied. Thus, we have come up with the question that if PITX2 gene is also regulated by CAMK2B. We conducted the study in focus on exploring the relationship between PITX2 and CAMK2B genes by applying Bayesian Network Structural Learning (BNSL). Version 2.2.2 of Bayesian Network Inference with Java Objects (Banjo) was employed in the study. The result was used to compare the known interactions between COL4A3, CAMK2B, PITX2 and PML. The study has shown the possible novel phosphorylation of PITX2 by CAMK2B.

Validation of a Systems Toxicology Based Adverse Outcome Pathway Prediction with Functional Outcome: Effect of Exposure to 2,4-Dinitrotoluene on Energy Metabolism and Exercise Endurance.

M. S. Wilbanks1, K. Gust1, S. Arwa2, I. Sunesara3, S. A. Meyer and E. J. Perkins1,2,1Engineer R & D Center, US Army Corps of Engineers, Vicksburg, MS; 2Department of Toxicology, University of LA-Monroe, Monroe, LA; 3Center of Biostatistics and Bioinformatics, University of MS Medical Center, Jackson, MS.

2,4-dinitrotoluene (2,4DNT), commonly used in industrial and explosive manufacturing processes, is known to contaminate artillery ranges, demilitarization areas and munitions manufacturing facilities leading to its listing on US EPA’s Contaminant Candidate List. Previous transcriptomic and lipodomic studies identified energy metabolism as a potential target of DNT toxicity. The impact of such perturbations of energy metabolism on exercise endurance is largely unknown. We hypothesized that organism-level impacts of 2,4DNT dosing were the result of energy metabolism deficits, especially lipid metabolism, from involving interference with PPARG signaling and its downstream pathways. To validate this adverse outcome pathway, we linked molecular changes caused by 2,4DNT exposure to effects...
on whole animals. PPARα (-/-) and wild-type (WT) mice exposed to a sublethal 2,4-DNT dose (134 mg/kg/day for 14 days) or vehicle were given an exercise challenge (a forced swim) 1 day after the last dose to determine how 2,4DNT and/or PPARα impairment affected overall performance. Observations were collected at multiple levels of biological organization including genes involved in fatty acid and glucose metabolism, PPAR activation and response, biochemistry (serum triglycerides and glucose), and swimming endurance. Decreased swimming endurance were observed with DNT in WT and PPARα (-/-) mice, but DNT effect was significantly less in knock-down mice indicating that knock down of PPARα expression partially rescued mice from DNT-induced energy metabolism deficits. Our results support the proposed hypothesis by demonstrating that 2,4DNT’s impact on energy metabolism, especially lipid metabolism, occurs via perturbation of PPARα signaling resulting in reduced exercise endurance at the individual level. (Support: US Army Corps of Engineers)

144 Modelability of ToxCast Phase I Datasets.

A. Golbraikh1, 2, A. Sedegh1, E. Muraton1, R. Shah1, 3, W. A. Boyd4, M. Smith3, G. Zhao4, H. Zhu4, J. H. Freedman1 and A. Troshin1, 2, 5

One of the problems in Quantitative Structure-Activity Relationships (QSAR) analysis is to establish, whether it is possible to build a predictive model for a given dataset. For some datasets, all attempts to build a predictive model using different sets of descriptors and QSAR/QSTR methodologies fail raising a question, whether it is possible to evaluate the dataset modelability prior to modeling. We have devised several modelability criteria such as dataset diversity, new activity cliff indices, correct classification rate (CCR) for similarity search models (ssCCR), CCR=0.5*(sensitivity+specificity), etc. These criteria were applied to 40 binary datasets, for which QSAR models were built using Dragon 5.5 descriptors and/or ToxCast in vitro assays tested as biological descriptors, and kNN, Random Forest and SVM methods. The best modelability criterion was found to be the ssCCR, which had the correlation coefficient of 0.73 with the QSAR/QSTR model CCR. We consider a model predictive, if its CCR as well as both sensitivity and specificity are at least 0.7. We found that to satisfy this condition, ssCCR should be at least 0.68. ssCCR values were obtained for ToxCast datasets with 24 ToxRefDB in vivo assays as end points, which had at least 30 toxic compounds among 212 compounds of the curated ToxCast dataset. None of the ssCCR for these datasets was as high as 0.60 except for the rat cholinesterase inhibition assay, for which it was 0.85, and sensitivity and specificity were 0.83 and 0.88, respectively. We conclude that with the latter exception, ToxCast Phase I datasets with ToxRefDB in vivo assays as end points do not appear to be modelable using QSAR approaches. This conclusion agrees with the recent empirical observations of Thomas et al (Toxicol Sci. 2012, 128:398-417).

146 Raloxifene Potentiates the Cytotoxicity-Induced by RL91, a Second Generation Curcumin Analog, in PC3 Prostate Cancer Cells.

A. Mazumder1, M. Gould1, S. Taurin1, H. D. Nicholson2 and R. J. Rosenberger1

1. Pharmacology & Toxicology, University of Otago, Dunedin, New Zealand; 2. Anatomy, University of Otago, Dunedin, New Zealand.

The survival rate for men with hormone refractory prostate cancer has not changed significantly in the last 30 years. Thus there is a need for new drug treatments for this aggressive cancer. Our lab has had success with second generation curcumin derivatives as novel therapies for aggressive breast cancer. In this study we examined the combination of raloxifene and 2,6-bis-(pyridin-4-ylmethylene)-cyclohexanone (RL91), a potent 2nd generation curcumin derivative as a novel treatment for hormone refractory prostate cancer (HRPC). The combination treatment showed high potential cytotoxicity toward PC3 prostate cancer cells compared to individual treatments. Specifically, EC50 values of 2 μM and 10 μM were produced by RL91 and raloxifene, respectively. Moreover, this combination decreased cell number by 85% compared to control after 96 h of treatment, as determined by the sulforhodamine B assay. Raloxifene is known to modulate the activation of estrogen receptor alpha (ERα) and beta (ERβ). The activation of these receptors as well as the epigenetic growth factor receptor (EGFR), is crucial for the proliferation of HRPC. To determine how raloxifene potentiates the cytotoxic effect of RL91, the localization of these receptors was examined by fluorescent microscopy. The resulting showed that ERα, ERβ, the androgen receptor (AR) and EGFR were expressed in PC3 cells. However, raloxifene treatment (10 μM for 48 h) promoted EGFR internalization in the cytoplasm. A similar effect was also seen for ERβ where raloxifene promoted a translocation from the nucleus to the cytoplasm. However, no change was observed for either ERα or the AR. These results suggest that raloxifene-mediated changes in the localization of ERβ and the EGFR provide a mechanism by which raloxifene enhances the cytotoxicity of RL91 toward PC3 cells. This novel mechanism should be explored further in order to develop new therapies for HRPC.

147 Evaluation of Wild Yam (Dioscorea Villosa) Root Extract As A Potential Epigenetic Agent in Breast Cancer Cells.

P. Aunnumwan1, 2, S. I. Khan1, 3, I. A. Khan1, 3, L. A. Walker1, 2 and A. K. Dasmahapatra1, 2

1. National Center for Natural Product Research, University of Mississippi, University, MS; 2. Department of Pharmacology, University of Mississippi, University, MS; 3. Department of Pathology, University of Mississippi, University, MS.

Aberrant epigenetic alterations in the genome, is believed to be a potential cause of some forms of cancer. Due to their reversibility, epigenetic modifications are considered potentially useful in drug development approaches (epi-drugs). The current available synthetic epi-drugs are non-specific and induce adverse effects. Natural products might offer advantages and find utility for cancer treatment. The present study was designed to evaluate the efficacy of wild yam root extract as a potential demethylating agent using two breast cancer cell lines, MCF-7 (Estrogen receptor positive, ER+) and MDA-MB-231 (ER negative, ER-) and a gene, GATA-3, a potential marker of breast cancer development. Moreover, GATA-3 expression is epigenetic-specific, being higher in ER+ cells with promoter hypomethylation and insignificant in ER- with promoter hypermethylation. In this study, cells, approx. at 70 % confluency, were treated with wild yam root extract (0-50 μg/ml) for 72h and then used for viability, mRNA, and methylation analyses. It was observed that wild yam significantly reduced viability of both cell lines and enhanced the mRNA contents of DNMTs (DNMT1, 3a, and 3b) and GATA-3 in a dose-dependent manner. Global DNA methylation, analyzed as 5'-methyl-2'-deoxycytidine (mC) and 5-hydroxymethylcytosine (hmC), showed that mC was increased only in MCF-7 cells, whereas hmC level was reduced in both cell lines. Since hmC is generated from mC by ten-eleven-translocation (TET) enzyme, the present data suggest that enhanced expression of GATA-3 and DNMT enzyme mRNAs followed by a reduction in mC in MCF-7 and MDA-MB-231 cells are the novel epigenetic disruption of TET enzyme functions in the epigenome by wild yam root extract. This plant with a long history of traditional use should be further explored with regard to its potential as an epigenetic agent in breast cancer therapy.
Commensal bacterial community shifts in the pathogenic colonic environment and chronic colonization of mucosa-associated Escherichia coli (MAEC) has been linked to colonic tumorigenesis. Enteropathogenic Escherichia coli (EPEC) is one of commonly identified MAEC in colorectal cancer patients. The aim of this study is to address the contribution of MAEC colonization to human carcinogenesis. EPEC infection of cancer cell caused alterations in affect locomotion-related behaviors of cancer cell including detachment, migration, cytoskeleton rearrangement, dissemination and survival via induction of macrophage inhibitory cytokine 1 (MIC-1). Mechanically, MIC-1 induced RhoA GTPase which mediated survival of the detached cancer cells. In terms of signaling pathway, MIC-1 triggered TGF-beta-activated kinase 1 (TAK-1), which enhanced expression of RhoA GTPase. In conclusion, mucosal EPEC enhanced MIC-1 gene expression in the human intestinal cancer cells, which was associated with enhanced tumor cell resistance to anoikis and subsequent survival via enhanced TAK-1 and RhoA GTPase. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by Ministry of Education, Science, and Technology Grant 2012R1A1A2005837.

We have recently reported that novel ring-substituted analogs of 3,3’-diindolylmethane (ring-DIMs), exhibit anti-androgenic and anti-proliferative activities in androgen-dependent prostate cancer cells. We hypothesized that the anti-proliferative effects of ring-DIMs may be due to their ability to induce cell death. Ring-DIMs inhibited androgen-stimulated LNCaP cell proliferation and induced apoptosis and necrosis in LNCaP and PC-3 prostate cancer cells with 2-4 fold greater potencies than DIM. DIM and the ring-DIMs increased caspase-3, -8 and -9 activity and induced PARP cleavage in both cell lines. The cytotoxicity of the most potent ring-DIM, 4,4’-dibromoDIM, but not the other ring-DIMs, was decreased by caspase-3 inhibition. The 4,4’-dibromoDIM was found to be totally intracellular in both cell lines. Ring-DIMs were more potent inhibitors of cell growth and survival in LNCaP and PC-3 cells than DIM and the differential structure-dependent cell death mechanisms indicate ring-DIMs have clinical potential as chemopreventive agents in prostate cancer, regardless of hormone-dependency.

Mango polyphenolics including gallic acid, mangiferin and galloolignans, have shown antioxidant, anti-inflammatory and anticarcinogenic properties in several studies. However, anti-inflammatory mechanisms relevant to the prevention of colon cancer have not been well investigated.

This study investigated the potential role of the miRNA-126/P13K/Akt/mTOR signaling pathway in the anti-inflammatory effects of mango polyphenolics in human CCD-18Co colon-myofibroblastic cells and on DSS-induced colitis in rats. Animals were administered control juice (15.7g sugar and 0.05g citric acid/100ml) or mango juice (total phenolic content of 475.80mg/L GAE), and exposed three cycles of 3% DSS. Animals were administered control juice (15.7g sugar and 0.05g citric acid/100ml) or mango juice (total phenolic content of 475.80mg/L GAE), and exposed three cycles of 3% DSS. The mRNA and protein levels were measured by RT-PCR, western blot analysis and multiplex bead assay. In vitro mango extract and gallic acid suppressed the expressions of inflammatory mediators such as NF-κB (p65) and IL-1β and reduced the expressions of AKT and HIF1α involved in Akt/mTOR pathway at mRNA and protein level in a dose dependent manner. Correspondingly, miRNA-126, which negatively regulates the Akt/mTOR pathway, was induced by mango extract and gallic acid. In the rat colitis model, mango juice intake suppressed cell proliferation as measured by Ki-67 staining, and resulted in protection against DSS-induced colon inflammation during chronic colitis compared to control juice. The juice significantly attenuated the expressions of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, and IL-10 at protein and mRNA level. Moreover, the phosphorylation of AKT and mTOR was suppressed, and the expression of P13K was reduced while miRNA-126 that has a target site in the mRNA of P13K was upregulated by the juice.
Formaldehyde (FA) is a recognized human carcinogen with documented inhalation exposures in many occupational groups. Here we examined stress signaling pathways and cell fate decisions triggered by FA in human lung cells (normal lung fibroblasts, HaCaT). The most efficacious congener was the dioxin-like PCB126, a potent arylhydrocarbon receptor (AhR) agonist. To analyze whether this effect of PCB126 is tissue specific and to gain insight into the mode of action (MOA) we exposed another cell type, human promyelocytic leukemia (HL-60) cells, to PCB126 and also to PCB153, not an AhR activating congener. Both compounds reduced telomerase activity, visible after 6 days of exposure, and telomere length, to about 50% within 30 days of exposure, PCB126 more so than PCB153. This reduction in telomerase activity and telomere length was seen in both cell lines, but only HaCaT also showed a strong increase in cytochrome P450 1A1 mRNA and activity, the hallmark of AhR activation. This suggests that AhR activation may be one, but not the only mechanism for this effect of PCBs. HL-60 can differentiate which is accompanied by a reduction in telomerase activity. However, the continuous proliferation of the PCB-exposed cells makes this mechanism less likely. Telomeric repeat binding factors (TRF1, TRF2) are involved in the stabilization of telomeres. Up-regulation of TRF1/2 was seen in PCB126-exposed HaCaT, pointing to a possible mechanism. Experiments with both cell lines, representing different target tissues of PCB toxicity, are under way to elucidate the MOA of PCBs on telomeres and the possible significance of this effect on precursor cells of the hematopoietic pathway. Supported by NIEHS grant ES013661.

Chromosomal instability (CIN) is a hallmark of cancer and can be caused by spindle assembly checkpoint disruption or chromosome missegregation during mitosis. Hexavalent chromium (Cr(VI)) is a well-known human lung carcinogen, and has shown to induce numerical CIN, however its mechanisms for inducing aneuploidy remain unknown. In this study we are investigating whether Cr(VI) affects a key centromeric cohesion protein, Shugoshin 1 (Sgo1). Sgo1 maintains and protects centromeric cohesion in G2 and continues to maintain proper sister-chromatid cohesion during mitosis. This protection mechanism prevents sister-chromatid fusions prematurely separating during mitosis. Disruption of Sgo1 localization has been shown to lead to chromosome missegregation. We have found that chronic exposure to particulate Cr(VI) disrupts the localization of Sgo1 in G2 cells. Specifically, after a 24 h exposure to 0.1, 0.2, or 0.3 μg/cm² lead chromate we did not observe any changes in the percent of G2 cells with Sgo1 localization at the kinetochores. However, a 120 h exposure to the same concentrations showed a concentration-dependent decrease in the percent of G2 cells with Sgo1 localization at the kinetochores. Specifically 0.1, 0.2 or 0.3 μg/cm² disrupted localization in 36, 88, and 90% of G2 cells, respectively. Our findings suggest that particulate Cr(VI)-induced CIN is mediated through disrupting Sgo1 localization to the kinetochores during G2 cells, thus leading to chromosome missegregation and ultimately aneuploidy. This work was supported by NIEHS grant ES016893 (J.P.W.).

Formaldehyde (FA) is a recognized human carcinogen with documented inhalation exposures in many occupational groups. Here we examined stress signaling pathways and cell fate decisions triggered by FA in human lung cells (normal lung fibroblasts, HaCaT). The most efficacious congener was the dioxin-like PCB126, a potent arylhydrocarbon receptor (AhR) agonist. To analyze whether this effect of PCB126 is tissue specific and to gain insight into the mode of action (MOA) we exposed another cell type, human promyelocytic leukemia (HL-60) cells, to PCB126 and also to PCB153, not an AhR activating congener. Both compounds reduced telomerase activity, visible after 6 days of exposure, and telomere length, to about 50% within 30 days of exposure, PCB126 more so than PCB153. This reduction in telomerase activity and telomere length was seen in both cell lines, but only HaCaT also showed a strong increase in cytochrome P450 1A1 mRNA and activity, the hallmark of AhR activation. This suggests that AhR activation may be one, but not the only mechanism for this effect of PCBs. HL-60 can differentiate which is accompanied by a reduction in telomerase activity. However, the continuous proliferation of the PCB-exposed cells makes this mechanism less likely. Telomeric repeat binding factors (TRF1, TRF2) are involved in the stabilization of telomeres. Up-regulation of TRF1/2 was seen in PCB126-exposed HaCaT, pointing to a possible mechanism. Experiments with both cell lines, representing different target tissues of PCB toxicity, are under way to elucidate the MOA of PCBs on telomeres and the possible significance of this effect on precursor cells of the hematopoietic pathway. Supported by NIEHS grant ES013661.

Chromosomal instability (CIN) is a hallmark of cancer and can be caused by spindle assembly checkpoint disruption or chromosome missegregation during mitosis. Hexavalent chromium (Cr(VI)) is a well-known human lung carcinogen, and has shown to induce numerical CIN, however its mechanisms for inducing aneuploidy remain unknown. In this study we are investigating whether Cr(VI) affects a key centromeric cohesion protein, Shugoshin 1 (Sgo1). Sgo1 maintains and protects centromeric cohesion in G2 and continues to maintain proper sister-chromatid cohesion during mitosis. This protection mechanism prevents sister-chromatid fusions prematurely separating during mitosis. Disruption of Sgo1 localization has been shown to lead to chromosome missegregation. We have found that chronic exposure to particulate Cr(VI) disrupts the localization of Sgo1 in G2 cells. Specifically, after a 24 h exposure to 0.1, 0.2, or 0.3 μg/cm² lead chromate we did not observe any changes in the percent of G2 cells with Sgo1 localization at the kinetochores. However, a 120 h exposure to the same concentrations showed a concentration-dependent decrease in the percent of G2 cells with Sgo1 localization at the kinetochores. Specifically 0.1, 0.2 or 0.3 μg/cm² disrupted localization in 36, 88, and 90% of G2 cells, respectively. Our findings suggest that particulate Cr(VI)-induced CIN is mediated through disrupting Sgo1 localization to the kinetochores during G2 cells, thus leading to chromosome missegregation and ultimately aneuploidy. This work was supported by NIEHS grant ES016893 (J.P.W.).

Formaldehyde (FA) is a recognized human carcinogen with documented inhalation exposures in many occupational groups. Here we examined stress signaling pathways and cell fate decisions triggered by FA in human lung cells (normal lung fibroblasts, HaCaT). The most efficacious congener was the dioxin-like PCB126, a potent arylhydrocarbon receptor (AhR) agonist. To analyze whether this effect of PCB126 is tissue specific and to gain insight into the mode of action (MOA) we exposed another cell type, human promyelocytic leukemia (HL-60) cells, to PCB126 and also to PCB153, not an AhR activating congener. Both compounds reduced telomerase activity, visible after 6 days of exposure, and telomere length, to about 50% within 30 days of exposure, PCB126 more so than PCB153. This reduction in telomerase activity and telomere length was seen in both cell lines, but only HaCaT also showed a strong increase in cytochrome P450 1A1 mRNA and activity, the hallmark of AhR activation. This suggests that AhR activation may be one, but not the only mechanism for this effect of PCBs. HL-60 can differentiate which is accompanied by a reduction in telomerase activity. However, the continuous proliferation of the PCB-exposed cells makes this mechanism less likely. Telomeric repeat binding factors (TRF1, TRF2) are involved in the stabilization of telomeres. Up-regulation of TRF1/2 was seen in PCB126-exposed HaCaT, pointing to a possible mechanism. Experiments with both cell lines, representing different target tissues of PCB toxicity, are under way to elucidate the MOA of PCBs on telomeres and the possible significance of this effect on precursor cells of the hematopoietic pathway. Supported by NIEHS grant ES013661.
The eukaryotic translational initiation factor (eIF4E) is an essential component of the cellular translational machinery and is responsible for binding ribosomes to the cap structure of mRNAs. The phosphorylated form (serine-209) of eIF4E plays a critical role in cancer cell growth and transformation. Treatment of colon cancer cells with a synthetic cannabinoid WIN 55,212-2 (WIN) inhibited cancer cell growth, induced apoptosis and downregulated specificity protein (Sp) transcription factors and Sp-regulated gene products associated with cancer cell growth (EGFR and Cyclin D1), angiogenesis (VEGF and VEGFR) and survival (survivin and bcl-2). The anticancer activity of WIN is accompanied by induction of multiple phosphatases and some of the effects of WIN are blocked by the phosphatase inhibitor sodium orthovanadate (SOV). Treatment of SW480 cells with 7.5 μM WIN alone also decreased levels of eIF4E and co-treatment with 0.35 mM SOV blocked WIN-induced downregulation of eIF4E and knockdown of PP2A proteins confirmed that eIF4E was an Sp-regulated protein. Protein phosphatase 2A (PP2A) catalyzes dephosphorylation of both eIF4E and Mnk-1, an upstream kinase that phosphorylates eIF4E. Treatment of SW480 cells with 7.5 μM WIN and knockdown of PP2A by RNA interference blocked downregulation of eIF4E, Sp proteins and some Sp-dependent genes. Several anticancer agents inhibit Sp transcription factors by inducing zinc finger binding protein ZBTB10 and by suppressing microRNA-27a (miR27a). Treatment of SW480 cells with 7.5 μM WIN induced ZBTB10 protein and decreased miR27a expression and knockdown of PP2A reversed these responses demonstrating that WIN-induced downregulation of Sp and eIF4E was due to PP2A-mediated disruption of miR27a:ZBTB10 axis.

Recent studies have demonstrated that non-coding RNAs (ncRNAs) are differentially expressed and play an important role in gene regulation and influence normal and cancer cell phenotypes. About 3000 lncRNAs have been identified and some of these act as scaffolds regulating molecular (protein, RNA and DNA) interactions required for various signaling networks and this is accomplished, in part, by association with chromatin-modifying complexes. HOXA transcript at the distal tip (HOTTIP) is a 3.764-kb lncRNA transcribed from 5′ tip of HOXA gene cluster and is expressed in anatomically distal cells such as hand and foot fibroblasts. Previous studies in our laboratory showed that HOTAIR is a negative prognostic marker in pancreatic cancer and this is due, in part, to interaction of HOTAIR with Polycomb Repressive Complex 2. In contrast, HOTTIP was reported to interact with MLL complexes by specifically binding to WDR5 adapter protein leading to broad loss of H3K4me3 across HOXA locus. In this study, we investigated the functional role of HOTTIP in Panc1 and L3.6pL cancer cell lines. Knockdown of HOTTIP by RNA interference study (HOTTIP) resulted in ~50% reduction in cell survival within 72 hr after transfection and iHOTTIP also decreased pancreatic cancer cell migration which was determined in a Boyden chamber assay. iHOTTIP enhanced Annexin V staining and PARP cleavage associated with induction of apoptosis in both Panc1 and L3.6pL cells. Knockdown of HOTTIP also decreased expression of cyclin D1, VEGF and survivin which play an important role in cell proliferation, angiogenesis and survival. An in vivo study was performed using L3.6pL cells transplanted with iHOTTIP in a mouse xenograft model and after 15 days of knockdown there was a significant reduction in tumor volumes and weights (67%). RNAseq analysis of HOTTIP knockdown in Panc1 and L3.6pL cells confirmed the significant fold changes in expression of ~1467 genes and analysis of data suggest that HOTTIP mediated gene regulation has a critical role in pancreatic cancer progression.

Metformin is a first-line drug prescribed worldwide for treatment of Type II diabetes. In addition to its antidiabetic property it also exhibits antineoplastic effects which include inhibition of angiogenesis through decreased levels of vascular endothelial growth factor (VEGF) and blocks cell cycle progression through decreased expression of cyclin D1. Fatty Acid Synthase (FAS) a key enzyme in lipid metabolism is overexpressed in cancer cells, which is one of the phenotypic alterations in cancer progression. Here we show that expression of FAS was significantly decreased when pancreatic cancer cells were treated with metformin. FAS expression was decreased by growth arrest and by silencing of their genes, like EGFR and IGF1R. Effects of these receptors on FAS complex involve cross talk between various signal transduction pathways. One such signaling pathway include PI3K/AKT/mTOR pathway. Specificity protein (Sp) transcription factors - Sp1, Sp3 and Sp4 play a complex role in malignant transformation of pancreatic cancer cells. We report for the first time that metformin downregulates specificity protein (Sp) transcription factors (Sp1, Sp3, Sp4) in cancer cells. Furthermore, metformin downregulates the expression of growth factor receptors like EGFR, IGF1R and phosphorylation/expression of major PI3K effectors like AKT and mTOR. Knockdown of Sp1, Sp3, and Sp4 proteins by RNA interference decreased the expression of FAS, p-mTOR and p-AKT indicating that FAS and these signaling proteins are regulated by Sp proteins. However when cells were pretreated with SOV (Sodium Ortho Vanadate), a phosphatase inhibitor, there was a reversal of Sp downregulation and phosphorylation of mTOR by metformin. The effects of metformin on downstream targets of PI3 kinase pathway and the specific phosphatases which play a major role in the antineoplastic effects of metformin are currently being investigated.

Indole derivatives containing diindolylmethane (DIM), indole-3-carbinol, tryptophan photoproducts and metabolites have been identified as agonists of the aryl hydrocarbon receptor (AHR). Indole and tryptophan metabolites tryptamine (TA) and indole-3-actetate (IAA) are produced by gut flora and there is evidence that AHR ligands modulate gut inflammatory pathways. We therefore investigated the AHR agonist/agonist activities of indole, TA and IAA using Ah-receptor responsive breast and colon cancer cells as in vitro models. In MDA-MB-468 breast cancer cells (TA; 0-500 μM) induced CYP1A1 mRNA and protein with an EC50 < 500 μM. IAA and indole also induced CYP1A1 mRNA (only IAA induced CYP1A1 protein) which induced CYP1A1 mRNA and protein with an EC50 < 500 μM. CYP1A1 and IAA were observed at 1000 μM concentrations of IAA and indole respectively. The effects of these compounds as inhibitors of 2,3,7,8-tetrachlorodibenzo-p-dioxin

SOT 2013 ANNUAL MEETING 33
Tolfenamic Acid Inhibits Colon Cancer Cell and Tumor Growth and Downregulates Specificity Protein (Sp) Transcription Factors.

S. Pathi1 and S. H. Sali2,1. 1Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX; 2Institute of Bioscience and Technology, Houston, TX.

Introduction: Tolfenamic acid (TA) is a nonsteroidal anti-inflammatory drug (NSAID) and is a potential chemotherapeutic agent for treatment of colon cancer; however, the mechanism of action of TA is unknown and was investigated in this study.

Methods: Inhibition of colon cancer cell growth and induction of apoptosis by TA was investigated using cell counting and Annexin V staining, and modulation of specificity protein (Sp) transcription factors Sp1, Sp3, Sp4 and Sp-regulated gene products was determined by western blot analysis of whole cell lysates. Mechanisms of TA-induced Sp downregulation were investigated using specific pathway inhibitors and the in vivo anticancer activity of TA was determined in athymic nude xenograft studies using RKO cells as xenografts.

Results: TA induced apoptosis and decreased colon cancer cell growth and this was accompanied by caspase-dependent proteolysis of Sp1, Sp3 and Sp4 and decreased expression of Sp-regulated gene products including bcl-2, survivin, VEGF, VEGFR1, cyclin D1 and c-MET. TA also inhibited colon tumor growth and decreased Sp1, Sp3, Sp4 and Sp-dependent gene product expression in tumors.

Conclusion: TA-induced repression of Sp transcription factors and Sp-regulated genes play a role in the cancer chemotherapeutic effects of TA. Since TA acts as an anticancer agent in several tumor types, results of this study suggest for the first time that TA is a potential chemotherapeutic agent for treatment of colon cancer. Clinical application of TA alone or in combination treatment of colon cancer is enhanced since this agent is relatively non-toxic and has previously been used as a non-steroidal anti-inflammatory drug. The prior use of TA, as an NSAID will also facilitate approval of the drug for application as a cancer therapeutics agent.

166 Ni2+ -Induced Chromosome Aberrations/Gene Amplification/Gene Silencing Alter Cytoskeleton, Ca2+ Distribution, and Global Gene Expression, Causing Morphol/Neoplasm. Transformation of 10T1/2 Mouse Embryo Cells.

J. R. Landolphi1,2, 3, 4, A. DaSilva Peeh1,2, 3, P. Samala2, 3, S. Kelipiaisukan1, 2 and K. Akinwumi1, 2, 4, Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA; 2Department of Pathology, University of Southern California, Los Angeles, CA; 3USC Cancer Center, University of Southern California, Los Angeles, CA.

Ni refinery workers inhaling Ni sulfide ore dusts/smoking cigarettes contracted lung/nasal cancers. Inhaled Ni3S2/green NiO induced lung cancer in rats. Ni3S2/green-black NiO induced chromosome aberrations/morph-neoplas transformation (Tx) in 10T1/2 mouse cells. Ni/MCA-Tx cell lines showed a) ect-2 gene amplification/higher ect-2 mRNA/protein, b) no DRIP80 c) β-centaurin-2 mRNA. We hypothesized Ni2+ 2) amplified ect-2 gene, causing higher levels of microtubules (MTs); 2 silenced β-centaurin-2 gene, causing higher levels of microfilaments (MFs); and 3 silenced DRIP gene, altering Ca2+ distribution/Tx 10T1/2 cells. We tested these hypotheses by staining cells with fluor. phalloidin to decorate MFs; fluorescein Ab to α-tubulin to decorate MTs; Fluor 3AM to stain Ca2+; DAPI to decorate nuclei; then examining cells by confocal microscopy. In non-Tx 10T1/2 cells, MFs/MTs were arranged in long fibers. In Ni/Green NiO-Tx cell lines, MFs/MTs were over-expressed, aggregated in areas, absent/other areas, changing cell shape. Low density non-Tx cells had high nuclear/low cytoplasmic Ca2+ concentrations (State I); high density near-confluent cells had low nuclear/high cyto. Ca2+ (State II). Ni/MCA-Tx cell lines were largely in State II. We conclude Ni2+ ions 1 amplified ect-2 silenced β-centaurin-2 genes, causing over-expression of MTs/MFs, altering cell shapes, changing global gene expression; 2 silenced DRIP80 gene, altering Ca2+ distributions in Tx cells; and 3 induced mutations/methylations in 15 genes, causing differential expression of 130 genes, contributing to induced transformation of Tx phenotypes in Ni2+/MCA-Tx cell lines.

Support: R01 ES03341/NIHES (PI JRJ); Cancer Center Core Grant 5 P30 CA09320/NCI; MS Program/Discret. Funding (JRL).

Benoquinone-Induced Topoisomerase Modifications: Linking Benzene Myelotoxicity and Leukemia.

C. L. Kuhlman, G. Tsapralis, T. J. Monks and S. S. Lau. Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ.

Protein adduction by reactive electrophiles can induce structural and functional changes that contribute to toxicity and disease progression. Such electrophiles are often products of xenobiotic metabolism or generated endogenously via oxidative stress and lipid peroxidation. Relevant to this phenomenon are the redox-active and electrophilic metabolites of benzene, which are believed to contribute to its myelo-toxic effects. When the benzene metabolites hydroquinone (HQ) and phenol (P) are administered to rats, HQ oxidizes to 1,4-benzoquinone (BQ) and in the presence of GSH gives rise to multi-GSH conjugates detectable in bone marrow. These HQ-GSH conjugates retain the ability to adduct proteins and to redox cycle. Here we report that bone marrow malondialdehyde levels in P/BQ treated rats are significantly elevated, indicative of lipid peroxidation and the consequent generation of other reactive electrophilic aldehydes, such as 4-hydroxy-2-nonenal (4HNE). Indeed, proteomics profiling revealed bone marrow proteins targeted by benzene metabolites and 4HNE, including 14-3-3 protein zeta/delta, protein disul-fide isomerase A3, p300/310, calreticulin. Adduction of topoisomerase II α (topo IIα) has been implicated in benzene-induced leukemia, and cancer chemotherapeutic topo II inhibitors are a leading cause of therapy-induced leukemia. We next reacted purified topo IIα (6 units) with BQ (0.5 μM) or 4HNE (1.3 μM). A marked reduction in the ability of topo IIα to decatenate the kDNA substrate was observed. Proteomic analysis of 4HNE-reacted topo IIα revealed multiple amino acid sites of adduction, including K895 and K1480 adducts. Adduction of these lysine residues could impair topo IIα-DNA binding, or inhibit topo IIα’s ATP-dependent formation and annealing of DNA strand breaks. The consequences of BQ- and 4HNE-induced functional alterations in topo IIα are currently under investigation.

Overexpression of CRM1 in Normal Human Lung Epithelial Cells Changes Cellular Morphology and Cytotoxic Responses to Tobacco-Specific Carcinogen NNK.

C. Lu, W. Zhu and W. Gao. The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX.

Chromosome region maintenance 1 (CRM1), the major nuclear export receptor with a broad substrate range, is not only required for transport of many RNAs and proteins but also involved in various modulations within the cell such as mitosis, cell arrest, and apoptosis. Our recently published study showed that CRM1 played critical roles in response to tobacco-specific carcinogen, 4-(methylthioimidazole)-1-(3-pyridyl)-1-butane (NNK), in BEAS-2B cells (a normal human lung epithelial cell line). The objective of the present study was to further examine the significance of CRM1 in lung cancer development using BEAS-2B cells stably overexpressing CRM1 (BEAS-2BCRM1+ cells). The overexpression of CRM1 in BEAS-2BCRM1+ cells was confirmed by real-time PCR and western blot. As compared to BEAS-2B cells, BEAS-2BCRM1+ cells were prone to form colonies. Soft-agar assay further demonstrated increased colony formation and larger colony size in BEAS-2BCRM1+ cells in comparison with BEAS-2B cells. In addition, the cytotoxic effects in response to NNK was measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay in both cells. Cells were treated with 0-500 μM NNK for 24, 48, and 72 h. The inhibitory effects were dose and time dependent in both cells (p<0.05). However, BEAS-2BCRM1+ cells showed different sensitivity to NNK as compared to BEAS-2B cells. Taken together, our results indicate that CRM1 overexpression changes cellular morphology and cytotoxic response to tobacco carcinogen in human lung epithelial cells. The potential molecular mechanisms involving these changes are being evaluated to better understand the critical role of CRM1 in chemical carcinogenesis after NNK exposure.

ARN'T Isoforms Mediate Opposing Effects on NF-κB Signaling.

K. Gardella1, 2, I. Muro1, 3 and C. Wright1, 2. Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX; 2The Center for Molecular and Cellular Toxicology, The University of Texas at Austin, Austin, TX.

We have previously shown that the arylhydrocarbon receptor nuclear translocator (ARN'T) regulates the chromatin binding activity of the RelB NF-κB subunit. ARNT is a transcription factor that is integral in the regulation of xenobiotic and hypoxic responses but our studies suggest that ARNT also participates in NF-κB signaling.

SOT 2013 ANNUAL MEETING
Co-Exposure to Arsenic and Estrogen Leads to Enhanced Transformation of Normal Human Prostate Epithelial Cells.

J. Trea, T. Yeag and K. P. Singh. The Institute of Environmental and Human Health, Texas Tech, Lubbock, TX.

Exposure to both arsenic and estrogen are known risk factors for prostate cancer, however the carcinogenic effect of their co-exposure is not known. Therefore, the objective of this study was to evaluate the transformation potential and its mechanism in human prostate epithelial cells by exposure to these two chemicals. To achieve this objective, the human prostate epithelial cells, RWPE-1 were treated for 6 months with sodium-meta arsenite and 17β-estradiol, both alone and in combination, at concentrations of 100 pg/ml and 100 ng/ml. Cell counts and MTT assay was performed to determine the effects on growth, and soft agar assay was performed to evaluate the cell transformation by exposure to arsenic and estrogen. Potential role of estrogen receptors and aromatase in mediating the cellular response to these chemicals was evaluated by measuring their expression at transcript level. The result of this study revealed that the growth and transformation of RWPE-1 cells were significantly greater in arsenic and estrogen co-exposed cells as compared to their findings by exposure to these two chemicals. The data of quantitatve real time PCR revealed that expression of estrogen receptor beta was significantly increased whereas aromatase was significantly decreased in arsenic and estrogen co-exposed cells. These findings together with our previously published data on estrogen receptor beta 3 abrogates NF-kB activity, as a contributing factor to their growth and survival.

Effects of Polycyclic Aromatic Hydrocarbons with Estrogen Receptors \(\alpha\) and \(\beta\) in Breast Cancer Cells.

T. T. James, C. K. Sievers, E. Shankel, S. S. Hecht, C. A. Bradfield and W. Xu. 1, 2, 3. Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI; 4Oncology, University of Wisconsin-Madison, Madison, WI; 5Masonic Cancer Center, University of Minnesota, Minneapolis, MN.

Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants found in cigarette smoke, contaminated soil, vehicle exhaust, among others, known to cause adverse health effects including carcinogenesis and endocrine disruption. The metabolites of PAHs have been implicated in endocrine disruption. Some PAHs are known to have estrogenic effects by interacting with estrogen receptors (ERs). Estrogens have diverse roles including regulation of mammary gland development and morphogenesis, and maturation of uterus and ovaries. These functions are mediated by two subtypes of estrogen receptors, ER\(\alpha\) and ER\(\beta\), which function in different form (i.e. ER\(\alpha\) and ER\(\beta\) homodimers and ER\(\alpha\)ER\(\beta\) heterodimers) ER\(\alpha\) is known to be more proliferative while ER\(\beta\) is known to be antiproliferative in the mammary gland. The estrogenic effect of PAHs has been also found in their effects on ERs. Recently our lab reported that the monohyrdoxlated metabolites of naphthalene, phenanthrene and pyrene showed different effects with ER\(\alpha\) and ER\(\beta\). These PAHs were selected because they are found at high levels in contaminated environments. The ability of the PAH compounds to promote estrogenic effects were revealed by luciferase assays in isogenic reporter cell lines, competitive binding assays and bioluminescent resonance transfer (BRET) assays. The PAHs metabolites were more selective for ER\(\alpha\) and able to activate ER\(\beta\) target genes suggesting that these compounds can interfere with ER\(\beta\) signaling in human breast cancer cells. In this study we screened additional PAHs and their monohydorxlated metabolites to determine their estrogenic effects. These studies demonstrate the importance of these metabolites in breast cancer as well as the development of new targets for the treatment of breast cancer.

Alternative Splicing of ATG5 in DU145 Human Prostate Cancer Cells Inactivates Autophagy and Promotes Xenograft Tumor Growth.

D. J. Wibbie, M. Calhoun-Davis, D. G. Tang and S. B. Bratton. 1Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX; 2Molecular Carcinogenesis, Virginia Harris Cockrell Cancer Research Center at The University of Texas MD Anderson Cancer Center Science Park, Smithville, TX.

Autophagy is a highly conserved pathway that targets cytoplasmic cargo to the lysosome for degradation. Excess or aberrant organelles, large protein aggregates and non-selective portions of the cytosol can be targeted by the autophagosome and delivered to the lysosome in order to maintain cellular homeostasis or survival in response to stress. In this study, we show that DU145 human prostate cancer cells alternatively splice Autophagy-related protein 5 (ATG5), an essential protein for autophagosome formation. These novel ATG5 splice forms are unable to conjugate normally to ATG12 and instead are rapidly ubiquitinated and turned over by the proteasome. The absence of ATG5-ATG12 conjugate in DU145 cells prevents autophagosome formation and autophagic degradation. Stable expression of full-length ATG5 using lentiviral infection rescued both ATG5-ATG12 conjugation and autophagy. Autophagy is currently thought to be tumor suppressor by eliminating potentially genotoxic protein aggregates and damaged organelles. However, the role it plays in tumor progression and metastasis is unclear. To address this question, we performed subcutaneous injections of autophagy-deficient and autophagy-proficient DU145 cells into immunodeficient mice and monitored tumor formation and growth. In initial experiments, autophagy deficient tumors had a significantly longer latency period, yet grew at a faster rate than autophagy competent tumors. This suggests that autophagy can promote initial tumor establishment, while suppressing later tumor growth. Currently there are numerous clinical trials investigating the therapeutic potential of drugs that inhibit autophagy. Since it’s not yet clear how these opposing aspects affect cancer metastasis, further study is essential to ensure effective therapy.

The Aryl Hydrocarbon Receptor Regulation during Epithelial-to-Mesenchymal Transition.

S. S. Kishinji and S. E. Elsom. Biochemistry & Cancer Biology, Meharry Medical College, Nashville, TN.

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that plays a role as a mediator of the xenobiotic signaling pathways. Recently, the AhR emerged as a major player in breast carcinogenesis. We have shown previously that ectopic overexpression of AhR in immortalized normal human mammary epithelial cells (HMEC) resulted in the development of malignant phenotypes, most notably the epithelial-to-mesenchymal transition (EMT). However, is not a rigid process but in a dynamic state; with cells moving back and forth between epithelial and mesenchymal states, we asked the question whether this flux of phenotypes is due to changes in AhR levels or activity. A clone of HMEC overexpressing AhR, with either epithelial (E) or fibroblastic (F) phenotypes was compared to an empty vector (EV) control cells. We employed Western blotting, immunocytofluorescence (ICF) staining and RT-PCR techniques to assess the AhR expression as well as the epithelial and mesenchymal markers, E-Cadherin and vimentin, respectively. Our results showed that although at the mRNA levels AhR expression was similar, the AhR protein was higher in E- than in F-type cells. The AhR protein levels were always higher when cells were grown at higher density. Nuclear localization is also known to affect activity and may be due to a differential stability of the protein associated with the two morphological forms, which is under investigation.

Expression and Role of ALDH1B1 in Pancreatic Cancer.

S. Singh, K. Quackenbush, A. Purkey, J. Arcariol, Y. Chen, D. J. Oltlky, W. Messersmith and V. Vasilious. 1Department of Pharmaceutical Sciences, University of Colorado, Aurora, CO; 2Division of Medical Oncology, University of Colorado, Aurora, CO; 1Department of Pathobiology, University of Colorado, Aurora, CO.

Recent studies show that ALDH activity selectively defines an enhanced tumor-initiating cell population in human pancreatic adenocarcinoma. The specific ALDH isozyme(s) contributing to the high ALDH activity in these cells are unknown. We have recently shown that the mitochondrial aldehyde dehydrogenase 1B1
ALDH1B1 is a potential biomarker for colon cancer. The aim of the current study was to investigate the expression and the functional role of ALDH1B1 in pancreatic adenocarcinoma. In normal pancreas, ALDH1B1 is abundantly expressed in glandular cells, but sparsely in the ducts (ALDH1B1 immunopositivity = 16.7 ± 1.7). In pancreatic ductal carcinoma, we found a rather high ALDH1B1 expression in ductal cancerous tissues (ALDH1B1 immunopositivity = 197.2 ± 29.4). Our data were also confirmed by analyzing human pancreatic adenocarcinoma tissue microarrays. Furthermore, ALDH1B1 appears to be contributing to ALDH activity in some, but not all, human pancreatic cancer explants examined. The variation of ALDH1B1 expression was also observed in 16 human pancreatic cancer cell lines. Two high and two low ALDH1B1 expressing cell lines were subjected to siRNA ALDH1B1 knockdown and cell proliferation was evaluated. High ALDH1B1 cell lines showed a 35% reduction in cell growth whereas proliferation was not affected in low ALDH1B1 cell lines. Treatment of high ALDH1B1 cells with gemcitabine resulted in greater ALDH1B1 mRNA levels and enzyme activity. In contrast low ALDH1B1 cell lines showed no such effect. Collectively our data show for the first time that ALDH1B1 is expressed at very high levels in pancreatic cancer and contributes to proliferation of these tumor cells. These data suggest a potential role of ALDH1B1 in pancreatic cancer.

PS 173 Gene Expression Changes in Human Endometrial and Mammary Cells Exposed to Tamoxifen.

E. Hernandez Ramon1, E. Araki2, O. Olivero1 and M. C. Peifer1. 1LCBG, NCI, NIH, Bethesda, MD; 2Division of Computational Bioscience, CFP, NIH, Bethesda, MD.

Tamoxifen (TAM), a selective estrogen receptor modulator used for adjuvant therapy and chemoprevention of breast cancer, also increases the risk of endometrial and myometrial cancer. We hypothesized that comparison of gene expression patterns in cultured normal breast and endometrial cells may elucidate TAM-induced mechanisms. Gene expression studies in normal human mammary epithelial cells (NHMECs) exposed to 10 μM TAM for 48 hr, using NIH DNA-oligonucleotide microarrays (Schuld et al., 2003), demonstrated up-regulation of genes active in the interferon and immune-response pathways. Here we used the same NHMECs and TAM exposure conditions, and evaluated gene expression by Human Gene 1.0 ST Affymetrix expression array. Results using the Affymetrix array confirmed TAM-induced up-regulation of interferon signaling and complement pathways. Genes significantly upregulated included some reported before (IFI17, IFIT1, IFIT3, IFI44L, IFITM1 and OAS3), and new genes involved in the same pathway (IFI44, IFI35, and IFIH1), as well as genes in the complement system (CIS, C1R and SERPING1). To contrast breast with endometrium, we used human endometrial stromal cells (HESC cells), also exposed to 10 μM TAM for 48 hr. The primary genes up-regulated included some involved in biosynthesis of steroids (DHCR7, FDFS and MV), and SREBF2, a sterol transcription factor. In addition, there was up-regulation of PPARG, a gene involved in cell proliferation and cancer, and down-regulation of CC1, a gene with anti-tumor activity. Expression changes of the most highly altered genes have been confirmed by qRT-PCR, and the microarray data are being subjected to extensive pathway analysis. However, these preliminary data show induction of different gene expression patterns in normal human mammary and endometrial cells exposed to TAM, confirming that immune-response pathways are induced in the breast, and showing that steroidol and proliferative pathways are induced in the endometrium.

PS 174 Revealing the Role of Cancer Testes Antigens in Hif Signaling.

C. Okchechuku1, A. Whitehurst1, J. Wooten2 and K. Corcoran2. 1Chemistry and Pharmaceutical Sciences, North Carolina Central University, Durham, NC; 2Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, NC.

SOT 2013 ANNUAL MEETING

PS 175 Aryl Hydrocarbon Receptor (AhR)-Active Pharmaceuticals Are Selective AhR Modulators in Triple Negative Breast Cancer Cell Lines.

U. Jin1, S. Lee2 and S. H. Safi1, 2. 1CEGM, Institute of Bioscience & Technology, Houston, TX; 2VTPP, Texas A&M University, College Station, TX.

The aryl hydrocarbon receptor (AhR) plays an important role in multiple biological processes including regulation of drug-metabolizing enzymes, inflammatory pathways, immune responses and modulation of tumor cell formation and growth. Activation of the AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or the selective AhR modulator 6-methyl-1,3,8-trichlorodibenzo-furan (MCDF) inhibited metastasis/invasion of triple negative MDA-MB-231 breast cancer cells in vitro and in vivo and identification of other antimitastatic AhR ligands was further investigated among a group of previously identified AhR-active pharmaceuticals. Treatment of BT474, MDA-MB-468 and MDA-MB-231 breast cancer cells with 4-hydroxytamoxifen, flutamide, leflunomide, melexitine-HCl, nimodipine, omeprazole, sulfadim, or transtane gave highly variable results for their AhR agonist activity which was structure and cell context-dependent. The most striking data were observed in MDA-MB-468 cells where transient exhibited partial AhR agonist/antagonist activities and melexitine inhibited TCDD-induced CYP1A1 gene expression and was a full AhR antagonist in this cell line. We also investigated the potential AhR-mediated inhibition of MDA-MB-231 cancer cell migration and invasion by this panel of pharmaceuticals using scratch and Boyden Chamber invasion assays. Only omeprazole blocked cell migration and invasion in this cell line and these responses were inhibited by knockdown of the AhR by RNA interference or co-treatment with the AhR antagonists, 3'-methoxy-4'-nitroflavone or 3,4-methoxy-4'-naphthoflavone. These in vitro antimitastatic responses were accompanied down-regulation of the prometastatic gene CXC4, previously been reported as an AhR-inducible gene. Omeprazole and related benzimidazole analogs also exhibited anti-invasion activities in vitro suggesting that this AhR-pharmaceutical class may have clinical importance for treating advanced basal-type breast cancer that metastasizes to other tissues. (Supported by NIH-R01-CA-136571).

PS 176 A Retrospective Analysis of Vehicle-Related Effects on Body Weight Gain and Survival from Two-Year Sprague-Dawley Rat Carcinogenicity Studies.

Depending on the proposed clinical indication, two-year rat carcinogenicity (CA) studies are conducted in support of the marketing application for new chemical entities (NCEs). The vehicle(s) used to formulate NCEs for the preclinical GLP rat toxicology studies are often utilized in the CA studies. Therefore, the objective of this study was to conduct a retrospective analysis of vehicle-related effects on body weight gain and survival from rat CA studies. The data set consisted of 30 individual vehicle groups, which included the following vehicles: water, methylcellulose, ad libitum diet/feed, and a lipid mixture. Survival was analyzed by the proportional hazard model and body weight gain was analyzed by the Gompertz non-linear mixed model. For males and females, there was higher variability in survival with diet compared to other vehicles. In males, there was a marginally significant (p = 0.069) increase in survival with diet compared to water. In addition, there was a significant decrease in survival with the lipid mixture vehicle compared to all other vehicles. This significant decrease in survival with the lipid mixture vehicle corresponded with a decrease in body weight gain in this group compared to all other vehicles. In females, there was a significant increase in survival with methylcellulose compared to diet; however, there were no other significant differences in survival among other vehicle groups in females. Moreover, there was not as profound of an effect on body weight gain in females administered the lipid mixture vehicle, compared to other vehicles, as was observed in males. In conclusion, this analysis demonstrates that complex vehicle formulations, such as lipid mixtures, may affect body weight gain and survival on two-year rat carcinogenicity studies.
Glycidol fatty acid esters (GEs), trace contaminants in edible oils which are possibly formed during refining processes, have recently been detected in vegetable fat-containing products, including infant formulas. The level of GEs was ten times higher in enzymatically processed dacylgllycerol-rich oil than that in the regular cooking oil containing triacylglycerols as major components. Although there is no toxicological data available yet on the GEs, the primary toxicological concern is based on the potential release of genotoxic carcinogen, glycidol from the parent esters. In the present study, to detect the modifying effects of GEs on the mammary gland, one of the carcinogenic target organs of glycidol, we pretreated 7-week-old SD rats with N-methyl-N-nitrosourea (50 mg/kg i.p.) and then administered glycidol (800 ppm) or GEs (3600 ppm, glycidol oleate (GO) or glycidol linoleate (GL)) in the drinking water for 26 weeks. The dose levels being selected on the basis of carcinogenic dose levels in rat carcinogenicity study of glycidol (37.5 and 75 mg/kg/day) and on the equal moles of the esters. In body weights, significant decrease was noted in the glycidol group compared to control group from week 2 through experimental period due to obvious decrease of water consumption. The calculated glycidol intake was 43 mg/kg per day and on the assumption that all treated GEs would be completely metabolized to glycidol, intake of glycidol in GO and GL experimental period due to obvious decrease of water consumption. The calculated dose levels being selected on the basis of carcinogenicity study of glycidol (37.5 and 75 mg/kg/day) and on the equal moles of the esters. In body weights, significant decrease was noted in the glycidol group compared to control group from week 2 through experimental period due to obvious decrease of water consumption. The calculated glycidol intake was 43 mg/kg per day and on the assumption that all treated GEs would be completely metabolized to glycidol, intake of glycidol in GO and GL groups was 93 and 74 mg/kg per day, respectively. The multiplicity and volume of histopathologically diagnosed mammary tumors, in particular poorly differentiated growth, consisting of a mixture of thymic epithelial cells and lymphocytes with medullary differentiation. It was not always clear and requires careful consideration to distinguish between hyperplastic lesions and benign thymoma, and also between benign and malignant thymoma for many cases. In this report, we introduce typical hyperplastic lesions, thymoma and also the rarer epithelial cell type thymoma observed in Wistar Han rats.

178 Spontaneous Thymoma Observed in Carcinogenicity Study of Wistar Han Rats.

C. Maraschiello1, W. Henderson1, H. Iwata1,2, K. Weber1,2, S. Gaehle1 and T. Anzai3
1Harlan Laboratories, Inc., Indianapolis, IN; 2AnaPath GmbH, Oberbuchsiten, Switzerland.

Wistar Han rats are an appropriate model for toxicology and carcinogenicity studies in rodents and spontaneous thymoma is sometimes recorded in carcinogenicity studies of this strain of rats. The incidence of thymoma in historical control data of Harlan Laboratories is as follows: benign thymoma 0.64% for males, 2.39% for females; malignant thymoma 0.50% for males, 0.63% for females. The incidence of benign thymoma is higher in females with a range of 0% to 17.62% in these data. Histologically, these tumors commonly appear as solitary lesions with expansive growth, consisting of a mixture of thymic epithelial cells and lymphocytes with medullary differentiation. It was not always clear and requires careful consideration to distinguish between hyperplastic lesions and benign thymoma, and also between benign and malignant thymoma for many cases. In this report, we introduce typical hyperplastic lesions, thymoma and also the rarer epithelial cell type thymoma observed in Wistar Han rats.

179 Mechanisms of Acetylenegol Nanocapsules on Melanoma Development: In Vitro and In Vivo Assays.

C. C. Drewes1, C. G. Bexiga1, L. A. Fie1, V. F. de Paula1, A. R. Pohlmann2,3, S. S. Gutierrez1 and S. P. Farkas1
1Department of Clinical and Toxicological Analyses, Universidade de São Paulo, São Paulo, Brazil; 2Department of Pharmacy, UFRGS, Porto Alegre, Brazil; 3Department of Organic Chemistry, UFRGS, Porto Alegre, Brazil. Sponsors: S. Barros.

Eugenol displays antiproliferative and pro-apoptotic activities in different types of cancer cells, although effects of Acetylenegol (AC) and Acetylenegol Nanocapsules (NCAC) have not been elucidated. Here the role of NCAC on in vivo melanoma model and their actions on in vitro melanoma and endothelial cell cultures were investigated. Mutine melanoma cells (B16F10, 8X105/100μL) were s.c. injected in the dorsal region of C57BL6 mice. Animals were i.p. or p.o. treated with Saline, AC (50 mg/kg/day) or with their respective controls during 7 days. In vitro human endothelial cells (HUVEC) and melanoma cells (5K-Mel28) were incubated with RPMI, DMSO, NC, AC or NCAC. Cell viability, nitric oxide (NO), clonogenic survival and cell adhesion were monitored. Only NCAC (100μM and 300μM), treatment reduced the endothelial and melanoma cell viability, angiogenesis and NCAC (60μM) treatments reduced the clonogenic survival only in melanoma cells and AC (30 and 60μM) treatment reduced clonogenic survival in both endothelial and melanoma cells. AC and NCAC (60μM) treatments inhibited endothelial and melanoma cells adherence. Both NC and NCAC (10, 30 and 60μM), but not AC, treatments increases the NO production by endothelial and melanoma cells. p.i. injection of NC or NCAC reduced cell viability, nevertheless they caused loss of weight, due to lower food intake and reduced the number of platelets. These in vivo toxic effects may be caused by accumulation of NC or NCAC in the peritoneum. No administration of NC or NCAC reduced melanoma growth more than AC, and NC, AC or NCAC treatments decreased the number of circulating leukocytes. Together, data obtained show that i.p route is not feasible to NC treatments, and the efficiency of NCs on tumor cell growth detected by p.o. may be due to their higher activity on clonogenic survival and adhesion of melanoma cells.

180 Natural Compounds As Chemopreventive Agents for the Inhibition of Protein Targets Involved in Cancer Induced by UV Radiation.

W. Maldonado-Rojas, M. Ojeda-Cuello and J. Olivero-Verbel
Environmental and Computational Chemistry Group Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia.

Skin cancer is one of the most common worldwide, with an increasing incidence in recent years. This disease is mainly caused by excessive exposure to solar ultraviolet (UV) radiation. Currently, there is a high demand for natural chemopreventive compounds that may work on the biochemical mechanisms involved in the development of the disease. In this study, in silico molecular-ligand docking was performed with Autodock Vina to assess the interaction of 44 natural bioactive compounds with protein kinases (ERK1/ITVo, p38/2YIX, and JNK2/2ZDT) and cyclooxygenase-2 (3LN1), widely recognized protein targets in the signaling cascades of skin tumor formation induced by UV radiation. The results showed these compounds presented theoretical binding affinity scores of similar magnitude to those recorded for known inhibitors of these proteins. The best binding affinity values were found for cyaniding-3-rutinoside docked to ERK (9.2±0.0 kcal/mol). The affinities obtained for the inhibitors of 1TVO, 2YIX, 2ZDT and 3LN1 were from 9.4±0.0 (FR-180204), -7.0±0.0 (CE-159167), -7.3±0.0 (C46), and -10.3±0.0 kcal/mol (celecoxib), respectively. These theoretical results are good indicators that natural bioactive compounds may work as potential chemopreventive agents against skin cancer induced by UV exposure, probably by a mechanism involving their direct binding on key protein targets associated with the disease. Vice-Rectorcy for Research. UnivCartagena. 2011-2012. Colciencias-UniCartagena, Colombia: Grants 110745921616 (2009) and 110751929058 (2010).

181 Genetic Polymorphism of Human Microsomal Epoxide Hydrolase As a Determinant of Polyaromatic Hydrocarbon Metabolism and Toxicity.

X. Cai1, W. D. Hedrich1, E. M. Launzen1, B. E. Sell1, K. Iohn1, A. K. Sharma2, S. G. Amin2 and C. I. Omiecinski1
1Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA; 2Department of Pharmacology, Hershey College of Medicine, Hershey, PA.

Microsomal epoxide hydrolase (mEH, EPHX1) is a key catalytic determinant in the formation of diol-epoxide metabolites of certain polyaromatic hydrocarbons (PAHs), noted as potent and ultimate mutagenic moieties. Epidemiological associations between EPHX1 genetic status and the incidence of certain diseases, including lung cancer, have been reported, yet the mechanistic bases for these associations remain unclear. Further, PAH diol-epoxides have never been evaluated as substrates for human mEH variants. Among the mEH variants, Y113/H139 wild type allele displayed highest capacity for hydrolysis of the bay region benzo[a]pyrene (BaP)-4,5-epoxide. The H113/H139 variant exhibited lowest affinity for the bioactivation of the fjord region benzo[a]pyrene (BaP)-4,5-epoxide. The affinities obtained for the inhibitors of 1TVO, 2YIX, 2ZDT and 3LN1 were from 9.4±0.0 (FR-180204), -7.0±0.0 (CE-159167), -7.3±0.0 (C46), and -10.3±0.0 kcal/mol (celecoxib), respectively. These theoretical results are good indicators that natural bioactive compounds may work as potential chemopreventive agents against skin cancer induced by UV exposure, probably by a mechanism involving their direct binding on key protein targets associated with the disease. Vice-Rectorcy for Research. UnivCartagena. 2011-2012. Colciencias-UniCartagena, Colombia: Grants 110745921616 (2009) and 110751929058 (2010).
from Comet assays and in situ DNA damage assays conducted in COS1 cells trans- fected with the mEH variants and treated with the corresponding epoxides generally corroborated the enzymatic activity data. Overall, these findings demonstrate marked substrate selectivity among the mEH variants with respect to PAH epoxide metabolism and provide mechanistic support for published epidemiology data suggest- ing that the H113 mEH allele is associated with a reduced risk of lung cancer.

182 Cotinine Levels and Gene Polymorphisms in Asthmatic Children Exposed to Tobacco Smoke in Northern Mexico.

1Toxicocentro, Ciemacan, Mexico City, Mexico; 2Laboratorio de Contaminación y Toxiciología Ambiental, UAN, Tepic, Mexico; 3Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Mexico City, Mexico; 4Departamento de Pediatría, UMAE 71, IMSS, Torreón, Mexico; 5Escuela de Ciencias de la Vida, ITESM-Ciudad de Mexico, Mexico City, Mexico.

Tobacco smoke (TS) represents a serious health threat to consumers and passively exposed individuals. However, passive exposure receives much less attention than smokers. In addition, more than 700 million children worldwide are passively ex- posed to TS, meaning an increased risk to develop tobacco related diseases later in life; among them children with respiratory impairments, like asthmatics, are a par- ticularly vulnerable group since the lung is the main route of TS entrance. Asthma is a multifactorial disease and the environment quality is a relevant etiology factor. We investigated children exposed to tobacco smoke in an asthmatic population (n=100 individuals; 6.98 ± 0.85 years), and non-asthmatic children (n=100, 7.1 ± 0.82 years) living in Región Lagunera, Northern Mexico. There was a statistically significant difference in urinary cotinine between the exposed and non-exposed groups. Urinary cotinine levels showed a small positive correlation between chil- dren and smoking adults (r=0.1205 and p= 0.244). Although, cotinine levels were higher in asthmatic children compared to non-asthmatic, such difference was not statistically significant. In addition, no association between cotinine levels and asthma severity was observed in this study. As for the allelic frequencies of GSTT1 null and CYP2A6*2 (1799 T-A) polymorphisms, were significantly different com- paring TS exposed asthmatic and non-asthmatic groups. CYP2A6 null genotype in asthmatic children suggests chil- dren response to passive TS exposure may be affected by asthma and GSTT1 or CYP2A6 polymorphisms (Supported by the grant SEP-Conacyt (60463) and a BBV scholarship (Conacyt-6544)).

183 Identification of Genomic Regions Linked to Epigallocatechin Gallate Induced Liver Toxicity Using the Diversity Outbred Stock.

R. J. Church1, D. M. Gatt1, J. Eaddy1, P. B. Watkins1, D. Threadgill1 and A. H. Harrill1
1The Hamner-UNC Institute for Drug Safety Sciences, The Hamner Institutes, Research Triangle Park, NC; 2The Jackson Laboratories, Bar Harbor, ME; 3North Carolina State University, Raleigh, NC.

Epigallocatechin gallate (EGCG), an abundant polyphenol in green tea, has caused idiosyncratic liver toxicity when taken as an herbal supplement. The identi- fication of genetic risk factors utilizing mouse population-based approaches, and validated in patient cohorts, could improve clinical management of EGCG-in- duced liver injury. In order to map genomic loci related to EGCG-induced hepato- toxicity, we utilized the Diversity Outbred (DO) stock. DO mice are derived from eight inbred founder strains and have high genetic diversity, enabling high resolu- tion mapping in this population. We hypothesized that Quantitative Trait Locus (QTL) mapping in DO mice exposed to EGCG would allow us to identify candi- date genomic regions influencing the hepatotoxicity of EGCG. Male DO mice were treated once daily for 3 days, with EGCG (50 mg/kg i.p.) or vehicle. Twenty four hours after the final dose, animals were sacrificed and serum and liver tissue were collected. Similar to humans, EGCG treatment in DO mice precipitates wide variation in hepatotoxic response. In treated animals, serum alanine aminotrans- ferase (ALT) fold changes (terminal compared to pre-dose) ranged from 0.46-495.5 (mean: 24.8 ± 65.4) and percent liver necrosis ranged from 0-86.8% (mean: 6.3 ± 14.1). QTL mapping in treated animals identified two suggestive loci— one on chromosome 12 and one on chromosome X. In a follow-up study, we will genotype suspected risk alleles in DNA collected by the Drug Induced Livery Injury Network (DILIN) from patients with suspected EGCG-induced liver toxicity. We have demonstrated the first application of the DO mice to the detection of xenobiotic risk alleles for toxicity responses. While further validation is needed, our data suggest that QTL mapping in DO mice may aid in identification of pharmacogenetic risk alleles for compounds causing liver injury.

184 Pharmaco-Genomics and -Genetics of 5-Fluourouracil in Koreans.

M. Yang and M. Bae, Sookmyung Women’s University, Seoul, Republic of Korea.

Gene polymorphisms of several enzymes such as dehydroxypirimidine dehydroge- nase (DHPGR), thymine thymidylate synthase (TS) and 5-methyltetrahydrofolate reductase (MTHFR) have been emphasized for pharmaco-genomics and -genetics of 5-FU, which has been used for half century as a representation therapy for various cancers, however, shown individual variations in its various toxicities including life-threat- ening toxicity. Focusing on the three genes, we performed a pharaco-genomic and -genetic study of 5-FU in a Korean population. Most of genotypes and gene ex- pression were analyzed with 7500 Realtime PCR System (ABI). As results, we found genetic polymorphisms in DPDY-85, -1627, and -1896 sites, 5’-ER, and 3’- UTR at TS, and MTHFR-222 and -429 sites among the Korean subjects (N=133; normal, N=109; head and neck patients, N=28). There was a significant association between 3’-UTR genetic polymorphism at TS and its typtic expression (p<0.05). From 5-FU pharmacokinetic (PK) analyses, each genotype did not show any effect on PK parameters. However, the combination of genetic polymorphisms in MTHFR-2227C, DPDY-1896T/C and 3’-UTR at TS showed significant differ- ences in AUC of 5-FU and 5-FU/5-FUH2 ratios (p<0.01). Therefore, this study provides association between TS expression and its 3’-UTR polymorphism. Moreover, combination of the three genetic polymorphisms of the three genes can affect PK of 5-FU in Koreans.

185 PON1 Genotypes of Black Females from the Mississippi Delta Are Different from Those in the Rest of the State and Country.

M. Dalil, P. Eden, C. McDaniel, E. C. Meek and J. E. Chambers, Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS.

Paraoxonase (PON1) is named for its ability to hydrolyze paraoxon, the active metabolite of the insecticide parathion. It is implicated in cardiovascular and meta- bolic diseases, such as Type 2 diabetes as well as tolerance of organophosphate in- secticides. The human PON1 gene has several single nucleotide polymorphisms (SNPs). The SNP of an arginine (R) to glutamine (Q) substitution at codon 192 is associated with catalytic efficiency while the SNP of a methionine (M) to leucine (L) substitution at codon 55 is linked with serum levels. Since the Mississippi Delta has the highest rate of metabolic disease in the country, and a historically high use of pesticides, we compared the PON1 genotypes of black female Mississippi Delta clinic patients to those of black females from northeast Mississipi and military populations. Genomic DNA was isolated from whole blood and the SNP codon areas were amplified by PCR. Since there is a native AwI restriction site at codon 192, the QQ, RR, and QR SNPs yield different digest patterns. A native NlaIII re- striction site at codon 55 generates different digest patterns for the LL, MM, and LM alleles. Genotypic frequencies were different for the Q192R SNP. QR was most frequent in the military (45%) and northeastern Mississippians (50%), but RR was most frequent in the Delta group (54%). Similarly, the most common combination of polymorphisms was QRLL in the military (24%) and northeastern Mississippi groups (36%), but in the Delta group it was RRLL (48%). Using Fisher’s exact test to analyze genotypic frequencies, the largest differences were be- tween the Delta and military compared to Q192R P=0.0024 and L55M P=0.000176. When all three groups were compared, Q192R ratios were signifi- cantly different at P=0.00007 and L55M ratios at P= 0.00001. The significant differ- ences seen in the Delta population may be associated with the region’s health dis- parities.

186 In Vitro Toxicogenomic Screen Developed Using Genetically-Diverse Mouse Inbred Cell Lines: Developing In Vitro Validations.

T. Wilshire1, O. Suzuki2, B. B. Park2, Q. Trask3, C. Benton3, A. Frick3, N. Butz1, E. Chan1, E. Healy2 and R. S. Thomas1
1Eibelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC; 2The Hamner Institute for Health Sciences, Durham, NC.

Cell-based assays provide unprecedented means to globally and systematically screen for drugs and chemicals likely to display high inter subject toxicity variability. Genetic determinants of toxicity identifed in these screens can guide clinical trial design or identify susceptible subpopulations. Here, we developed an innova- tive in vitro genetic screen using mouse embryonic fibroblast (MEFs) cells isolated from 32 inbred strains and screened them against 69 different drugs and chemicals. Using high-content imaging, we measured multiplexed cell health parameters, in-

SOT 2013 ANNUAL MEETING
24 and 72 hours post treatment. We looked for genetic loci significantly linked to inter-strain cellular responses to treatment and found a 1.2 Mb locus on Chr X that was significantly linked to variable cytotoxic responses to a known mitochondrial toxicant, rotenone (logP ≥ 4.0). Within this putative locus is cytochrome b-245, beta polypeptide (Cytb) gene, which encodes for a voltage-gated H+(+) channel that mediates pH in the mitochondria. We conducted a series of experiments to examine the role of Cytb in mediating toxic responses to rotenone in vivo, given that mitochondrial dysfunction has been shown to underlie idiosyncratic adverse drug reactions. We found that strains belonging to different Cytb haplotypes scored differently in the treadmill exercise stress test for aerobic endurance after chronic treatment with rotenone. Our study demonstrates that cell-based genetic assays using MEFS are an effective tool for identifying genes underlying drug and chemical toxicity. Importantly, mouse strains that exhibit differential in vitro sensitivity, from a cell-based screen, also display a differential in vivo phenotype. This in vitro-to-in vivo validation is difficult, but a fundamental step toward recognition of cell-based toxicity screens.

188 P-Glycoprotein Transport in the Disposition of Neurotoxicants.

S. Lacher, K. Skagen, R. Dalton, F. Cardozo-Pelaez and E. Woodahl. CEHS/RMED, The University of Montana, Missoula, MT.

Background: P-glycoprotein (P-gp), encoded by the ABCB1 (or MDR1) gene, is an efflux xenobiotic transporter expressed in many tissues important in xenobiotic disposition. P-gp is highly expressed at the blood-brain-barrier and protects the brain from substances circulating in the blood. Although the importance of P-gp in drug disposition is clear, its role in disposition of environmental neurotoxicants is not well understood. Our goal is to investigate the role of P-gp in neurotoxicant accumulation in the brain, particularly pesticides that have been associated with Parkinson’s disease such as rotenone, maneb, paraquat, and MPP+. Methods: We used polarized kidney epithelial control cells, LLC-PK1, and ABCG2-transfected cells, LLC-MDR1, to characterize pesticides as substrates or inhibitors of P-gp using flow cytometry, cytotoxicity, and transepithelial permeability assays. P-gp-stimulated ATPase activity was also measured to evaluate compounds as P-gp substrates to determine the active transport process. Results: We observed weak inhibition of rhodamine-123 (R123) efflux in ABCR1-expressing cells by flow cytometry in the presence of 100 μM rotenone or maneb, 16.2 ± 1.53 and 11.6 ± 4.53%, respectively. Paraquat and MPP+ showed no R123 inhibition. ATPase assays showed that rotenone is a P-gp substrate with a Km = 26.7 ± 12.9 μM and Vmax = 35.8 ± 6.5 nmol Pi/mg protein/min. This compares to the known P-gp substrate verapamil with kinetic constants of Km = 8.22 ± 3.79 μM and Vmax = 42.9 ± 5.5 nmol Pi/mg protein/min. Paraquat, maneb, and MPP+ showed no ATPase stimulation. Conclusions: In combination these data suggest that rotenone acts both as a substrate and a weak inhibitor of P-gp, whereas maneb acts only as a weak inhibitor. MPP+ acts as a substrate and a weak inhibitor of P-gp. We will further confirm these results using cytotoxicity and transepithelial permeability studies. Our studies will provide data to show the role of P-gp in the disposition of pesticides associated with Parkinson’s disease.

189 CTNNA3 (α-Catenin) Gene Variants Are Associated with Diisocyanate Asthma in Occupationally-Exposed Workers.

B. Vencey1, M. L. Kashon2, Z. L. Lammus3, Y. L. Johnson4, K. L. Fluharty4, D. Gareau5, J. Malo6, A. D. Groome6, M. L. Luster2, D. I. Bernstein1. 1Health Effects Laboratory Division, CDC/NIOSH, Morgantown, WV; 2Division of Immunology, Allergy and Rheumatology, University of Cincinnati, Cincinnati, OH; 3BRT-Barleun Research Technologies, Morrisville, NC; 4Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, QC, Canada; 5Toxicology Branch, DNTP/NIEHS, Research Triangle Park, NC.

A genome-wide association study conducted recently in Korean subjects identified three CTNNA3 (alpha-T catenin) single nucleotide polymorphisms (SNPs) (rs10762058, rs7088181, and rs4378283) associated with diisocyanate induced occupational asthma (DA). We conducted a candidate gene association study to replicate these findings in Caucasian workers. Genotyping was performed on genomic DNA, using a 5′ nuclease PCR assay. Genotyping of these SNPs was performed in 410 diisocyanate-exposed and predominantly Canadian workers including: 132 workers with DA confirmed by a specific inhalation challenge (DA+); 131 symptomatic workers in whom DA was excluded by a negative challenge (DA−); and 147 HDI-exposed asymptomatic workers (Aw). CTNNA3 rs7088181 and rs10762058 SNPs were significantly associated with DA+ when compared to Aw with (p<0.05) but not in comparison to DA− workers. After adjusting for potentially confounding variables of age, smoking status and duration of exposure, minor allele homozygotes of rs7088181 and rs10762058 SNPs were at increased risk for DA compared with Aw. [OR = 9.5 (95% CI: 1.69, 48.54) and OR = 6.82 (95% CI: 1.65, 28.24), respectively]. In conclusion, we replicated association between two closely linked CTNNA3 gene SNPs and DA in Caucasian workers. These findings suggest that genetically altered expression of CTNNA3 might influence cellular adhesion, a role that is suggested by the epithelial barrier function in the Airways and play a role in the pathogenesis of DA.

This work was supported in part by an NIEHS IAG (Y1-ES-0001) and NIOSH/CDC R01 OH 008795.

190 Prevalence and Functional Characterization of the NADH Cytochrome b5 Reductase 1M6G-T Intrinsic Variant.

K. L. Blanke1, 2, J. Sacco2 and L. Trepanier1, 2, 3. 1Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI; 2Molecular & Environmental Toxicology Center, University of Wisconsin - Madison, Madison, WI.

Women exposed to cigarette smoke may have an increased risk of breast cancer, although this is controversial. In addition, African American, but not Caucasian, women showed an association with smoking and breast cancer risk in the Carolina Breast Cancer Study (CBCS) population. We hypothesized that this could be due to race-associated genetic variability in the pathways that detoxify tobacco carcinogens such as 4-aminobiphenyl (4-ABP) and 2-amino-1-methyl-6-phenylimidazo (4,5-b) pyridine (PhIP). Both are mammalian procarcinogens that are bioactivated to hydroxylamine metabolites, which form DNA adducts and are thought to initiate cancer. Cytochrome b5 (CYB5A) and NADH cytochrome b5 reductase (CYB5R3) comprise a detoxification pathway that reduces 4-ABP and PhIP hydroxylamine metabolites back to their parent compounds. The purpose of this study was to determine whether CYB5A and CYB5R3 polymorphisms were over-represented in African American women in the CBCS, and to evaluate their role in the association with smoking and breast cancer risk. Several CYB5A and CYB5R3 single nucleotide polymorphisms (SNPs) were more prevalent in African Americans than in non-African Americans in the CBCS population. One intronic SNP in CYB5R3, 1M6G-T, previously found in tissue samples with low b5 reductase protein expression, was found with a minor allele frequency that was 100-fold higher in African Americans in the CBCS population compared to same-race controls (OR = 2.10, 95% CI, 1.08-4.06). The I1M+6C>T ant was significantly over-represented in African American women with breast cancer compared to same-race controls (OR = 2.10, 95% CI, 1.08-4.06). The I1M+6C>T variant is being functionally characterized for promoter and repressor function using a dual-luciferase reporter assay. These studies suggest that the 1M6G-T intronic variant in CYB5R3 may increase the risk of breast cancer among African American women that smoke.

SOT 2013 ANNUAL MEETING 39
191 Influence of Genetics on Paraoxonase 1 Activity in Monoglycemic and Dizygotic Twins.

L. Podolský1, K. M. Kelly1, J. C. Murray1, T. J. Raife2 and G. Ludwigs1.
1Grad Program in Human Toxicology, University of Iowa, Iowa City, IA;
2Occupational and Environmental Health, University of Iowa, Iowa City, IA;
3Pediatrics, University of Iowa, Iowa City, IA;
4Pathology, University of Iowa, Iowa City, IA.

Paraoxonase 1 (PON1) is an important HDL-associated endogenous antioxidant found to play a major role in susceptibility to health effects from pesticides and oxid-

ative stress. A number of gene polymorphisms influence both protein concentra-

tion and substrate specificity, as do certain lifestyle factors. However, reports about the influence of PON1 genetics have varied widely in the literature. The goal of this study was to examine the influence of genes and health data in a group of monoglycemic and dizygotic twins to better understand the effect of genetics on PON1 ac-
tivity levels. DNA, serum, and standard blood donation information was obtained from 6 sets of dizygotic twins and 13 sets of monoglycemic twins. DNA was geno-
typed for polymorphisms within PON1, PON2, C-reactive protein (CRP), and tumor necrosis factor (TNF). PON1 activity was determined using phenyl acetate (PA) and CMPA (4-Chloromethyl)phenyl acetate) as substrates, and genotyping was performed using the TaqMan-Applied Biosystems 7900 HT System. Using a general linear model, PON1 Q192R, L55M and C-108T were significantly associ-
ated with both PA and CMPA activity, with CMPA activity showing a stronger as-
sociation with genetic variants. PON2 S311C was significantly associated with PA activity, but not CMPA activity. For either substrate was not found to be associated with CRP or TNF polymorphisms. BMI was found to significantly correlate with CMPA activity, but not PA activity (correlation r -34), while gender did not corre-
late with either substrate. Pair-wise analysis of all twins with identical PON geno-
types showed no difference in PON activity variance between siblings, regardless of zygosity. Though other shared or variant genetic and lifestyle factors may influence PON1 activity, the findings in this twin population suggest a strong link between PON activity and specific PON polymorphisms.

192 Contribution of Environmental and Genetic Factors to Pancreatic Cancer.

S. Chittiboina, A. A. Bond, L. M. Kamendulis and B. A. Hovecar. Environmental Health, Indiana University School of Public Health, Bloomington, IN.

Pancreatic cancer is the fourth leading cause of cancer deaths in the United States with a five year survival rate of less than 6%. Several environmental risk factors have been identified for pancreatic cancer, including dietary factors. In particular, high dietary intake of folate has been associated with a decreased incidence of pancreatic cancer, while low plasma folate levels are associated with an increased cancer risk. In conjunction with diet and lifestyle determinants, an individual’s folate pathway sta-
tus is determined by their genetic makeup. In the present study, we determined the expression of selected SNPs in the folate metabolic pathway in a cohort of pancre-
atic cancer patients and healthy related and unrelated control groups. In agreement with other studies, we show that cancer cases were more likely to express the
TT allele of the methylene tetrahydrofolate reductase (MTHFR) C677T polymor-
phism compared to controls. Expression of this allele has been associated with low
folate levels and elevated homocysteine (Hcy) levels. In support of this, we found
that pancreatic cancer patients display elevated serum Hcy levels in comparison to
both control groups. In addition, 48% of the pancreatic cancer patients exhibited
hyperhomocysteinemia, as defined by a value >15 μM. According to the NCBI database, two additional non-synonymous variants have been identified in cancer (A205T and L189F) and L189F is restricted to African American populations. We generate each of the polymorphisms in a CYP2S1-Flag mammary expression vector, using site directed mutagenesis. Thus far, two stable lines (S61N and L189F) in bronchial epithelial cells (BEAS-2B) and four stable (S61N, R166H, A205T, and P466L) alveolar carcinoma cell lines (A549) have been made. Examination of AQ4N and AQ4 cytotoxicity in BEAS-2B cell lines re-
vealed that both mutants (S61N and L189F) exhibit significantly increased cyto-
toxicity in response to AQ4N compared with wild type CYP2S1-Flag and pDNA3.1 controls. Interestingly, the S61N polymorphism was significantly more sensitive to AQ4 than any of the other cell lines. This effect appears to be selective because cytotoxicity is not altered in response to a similar topoisomerase II in-
hibiting microtubule. We are currently testing the effects of those polymorphisms on AQ4N and AQ4 levels, using HPLC. Research funded by NIH NIGMS Grant # R25GM061222.

193 The Impact of CYP2S1 Single Nucleotide Polymorphisms on the Metabolic Activation of the Anticancer Prodrug, AQ4N.

N. Bajaj, N. M. Singh and A. M. Rowland. Chemistry and Biochemistry, NMSU, Las Cruces, NM.

Cytchrome P450 2S1 (CYP2S1) is one of the most recent additions to the P450 superfamily of enzymes. Although its physiological role has not yet been defined, it has been shown to influence metabolism of bioactive lipids, including prostaglandins and retinoids. CYP2S1 is predominantly expressed in extra-hepatic epithelial cells. Its expression is elevated in cancer and catalyzes the metabolic acti-

vation of the anticancer prodrug, AQ4N, under hypoxic conditions. Interestingly our lab has also demonstrated that increased CYP2S1 expression may protect against AQ4 cytotoxicity under normoxic (21% O2) conditions. The main objec-
tive of this study is to determine whether individual variability in the CYP2S1 en-
zyme activity of human lung cells to AQ4N and AQ4-mediated cytotoxic-
ity. Five published CYP2S1 allelic variants have been published: CYP2S1*2 (R380C), CYP2S1*3 (P466L), CYP2S1*4 (S61N), CYP2S1*5 (L230R). According to the NCBI database, two additional non-synonymous variants have been identified in cancer (A205T and L189F) and L189F is restricted to African American populations. We generate each of the polymorphisms in a CYP2S1-Flag mammary expression vector, using site directed mutagenesis. Thus far, two stable lines (S61N and L189F) in bronchial epithelial cells (BEAS-2B) and four stable (S61N, R166H, A205T, and P466L) alveolar carcinoma cell lines (A549) have been made. Examination of AQ4N and AQ4 cytotoxicity in BEAS-2B cell lines re-
vealed that both mutants (S61N and L189F) exhibit significantly increased cyto-
toxicity in response to AQ4N compared with wild type CYP2S1-Flag and pDNA3.1 controls. Interestingly, the S61N polymorphism was significantly more sensitive to AQ4 than any of the other cell lines. This effect appears to be selective because cytotoxicity is not altered in response to a similar topoisomerase II in-
hibiting microtubule. We are currently testing the effects of those polymorphisms on AQ4N and AQ4 levels, using HPLC. Research funded by NIH NIGMS Grant # R25GM061222.

194 The Remarkable Genotoxic Effect of Exposure to Ethyl Tertiary Butyl Ether in ALDH2 Knockout Mice.

Ethyl Tertiary Butyl Ether (ETBE) is used in gasoline for vehicles as a biofuel. ETBE exposure induced liver damage and other health effects only at high concen-
trations in our previous studies, and its No Observed Adverse Effect Level (NOAEL) was calculated to be 500 ppm. However, in mice without ALDH2 en-
zyme activity, ETBE could induce DNA damage even at the NOAEL. To find out how low concentration at which ETBE shows its genotoxic effect, we did the exposure experiment with mice at low range of ETBE concentrations. METHODS: Male Aldh2-/- (KO), Aldh2+/- (HT) as well as C57BL/6 strain (WT), at 8 weeks old were exposed to ETBE at 0, 50, 200 and 500 ppm, 6 hr/day and 5 days/week, for 9 weeks. Blood, liver, epididymides were sampled 20 hr after the last exposure, and DNA damages were analyzed with comet assay in these tissues. RESULTS: The tail intensity (TI) was used to evaluate the degree of DNA damage. In the leuko-
cyes of WT mice, the TI value was not affected in any exposure group as compared to the control. However, the TI was significantly increased in 200 and 500 ppm groups of KO mice. Similar results were also obtained in HT mice, but there was no difference between the two types of mice. In liver cells and sperm, ETBE also in-
duced DNA damage, but this effect was only observed in KO and HT mice as in the leukocytes. The NOAEL was 50 ppm in these types of mice. These results sug-
ggest that ALDH2 deficiency may increase the susceptibility to the health effect of ETBE exposure. We thank Ms. S. Watanabe for her assistance in the manipulation of the animals.

195 MGMT Haplotypes Alter MGMT Expression and Can Thus Affect Response to Alkylating Agents.

M. Xu, I. Nekhayeva, C. E. Cross, C. M. Rondelli and S. Z. Abdel-Rahman. OB/Gyn, UTMB, Galveston, TX.

Glioblastoma (GBM) is rapidly fatal. However, treatment with temozolomide (TMZ) and radiation is beneficial, but only for some patients. TMZ alkylates tumor DNA to form O6-alkylguanine (O6-AG) DNA adducts, inducing apoptosis. Because O6-AG is repaired by O6-methylguanine DNA methyltransferase (MGMT), levels of MGMT are critical in determining tumor response to TMZ. Single nucleotide polymorphisms (SNPs) in the promoter/enhancer (5’E) region of the MGMT gene can alter its transcription and thus alter MGMT protein levels. Genetic variants are not arrayed as individual SNPs but as combinations forming specific ‘haplotypes’. To date, no studies have determined the impact of the 5’E region of MGMT or their effect on its transcription. We sequenced 104 DNA samples from healthy individuals and identified 8 SNPs in this region (7/T, 135/K, 290/R, 485/M, 575/M, 666/R, 777/M and 1099/Y). Using bioinformatics, we inferred the haplotypes encompassing these SNPs. We identified 21 potential haplotypes ranging in frequency from 0.39 to 0.00095, of which 10 were identified in our sample population as 20 paired haplotype combinations. We hypothesized that these haplotypes alter the regulation of MGMT transcription. Luciferase-reporter constructs containing different MGMT haplotypes were transfected into a GB cell
line and the effects of the haplotypes on MGMT transcription were determined using a real-time quantitative (or q)PCR assay. Compared with the most common (reference) haplotype, haplotypes 7 and 18 induced a significant 60% and 65% reduction in expression, respectively (P<0.001). However, haplotype 11 significantly increased expression by 70% (P<0.001). These data indicate that MGMT haplotypes regulate MGMT transcription and thus could play a major role in tumor response to TMZ treatment. Work is in progress to define the underlying mechanisms and to develop sensitive and specific markers that can distinguish those patients who would most likely be responsive to chemotherapy from those who would not (supported by P30 ES006676; T32-07454; 1 R03 NS056392-01 grants).

196 Associations between Genetic Polymorphisms of the Genes Mediating Inflammatory Response and Acute Pancreatitis Risk.

B. Alpertunga and G. Ozhan. Pharmaceutical Toxicology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey.

Acute pancreatitis is a common inflammatory disease. The reported incidence is approximately 30 to 40 per 100,000 population per year and 25% will develop severe or life-threatening complications. Inflammation is typified by the activation of immunocytes such as monocytes and macrophages, and the secretion of inflammatory mediators such as nitric oxide, prostaglandin E2, and tumour necrosis factor-α (TNF-α). Nitric oxide is especially controlled by the inducible nitric oxide synthase (iNOS). Prostaglandin E2 is produced from arachidonic acid metabolites by the catalysis of cyclooxygenase-2 (COX-2). TNF-α, thought to be the first cytokine released, is a principal mediator of immune responses. Genetic factors may play important roles in susceptibility to pancreatic injury, as well as in the severity and evolution of the inflammatory process. The aim of our study was to determine if polymorphisms in iNOS, COX-2, TNF-α genes were associated with acute pancreatitis. For that, three iNOS (Ser608Leu, 1173C/T, 954G/C), seven COX-2 (rs5275, rs2206593, rs648262, rs6482621, rs206682, rs5277, rs274557), and two TNF-α (308G/A, 238G/A) variants were determined using polymerase chain reaction-restriction fragment length polymorphism analysis in patients with acute pancreatitis and healthy controls. Odds ratios (OR) and 95% confidence intervals (CI) were estimated. In conclusion; the association was seen with COX-2 rs5275 (P=0.03); specifically, patients carrying the TT genotype in comparison to patients carrying the CC genotype had a significantly lower risk of disease (OR=1.88, 95%CI:1.06-3.34). Both SNPs of TNF-α were not genetic risk factor for acute pancreatitis susceptibility was also found that iNOS Ser608Leu polymorphism was more frequent among cases with acute pancreatitis compared to controls (OR=2.88; 95%CI:1.49-5.57; P=0.002). We believe that the findings may be beneficial to the development of efficacious preventive strategies and therapies for inflammation-associated diseases.

197 In Vitro Toxicity of Antibacterial Silver Ions Released by Low Intensity Direct Electric Current (LIDC) Stimulation.

R. A. Shirwaiker 1, 2, M. E. Samberg 2, Z. Tan 3, and N.A. Monteiro-Riviere 1, 3. 1, 2. P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC; 3. Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, North Carolina State University, Raleigh, NC; 3. Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS.

Medical devices related surgical site infections and their treatment are a major cause of concern in the global healthcare system. The problem is compounded by the presence of antibiotic-resistant bacteria such as methcillin-resistant Staphylococcus aureus (MRSA) in healthcare environments, because infections caused by these bacteria are difficult to treat with conventional antibiotics. To prevent transmission of such infections, a prophylactic surface system that provides protracted release of an- tibacterial silver ions from interdigitated silver electrodes using low intensity direct electric current (LIDC) stimulation was developed and successfully validated against four pathogenic bacterial strains including S. aureus, Escherichia coli, Enterococcus faecalis, and Pseudomonas aeruginosa. The objective of this study was to evaluate the toxicity of the LIDC system to human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF) with alamarBlue, using parameters proven to be antibacterial (28μA at 6V). It was found that 1.5h exposure to the silver ion-releasing surface system was not toxic to HEK or HDF; which suggests that the applications of the antibacterial system for surfaces that come in contact with skin epithelial cells or connective tissue for less than 1.5h are not expected to cause toxicity in vivo. The application of this technology is particularly relevant for high contact surface areas in medical devices such as stethoscopes, scalpels handles, endoscopes, and instruments that are prone to microbial contamination. In conclusion, the lack of toxicity in vitro provides support for future in vivo or clinical studies. (Supported by ArgentumCidalElectrics, Inc.)

198 Safety Assessment of Colorants Used in a Short Term Blood Contacting Medical Device—Challenges in Color Extraction Testing.

Use of colorants in medical devices continues to be scrutinized by the FDA. In response to the FDA questions on a recent PMA submission and to be compliant with ISO 10993 Biological Evaluation of Medical Devices - Part 1, Evaluation and Testing within a Risk Management Process, Boston Scientific completed extraction studies on colorants as part of the safety assessment. The challenges and successes in demonstrating the safety of the colorants used in a short-term blood-contacting catheter are presented here. A color elution study was conducted to demonstrate the potential bioavailability of four colorants. Devices were extracted at 37°C for 24 hours in aceton. These aggressive extraction conditions maximized the potential to extract colorant and were not intended to represent clinical use. Non-volatile residue (NVR) portions of the extracts were microwave digested and then analyzed using ICP-OES against control colorant samples of known concentration. The estimated maximum amounts of extracted colorant ranged from <LOQ - 2.4 mg/device. These values together with the NVR value (0.1 mg/device) from the USP Physicochemical test were used as “worst case” estimates in the safety assessment. Variable process spike recovery results and device degradation during extraction contributed to uncertainty in the reported results. The safety assessment was conducted following the ISO 10993-17: Establishment of Acceptable Limits for Leachable Substances. The existing toxicological and biological safety data were included in the risk assessment. The threshold of toxicological concern (TTC) approach was applied for colorants with insufficient toxicological data. We concluded that the colorants used in this short-term catheter are eluted from the device at toxicologically insignificant amounts when extrapolated to the clinical exposure.

199 Comparison of Results from 2 In Vitro Cytotoxicity Tests Used in the Evaluation of Medical Devices.

D. E. Malek 1 and R. T. Przygoda 2. 1Malek Toxicology Delaware LLC, Greenville, DE; 2. Life Cycle Materials, Johnson & Johnson, Cincinnati, OH.

ISO 10993-1 includes an in vitro cytotoxicity test as part of a biological evaluation of medical devices. Two cytotoxicity tests commonly used in this evaluation are the MEM elution (ME) and Colony Formation (CF). The results from 43 samples used in medical devices were analyzed to evaluate the utility of both tests. Twenty-eight test samples also were evaluated for in vivo irritation, sensitization and systemic toxicity. The ME test was performed according to ISO 10993-5, section 8.2 including serial dilution of the extract, and CF test was performed according to ISO 10993-5 Annex B. The in vivo tests were performed according to the appropriate ISO 10993 standard. The ME and CF test results from 36 test samples showed agreement (84% agreement). Seven test samples were non – toxic in ME but toxic in the CF test (16% disagreement). Toxicity was not observed in any of the in vivo tests on the 12 samples that were toxic in either the ME, CF, or both cytotoxicity tests. When compared to the results of the 28 sets of in vivo tests, the ME test was 71 % in agreement and the CF test was 46% in agreement. Cytotoxicity was not observed in ME or CF tests for the 3 samples that failed for irritation. The results from this comparison demonstrate that in vitro cytotoxicity is not predictive of in vivo irritation, sensitization or systemic toxicity; and the lack of cytotoxicity does not guarantee acceptable in vivo test results. The ME test with serial dilutions is more in agreement with results from in vivo tests, and when toxicity is observed provides comparable results to CF test.

200 Evaluation of Sample Preparation Methods in the ISO 10993-12 Standard: Implications for the Biocompatibility Assessment of Medical Devices.

R. P. Brown, H. Dinesdurage, J. Goode and M. Ghosh. US FDA, Silver Spring, MD.

The ISO 10993-12 standard outlines suitable extraction conditions for the preparation of test samples for the biological evaluation of medical devices. The standard provides a list of temperature, time, and solvent conditions recommended for the preparation of extracts for toxicity testing, but no guidance is offered on which specific extraction conditions are optimal for various types of materials. The goal of this study is to identify extraction conditions that can be used to differentiate toxic from nontoxic polymeric materials in an indirect hemolysis assay without resulting...
in the degradation of the material. A ‘toxic’ material is defined in this study as one that produces a positive response in a modified MEM Elution cytotoxicity test. A wide range of polymeric materials (e.g., BUNA, nitrile, butyl, neoprene, latex, silicone rubber; polyurethane, polyethylene, PVC) was extracted in a closed glass vial in phosphate buffered saline (PBS) using the default conditions outlined in the ISO 10993-12 standard (37°C x 24 hrs, 55°C x 72 hrs, 50°C x 72 hrs, 70°C x 24 hrs, 121°C x 1 hr). In addition, the polymers were extracted in 5% or 50% ethanol (EtOH) or acetone at 37°C for 24 hours. The 50% EtOH extracts were diluted to 5% with PBS for the hemolysis assay. The acetone extracts were evaporated under a nitrogen stream, then reconstituted with PBS. Our results show that rigorous extraction conditions (acetone, 50% EtOH) are necessary to correctly differentiate toxic from non-toxic materials. For example, latex and BUNA were positive in the cytotoxicity assay, positive when 50% EtOH extracts were used in the hemolysis assay, but negative when extracted in PBS using the standard extraction conditions in the ISO 10993-12 standard (e.g., 50°C x 72 hrs). Since the use of acetone as an extraction vehicle resulted in the degradation of some materials, such as PVC, the use of EtOH/PBS solvent mixture represents a promising approach for preparing samples for the biological evaluation of medical device materials.

201 Can There Be a Universal Extraction Solvent for Medical Device Biocompatibility Testing? Comparison of Extraction Efficiencies among Five Solvents Used to Extract Polymeric Dental Devices.

L. H. Moilanen1, J. K. Dahms2, B. D. Barley1 and E. E. Hope1.1 Medical Department, 3M, St. Paul, MN; 23M ESPE, 3M, St. Paul, MN.

The biocompatibility of medical devices is often evaluated using extracts prepared from the final product. The selection of the most appropriate extraction solvent(s) for product chemical characterization and biocompatibility assessment remains a subject of active discussion within the medical device standards community. For this study, we examined extraction data obtained for nine experimental dental product prototype extracts using five solvents of varying polarity to address both clinical use and exaggerated extraction scenarios. The extracted prototypes included four composite restoratives, a rest-modified glass ionomer, a polymeric finishing brush, a temporary cement, a self-etch adhesive, and a dental sealant. ISO 10993-12 compliant samples of each product were extracted in aqueous 5% ethanol solution, acetone, methanol, heptane, and 50:50 cyclohexane-isopropanol at 37°C with a target sample:extractant volume ratio of 0.2 g/mL. Extraction time intervals ranged from 24 hours to 28 days. Gravimetric and HPLC analyses of the extracts show that in most cases use of methanol either resulted in the highest concentration of extractables or gave results similar to acetone. In the remaining cases, either acetone or water extracted the largest amount of residue. These results confirm the utility of methanol as an exaggerated solvent for many polymeric dental products, but also highlight the importance of proper solvent selection based on detailed knowledge of product chemistry.

202 Determination of Total Leachable Bisphenol A from Polysulfone Membranes in Hemodialyzers and Hemoconcentrators.

S. M. Cho, Y. Choi, Y. Liu and J. Guo. US FDA, Silver Spring, MD.

Bisphenol A (BPA) is a high-production-volume chemical widely used to manufacture polysulfone (PS), polycarbonate, epoxy resin, etc. Over the past ten years, BPA has been the subject of numerous risk assessment reviews and research worldwide because of its potential to produce adverse health effects through endocrine disruption. Although there is a significant body of literature focused on the adverse effects of BPA at low doses, there are discrepancies in the relevance and reliability of the published results. These make it difficult to properly evaluate the hazards of BPA. To reduce discrepancies and variation in research results, it is essential to establish reproducible/accurate analytical methods. In this study, we evaluated the BPA levels eluted from porous PS membranes used in hemodialyzers and hemoconcentrators using single and multiple consecutive extractions under clinically relevant extraction condition. The levels of BPA release were determined using solid phase extraction (SPE) coupled with high performance liquid chromatography-mass spectrometry (HPLC-MS). We demonstrated that it was difficult to determine the total amount of BPA released from the PS membranes used a single extraction method with finite solvent volume because of the chemical equilibrium between the extraction solution and the polymer phase. A general equation was derived to fit the BPA elution data and deepen our understanding on the equilibrium phenomenon during the extraction. The results revealed that repeated consecutive extractions of the PS membranes are needed to accurately determine the total leachable BPA in porous membranes.

203 Bisphenol A Content in Polycarbonate from Medical, Automotive and Consumer Suppliers.

Bisphenol A (BPA) is an organic compound used to make polycarbonate (PC) polymers and epoxy resins. The presence of BPA has the potential to produce human reproductive and developmental effects. Three sources of PC’s were utilized in this study: from medical, automotive, and consumer suppliers (cups). Sterilized and unsterilized samples were extracted using ethanol (EtOH) or isopropanol (IPA) and incubated at 37 degrees C for 24 hours. Extracts were analyzed by high performance liquid chromatography (HPLC). In addition, exhaustive extraction by Soxhlet with IPA was performed on a medical grade PC. BPA was below the level of detection (0.51 μg/g) in ETOH and IPA extracts with the exception of the cups. In extracts from cups, between 4 to 5.8BPA mg of test sample was detected, however BPA was not detected in the non-sterilized sample extracted with ETOH (limit of detection was 0.51 μg/g). Assuming a 10g cup and the worst-case of 5.8BPA mg/g, an adult male (70kg) would be exposed to 0.82BPA μg/kg/day. Using exhaustive Soxhlet extraction with IPA, BPA was below the limit of detection (0.51 μg/g) for an adult male, the calculated exposure for an adult male is 0.03BPA μg/kg/day. The US FDA acceptable Daily Intake (ADI) and/or EU Tolerable Daily Intake (TDI) for BPA is 50BPA μg/kg/day. The adult male exposures to BPA from consumer, automotive, and medical grade PC are 58, 704, and 1300 times less than US FDA ADI or EU TDI. The extractable BPA from automotive and medical grade PC was significantly less than that observed from the consumer PC.

204 Local Effects of Microelectrode Implantation in Rabbit Muscles.

J. Yoon1, E. Cho1, S. Kim1, J. You1, Y. Kim1, E. Kwon1, B. Kang1-2 and J. Che1.1 Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; 2Graduate School of Immunology, Seoul National University, Seoul, Republic of Korea. Sponsor: K. Lim

The purpose of this study was to evaluate the biocompatibility of various polymer-based microelectrodes (PBMs) after implantation in rabbit muscle tissues following a standardized method. Three types of PBMs were examined: silicone-based platinum, polyimide-based gold, and liquid crystal polymer-based gold microelectrodes. All experimental procedures followed the International Organization for Standardization (ISO) 10993-6:2007(E). Six female rabbits were used for this study. The PBMs were implanted into the left paravertebral muscle of the dorsolateral region of the rabbits for 12 weeks, each type being implanted into two rabbits. Control group (high density polyethylene, HDPE) was implanted in the equivalent site on the right side of each rabbit. No changes in the clinical signs, mortality, body weight, and gross findings related to the PBMs were noted. The results of histopathological evaluation suggest that the PBMs did not induce any cellular changes. Thus it could be concluded that the three types of PBMs are all non-toxic, non-irritating, and biocompatible.

205 Subchronic Systemic Toxicity of Subcutaneous Implantation of Microelectrodes in Rats.

E. Cho1, S. Kim1, J. You1, Y. Kim1, E. Kwon1, B. Kang1, J. Che1-2 and J. Yoon1.1 Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; 2Graduate School of Immunology, Seoul National University, Seoul, Republic of Korea. Sponsor: K. Lim

The purpose of this study was to evaluate the biocompatibility of various polymer-based microelectrodes (PBMs) through the subchronic systemic toxicity of subcutaneous microelectrode implantation in rats following a standardized method. Three types of PBMs were examined: silicone-based platinum, polyimide-based gold, and liquid crystal polymer-based gold microelectrodes. All experimental procedures followed the International Organization for Standardization (ISO) 10993-6:2007(E) and ISO 10993-11:2006(E). Ten female rats were used for four each groups. Control group (high density polyethylene, HDPE) and three types of PBMs were implanted subcutaneously in the same site in each group and were left in place for 13 weeks. No effects related to PBMs were observed in any tested criteria, including mortality, clinical signs, body weight, food and water consumption, hematology and serum biochemistry parameters, urinalysis and ophthalmoscopy,

SOT 2013 ANNUAL MEETING
We present an analysis of the potential toxicity of an ingestible medical device. The primary toxicological concern is an 8 μm layer of copper (Cu), with an area of approximately 1.0 mm², that is a component of the device’s battery. The Cu content is approximately 20-33.1 μg/device. We calculated the potential toxicological risks of Cu leached from the device, assuming a maximum use of 30 devices/event. Depending upon fluid in the stomach, an individual could have a stomach dose of approximately 219 μg Cu, resulting in a stomach concentration ranging from 0.25-2.73 μg Cu/mL. These concentrations may be compared to a threshold Cu concentration for gastrointestinal (GI) toxicity of 1.4 μg/mL. In the most plausible scenario, the predicted concentration of Cu in the stomach is below the concentration associated with GI symptoms in humans, consisting of mild, reversible effects and no associated systemic toxicity. The higher potential stomach concentrations somewhat exceed the threshold concentration, but potential GI symptoms could be mitigated by ingesting the devices with food. We also estimated the potential total intake of Cu from all sources, including the device. Ingestion of the device, combined with the ingestion of median levels of Cu in food, water, and multivitamins, is estimated to be well below the 10 mg/day IOM determined level of safe daily intake for the general population. We also evaluated the cytotoxicity of the extractable material from this device, based on ISO-compliant tests of device extractions using simulated gastric fluid. Using open-source software, we calculated the number of devices that would be associated with a cytotoxic effect according to ISO standards. This analysis indicated that plausible use of the devices would not lead to cytotoxic effects. Overall, we conclude that ingestion of the medical device under plausible use conditions is unlikely to present a toxicological concern for Cu.

Mice intratracheal instillation (IT) and rat inhalation exposure (IH) were conducted to identify the toxicity of 3 representative humidiﬁer disinfectants (products A, B, and C) containing polyhexamethylene guanidine (PHMG), 5-chloro-2-methylbenzylidene-2,2,4,4-tetramethyl-5-(2-ethyl-2-oxoethyl) guanidinium chloride (PGH), respectively. In mice administered by multiple 7–9 IT at 0.05 ml for 2 wk, severe necrotic obliterative bronchiolitis (OB) was found in product A and C. But no adverse treatment effect was observed in product B. In rat inhalation study (IH), necrotizing inﬂammation was observed predominantly in nasal, tracheal, and bronchial airways after IT with product A at 0.4 mg/m³ and product C at 1.75 mg/m³. However, necrotizing inﬂammatory lesions in the upper airways were not present in the IT due to direct administration of test substance to the lung via trachea. Granulomatous OB, bronchiolitis, collagenized fibrosis, alveolar bronchiolization, and extensive squamous metaplasia were observed in product A at 10 wk IH, and product C at 7 wk IH. No treatment-related adverse effects were observed in 13 wk IH with product B at 1.80 mg/m³. Lung lesions induced by IT and IH with product A and C were comparable and no treatment-related lesions were present with product B in both IT and IH exposure. It was difficult to evaluate dose-related toxicity by IT dosing. However, IT with low dose was a useful methodology to screen and identify toxicity of test substances in this study.

In this study, we characterized aerosol emissions from three different fuels (corn, pine, maple) and compared the potential pulmonary toxicity endpoints in CD-1 mice after a 4h inhalation exposure. Particle number counts/cc were 37000, 48000 and 34000 for corn cob, pine and maple respectively, with median count diameters of 221, 254 and 225 nm. Particle mass was 409, 689 and 362 μg/m³ for the three fuels, and CO measurements were 37, 39 and 45 ppm for the three fuels. Stable isotope analysis of the CO showed that product A contained 1.7 and 2.3 ppm, with lower levels of propylene, acetone and vinyl acetate. Pulmonary responses were assessed in a plethysmograph immediately before and after exposure, as well as at 1 and 24h post-exposure, when mice were euthanized. IL-6 levels were determined hourly following exposure, and this effect persisted at the 4h time-point for the corn cob and maple atmospheres before returning to control levels at 24h. Total protein was increased in the BALF of animals exposed to corn cob (4h and 24h post), pine (24h post), and maple (4h post), with corn having the highest effect. No other indices were affected except BALF LDH for pine, and increased hematocrit for corn cob at 24h. Because these atmospheres were considered to have high irritant characteristics, nasal lavage was also performed and although some increases in inflammatory cells were seen for the corn cob and maple atmospheres, the effects were variable. We conclude that corn cob and maple pyrolysis products seemed to have a more potent effect on pulmonary function and toxicity parameters than pine emissions. (This abstract does not reflect EPA policy).

Obliterative bronchiolitis (OB) is an irreversible lung disease characterized by progressive fibrosis in the small airways with eventual obliteration of the airway lumens. OB is most commonly associated with lung transplant rejection; however, OB has also been diagnosed in workers exposed to artificial butter flavoring (ABF) vapors. Research has been limited by the lack of an adequate animal model of OB, and as a result the mechanism is unclear and there are no effective treatments for this condition. A rat model of chemical-induced OB using the ABF component, 2,3-pentanedione (PD), was found to cause airway lesions histopathologically similar to OB lesions in humans. We used this model to evaluate changes in gene expression in the distal bronchi of rats with OB. Male Wistar Han rats were exposed to 200 ppm PD or air (controls) 6hr/d, 5d/wk for 2-wks. Distal bronchial tissues were laser microdissected from serial sections of frozen lung. In exposed lungs, both fibrotic and nonfibrotic airways were collected. Following RNA extraction and microarray analysis, differential gene expression was evaluated. In exposed nonfibrotic bronchi, 1548 genes were significantly altered relative to air-exposed controls with notable downregulation of many inflammatory cytokines and chemokines. In contrast, PD-exposed bronchi revealed changes significantly altered with a majority of genes being upregulated in affected pathways. TGF-beta2 and downstream miRNA was found in fibroblasts significantly upregulated in fibrotic lesions. Genes for collagens and extracellular matrix proteins were highly upregulated. In addition, expression of genes for peptidases and for peptidase inhibitors were significantly altered suggesting tissue remodeling that may contribute to fibrosis. These data will be used to gain a better understanding of the molecular mechanisms of OB and to identify potential therapeutic targets.
As a result, single exposure of 0.0125%, 0.0375%, and 0.0625% PHMG-Ph induced inflammatory responses with increased pulmonary inflammation, cytotoxicity and immune cell infiltration to the lungs, and interestingly, this inflammation did not resolve till the end of the experiments (14 days after instillation). The histopathology showed the both inflammation and pulmonary fibrosis exacerbated at day 14 after exposure in dose-dependent manner. Also PHMG-Ph decreased the total cell number and the CD4+/CD8+ cell proportion in thymus and induced severe medulla reduction based on histopathology data. These observations demonstrated that PHMG-Ph exposed to lung lead to pulmonary inflammation and fibrosis as well as to thymic atrophy.

211 Inhalation of a Spot Welding Aerosol Using an Adhesive Increased Airway Resistance but No Lung Inflammation.

Spot welding (SW) is used in the automotive and aircraft industries where high speed repetitive welding is needed and relatively thin metal sections are welded. Epoxy adhesives are applied as sealers to the seams of the metals that are joined. SW produces complex aerosols composed of both metal and volatile compounds which may cause bronchitis and asthma in workers. The goal was to assess the effect of SW fumes on lung function and toxicity. Male Sprague-Dawley rats were exposed by inhalation to 20 mg/m3 of SW aerosol in the presence of an adhesive for 4 hr/d x 8 d. Controls were exposed to air. Size distribution of the aerosol as determined by a MOUDI particle impactor was tri-modal with a MMAD of 1.66 μm in the large-fine mode, 0.30 μm in the small-fine mode, and 0.01-0.05 μm in the ultratine mode. Two distinct particle morphologies were observed: a brownish metal particle that predominated in the small-fine particle fraction and a black, glue-like particle that was in the large-fine fraction. The metal fraction was found to be ≥90% Fe. Significant amounts of volatiles (e.g., benzene, toluene, others) were present, likely produced from the vaporization of the adhesive. At different times after exposure, bronchoalveolar lavage (BAL) was performed to assess lung toxicity. Lung resistance (Rl) was evaluated in a separate set of animals before and after challenge with inhaled methacholine (MCh). Immediately after exposure, baseline Rl was significantly elevated in the group exposed to the SW fumes. Basal Rl returned to control level by 1 d after exposure. Reactivity to MCh was not affected at any time point after fume exposure. No significant increase in lung inflammation (neutrophil influx) or injury (cytotoxicity and lung epithelial permeability) was observed in BAL fluid at 1 and 5 d after exposure to SW fume. Acute inhalation of SW fumes at occupationally-relevant concentrations may act as an irritant as evidenced by the increased Rl, but had little effect on toxicity.

212 Cardiopulmonary Health Effects of Traffic-Related Air Pollutants in a Healthy Population.

L.E. Mirosky1, R. Pellicer2, M. Lippmann1, L. Griffith1, J. Carter1, D. Diaz-Sanchez3, W. Cascio1 and T. Gordon1, Environmental Medicine, New York University, Tuxedo, NY; 2Environmental Health Science, University of Massachusetts, Amherst, MA; 3US EPA, Research Triangle Park, NC.

There is emerging evidence that inhaling certain components of ambient particulate matter, specifically traffic pollutants, is associated with adverse health effects. We hypothesized that exposure to air pollution components of diesel exhaust-rich traffic, compared to cars-only traffic, produces greater adverse cardiopulmonary effects. In this case-crossover study, 23 participants were recruited to measure pulmonary function, exhaled NO, blood cytokines, heart rate variability, and blood pressure prior to, immediately after, and 24 hours after intermittent walking along 3 diverse roadways. Exposures lasted for 1.5 hours between June and September in 2011 and 2012, and personal exposures to pollutants were collected. The 3 locations differed by traffic type: the George Washington Bridge (GWB) carries truck and car traffic, the Garden State Parkway (GSP) carries only car traffic, and Sterling Forest, NY (SF) acted as a control location. Levels of PM2.5, PM10, black carbon, elemental carbon, and organic carbon were found to be highest at GWB and lowest at SF for all pollutants measured. The traffic count was similar between GSP and GWB. Using a repeated measures 2-way ANOVA, p-values were generated for time, location, and interactions between time and location. Cytokines' location was a significant factor for FVC (p = 0.04) and FEV1 (p = 0.05); a significant interaction term for pulse pressure was also observed (p < 0.01). Upon further analysis, systolic and pulse pressures varied significantly amongst locations when comparing the baseline and 24 hr-post measurement, while IL-1β varied amongst locations between the baseline and immediately after exposure. A trend of increasing sNO at the GWB was seen immediately after exposure, but did not reach significance (p = 0.06). These results suggest that acute effects of traffic-related pollution are observed in a small, healthy population; these effects differed by traffic type.

213 Ventricular Transcriptional Data Provide Mechanistic Insights into Diesel Exhaust-Induced Attenuation of Cardiac Contractile Response and Blood Pressure.

Human exposure to diesel exhaust (DE) has been associated with cardiovascular impairments however the mechanisms and the role of hypertension are not well understood. We have shown that DE reduces blood pressure (BP) and cardiac contractility in healthy normotensive Wistar Kyoto (WKY) rats. We hypothesized that DE would induce differential myocardial gene expression changes that modulate contractility in WKY and spontaneously hypertensive (SH) rats, and that lowering BP in WKY and SH with hydralazine (HYD) would increase this effect of DE. Male WKY and SH rats were treated with HYD (150 mg/L) in drinking water for 10 days prior to exposure and until necropsy. All rats were exposed to clean air or freshly-generated whole DE (1500 μg/m3), 5-hrs/day for 2 days. Systolic BP was monitored using the tail-cuff method on days -10, 0, and 2. Left ventricular genome-wide expression was analyzed using Illumina RatRef-12 BeadChips. As expected, WKY and SH rat’s ventricular gene expression patterns differed markedly. Surprisingly, DE exposure caused differential expression of 256 genes in WKY but none in SH rats. In WKY rats, the effect of HYD on expression patterns were nearly identical to changes induced by DE (same genes with same directional change); while HYD was without effect on expression changes in SH rats despite lowering BP. Genes inhibited by DE or HYD in WKY were related to sequestration of oxidants, inhibition of proteases, and membrane stability. The genes up-regulated by DE and HYD in WKY included those involved in decreasing BP and muscle contraction as well as calcium homeostasis and apoptosis. In conclusion, acute DE exposure caused gene expression changes only in normotensive WKY rats; these changes mimicked those induced by HYD and are associated with decreased cardiac contractility and BP in healthy rats. (Abstract does not reflect USEPA policy).

214 Comparative Cardiopulmonary Toxicity of Soy Biofuel and Diesel Exhausts in Healthy and Hypertensive Rats.

M.C. Schladeweiler1, V.L. Bass1, R.F. Thomas1, J.E. Richards1, D. Johnson2, D.L. Andrews3, A. Nyoka4, T. Krantz2, C. King5 and U.P. Kodavanti1,
1EPHD/NHEERLORD, US EPA, Research Triangle Park, NC; 2Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC; 3Tel Aviv University, Tel Aviv, Israel; 4RCU/NHEERL/ORD, US EPA, Research Triangle Park, NC.

Increased use of renewable energy sources raise concerns about health effects of emissions from such sources. We conducted a comprehensive analysis of relative cardiopulmonary health effects of exhausts from 1) 100% soy biofuel (B100), 2) 20% soy biofuel + 80% low sulfur petroleum diesel (B20), and 3) 100% petroleum diesel (B0) in rats. Normotensive Wistar Kyoto and spontaneously hypertensive rats were exposed to these 3 exhausts at 0, 50, 150 and 500 μg/m3, 4 h/day for either 1d or 4 wk (5 d/ wk) to mimic near environmental concentrations. Additionally, WKY rats were exposed for 1d and responses were analyzed 0 hr, 1d or 4d later for time course analysis. Hematological parameters, in vitro platelet aggregation, bronchoalveolar lavage fluid (BALF) markers of pulmonary injury and inflammation, ex-vivo aortic ring constriction, heart and aorta mRNA markers of atherogenesis, and serum biomarkers of acute cardiac injury as well as cytokines were analyzed. The presence of fragmented macrophages in the lung alveoli was clearly evident with all 3 exhaust exposures. Overall, exposure to all 3 exhausts produced only modest effects in most endpoints analyzed in both rat strains. BALF γ-glutamyl transferase (GGT) activity was the most consistent marker shown to be increased in both strains with all 3 fuels (B0>B100>B20) without increases in BALF neutrophils. Small inconsistent changes in aorta mRNA markers of inflammation, vasoconstriction and thrombosis, and those of serum biomarkers need to be interpreted cautiously. Our comparative evaluations show modest cardiovascular and pulmonary effects at low concentrations of all exhausts. Additionally, our study highlights the value of BALF levels of GGT activity as the most sensitive biomarker in low level inhalation studies. (This abstract does not represent USEPA policy).
215 Acute and Delayed Effects of Intermittent Ozone on Cardiovascular and Thermoregulatory Responses of Young and Aged Rats.
A. F. Johnstone1, R. C. MacPhail1, C. Aydin2 and C. J. Gordon1. TAD, NHEE, US EPA, Research Triangle Park, NC; 2Physiology, University of Uludag, Bursa, Turkey.

Ozone (O3) is associated with cardiovascular and respiratory diseases. The aged population is considered to be more sensitive to air pollutants but relatively few studies have demonstrated increased susceptibility in animal models of aging. To study the acute and delayed physiological responses to O3, core temperature (Tc) and heart rate (HR) monitored by telemetry in adult (12 m) and senescent (24 m) Brown Norway rats exposed to intermittent O3 (1.0 ppm, 6 hr/d for 2 consecutive d for 12 wk). Tc and HR dropped precipitously in both age groups during the 1st bout of O3 exposure; Tc decreased from 38.3 to 35.0°C while HR decreased from 300 to 175 bpm. These acute responses were attenuated during the 2nd day of O3. As O3 exposure continued, the acute Tc and HR responses abated but the aged animals were consistently less affected than the young adults throughout the 12 wk exposure period. During 5 d of recovery in home cages, both young and senescent rats displayed a fever-like 0.5°C elevation in daytime Tc. HR was also elevated in the young adults during recovery. The rise in Tc persisted for 2-3 d after O3. The O3-induced fever was marked following the 1st exposure, abated by the 3rd exposure week but then gained in magnitude throughout the remainder of the study. We postulate that inflammatory responses of the respiratory system to O3 are exacerbated in younger animals, leading to accentuated acute physiological responses compared to that of senescent rats. This is an abstract of a proposed presentation and does not reflect US EPA policy.

216 Dose and Effect of Inhaled Ozone in Resting versus Exercising Human Subjects: Comparison with Resting Rats.

Rationale: Human controlled exposure studies have generally focused on subjects exposed to ozone (O3) while exercising. We exposed resting subjects to labeled O3 (18O3, 0.4 ppm, for 2 hr) and compared O3 dose and effects with our previously published study of exercising subjects.

Methods: We measured O3 dose as the concentration of 18O in cells and extracellular material of nasal, bronchial and bronchoalveolar lavage fluid (BALF) immediately post exposure and related these measurements to O3 effects on inflammation, epithelial permeability and phagocytosis in the same fluids and to breathing parameters measured during the 18O3 exposure. A parallel study of resting subjects examined FEV1 changes during and immediately following a 2 hr exposure to 0.18, 0.25, 0.3 and 0.4 ppm O3.

Results: Subjects exposed while resting had 18O concentrations in BALF and nasal lavage that were proportional to the amount of air breathed during exposure. Significant but small changes were observed in BALF total cells and neutrophils, and in BALF cell phagocytosis following resting O3; however, most indicators of O3 effects that were observable in exercising subjects (including increased BALF super-nutant protein, lactate dehydrogenase, interleukin-6 and low molecular weight antioxidants) were not observed in resting subjects. The 18O incorporation into BALF of resting humans was similar to that of similarly exposed resting F344 rats. FEV1 changes in resting human subjects showed a much attenuated response compared to exercising subjects.

Conclusions: Quantitative measures of alveolar O3 dose and toxicity that were observed previously in exercising subjects were greatly reduced or non-observable in O3 exposed resting subjects. Resting rats and resting humans have similar alveolar O3 dose. Disclaimer: This abstract does not represent EPA policy.

217 Biological Responses in Rats Exposed to Mainstream Smoke from a Heated Cigarette Compared to a Conventional Reference Cigarette.
H. Fujimoto1, H. Tsuji1, I. Fukuda1, T. Nishino2, M. K. Lee3, R. Renne1 and H. Yoshimura2. 1R&D Group, Japan Tobacco Inc., Yokohama, Japan; 2Scientific and Regulatory Affairs, Japan Tobacco International S.A., Geneva, Switzerland; 3Roger Rowe Toxicology Consulting, Sumner, WA.

The heated cigarette (HC) generates mainstream smoke (MS) primarily by vaporizing the components of the tobacco rod using a carbon heat source at the cigarette tip. Consequently, MS from HC contains markedly less chemical constituents compared to conventional (combusted) cigarettes. In this study, MS from a non-ventilated HC (nvHC) was generated under a modified Canadian Intense Regimen (CIR) and its biological activities were compared to those of Reference (3R4F) cigarettes, using nose-only inhalation studies. In a 5-week inhalation study, female SD rats were exposed to MS of either cigarette at 600 or 1000 μg wt total particulate matter (WTPM)/L for 1 hr, 2 times/day, 7 days/week for 5 weeks. Pulmonary inflammation was significantly weaker in nvHC groups compared to 3R4F groups, based on the neutrophil counts and deviation enzyme levels in bronchoalveolar lavage fluid (BALF). After a 4-week recovery, BALF parameters of nvHC groups were similar to the air-exposed Sham group, while those of 3R4F groups remained elevated. In a 13-week inhalation study, male and female SD rats were exposed to MS from each cigarette at 200, 600, or 1000 WTPM μg/L for 1 hr/day, 7 days/week for 13 weeks. Histopathological changes in the respiratory tract were significantly lower in incidence/severity for nvHC groups, especially in respiratory epithelial hyperplasia and accumulation of pigmented macrophages in alveoli. After a 13-week recovery, the lesions were completely or partially regressed, except for accumulation of pigmented macrophages in alveoli, in both nvHC and 3R4F groups. In conclusion, nvHC demonstrated clearly and significantly lower biological activities compared to 3R4F, based on the BALF parameters and histopathology.

218 A Cross-Regulatory T Cell Response in Pulmonary Hypertension.

Exposure to urban air pollution (fuel emissions, particulate matter) has been associated with the exacerbation of autoimmune diseases. Our studies are focused on the mechanism of immune response induced pulmonary hypertension. We have shown that co-exposure of mice to inhaled antigen and urban particulate matter (PM) exacerbates pulmonary arterial remodeling and induces pulmonary hypertension. The current studies were performed with neutralizing anti-cytokine antibodies to identify the critical mediators for pulmonary hypertension and the interactions in the mediator-network.

Sensitized mice were intranasally challenged with either antigen (Ovalbumin) combined with urban PM2.5 (collected in New York City), or given saline. Groups of mice were injected with neutralizing anti-Interleukin (IL)-13, or anti-IL-17A/F antibodies alone or in combination, or control antibody. Right ventricular systolic pressures and immune response markers in the lungs were measured.

Intranasal challenge with antigen and urban PM significantly increased right ventricular systolic pressures. Only combined, but not single, injections with IL-13 and IL-17A/F-blockers significantly reduced this outcome. Surprisingly, injections with single neutralizing antibodies not only significantly reduced the inflammatory markers known to be regulated by IL-13 or IL-17A/F, but also revealed cross-inhibition of these markers. For example, the increased expression of the antigen presentation molecule, major histocompatibility class II (MHCII), by airway dendritic cells was inhibited by the IL-13 blocker given alone or in combination, while the IL-17A/F blocker lead to an increase in MHCII expression. Conversely, infiltration of the airways with neutrophils was inhibited by the administration of the IL-17A/F blocker given alone or in combination, while injections with the IL-13 blocker increased neutrophil infiltration.

In conclusion, exposure to antigen and urban PM induced pulmonary hypertension by elaborating a mixed immune response that has at least two, cross-regulatory arms that are controlled by IL-13 and IL-17A/F, respectively.

219 Capsule-Based Aerosol Generator (CBAG)—Validation in a Rat Model of LPS-Induced Nonallergic Pulmonary Inflammation.

Intratracheal (IT) insufflation is the principal method of delivery of inhaled drug substances to conscious non-clinical species in early drug development; however, this achieves particle deposition dissimilar to conscious inhaled delivery and can produce artefactual toxicological and pharmacological results. The CBAG was developed(1) as an alternative to IT insufflation whilst providing representative inhalation exposure by demonstrating the effectiveness of the CBAG in the rat model of LPS-induced non-allergic airway inflammation. Rats were exposed to 0.01, 0.1 or 1.0 mg/kg of inhaled fluticasone propionate (FP) over a 20-minute period using nominally 1 mg filled hydroxypropyl methyl cellulose size 2 capsules at blend strengths of 1, 100 and 1000 w/w of FP respectively. Two concurrent control groups were exposed to lactose only using the same regime. Twenty minutes after the end of the inhalation exposure the animals were challenged with either aerosolised LPS (0.1 mg/mL) for the FP groups and one control group or 0.9% w/v saline (second control group) for 30 minutes. Rats were euthanized 4hrs following the challenge
and a bronchoalveolar lavage (BAL) investigation performed. A BAL total and differential cell count was used to evaluate the efficacy of FIT. Delivered doses of 0.0103, 0.117 and 0.863 mg/kg were achieved, which were within 14% of target. This resulted in a dose dependent inhibition of BAL neutrophils of 40%, 79% and 98% respectively compared with the lactose/LPS control group. In conclusion, the results give confidence that the CBAG is a viable alternative to IT methodology for studies in early drug development and has the added advantage of producing results representative of inhaled exposures.

220 Distinct Inflammatory Macrophage Subpopulations and Myeloid-Derived Suppressor Cells Accumulate in the Lung and Spleen following Exposure of Mice to Inhaled Ozone.

D. L. Laskin1, H. M. Choi1, L. D. Laskin2 and M. Mandal1. Pharmacology and Toxicology, University of Arizona, Tucson, AZ.

Ozone is an ubiquitous urban air pollutant known to damage the lung. Activated macrophages (MP) and inflammatory mediators they produce have been implicated in ozone toxicity. However, the phenotype and origin of these cells have not been established. In these studies, techniques in flow cytometry were used to assess macrophage subpopulations in the lung, spleen and bone marrow following ozone inhalation. Exposure of C57Bl/6 male mice to ozone (0.8 ppm, 3 h) resulted in increased bronchoalveolar lavage (BAL) protein levels after 24-72 h, indicative of alveolar epithelial injury. This was correlated with a rapid and persistent increase in the percentage of CD11b+F4/80+ inflammatory macrophages in BAL. An increase in F4/80 negative CD11b+Ly6C+Ly6G+ myeloid-derived suppressor cells (MDSCs) was also observed in BAL, a response most prominent 24 h post ozone exposure. Conversely, F4/80 positive CD11b+Ly6C+Ly6G+ MDSCs decreased in BAL after ozone exposure. We also found that ozone exposure resulted in a persistent decrease in CD11b+F4/80+ inflammatory macrophages, and a transient increase in CD11b+F4/80+Ly6C+Ly6G+ MDSCs in the spleen. In contrast, there were no changes in bone marrow cell subpopulations after ozone inhalation. Taken together, these results suggest that the spleen is a source of inflammatory MP in the lung following ozone exposure; moreover, subpopulations of MDSCs originating in the lung and the spleen may contribute to early inflammatory responses in the lung and to processes of injury and repair. Supported by NIH grants GM034310, ES004738, CA132624, AR055073, ES007148, ES005022.

221 Compare In Vitro Endothelial Cell Release of Endothelium Derived Vasodilators in Response to Diesel, Biodiesel Blend and Biodiesel Neat Combustion Extracted.

L. Bhavariai3, A. Williams2, T. Kormos4 and M. Madden5. Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC; 3National Renewable Energy Laboratory, Golden, CO; 4NERL, ORD, US EPA, Research Triangle Park, NC; 5EPHD, NHEERL, US EPA, Chapel Hill, NC.

Diesel exhaust exposure in controlled human chamber studies found exposure induced inhibition of vasodilation. Particles emitted in exhaust can translocate into the vascular system however when particles are dissolved in solvents of various polarity the insoluble fraction separates from the soluble fraction. We collected the soluble fraction of combusted particles dissolved in DMSO for evaluation of the extract to interfere with the release of endothelium derived vasodilators. Endothelium dependent vasodilation is dependent on 6-keto PGI2 alpha (6keto) a vaso-active metabolite of arachidonic acid. We have investigated the effects of diesel, biodiesel blend and biodiesel neat for a change in 6keto release from three cell lines: endothelial hybrid cell line (EA by 926 cells), primary human umbilical vein endothelial cells (HUVEC) and primary human coronary artery endothelial cells (HCAEC). ELISA results of 6-keto cells with extract exposure for 24hrs indicate a statistically significant (p<0.009) increase in 6keto from control and 100µg/mL of biodiesel neat (B100). However ELISA results from HUVEC and HCAEC exposed to extract for 6, 8 and 24hrs indicate no statistically significant change in 6keto release. QPCR data from extract exposure indicates there is no increase in markers of inflammation. However there is a measurable increase in heme oxygenase-1 (HO-1) gene expression. HUVEC and HCAEC with 8hr extract exposure to B100 at 100µg/mL have over two fold increase in HO-1. The B100 particle composition analysis indicates high levels of Zn and Fe compared to biodiesel blend and diesel. In our work we address a possible mechanism for attenuation of vaso-active arachidonic acid metabolites in endothelial cells exposed to diesel, biodiesel blend and biodiesel neat particle extracts. [This is an abstract of a proposed presentation and may not necessarily reflect official US EPA Policy.]

222 Role of CD36 in Ozone (O3)-Induced Lung Injury, Inflammation, and Vascular Dysfunction.

S. Robertson, S. N. Lucas, P. Hall, M. Paffett and M. J. Campen. University of New Mexico, Albuquerque, NM.

Ground level O3 can damage the cardiovascular system. A lack of a clear mechanism explaining O3-induced vascular health effects hinders the effectiveness of policies for achieving better health. Evidence suggests that inhaled pollutants evoke a systemic inflammatory response that causes endothelial injury and dysfunction. Using serum from O3-exposed mice, we found that circulating components impaired acetylcholine (ACh) vasorelaxation in aortas from naive wild type (WT) mice. However, the mechanistic interaction(s) between circulating factors and endothelial cells is unknown. To address this issue we turned our attention to pattern recognition receptors (PRRs), as such, CD36 (cluster of differentiation 36), as mediators of vascular abnormalities following O3 exposure. PRRs are capable of detecting danger signals released by stressed or injured cells. We hypothesized that activation of endothelial CD36 following acute O3 exposure mediates cross-talk between lung-derived circulating factors and vascular endothelium, culminating in endothelial dysfunction.

Female C57 wild type (WT) and CD36 knockout (KO) mice were exposed to filtered air (FA) or 1 ppm O3 for 4 h. Indices of pulmonary (quantified by lavage inflammatory cells) inflammation was assessed 24 h later. The effects of exposure on ACh-induced vasorelaxation were studied using the aortic ring preparation. Parallel experiments were performed in aortas from naive WT mice incubated with serum from exposed mice. O3-induced infiltration of macrophages and neutrophils into the airspace in WT mice were absent in CD36 KO mice. ACh-evoked vasorelaxation of thoracic aorta of WT mice, but not CD36 KO mice, was significantly reduced after inhalation of O3. Ex vivo assays utilizing homologous serum demonstrated that the vascular damage caused by O3-induced circulating factors was dependent on vascular CD36 receptor expression. Collectively, our data demonstrate that an as yet unidentified circulating factor, or factors, induced by O3 exposure leads to vascular dysfunction mediated, in part, by CD36 binding in the vascular tissue.

223 In Vitro Endothelial Cell Model to Assess the Impact of Systemic Inflammation on Vascular Health.

M. Aragon, E. S. Colombo, M. J. Campen and S. Lucas. Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM.

Assessing the adverse vascular health effects of systemic inflammation caused by inhaled toxins has presented a substantial research challenge. Current models rely on anatomically disputable direct application of xenobiotics, especially airborne particulate matter, on cultured endothelial cells. Such assays fail to account for the complex interactions and toxicokinetics that occur in vivo. We have developed a model that takes these factors into account to better elucidate the mechanisms involved in a living system. This approach utilizes plasma or serum from exposed animals as the endothelial stimulus, as this is the component in direct contact with endothelial cells act as a "biosensor", expressing markers of inflammation, especially CD36. Briefly, the serum/plasma isolated from exposed animals is incubated as the endothelial stimulus, as this is the component in direct contact with endothelial cells. We have characterized this model paradigm using primary endothelial cells from rats and mice, using known mediators (IL-6, TNF-α) to assess the range of response in order to compare endothelial cell responses to serum obtained from ozone-exposed rodents. Serum obtained 24h following exposure to 1 ppm ozone for 4h caused a 2-fold increase in vascular cell adhesion molecule-1 cell surface expression on rat aortic endothelial cells, as compared to serum from filtered air-exposed rats. Similarly, we observe reductions in NO generation and elevated mRNA expression of specific markers of endothelial cell activation. The potential for this assay extends beyond the toxic effects of air pollution, with potential applications to drug safety and efficacy, as well as having prognostic value for vascular disease.
The lining of the airways consists of airway epithelial cells and resident immune cells, which together coordinate the innate immune response to oxidant pollutants. Oxidant pollutants can damage airway epithelial cells and induce the production of soluble mediators that attract nearby immune cells, such as alveolar macrophages, and activate innate immune pathways. Using ozone (O₃) as a model oxidant pollutant, we developed a human bronchiolar epithelial cell (HBE) and alveolar macrophage (AM) co-culture model to assess how the interaction between HBE and AM modifies the innate immune response to oxidant air pollutants. AM derived from the bronchoalveolar lavage of healthy volunteers were co-cultured with the HBE cell line 16HBEo- on transwell cell culture inserts or on transwells alone. Co-cultures, AM alone, and HBE alone were exposed to 0.4 ppm O₃ or clean air for 4 hours and analyzed 1 and 24 hours after O₃ exposure. O₃-induced secretion of interleukin (IL)-1β and IL-8 was compared between the cultures to determine the specific cellular sources and whether the interaction between AM and HBE modifies the inflammatory response. Using flow cytometry, co-cultures or AM alone were examined for AM surface receptor expression, particularly CD44, Toll-like Receptor 4 (TLR4), and its co-receptor CD14, which recognize soluble mediators produced in response to oxidative damage. Our results suggest that co-culture of AM and HBE modifies O₃-induced secretion of IL-1β, but not IL-8. Whereas the co-cultures had robust O₃-induced IL-1β production, this response was blunted in both AM and HBE cultured alone. Both O₃-exposed AM had altered CD14, TLR4, and CD44 expression, and co-culture further modified surface marker expression. These results suggest that HBE and AM coordinate the inflammatory response to O₃, and that the interaction between HBE and AM is an important determinant of the innate immune response to inhaled oxidant pollutants.

Drug/lactose powder blend range and complexity has also grown proportionally as the potency of drug molecules has increased. This review, therefore, addresses the relationship between the active drug moieties and total particulate over a range of lactose powder blend formulations before and after aerosolisation to ensure enhanced study control. Test atmosphere concentration data from studies were chemical or gravimetric analysed for drugtotal particulate (TP) ratios and compared with the original blend strength (BS). Results for unmicronised blends indicated up to a 13-fold increase in drug:TP ratio for lower drug blend strengths (0.25% w/w) for non-rodent exposure systems and 9-fold for rodent systems. The fold change (FC) decreased exponentially with increasing drug BS for unmicronised blends and by 40% w/w; the PC was only 2-fold. Greater variation between different drug actives was also evident at lower blend strengths. Using stabilisers or additives resulted in a slight increase (between 0.25 and 0.50 w/w) in the drug:TP ratio over the same BS range. Comparison of 3 different lactose types indicated varying proportions of FC depending on the particle size of the lactose. Micronised Lactohale LH301 gave marginal increase in FC between BS of 0.25 and 40% w/w (1.02 to 1.11) but the FC exhibited for micronised Replitol SVO08 gave a much greater change over the same BS range. The FC using the same BS with different size inhalation chambers showed no difference with chamber level implying that the animals receive the same drug:lactose ratio irrespective of their position within the chamber. Comparison between the Flow-Through and Flow past chambers with different blend strengths gave a greater FC for the latter chamber type (up to 67%) due to increased lactose sedimentation related to internal geometry of the chamber. In conclusion, this approach will allow greater prediction and confidence that the gravimetric aerosol concentrations will be an accurate representation of the active drug moiety when the frequency of chemical analysis is reduced.

Inhaled or airway-delivered indium-containing particles (ICPs) such as indium phosphate (InP) and indium tin oxide (ITO) exhibit pulmonary toxicity and are carcinogenic. Many ICPs are highly insoluble compounds which are engulfsed by alveolar macrophages; however, the mechanism(s) of ICP-induced pathogenesis within the lungs is unclear. We have previously shown that ICPs are cytotoxic to macrophages in vitro which is dependent upon phagolyososome acidification. In the current study, we hypothesized that macrophages phagocyte and solubilize ICPs which generates free indium ions- likely the cytotoxic constituent of ICPs. Adherent RAW 264.7 macrophages were treated with 200 μg/ml InP particles for 24 hrs. In some groups, macrophages were pre-treated for 30 min with 5 μg/ml cytochalasin D (cytD), an inhibitor of phagocytosis, and then co-treated with InP + cytD for 24 hrs. CytD treatment blocked both the phagocytic uptake and cytotoxicity of InP particles. Cell culture supernatants were collected after 24 hrs of treatment and centrifuged to pellet any residual cells and InP particles. Cell and particle-free supernatants were then acid digested overnight and the concentration of total indium was measured using atomic absorption spectroscopy. The concentration of extracellular indium in cell culture supernatants from macrophages treated with InP particles in the absence of cytD (91.2 μg/L) was significantly increased and approximately 3-fold greater compared to macrophages treated with InP in the presence of cytD (29.8 μg/L). These data indicate that macrophages phagocyte and solubilize InP particles within lysosomes resulting in cell death and the extracellular release of free indium metal species. This cell-based assay can potentially be applied to other ICPs to determine if the in vitro macrophage solubility of different ICPs correlates with in vivo pulmonary toxicity.

The San Joaquin Valley (SJV) of California is home to high PM pollution and asthma symptom prevalence. Recently, source oriented sampling (SOS) approaches have been employed in the SJV to collect commonly occurring particle source combinations in the normal milieu of PM typical to the region to allow for the evaluation of their differential toxicities. Acute toxicity studies to assess differential pulmonary inflammation were performed. Additional studies were performed in an acute model of allergic airway inflammation. Studies utilized BALB/c mice, 8-10 weeks old and re-suspended particles collected and extracted by SOS methods. Naïve studies utilized dosing via oropharyngeal aspiration of 50μg SOS PM with tissues examined for pulmonary inflammation 24-hours post dosing. Allergic studies utilized intranasal aspiration dosing on day 1, 3, and 5 of a) vehicle control, b) 25μg endotoxin purified D. Fariaceae house dust mite allergen, HDM (allergic control), or c) HDM and 15μg SOS PM (45μg total dose). Animals were challenged on day 11, 12, and 13 with allergen alone and tissues collected on day 14. All allergen-treated animals exhibited cellular profiles indicative of an allergic response with elevations in leukocytes characterized by neutrophils, lymphocytes and eosinophils. Heme oxygenase-1 (HO-1) protein levels in homogenized pulmonary tissue of acutely exposed naïve mice were quantified as a biomarker of oxidative stress. Analysis of correlations revealed large associations between total cell, lymphocytic, eosinophilic and neutrophilic pulmonary inflammation in allergic animals in contrast to HO-1 protein levels in the tissue of acutely exposed naïve animals. Cellular inflammation in naïve acute studies did not correlate with HO-1 protein and did not accurately predict adjuvant potential. These studies suggest that pulmonary HO-1 levels in naïve acute studies and existing archived tissue may be a valuable indicator of particle adjuvant potential. Support: CARB/EPRI
Particulate matter (PM) exposure contributes to respiratory diseases and cardiopulmonary mortality. The toxicity of PM could be related to sources, such as vehicle exhaust, and composition, such as abundance of polycyclic aromatic hydrocarbons (PAHs). We exposed adult male balb/c mice, via oropharyngeal aspiration, to a range of doses of PM2.5 collected during the winter in downtown Sacramento near a major freeway interchange (SacPM). Because the relative contribution of PAHs in SacPM might be important, and since filter extraction may alter PM biological effects, we tested two PM preparation methods (sonication/spin-down and sonication/lyophilization) at 10, 50 and 100 μg doses and analyzed the lung tissue response at 24 hrs after dosing. We analyzed 1) leukocytes and total protein in BALF, 2) airway-specific and whole lobe expression of PAH sensitive genes (CYP1B1 and CYP1A1) and IL-1β and 3) lung histology. We found both PM extraction methods stimulated similar biological responses, but the spin-down method was more robust at producing IL-1β and CYP1B1 gene responses and the lyophilization method induced whole lung CYP1A1. Neutrophils in the BALF were increased 5-fold at 50 μg and 10-fold at 100 μg. Total protein in the BALF was significantly increased at both the 50 and 100 μg doses. Histopathology scores were dose responsive and more robust in mice treated with spin-down derived PM. CYP1B1 gene expression in whole lung increased 3-fold at the 50 and 100 μg dose for this method as well, but was increased less than 1.5-fold for the lyophilization method. In microdissected airways all doses of the spin-down PM increased CYP1B1 gene expression significantly, but the lyophilized PM did not change CYP1B1. We conclude 1) the method of filter extraction can influence the degree of biological response at a given dose, 2) for SacPM the minimal effective dose for this strain of mouse and route of administration exceeds that in simulated physiological stress environments. As a result, we propose that the minimal effective dose for this strain of mouse and route of administration exceeds that in simulated physiological stress environments.

Histopathological examination of the lung found a minimal increase in alveolus inflammation, interstitial fibrosis, bronchiolization, and foreign body presence in both AM and LA groups compared to controls. Alveolus inflammation was most severe in HI LA rats at 1 and 3 mo compared to other exposure groups. Only HI LA rats had bronchiolitis epithelial hyperplasia, but only 1 mo after exposure. These results show comparable fibrogenic responses 1 and 3 mo after subchronic exposure of rats to LA and AM asbestos. Tissue fiber burdens are being measured to support dosimetry model development of deposition and clearance (Asgharian, SOT 2012: Jarabek, SOT 2013); comparison of responses between fibers may change based on dosimetry modeling (This abstract does not represent US EPA policy).

This study was designed to provide understanding of the toxicity of naturally occurring asbestos (NOA) including Libby amphibole (LA), Sumas Mountain chrysotile (SM), El Dorado Hills tremolite (ED) and Ontario ferroactinolite cleavage fragments (ON). Rat-respirable fractions (aerodynamic diameter ≤ 2.5 μm) were prepared by water elutriation and a dose of 1.5 mg/rat delivered via a single intratracheal (IT) instillation. Bronchoalveolar lavage (BAL), gene expression, histopathology, and lung function were analyzed 1 d, 3 mo, or 15 mo post-instillation.

One day after exposure, although inducing less acute inflammation than other samples, LA and SM induced a greater degree of lung injury. A similar trend was also observed in gene expression profiles, as both LA- and SM-exposed rats differed significantly from dispersion media (DM) controls. Changes were suggestive of dysregulation of both extracellular matrix and fibrosis pathways. By three months, most BAL parameters had returned to DM control levels. However, significantly time-dependent fibrosis was evident in rats exposed to LA or SM. By 15 months, the greatest fibrotic changes were observed in SM-exposed rats; while no fibrosis was noted in the cleavage-fragment or DM control group (SM, LA, and ED-ON-DM). Concomitant with the greatest degree of fibrosis, only SM-exposed rats exhibited persistent, long-term changes in lung function parameters. These data demonstrate that, in the rat, SM resulted in more significant long-term effects after a single IT exposure than LA. This study suggests that there may be cause for concern for people at risk of being exposed to NOA from the Sumas Mountain landslide, and highlights the need for further study of sites where NOA is present. (This abstract does not represent U.S. EPA policy).

At concentrations of 10 ppm or greater, naphthalene (NA) is a nasal carcinogen inducing respiratory adenomas in male and female neuroblastomas in female rats, respectively. The proposed carcinogenic mode of action includes metabolic activation via CYP450 to an electrophile with subsequent methionine depletion, escape of electrophile, and covalent binding. Respiratory and olfactory mucosa are tumor target sites and both contain NA CYP450 activating capacity; the activity in olfactory exceeds that in respiratory mucosa by 3-fold. To fully define the effect of NA on nasal glutathione, male and female F344 rats were exposed to 0, 10, or 30 ppm NA for 1, 3, 6, 12, and 24 hours. Following exposure, nasal olfactory and respiratory tissues were analyzed for reduced/oxidized glutathione levels (GSH/GSGG). Female control rats had twice the levels of GSH compared to male controls, but NA exerted similar effects on GSH in both genders. GSH was depleted at all times; in females,

231 Exposure to Sumas Mountain Chrysotile Induces Similar Gene Expression Changes As Libby Amphibole but Has Greater Effect on Long-term Pathology and Lung Function.

J. M. Cypherd1, 2, A. Nyska1, 3, R. K. Mahoney1, 4, M. C. Schladweiler1, 2 and S. H. Gavett4, 4Curriculum in Toxicology, UNC School of Medicine, Chapel Hill, NC; 1EHPD, NIEHR, US EPA, Research Triangle Park, NC; 2Veterinary Medicine, University of California Davis, Davis, CA; 3Sackler School of Medicine, Tel Aviv University, Timrat, Israel; 4EMSL Analytical, Inc., Libby, MT.

This study was designed to provide understanding of the toxicity of naturally occurring asbestos (NOA) including Libby amphibole (LA), Sumas Mountain chrysotile (SM), El Dorado Hills tremolite (ED) and Ontario ferroactinolite cleavage fragments (ON). Rat-respirable fractions (aerodynamic diameter ≤ 2.5 μm) were prepared by water elutriation and a dose of 1.5 mg/rat delivered via a single intratracheal (IT) instillation. Bronchoalveolar lavage (BAL), gene expression, histopathology, and lung function were analyzed 1 d, 3 mo, or 15 mo post-instillation.

One day after exposure, although inducing less acute inflammation than other samples, LA and SM induced a greater degree of lung injury. A similar trend was also observed in gene expression profiles, as both LA- and SM-exposed rats differed significantly from dispersion media (DM) controls. Changes were suggestive of dysregulation of both extracellular matrix and fibrosis pathways. By three months, most BAL parameters had returned to DM control levels. However, significantly time-dependent fibrosis was evident in rats exposed to LA or SM. By 15 months, the greatest fibrotic changes were observed in SM-exposed rats; while no fibrosis was noted in the cleavage-fragment or DM control group (SM, LA, and ED-ON-DM). Concomitant with the greatest degree of fibrosis, only SM-exposed rats exhibited persistent, long-term changes in lung function parameters. These data demonstrate that, in the rat, SM resulted in more significant long-term effects after a single IT exposure than LA. This study suggests that there may be cause for concern for people at risk of being exposed to NOA from the Sumas Mountain landslide, and highlights the need for further study of sites where NOA is present. (This abstract does not represent U.S. EPA policy).
respiratory and olfactory mucosal levels were ~45 and 70% of control levels (re-
spectively) after 10 or 30 ppm, an effect that did not correlate with local CYP450
activation rates. Similar trends were seen for male rats. To fully define the concen-
tration response, rats were exposed to 0, 0.5, 1, 3, 10, or 30 ppm NA for 4 hours. Sig-
ificant GSH depletion occurred at all exposure levels in respiratory and olfac-
tory mucosa with maximal depletion (about 30 and 60% of control levels, respec-
tively) occurring at or above 1 ppm. Similar trends were seen in both male and fe-
males. NA, at concentrations well below those shown to be carcinogenic, causes
significant depletion of GSH in the nose. The degree of GSH depletion in different
nasal regions does not correlate with activation rates, suggesting that other factors
contribute to the GSH response. No sex difference was observed in GSH response,
suggesting that the sex difference in tumor response cannot be attributed to this
step in the carcinogenic mode of action. (Supported by the NCI and the NIEHS)

234 Upper Respiratory Lesions in Rats Administered
Amiodarone Hydrochloride Solution Orally for 4 Days by
Intraesophageal Dosing: Absence of the Lesion by
Intragastric Dosing.
S. Ogata, Y. Nezu, T. Watanabe, S. Takada, Y. Tani and W. Takaishi, Medicinal
Safety Research Laboratories, Daitichi-Sankyo, Tokyo, Japan.

Upper respiratory (UR) tract can be damaged by compounds administered orally.
Retrograde exposure of nasal passage to dose formulation from the esophagus has
been suggested as one of the toxicological mechanisms (Damsch et al. Toxicol
Pathol, 2011). However, literature is limited with this toxicity of orally adminis-
tered drugs in clinical use and the toxicological significance remains unclear.
Amiodarone hydrochloride (AM) is an antiarrhythmic agent administered orally
and intravenously in clinical use. We demonstrated AM induces UR lesions in rats
by gavage dosing for 4 days with a metallic tube. Retrograde exposure of the nasal
passage to dose formulation was suggested because incidence of the lesion was
higher in the posterior nasal passage than the anterior one (Ogata et al., JSTP
Annual Meeting, 2011). Furthermore, irritability of the dose formulation to nasal
epithelium was confirmed based on induction of UR lesions after single intranasal
dosing (Ogata et al., ISOT Annual Meeting, 2012). To examine the effect of the
dosing procedure on the lesions, rats were administered 150 mg/kg AM by a
catheter instead of a metallic tube and the UR lesions were compared histopatho-
logically with those obtained in the former study with a metallic tube. In this study,
no UR lesions were observed in rats given AM with a catheter. Cmax and AUC was
equivalent between dosing procedures with the catheter and metallic tube after a
single dose. The results suggest that the UR lesions in rats given AM by a metallic
tube is not attributable to systemic exposure alone. Dependence on metallic tube
dosing may suggest low toxicological relevance of the UR lesions. Furthermore,
catheter dosing would be an option to evaluate toxicological significance of gavage-
related UR lesion, with equivalent Cmax and AUC obtained by metallic tube dos-
ing, and without possible concern specific to dosing from parenteral or feeding
routes.

235 A High-Fructose Diet Attenuates Adaptation of Nasal
Epithelium to Subacute Exposure to Ozone in Mice.
J. Harkema1, 2, P. Brooks1, K. M. Allen1, 3, M. Dereski2, L. Lewadowski3, 2, D. Jackson1, L. Bramble1, 2 and J. G. Wagner1, 2, Michigan State University, East
Lansing, MI; 3US EPA Great Lakes Air Center for Integrated Environmental
Research, East Lansing, MI.

INTRODUCTION: Ozone (O3) is a common oxidant air pollutant and inhaled
respiratory toxicant. Repeated inhalation exposures to high ambient concentrations
of O3 cause an adaptive epithelial change, mucous cell metaplasia (MCM), in the
nasal airways of laboratory rodents and nonhuman primates. Since airway mucus
is a known anti-oxidant, MCM with increases in mucus-secreting cells, is a defensive
response of airway epithelium to minimize further oxidant injury caused by inhaled
irritants. Unhealthy diets associated with the metabolic syndrome may adversely af-
flect the host's normal response to inhaled pollutants. The present study was de-
signed to determine the effect of a high fructose diet (HFD) on the adaptive MCM
response of nasal epithelium to O3. METHODS: C57/B16 male mice were ex-
posed to 0 (controls) or 0.5 ppm O3, 4 h/day, for 24 consecutive week days. Half of
the mice were fed a normal diet (ND) and the other half were fed a HFD. Mice
were sacrificed 24 h after the last day of O3 exposure. Nasal tissues were processed
to light microscopy and morphometric analysis. RESULTS: No exposure-related
nasal lesions were found in filtered air-exposed control mice fed either diet. ND-fed
mice exposed to O3 developed marked MCM in nasal transitional epithelium that
was accompanied by a mucosal influx of eosinophils. In contrast, HFD-fed mice
had minimal nasal MCM and fewer mucosal eosinophils (85 and 60% less, respec-
tively) after 24 h of exposure than ND-fed mice. In all experiments, eosinophils
in a HFD significantly altered the MCM adaptation of nasal epithelium to O3 ex-
posure. Underlying mechanism(s) responsible for this diet-induced alteration in host
response and its possible human health implications are yet to be determined.
Funded by USEPA RD83479701.

236 Morphometric Assessment of Concentration- and Time-
Dependent Injury in the Nasal Airways of Rats Exposed to
Chlorine Gas.
A. M. Ibarakb1, A. Watkins1 and J. Harkema1, Michigan State University, East
Lansing, MI; 1US EPA, Research Triangle Park, NC.

Chlorine (Cl2) is an oxidizing chemical used in industrial processes and as a
household disinfactant. It is also an inhalant toxicant that causes airway injury, ranging
from minor irritation to death, depending on exposure conditions. Due to its tox-
icity and availability, Cl2 is considered a chemical threat agent. Understanding
the airway pathology of inhaled Cl2 is critical to both preventing and treating its
toxicity. In rodents, the nose is a primary target organ for inhaled Cl2. Risk assess-
ment approaches rely on the nasal concentration times time (C x t) product for extrapo-
lation of effect levels across studies of different duration (Haber’s Rule). This Cl2
inhalation study in rats was designed to determine the contribution of daily C x t
product and exposure duration to severity of nasal injury. Cl2 was one of the gases
on which Haber’s Rule was based, but emerging understanding of its pathobi-
ology suggests that the relationship does not hold. We hypothesized that the daily C
x t product does not capture the occurrence and magnitude of Cl2-induced toxic-
ity. Rats were exposed to equivalent combinations of daily C x t product inhaled Cl2 for
acute (6 ppm for 1 h; 1 ppm for 6 h; 0.25 ppm for 24 h) or subacute and sub-
chronic (1 ppm, 6 h/d for 5d, 10d or 90d) durations. The amount of histochemi-
cally stained mucousubstances in nasal transitional epithelium was morphometri-
cally determined as a quantitative measure of the severity of Cl2-induced mucous
cell metaplasia (MCM). Only rats subacutely or subchronically exposed to Cl2 de-
veloped this lesion and the magnitude of MCM markedly increased with duration.
Our results indicate that daily C x t product alone is not a good estimator of Cl2-
induced MCM and exposure duration is an important determinant of the risk to
Cl2-induced nasal toxicity. Funded by EP-12-C-000052. (The views expressed in
this abstract are those of the authors and do not necessarily represent the views or
policies of the U.S. Environmental Protection Agency.)
Dicarboxyl-Induced Respiratory and Olfactory Toxicity in Mice: Influence of Ubiquitination, Gender, and Dicarbonyl/L-Xylulose Reductase Gene Knockout.

A. E. Hubbard1, K. L. Fluharty1, M. P. Goravanahalli2, J. R. Edwards2, M. L. Kashon1, L. Sargent1, R. R. Mercer1, M. C. Jackson1, A. M. Campst1, W. T. Goldsmith2, J. S. Fedan1, R. D. DeY3, L. A. Battelli3, T. Munro3, W. B. Moyer1, P. A. Willard1, K. McKinnon1, S. Friend1 and K. Strynar1

1HELD, NIOSH, Morgantown, WV; 2West Virginia University, Morgantown, WV.

The α-dicarbonyl buty flavoring, diacetyl (2,3-butanedione), is associated with flavorings-related constrictive bronchiolitis in workers who make or use flavorings. Diacetyl causes protein damage in a process believed to be dependent upon the α-dicarbonyl structure. A protective response to damaged protein is ubiquitination with subsequent proteasomal processing. Diacetyl is also metabolized to the less reactive α-hydroxyketone, acetone, by dicarbonyl/L-xylulose reductase (Dcxr). We examined the role of Dcxr and gender on acute toxicity of inhaled diacetyl by exposing Dcxr knockout and wildtype mice of both sexes to diacetyl at target concentrations of 0, 100, 200 or 300 ppm for 6 hr. At 1 day post-exposure, endpoints were semi-quantitative histopathology and morphometric measurement of ubiquitin immunofluorescence in nose and lung sections. Ubiquitin was principally localized to naso and intrapulmonary airways, increased in large bronchiol at concentrations ≥ 100 ppm, and in the nose at 300 ppm. Diacetyl-induced ubiquitin in the nose and lung was modified by both gender and Dcxr. In lung histopathology, diacetyl caused vacuolation of airway epithelium of large bronchiol at concentrations ≥ 100 ppm. In ocellary bulb (OB) of male mice inhaling 300 ppm diacetyl, mRNA expression of inflammatory mediators and olfactory marker protein (Omp), a marker of olfactory neuron axons, were assayed by real-time PCR. Diacetyl elevated Il6, Cxcl2, and Tnfa and decreased Omp in OB. The data suggest that ubiquitin expression is a sensitive biomarker of diacetyl-induced protein damage in airway epithelium. Further, diacetyl causes neuroinflammation and potential loss of axons of olfactory neurons in OB, suggestive of neurotoxicity.

Subchronic Exposure to Ambient Particulate Matter Induces Oxidative Stress Responses in Brain Tissue of ApoE-/- Mice.

L. B. Mendez1, A. J. Keebaugh1, L. Chem1, M. Lippmann1 and M. T. Kleinman1
1University of California Irvine Irvine, CA; 2New York University, New York, NY.

Exposure to particulate matter (PM), present in urban environments, has been shown to induce pro-inflammatory and oxidative stress responses in the central nervous system (CNS) of apoprotein E knockout (ApoE-/-) and Balb/c mice. In this study oxidative stress responses in different subcellular fractions of the ApoE-/- mouse brains were evaluated after a subchronic exposure to fine (≤2.5 μm) concentrated ambient particles (CAPs). Apo E-/- mice were exposed to either CAPs or particle-free air for 5 hours a day, 5 days per week, for a period of 6 months. The whole-body inhalation exposures were conducted in two urban cities (Seattle, WA and Detroit, MI) with different sources and chemical composition of PM. Brain tissue was collected after the exposures were completed and analyzed for biomarkers of oxidative stress. The antioxidant glutathione was reduced in the brains of mice exposed to CAPs in Michigan but not in Washington. In contrast the lipid peroxidation protein thiobarbituric acid reactive substances (TBARS) were significantly increased in the membrane fraction of brain tissue of mice exposed to CAPs in Washington but not in Michigan. No significant differences were observed in protein carbonyl levels, a biomarker of protein oxidation, although the levels were slightly higher in the cytoplasmic fraction of brain tissue from animals exposed to CAPs when compared to controls regardless of exposure site. The results suggest that PM from different sources can modulate oxidative stress responses in a distinct fashion and that different subcellular fractions in the brain can be more susceptible to the effects of PM.

Co-Exposure to Ultrafine Particulate Matter and Ozone Causes Electrocardiogram Changes Indicative of Increased Arrhythmia Risk in Mice.

N. Kurhanewicz1, R. McIntosh-Kastrinsky1, L. Walsh2, A. K. Paragi3 and M. S. Hazari3
1University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Environmental Public Health Division, US EPA, Research Triangle Park, NC; 3Proteomic Research Core, US EPA, Research Triangle Park, NC.

Toxicity from combustion of 100% soy-based biodiesel (B100) was compared to that of petrodiesel (B0) or a 20% biodiesel / 80% petrodiesel mix (B20) in healthy and house dust mite (DHM)-allergic Balb/c mice. Exhaust from combustion of B0, B20, and B100 was diluted to 50, 100, and 500 μg/m3 as determined by real-time Tapered Element Oscillating Microbalance. Studies in mice exposed to biodiesel emissions (air control neutrophils - 1x, B0 = 11.9x, B20 = 4.4x, B100 = 2.1x). However these differences were attenuated 24 hr after exposure and no consistent differences were observed 2 or 24 hr after 5 d (4 hr/d) or 4 wk (5 d/wk) exposures. Mice sensitized and challenged intranasally with HDM and exposed to B0, B20, or B100 for 4 wk (5 d/wk) had no emissions-related differences in airway effects of particles, particularly UFP. Conscious unrestrained C57Bl/6 mice implanted with radiotelemeters were exposed by whole-body inhalation to either 250 μg/m3 PM2.5 or 100 μg/m3 UFP with or without 0.3 ppm O3 (4hrs); separate groups were exposed to either filtered air or O3 only. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Control animals experienced a decrease in HR during exposure, whereas PM2.5 and UFP alone caused any HR changes; however with O3 co-exposure, HR remained transiently elevated above control levels. Exposure to UFP+O3 caused decreased PR-interval, a transient increase in QRS, and increased QTc. PM2.5 alone caused QRS to decrease and O3 alone caused a decrease in QRS interval and QTc. There were no other significant differences in the ECG parameters measured by any groups. Lastly, only animals exposed to UFP+O3 had an increase in the number of non-conductive P-waves; there were no differences in other arrhythmia counts. These data suggest that O3 co-exposure might worsen the stress response to PM, especially UFP, and cause repolarization heterogeneity in the heart, which increases the risk for arrhythmogenesis. As such, this indicates that the cardiovascular effects of particle and gas co-exposures are not easily characterized, potentially increasing the complexity of risk assessment. (This abstract does not reflect EPA policy).
hyperresponsiveness to MCh aerosol (determined by total lung resistance in anesthetized, paralyzed and ventilated mice). Non-significant trends of decreased eosinophils and IL-5 in BAL fluid were found after exposure to the 500 μg/m3 concentration of all 3 fuels. Proliferative responses of peribronchiolar lymph node cells in response to HDM antigens in vitro were not significantly affected by exposure to fuel emissions. We conclude that alternative soy biofuel emissions have comparable or reduced adverse effects relative to diesel emissions in healthy mice or a mouse model of allergic asthma. (This abstract does not represent U.S. EPA policy.)

242 Mechanisms Underlying Anti-Inflammatory Effects of Selective Diiodomethylene Compounds Using RAW264.7 Cells.

1Center for Environmental Medicine, Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO; 2Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M Health Sciences, Houston, TX.

Chronic inflammation has been associated as the root cause of many serious illnesses including heart disease, Alzheimer’s disease and many cancers. Tolremic Acid (TA) a non-steroidal anti-inflammatory (NSAID) drug has been shown to have multiple anti-inflammatory effects in RAW264.7 murine macrophages. This study compares the anti-inflammatory effects of selected diiodomethylene (DIM) compounds in activated RAW264.7 cells. Results indicate a significant decrease in production of prostaglandin E (2), D (2) and F (2). In addition, there was a decrease expression of mediators of inflammation including cyclooxygenase-2 (COX-2) in LPS-induced RAW 264.7 cells. These results underscore the potential use for these DIM compounds in ameliorating inflammation in disease processes and therapeutic regimens.

243 Fyn Kinase Inhibitors Attenuate Manganese Nanoparticles Induced Neuroinflammatory Signaling in BV2 Microglial Cells and Primary Microglia.

Institute of Drug Research, The Hebrew University, Jerusalem, Israel; 1Institute of Drug Research, The Hebrew University, Jerusalem, Israel; 2Department of Pharmacology, Center for Molecular Toxicology, and the Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN; 3Neurology and Toxicology Service and Unit, Shaare Zedek Medical Center, Jerusalem, Israel.

Manganese (Mn) nanoparticles are currently used in a multitude of industrial and biomedical applications, including magnetic resonance imaging, high capacity batteries, industrial coatings, biosensors, plastics, ultrahigh density storage devices, nanofibers, and catalysts. Yet, the potential impacts of these particles on human health and the environment are not well understood. Notably, the cellular mechanisms underlying Mn nanoparticle induced neurotoxicity are yet to be identified. Because nanoparticles are similar in size to microbes, we hypothesize that Mn nanoparticles exposure may activate phagocytic microglial cells to induce a neurotoxic response. We exposed BV2 microglia and primary microglial cultures to various doses of Mn nanoparticles and then measured inflammatory markers. Exposure of 0-50 μg/mL Mn nanoparticles to BV2 microglia over 24 hr period resulted in a dose-dependent increase in iNOS, ROS, TNFα, IL-6, IL-12, and RANTES levels. Additionally, Mn nanoparticles induced over a threefold increase in ROS generation in primary microglial cells. Interestingly, Mn nanoparticles also activated the non-receptor tyrosine kinase Fyn in BV2 microglia. In order to determine whether Fyn kinase plays a role in the Mn induced inflammatory response, we tested a series of Fyn kinase inhibitors, including rosmarinic acid, dinitro-rosmarinic acid and caffeic acid in BV2 microglia. In contrast, Fyn kinase inhibitors, including rosmarinic acid, dinitro-rosmarinic acid and caffeic acid.

244 Proinflammatory Cytokines Present in the Tumour Microenvironment Induce Phenotypic Change in Colorectal Cancer Cell Lines.

S. Patel and N. J. Gooderham.
Surgery and Cancer, Imperial College London, London, United Kingdom.

Colorectal cancer (CRC) is the third most common cancer worldwide with metastatic disease responsible for high mortality rates. The cellular microenvironment is modified during malignancy to support tumor development and metastasis, however mechanisms by which this occurs remain unclear. Previous data from our laboratory has shown an overexpression of cytokine P450 (CYP) drug metabolism enzymes in CRC cell lines. Using the formalin-fixed paraffin embedded colorectal tissue microarrays, we found elevated expression of CYP1α and CYP1β by IHC and IL6 in neoplastic tissue resected from colorectal cancer patients compared to matched non-neoplastic controls. In the current study, the presence of these cytokines in the tumour microenvironment was investigated in vitro using two CRC cell lines HCT116 and SW480, differing in metastatic potential. Treatment with conditioned media from activated THP1 monocytes, known to secrete an array of cytokines (including IL6, IL1β and TNFα), was able to induce the invasive properties of the metastatic cell line HCT116 as measured using wound and migration chamber assays. Treatment with IL6 alone (0-1000 pg/ml) was also shown to promote cell motility and invasion in a bell-shaped dose response, characteristic of cytotoxic cytokine function. The non-metastatic cell line SW480 did not respond to the conditioned media and was more resistant to IL6, generating a response only at the higher doses. Additionally, CYP1B1 and 2E1 expression were increased following treatment with the conditioned media as well as with IL6 on its own. Taken together, these data indicate that pro-inflammatory cytokines, in particular IL6, are able to cause phenotypic change in CRC cells by inducing CYP expression and promoting the ability for the cells to migrate and invade surrounding tissue, thus demonstrating the important role of tumor microenvironment in disease progression.

245 A Novel Anti-Inflammatory Peptide: Potential Therapy of Sepsis Induced by Bacterial Endotoxin.

U. Wormser1, M. Aschner1, Y. Finkelstein1, E. Proscura1, B. Brodsky1 and E. Shapira1.
1Institute of Drug Research, The Hebrew University, Jerusalem, Israel; 2Department of Pharmacology, Center for Molecular Toxicology, and the Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, TN; 3Neurology and Toxicology Service and Unit, Shaare Zedek Medical Center, Jerusalem, Israel.

Sepsis is a syndrome of infection complicated by vital organ dysfunction and considered one of the leading causes of mortality in intensive care units. It is characterized by a generalized inflammatory response caused by systemic activation of macrophages and other immune and microvascular endothelial cells. The present study demonstrates the efficacy of a novel anti-inflammatory peptide termed IIIIM1 in ameliorating sepsis induced by the bacterial endotoxin lipopolysaccharide (LPS). A single injection of the peptide 3 days prior to lethal dose of LPS increased animal survival by 60%. Shorter or longer intervals between IIIIM1 and LPS administration reduced peptide efficacy. LPS-induced increase in liver, kidney and spleen was reverted by peptide treatment. Thioglycolate-induced peritonitis, expressed by increased number of macrophages in the peritoneal cavity, was reduced by 38% in IIIIM1-treated mice. A bell-shape dose-response effect was observed in both peritonitis and sepsis models reaching maximal effect at 1mg/kg. Chemical modifications such as omission of the C- or N-terminal residues weakened the anti-inflammatory activities of the peptide. Serum levels of interleukin 6 and tumor necrosis factor alpha were reduced by 32% and 53%, respectively, in IIIIM1-treated mice intoxicated by LPS. Similar cytokine profile was observed in LPS-activated peritoneal macrophages treated in vitro with the peptide. In view of these data IIIIM1 is a promising drug candidate for treatment of sepsis induced by bacterial endotoxin.

246 S-Adenosylhomocysteine Inhibits NF-κB Activity in the Nucleus of Hepatocytes and Confers Sensitivity to TNF Cytotoxicity.

W. Watson1, T. Burke1 and C. McClain1, 2.
1Department of Medicine/GI, University of Louisville, Louisville, KY; 2Louisville VAMC, Louisville, KY.

Chronic alcohol exposure results in liver injury that is largely driven by inflammatory cytokines such as tumor necrosis factor-α (TNF). Hepatocytes are normally resistant to the cytocidal effects of TNF, but become sensitized to TNF by chronic alcohol exposure. Recently we reported that the decrease in the ratio of S-adenosylhomocysteine (SAM) to S-adenosyl-homocysteine (SAH) that occurs with alcohol liver injury renders hepatocytes sensitive to TNF cytotoxicity. The purpose of the present study was to determine whether inhibition of the transcription factor NF-κB contributed to TNF-induced cell death in hepatocytes with high levels of SAH. Hepatocytes were pre-incubated with LPS while similar cytokine profile was observed in LPS-activated peritoneal macrophages treated in vitro with the peptide. In view of these data IIIIM1 is a promising drug candidate for treatment of sepsis induced by bacterial endotoxin.
cells with high SAH levels. Nuclear NF-kB was not transcriptionally active, how-
evver, when SAH levels were high. As a result, IkB-α was not re-synthesized and NF-
kB remained in the nucleus. It is likely that cross-talk with other transcription fac-
tors is perturbed under these conditions, resulting in still other changes in gene expression.

247 Cyanobacterium *Anabaena* sp. Lipopolysaccharide (LPS) Elicits Release of MIP-α, Interleukin-6, and Matrix Metalloproteinase-9 from Rat Brain Microglia *In Vitro*.

D. Macadam1, M. L. Hall1, D. Feher2, P. Williams2 and A. M. Mayer1, 1Pharmacology, Midwestern University, Downers Grove, IL; 2Chemistry and Biochemistry, University of Hawaii at Manoa, Honolulu, HI.

We recently reported that freshwater cyanobacterium *Anabaena* LPS (AnaLPS) elicited release of superoxide anion (O2·−), thromboxane B2 (TXB2), and tumor necrosis alpha (TNF-α) by rat microglia (BMG) *in vitro* (The Toxicologist CD 126 (S-1), 2012). We hypothesized that AnaLPS-activated BMG might additionally re-
lease the cytokine interleukin-6 (IL-6), the chemokine MIP-1α (MIP-1α), and the matrix metalloproteinase-9 (MMP-9) *in vitro*. Methods: AnaLPS was prepared by hot phenol/water extraction. BMG were isolated from neonatal rats, and treated *in vitro* with 0.1-10 ng/mL AnaLPS at 35.9 °C for 17 hours. TNF-α, MIP-1α and IL-6 were determined by Milliplex® MAP rat cytokine/chemokine immunoassays, and MMP-9 by zymography. Results: MIP-1α, TNF-α, and IL-6 generation were observed at AnaLPS >10 ng/mL (MIP-1α), and > 1000 ng/mL, respectively. In contrast, MMP-9 release was significant at AnaLPS 10,000 ng/mL. Conclusions: Treatment of BMG with AnaLPS confirmed previously reported TNF-α release, and furthermore demonstrated for the first time the release of MIP-1α, IL-6 and MMP-9. Taken together, our results suggest that *in vitro* proinflammatory media-
tor release by cyanobacterial AnaLPS-treated BMG is complex, including lipids (TXR), free radicals (O2·−), cytokines (TNF-α & IL-6), chemokines (MIP-1α) and enzymes (MMP-9), all of which might play a yet unknown role in the putative im-
munotoxicity of AnaLPS *in vivo*. Continued investigation of AnaLPS chemistry and immunotoxicology are currently ongoing in our laboratories. Supported by Midwestern University and the University of Hawaii at Manoa.

248 Spleen As a Source of Inflammatory Macrophages: Role in Acetaminophen-Induced Hepatotoxicity.

M. Mandal1, A. Dragomir1, H. M. Choi1, J. D. Laskin2 and D. L. Laskin1, 1Pharmacology & Toxicology, Rutgers University, Piscataway, NJ; 2Environmental & Occupational Medicine, UMDNJ-RWJMS, Piscataway, NJ.

Activated macrophages (MP) have been implicated in the hepatotoxicity of acet-
aminophen (APAP). However, the origin of these cells has not been established. Splenic monocytes (mono)/MP have been shown to accumulate at inflammatory sites following tissue injury. In the present studies, we analyzed the contribution of splenic mono/MP to liver inflammation and injury induced by APAP. Mice were fasted overnight prior to administration of APAP (300 mg/kg, i.p.) or PBS. Spleen, bone marrow (BM) and liver were collected 24-96 h later and analyzed by flow cy-
ometry and immunofluorescence for the presence of activated mono/MP. APAP intoxication was associated with a time-dependent increase in CD11b+Ly6C+ proinflammatory MP, and a decrease in F4/80+ resident MP in the liver; this was correlated with a significant decrease in CD11b+F4/80+Ly6C+Ly6C- resident mono/MP in the spleen at 24 and 48 h post APAP, with no effect on BM mono/MP. Conversely, CD11b+F4/80+Ly6C+ inflammatory mono/MP increased in the spleen after 48–96 h, but decreased in the BM. To assess the role of splenic mono/MP in APAP hepatotoxicity, we used splenectomized (spx) mice. APAP-in-
duced hepatotoxicity was significantly decreased in spx mice, as measured by de-
creases in serum transaminases. Histologic evidence of hepatic necrosis was also re-
duced. This was associated with a significant decrease in inflammatory mono/MP subsets (CD11b+F4/80-Ly6C+ and CD11b+F4/80-Ly6C+) in the BM at 24 h post APAP when compared to sham control mice. In addition, in spx mice, a de-
crease in CD11b+F4/80-Ly6C+ myeloid derived suppressor cells (MDSCs) was observed in BM at 96 h post-APAP. Taken together, these results indicate that splenic mono/MP contribute to early inflammation and hepatotoxicity induced by APAP. Moreover, removal of the splenic reservoir of mono/MP results in emigration of MDSCs out of the BM following APAP administration and this may contribute to tissue repair. Supported by NIH GM034310, ES004738, CA132624, AR055073, ES007148, ES005022.

249 Exaggerated Hepatotoxicity of Acetaminophen (APAP) Following Administration of Codonate Liposomes Is Associated with the Persistence of Classically-Activated Macrophages in the Liver.

A. Dragomir, R. Sun, M. Mili, J. D. Laskin and D. L. Laskin, Joint Graduate Program in Toxicology, Rutgers University/UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ.

Toxic doses of APAP are known to cause centrilobular hepatic necrosis. Evidence suggests that classically and alternatively activated macrophages play distinct roles in APAP-induced hepatotoxicity. In the present studies, we investigated the effects of macrophage depletion using clodronate liposomes (CL) on activated macrophages populating the liver in response to APAP intoxication. Mice were administered empty liposomes (EL) or CL (100 μl, i.v.) 48 h be-
fore APAP (300 mg/kg, i.p.) or PBS control. In mice pretreated with EL, increases in serum transaminases and hepatic necrosis were observed within 24 h; this was correlated with hepatic accumulation of CD11b+Ly6C+ classically activated macrophages in the liver and increased expression of galectin-3, a marker for these cells. These effects were significantly increased in mice pretreated with CL at 72 and 96 h post APAP, and were associated with increases in CD11b+Ly6C+F4/80-in-
flammatory monocytes in the bone marrow, suggesting a potential origin of these cells. In contrast, APAP-induced expression of the alternative macrophage activa-
tion marker IL-10 was decreased in mice pretreated with CL, and increased in EL-pretreated mice relative to EL-treated mice. Taken together, these results suggest that increased APAP-induced hepatotoxicity following macrophage depletion using CL is due, in part, to persistent accumulation of classically activated macrophages in the liver. Supported by NIH GM034310, ES004738, CA132624, AR055073 and ES005022.

250 Bone Marrow Inflammation Precedes Delayed Myelosuppression from Hexahydro-1-Nitroso-3, 5-Dinitro-1, 3, 5-Triazine (MNX) Induced in Rats.

S. Iligama1, V. M. Kale2, M. S. Wilbanks3, E. L. Perkins1 and S. A. Meyer1, 1Toxicology, University of Los Angeles Monroe, Monroe, LA; 2College Pharmacy, Bowman University Health Science South Jordan, UT; 3US Army Engineer Research & Development Center, Vicksburg, MS.

MNX (hexahydro-1-nitroso-3, 5-dinitro-1, 3, 5-triazine), an environmental ni-
trored product of munitions RDX, contaminates military sites. Our previous studies identified bone marrow (BM) and spleen as hematological targets of acute toxicity to MNX in rats in the form of splenic hemosiderosis and loss of BM Granulocyte Macrophage Colony Forming Cells (GM-CFCs). To address whether delayed loss of GM-CFCs and blood granulocytes (NOAELs 24, 47 mg/kg resp) at 14 days after exposure to MNX is due to persistence of early hematological effects or is late-onset due to required expression period, female Sprague-Dawley rats were orally gavaged with MNX from 0 to 94 mg/kg and different toxicological endpoints were evaluated over a course time at 2, 7, 10, 12, and 14d. Significant de-
crease in relative spleen weight and increased macrophage activity in splenic red pulp at 2d (≥ 47 mg/kg); and persistent splenic hemosiderosis at 2d (≥ 47 mg/kg), 7d (NOAEL 24 mg/kg) and 14d were observed. A significant increase in blood granulocytes and circulating levels of RANTES, a leukocyte chemokine, indicate that an acute inflammatory response occurs at 2d after exposure to MNX. Also, persistent BM macrophage infiltration was observed in MNX (94 mg/kg) treated rat iliums (24h, 2d and 10d) and activation of FNRβ signaling pathway in BM cells was evident at 10d. Further, significant increase in adherent BM monocytes accumulating in the liver in response to APAP intoxi-
cation. Mice were administered empty liposomes (EL) or CL (100 μl, i.v.) 48 h be-
fore APAP (300 mg/kg, i.p.) or PBS control. In mice pretreated with EL, increases in serum transaminases and hepatic necrosis were observed within 24 h; this was correlated with hepatic accumulation of CD11b+Ly6C+ classically activated macrophages in the liver and increased expression of galectin-3, a marker for these cells. These effects were significantly increased in mice pretreated with CL at 72 and 96 h post APAP, and were associated with increases in CD11b+Ly6C+F4/80-in-
flammatory monocytes in the bone marrow, suggesting a potential origin of these cells. In contrast, APAP-induced expression of the alternative macrophage activa-
tion marker IL-10 was decreased in mice pretreated with CL, and increased in EL-pretreated mice relative to EL-treated mice. Taken together, these results suggest that increased APAP-induced hepatotoxicity following macrophage depletion using CL is due, in part, to persistent accumulation of classically activated macrophages in the liver. Supported by NIH GM034310, ES004738, CA132624, AR055073 and ES005022.

251 Reversibility of Prostate Fibrosis in Response to Bacterial-Induced Chronic Inflammation.

L. Wong, P. Hutson and W. A. Bushman, University of Wisconsin-Madison, Madison, WI.

Introduction: Benign prostatic hyperplasia (BPH) and its associated lower urinary tract symptoms (LUTS) are common in aging men. Chronic inflammation and in-
creased stromal collagen are common features observed in BPH. Recent study has
shown that the collagen content is correlated with the degree of LUTS and tissues status, suggesting the involvement of prostate fibrosis in BPH/LUTS. Using the bacterial-prostatic inflammation mouse model, we have shown that prostatic inflammation induces collagen content. The goal of this study is to investigate the reversibility of prostatic fibrosis during bacterial-induced chronic inflammation.

Methods: We transurethrally instilled uropathogenic E. coli into adult C3H/Ha/Oj male mice to induce chronic inflammation in the prostate. Naïve, saline and E. coli instilled animals were sacrificed after 1 month. Other animals were treated with Baytril in drinking water to resolve the infection and underwent an additional 2-month resolution. The prostate tissues were used for bacterial culture and measurement of hydroxyproline level as collagen content using high-pressure liquid chromatography.

Results: The uropathogenic E. coli was present in the prostates of all E. coli infected animals after 1-month post-instillation and treatment of Baytril completely resolved the bacterial infection. We further found that hydroxyproline content in the prostates was significantly increased in the E. coli infected mice compared to the saline. Infected mice treated with Baytril with an additional 2-month resolution had a significant increase in hydroxyproline level in the prostates compared to the saline, but the level was significantly lower to the E. coli infected prostates. Conclusion: This study suggests that prostate fibrosis in response to bacterial-induced chronic inflammation is only partially reversed. Given that prostate fibrosis is suggested to strongly associate with the loss of prostate compliance and the development and progression of BPH/LUTS, an understanding on the mechanisms of the irreversible collagen deposition is required for improvement of therapeutic treatment.

Topical Application of TRPV1 Antagonist Effectively Inhibits PTD-Induced Sensitization in Murine Skin.

Transient receptor potential vanilloid type 1 (TRPV1) is expressed in the skin and plays a role in migration of dendritic cells to lymph nodes in allergic diseases. However, it has been unaddressed if TRPV1 blockade can suppress chemical-induced contact dermatitis. 1,4-toluenediamine (PTD) and 1,4-phenylenediamine (PPD) are widely used as permanent hair dye but repeated use of PTD can induce contact hypersensitivity by the induction of regulatory T cells in the draining lymph node and of inflammation in the exposed skin. In this study, the inhibitory effect TRPV1 antagonist, PAC-14028 on PTD-induced dermatitis and dendritic cell (DC) function was explored. This study was performed according to the method of nonradioactive local lymph node assay using flow cytometry. Groups of mice (N=4–5) were treated with 25 µl of the PTD alone, PAC-14028 alone, PTD and PAC-14028 or vehicle alone on the dorsal area of both ears daily for 3 consecutive days (Day 1, 2 and 3) and were sacrificed at Day 6. The local response was measured by ear swelling and by histological examinations (H&E staining). We also measured by ear swelling and by histological examinations (H&E staining). We also measured the cellular infiltrate in the draining lymph nodes (pLN). All PM species increased markers of airway or allergic inflammation. However diesel PM, and particularly cDEP were most effective in sensitizing mice and driving Th2-type cytokine and OVA-specific responses ex vivo. This study supports the realization that respirable PM differentially provoke allergic inflammation, and provides new insights on signaling changes contributing to these effects. This abstract does not reflect US EPA policy.

Role of Ortho-Phthalaldehyde in IgE-Induced Airway Hyperresponsiveness As a Hapten and an IgE-Selective Adjuvant-Like Activity in Mice Treated with Ovalbumin.

Y. Ishihara1, M. Naka1, T. Morinaga1, G. Hasegawa2, Y. Yamaguchi1, T. Nishikawa2 and H. Kawashima3. 1Public Health, Kurume University, Kurume, Japan; 2Surgical Pathology, Tokyo Women’s Medical University, Tokyo, Japan; 3Microbiology & Immunology, University of Shizuoka, Shizuoka, Japan.

[Purpose] We previously reported that ortho-phthalaldehyde (OPA) disinfectant induces acute inflammation and enhances allergen-specific IgG production without allergen-specific IgG in ovalbumin (OVA)-sensitized mice. However, etiology of this disorder is not fully understood. The purpose of this study is to explore relationship between airway hyperresponsiveness and host immunity in OPA-treated OVA sensitized mice. [Methods] Female ICR mice were divided into five groups: OVA + vehicle group, OVA + aluminium hydroxide (Alum)/OVA group, OPA + OVA group, OPA + OVA + Alum group, and Control group. The mice were sensitized twice with OVA and challenged with OVA inhalation one day prior to testing airway responsiveness to acetylcholine (Ach) under anesthesia. [Results] Airway hyperresponsiveness to Ach was observed in the OPA + OVA and Alum + OVA groups compared with the responses observed in the OVA, OVA + control groups. OPA-specific IgG and IgE antibodies and OVA-specific IgE antibody increased markedly, whereas OVA-specific IgG antibody did not increase in the OPA + OVA group due to the masking of OVA’s antigenicity for IgG production by the aldehyde group of OPA. [Conclusion] These results strongly suggest that OPA functions both a hapten and an allergen-specific, IgE-selective adjuvant, leading to significant airway inflammation and hyperresponsiveness to Ach.

Comparative Inflammatory Effects of Differential Particulate Matter Species in an OVA-Sensitization and Challenge Model.

M. A. Williams1, M. J. Daniels1, E. H. Bergin1, T. Smith1, N. Hykal-Cooga1, L. B. Copeland1, D. L. Andrews2, J. H. Richards1 and I. Gilmour1. 1Environmental Public Health Division, US EPA, Research Triangle Park, NC; 2Research Core Unit, US EPA, Research Triangle Park, NC.

Exposure to respirable ambient particulate matter (APM) provokes allergic immunity that may also occur on exposure to environmental diesel exhaust particles (cDEP) or emission source DEP (cDEP). Our hypothesis tested whether APM, cDEP or cDEP provide immune adjuvancy in an antigen (OVA) sensitization and challenge model. We assayed for oxidative stress, inflammatory and cytokine analytes in BALF, assay of lung infiltrating cells, assay of serological analytes (total IgE, IgG1, IgG2a), and antigen-specific recall responses of primary lymph node cells (pLN). All PM species increased markers of airway or allergic inflammation. However, cDEP or cDEP sensitized mice had lower levels of superoxide dismutase as compared APM, without affecting other oxidative stress markers (p<0.005). By contrast, all PM species enhanced neutrophil infiltration and neutrophil elastase activity to the lung as compared saline or OVA alone (p<0.001). These effects for APM (p<0.005) and cDEP (p<0.05) were concordant with enhanced levels of pro-Th2 cytokines like IL-5 in BALF. Assay of isotype class-switching was less informative. All PM species partially diminished total IgE as compared saline, but not when compared to LPS control or each other, and dampened secretion of IgG2a (p<0.07) and IgG1 (p<0.059) as compared low-dose LPS/OVA. In OVA-specific recall responses, pLN proliferation was enhanced in mice sensitized with cDEP and particularly cDEP, which provoked robust IL-5 and IL-13 secretion (p<0.01). We conclude that all PM species provoked airway and allergic inflammation. However diesel PM, and particularly cDEP were most effective in sensitizing mice and driving Th2-type cytokine and OVA-specific responses ex vivo. This study supports the realization that respirable PM differentially provoke allergic inflammation, and provides new insights on signaling changes contributing to these effects. This abstract does not reflect US EPA policy.

Dual Oxidase Modulates Airway Neutrophil Recruitment in Allergic Airways.

S. Chang1,2, A. L. Linderholm2, H. Graberger3 and R. W. Harper1. 1Pharmacology Toxicology, University of California Davis, Davis, CA; 2Internal Medicine, University of California Davis, Davis, CA; 3Internal Medicine, University of Michigan, Ann Arbor, MI.

Introduction/Rationale: Reactive oxygen species (ROS) plays an important role in maintaining lung homeostasis. However disregulation of ROS, specifically hydrogen peroxide, has been linked to respiratory diseases such as chronic obstructive pulmonary disease, cystic fibrosis and asthma. Dual Oxidase (DUOX) is an NADPH oxidase, whose function is regulated production of hydrogen peroxide, localized to the lung epithelium. DUOX activity and expression are upregulated by IL-4 and IL-13 which are key cytokines in allergic airways. Interestingly, the role of DUOX in asthma has never been evaluated in vivo. The objective of this study was to determine the role of DUOX derived hydrogen peroxide in asthmatic airways, using a DUOX system knock out mouse. Methods: Wild-type and dual DUOX A1/DUOX A2 knockout mice were sensitized with ovalbumin (day 0 and 14) and using a DUOX system knock out mouse. Results: Wild-type mice with functional DUOX had a greater influx of neutrophils than knockout mice when subjected to ovalbumin as compared saline or OVA alone (p<0.001). Between the two groups. Results: Wild-type mice with functional DUOX had a greater influx of neutrophils than knockout mice when subjected to ovalbumin as observed in BALF as well as semi quantitative counts in lung tissue. Conclusion: These findings suggest that DUOX derived hydrogen peroxide has an important role in signaling neutrophils into allergic airways. This research was supported by NIH (R01 HL 085511 & R01 HL085311-S1).
Epithelial-Derived Hypoxia Inducible Factor-1/2 Delta Plays a Role in Programming the Innate Immune Response of the Lung

Allergic airway disease (AAD) involves a complex interaction between various cell types within the lung, including inflammatory and epithelial cells. The inherent inflammation of AAD also leads to localized hypoxia. Communication between inflammatory cells, such as macrophages and T cells, and the epithelium in these hypoxic conditions is hypothesized to be critical to the progression of AAD. To characterize the role of epithelial-mediated hypoxia-inducible signaling in AAD, epithelial and lung-specific conditional hypoxia inducible factor-1alpha (HIF1alpha), HIF2alpha, and HIF1alpha and HIF2alpha (HIF1/2alpha) knockout mouse models were created. Previous research in our lab has shown that the HIF1alpha-deficient (HIF1alphaDeltaD) mice exhibit an exacerbated response to the ovalbumin (OVA) model of AAD. To determine the role of HIF2alpha in AAD and characterize possible compensation between the two HIFs following OVA challenge, recombination was induced early in postnatal development and HIF2alpha-deficient mice were then sensitized/challenged with OVA via a standard paradigm. In contrast to the HIF1alphaDeltaD mice, the HIF2alphaDeltaD mice displayed no increase in eosinophil infiltration, T helper 2 cytokines, or airway resistance following OVA treatment. The HIF2alphaDeltaD mice appear phenotypically identical to OVA-treated littermate controls. Interestingly, when HIF1alphaDeltaD mice were sensitized/challenged with OVA, these animals appeared similar to HIF2alphaDeltaD and littermate controls, suggesting that HIF2alpha plays a role in the exacerbated inflammation observed in the HIF1alphaDeltaD model. These data suggest that epithelial-derived HIF signaling plays an important role in establishing the immunity of the lung and that a proper balance between the two HIFs is required for a normal inflammatory response. The observed changes in the inflammatory response of the various models also suggest that early life exposures that alter the expression or function of HIF1alpha might have profound effects on lung's response to toxicant challenge upon reaching adulthood.

OSDH Improves Survival in PA Pneumonia by Increased Bacterial Clearance and Reduced Lung Injury

L. Sharma1, J. Wei1, V. Patel1, R. Siregar1, N. Rao1, T. P. Kennedy6 and L. L. Mandell1, 2, 3, 4, 5, 6. 1St. John's University, New York, NY; 2The Feinstein Institute for Medical Research, Manhasset, New York, NY; 3University of Utah, Salt Lake City, UT; 4Pulmonary and Critical Care Medicine, Georgia Health Sciences University, Augusta, GA.

Nosocomial Pneumonia (NP) or Hospital Acquired Pneumonia (HAP) is associated with infections originating from the hospital borne pathogens. Resistance against antimicrobial agents is the most common feature of these infections which result in persistent infection leading to high mortality rates and therapeutic costs. Due to the involvement of multidrug resistant bacteria, alternative or supportive therapies are required. Pseudomonas aeruginosa (PA), gram negative pathogen, is one of the prominent pathogens associated with NP. PA pneumonia increases the secretion of inflammatory cytokines, neutrophil infiltration and subsequent lung damage. HMGB1, one of the inflammatory cytokines, has been shown to play important roles in PA lung infections. HMGB1 can compromise innate immunity by impairing phagocyte function mediated by its receptors TLR2 and TLR4. Heparin, a well-known anticoagulant, exhibits anti-inflammatory properties that are independent of anticoagulant property. 2-O, 3-O –desulfated heparin (ODSH), heparin, has been proven to have anti-inflammatory properties with minimal anticoagulant effect. ODSH has been shown to reduce lung injury in sterile inflammation and reducing inflammatory lung damage. In this study, we examined the effect of ODSH on PA pneumonia. Here we demonstrate that ODSH not only reduces PA-induced lung injury, illustrated by reduced total protein content in lung lavage fluids, it also significantly increases bacterial clearance. This improved lung injury and bacterial clearance resulted in marked improvement in overall survival of the mice with PA infection. The attenuation in lung injury and improved bacterial clearance was associated with reduced airway HMGB1. In addition, ODSH inhibits binding of HMGB1 with receptors TLR2 and TLR4. These data indicate a novel role of ODSH in the treatment of PA pneumonia.

Role of Mannose-Binding Lectin in the Pulmonary Response to Ozone

Ozone is a common pollutant and a potent oxidant in many areas of the country. Inhalation causes airway hyperreactivity, lung hyperpermeability, inflammation and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. One of the mechanisms of ozone-induced lung injury susceptibility are not fully understood. Ozone exposure induces a number of pro-inflammatory events in the lung, some of which are mediated by the innate immune system. We hypothesized that mannose binding lectin (MBL), which plays a central role in the activation of the complement pathway of innate immunity, is needed to elicit some of the pro-inflammatory effects caused by ozone-mediated activation of the innate immune system. Wild-type (Mbl+/+) and MBL-deficient (Mbl−/−) mice were exposed to ozone (0.3 ppm) for 24, 48, and 72 hours. Compared to Mbl+/+ mice, significantly less neutrophil infiltration and the neutrophil attractants CXCL2 (MIP-2) and CXCL5 (LIX) were found in the lungs of Mbl−/− mice exposed to ozone. We then used mRNA microarray analyses to gain additional mechanistic insight to the role of MBL in this model. We identified significant differences in expression response profiles and networks at baseline and after exposure between Mbl+/+(WT) and Mbl−/−(KO) mice, providing potential roles for MBL at steady-state and in the innate immune pulmonary response to ozone inhalation. Future work will seek to determine whether MBL function contributes to ozone-induced pulmonary inflammation and may be mediated through the complement cascade.

Role of Mannose-Binding Lectin in the Pulmonary Response to Ozone

Ozone is a common pollutant and a potent oxidant in many areas of the country. Inhalation causes airway hyperreactivity, lung hyperpermeability, inflammation and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. One of the mechanisms of ozone-induced lung injury susceptibility are not fully understood. Ozone exposure induces a number of pro-inflammatory events in the lung, some of which are mediated by the innate immune system. We hypothesized that mannose binding lectin (MBL), which plays a central role in the activation of the complement pathway of innate immunity, is needed to elicit some of the pro-inflammatory effects caused by ozone-mediated activation of the innate immune system. Wild-type (Mbl+/+) and MBL-deficient (Mbl−/−) mice were exposed to ozone (0.3 ppm) for 24, 48, and 72 hours. Compared to Mbl+/+ mice, significantly less neutrophil infiltration and the neutrophil attractants CXCL2 (MIP-2) and CXCL5 (LIX) were found in the lungs of Mbl−/− mice exposed to ozone. We then used mRNA microarray analyses to gain additional mechanistic insight to the role of MBL in this model. We identified significant differences in expression response profiles and networks at baseline and after exposure between Mbl+/+(WT) and Mbl−/−(KO) mice, providing potential roles for MBL at steady-state and in the innate immune pulmonary response to ozone inhalation. Future work will seek to determine whether MBL function contributes to ozone-induced pulmonary inflammation and may be mediated through the complement cascade.

Anti-Inflammatory Effect of Impiramine in Silica-Induced Inflammation

R. Bioway, R. Hamilton and A. Holian, Center for Environmental Health Sciences, University of Montana, Missoula, MT.

Environmental or occupational exposure to silica particles over an extended period of time is associated with the development of progressive inflammation and silicosis. Silicosis remains a prevalent health problem throughout the world. Currently, treatment choices for silicosis are limited and at present there is no cure for the disease. Therefore, it is essential to investigate potential therapeutic agents in silicosis treatment. Impiramine (IMP) is an approved tricyclic antidepressant, and a lysosome- motropic agent. The aim of this study was to determine the protective effect of IMP on silica-induced inflammation and determine the mechanism by which IMP inhibits inflammation. C57BL/6 wild-type (WT) mice were used throughout the study. The protective effect of IMP was evaluated in vitro and 24 hours and 42 days following silica exposure in vivo. Silica was administered once a week for 4 weeks and IMP was delivered for 42 days via osmotic pumps implanted subcutaneously. Collagen levels were determined by hydroxproline content. IMP treatment decreased collagen levels compared to the silica-exposed group. Lung histopathology improved on IMP treatment. WT mice were pretreated with IMP 25 mg/kg, and subsequently exposed to silica 1mg/kg during the in vivo acute study. IMP inhibited silica-exposed neutrophil infiltration, IL-1β and IL-6 in the lavage fluid. For in vitro experiments, WT alveolar macrophages (AM) were pretreated with 25 μM IMP and subsequently exposed to LPS (20 ng/ml) and silica (100 μg/ml). IMP was highly effective in blocking silica-induced inflammasome activation without any toxic effects on AM. The effect of IMP on acid sphingomyelinase (A-SMase) was determined since A-SMase has been associated with acute lung injury. A-SMase was significantly inhibited by IMP treatment. The results demonstrate that IMP inhibits silica-induced inflammation and IMP may be exhibiting anti-inflammatory properties through its effect on lysosomes. The work was supported by NIH grants P20 RR017670 and R01 ES 15294

Higher Susceptibility of Male Mice to Diesel Exhaust Neurotoxicity

L. G. Costa1, 2, G. Giordano1, A. Engstrom1, C. S. Welshy1, F. Farin1 and T. J. Kavanagh1, 2. 1Department Environmental Occupational Health Sciences, University of Washington, Seattle, WA; 2Department of Neuroscience, University of Parma, Parma, Italy; 3Division of Cardiology, University of Washington, Seattle, WA.

In addition to increased morbidity and mortality caused by respiratory and cardiovascular diseases, air pollution may also contribute to CNS diseases. Traffic-related air pollution is a major contributor to global air pollution, and diesel exhaust (DE) is the most important component. DE contains more than 40 toxic air pollutants and is a major constituent of ambient particulate matter (PM), particularly of ultrafine-PM. Limited information suggested that exposure to DE may cause oxidative stress and neuroinflammation in the CNS. We hypothesized that males may be more susceptible than females to DE neurotoxicity, because a lower level of expression of paraoxonase 2 (PON2), an anti-oxidant mitochondrial enzyme. Acute exposure to DE (250 μg/m3 for 60 min) causes significant oxidative stress (lipid peroxidation as determined by the malondialdehyde assay) in several brain regions (particularly the olfactory bulb, the hippocampus and the cerebellum) and the ef-
African Dust Storms also referred as Events (ADE) are believed to be associated to high prevalence of respiratory diseases such as asthma in Puerto Rico (PR). Endotoxins (ENX) have been previously reported as constituents associated with ADE particulate matter (PM). These ENX and related compounds are known to promote pro-inflammatory responses in lung cells and in susceptible individuals. Since ENX have been shown to work through the following receptors, we have evaluated a number of Toll-like receptors (TLR2/4) as well as the co-receptor, Cluster of Differentiation 14 (CD14) single nucleotide polymorphisms (SNPs) in the Puerto Rican population. Contradictory results exist, which link SNPs to increased asthma prevalence and/or risk in some populations. A total of 6 SNPs have been evaluated in the Puerto Rican asthmatic population. TLR2 (+596C/T, +6686T/A, +399A/G), TLR4 (+896A/G, +1196C/T) and CD14 (+1188C/G) SNPs were measured in 62 asthmatics and 59 non-asthmatic controls using Taqman® probes through a genotyping assay (Real Time PCR). Minor allele frequencies (0.121) were determined. TLR2 and TLR4 SNPs were shown to be more represented in the asthmatic group (89% and 65%), combining CT plus TT and AG plus GG genotypes, respectively. TLR4 SNP +896A/G analysis revealed only 1 G/G genotype (2%) on the asthmatic group. The CD14 SNP was similarly represented in both groups. The identification of specific TLR SNPs will be valuable to understand action mechanisms of environmental ENX, which have been associated with the triggering of asthma in PR. Moreover, it will help to reveal the relevance of TLR pathway genes as potential candidates for gene-environment interactions in Puerto Ricans. Study approved by the UPR-MSC-IRB (#2087/011) and supported by MBRs-RISE Grant R25GM061838.

Subchronic Exposure to Deltamethrin Causes Hippocampal Neuroinflammation and Deficits in Learning and Memory.

M. M. Hossain and J. Richardson, Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Piscataway, NJ.

Previously, we have reported that in vitro exposure of neuroblastoma cells to deltamethrin causes apoptosis through the ER stress pathway, leading to calpain and caspase-3 activation (Hossain and Richardson, 2011). Others have found that acute high-dose deltamethrin (12.5 mg/kg) exposure causes hippocampal apoptosis in adult rats (Wu and Liu, 2000). However, little is known about the effects of longer-term lower level exposure that does not result in acute poisoning. Here, we investigated the effects of deltamethrin at a dose of 3 mg/kg every 3 days for 2 months on hippocampal ER stress, neuroinflammation, and learning and memory in adult mice. Deltamethrin treatment did not result in overt toxicity. However, we observed increased spectrin cleavage in the hippocampus of deltamethrin-treated mice, indicating activation of calpain. Deltamethrin also significantly increased the hippocampal mRNA expression of glial fibrillary acidic protein (GFAP; 23%) and the pro-inflammatory cytokines tumor necrosis factor-alpha (121%) and Interleukin-1 alpha (96%), indicating an ongoing neuroinflammatory process. Finally, we found that subchronic deltamethrin exposure causes profound deficits in hippocampal-dependent learning and memory in the Morris water maze, which was accompanied by a decreased mRNA expression (30%) and protein level (39%) of nerve growth factor (NGF), respectively. Together, these data suggest activation of the ER stress pathway and neuroinflammation by repeated exposure to deltamethrin may contribute to the down-regulation of NGF in the hippocampus, which may result in subsequent impairment in learning and memory in mice. Supported by NIH ES015991 and ES005022.
265 Using a Sequence Homology-Based Predictive Strategy to Address Current Demands for Focused Toxicity Testing in Ecological Risk Assessment.

The lack of resources available for comprehensive toxicity testing, international interest in limiting the quantity of animals used in testing, and a mounting list of anthropogenic chemicals produced worldwide have led to the exploration of innovative means for identifying chemicals that are potentially hazardous to the environment and its inhabitants. Predictive toxicological approaches, which utilize publically available, a priori, knowledge of a chemical and its known molecular, cellular, or whole organism interactions, show promise for focusing current toxicity testing strategies. Using modern bioinformatic techniques, we have created a computational tool, which mines the extensive genomic and proteomic sequence repositories available through the National Center for Biotechnology Information and strategically compares homology metrics associated with primary and secondary protein sequences/structural domains across taxa. These comparisons are used to identify and rank species most likely to be susceptible to a chemical acting through a known molecular initiating event and can therefore aid in designing toxicity studies for species of concern. This presentation will identify the domains of applicability for this tool and describe examples related to predicting species sensitivities to pharmaceuticals and pesticides. An assessment of honey bee sensitivity to various pesticides will demonstrate the applicability of this tool for existing questions in pharmaceuticals and pesticides. An assessment of honey bee sensitivity to various pesticides will demonstrate the applicability of this tool for existing questions in pharmaceuticals and pesticides.

266 Alteration in Behaviour, Histoarchitecture of Liver, Lung, and Kidney of Male Wistar Rats Exposed to Open Refuse Dump.

Household wastes are disposed in the open in Nigeria, and most third world countries. These could have serious consequences on the health of humans and animals in the vicinity. Yet not much is known on the effects of such exposure on behaviour, and organs of the body. The present work exposed weaned male Wistar rats to open refuse dump continuously for five months. During this period the rats were housed in a building on the dump, kept in clean plastic cages, fed normal rat chow, and provided clean drinking water. Control rats were housed in Niger Delta University Animal Holding. At the end of the period, behaviour of the rats was tested on Open, and Elevated plus maze, for exploratory activity and for anxiety respectively. The animals were sacrificed, liver, lung, kidney dissected, examined macroscopically, and prepared for histological examination with H & E staining. Data obtained and analysed with student t-test showed that rats exposed to refuse dump spent significantly less time in open arms of the elevated plus maze than their unexposed controls (p < 0.05). Organs showed massive infiltration with fat, while the histology showed destruction of the radial liver architecture, thinning and collapse of alveolar wall of lung, and tubular wall of the kidney. Thus indicating that such exposure could induce anxiety, and massive destruction of organs of the body, leading to serious health consequences.

Key words: refuse exposure, anxiety, destruction, liver, lung, kidney

267 In Vitro Fish Metabolism Using Rainbow Trout Liver S9 Fractions to Evaluate the Bioaccumulation Potential of Fragrance Ingredients.

Bioaccumulation in aquatic species is a critical endpoint in the evaluation of novel chemicals as part of PBT assessment (persistent, bioaccumulative, and toxic) by the U.S. EPA. In vivo determination of the bioconcentration factor (BCF) requires the use of large numbers of animals. Predictive models are commonly used if no in vivo BCF data are available. These models generally acknowledge the possibility that biotransformation can reduce the extent of bioaccumulation. Lack of measured data, however, modeled biotransformation rates are commonly set equal to zero. In vitro systems have been proposed as alternative methods that can be used to provide metabolic data needed to refine BCF computer model estimates.

The goal of our study was to determine the in vitro metabolic stability of common chemical classes of fragrance ingredients (esters, alcohols and ketones) using rainbow trout liver S9 fractions and to use in vitro clearance rate to model the bioaccumulation potential. Metabolic stability was determined by monitoring the disappearance of the parent molecule by GC MS and metabolite formation by GC-MS and LC-MS.

Slow enzymatic turnover was found with isosologiflanone (CAS 23787-90-8). The ester serenolide (477218-42-1) was transformed rapidly. Alcohols like Ambermax (929625-08-1) and ketones like spirogalbanone (224031-70-3) were transformed moderately to rapidly. Metabolic routes, identified by selective use of cofactors and metabolite identification, involve ester cleavage, hydroxylations, reductions and conjugation with glucuronic acid and glutathione. When clearance rates measured in vitro were used as inputs to the BCF model a good correlation was observed between predicted BCFs and measured in vivo values. In vitro S9 metabolism data in combination with new refined BCF models are a valuable tool to assess bioaccumulation potential as part of a weight-of-evidence approach for chemical registrations.

268 The Role of Aquaporin 3 in the Uptake of Arsenite through the Intestine of the Atlantic Killifish (Fundulus heteroclitus).

Aquaglyceroporins (AQPs) are proteins that mediate movement of water and small solutes across cellular membrane. Previously, we cloned kIAQP3a from the gill of the killifish (Fundulus heteroclitus), an environmental sentinel species. kIAQP3a, the only AQP expressed in gill, is the first AQP described that does not transport arsenite. This finding accounts for the low levels of cellular arsenite in gill of killifish exposed to environmental arsenite. Another homolog of AQP3 (kIAQP3b), which transports arsenite, was identified as the consensus from a transcriptome database. In this study, we sought to identify the AQP3s in the intestine, a major route of arsenite uptake. First, we examined AQP mRNA expression by qRT-PCR in the killifish intestine. Among the AQP3s examined, only AQP3c was expressed above background levels. Western blot studies with a polyclonal antibody that did not discriminate among kIAQP3 variants, revealed that kIAQP3c abundance was higher in killifish acclimated to FW compared to SW. Intriguingly, whereas only kIAQP3c was expressed in the intestine of FW killifish, both kIAQP3a and a new variant, kIAQP3c, were expressed in the intestine of SW fish. When kIAQP3c was transfected into HEK293T cells, cells took up arsenic as effectively as cells transfected with kIAQP3b. When we examined arsenic levels in the intestine of FW fish and SW fish exposed to 1000 μg/L arsenite for 72h, the amount of arsenic detected in the intestinal lumen of SW fish was higher than the amount detected in FW fish. Results indicate that in the kill indicate that arsenic uptake in SW fish is mostly occurs via ingestion, and that killifish acclimated to SW take up more arsenite than FW acclimated fish, because kIAQP3c expression is up-regulated in SW fish and because SW fish drink more water than FW fish.

269 Characterization of DCOIT Bioaccumulation Mechanism via In Vitro Incubation with Rainbow Trout Liver S9.

D. C. O. I. T. (259786-47-4) is widely used in a variety of industrial processes. In supporting DCOIT regulatory registration, a bioaccumulation study in bluegill sunfish was conducted with 14C-DCOIT and indicated the bioconcentration factor (BCF) was 750 ml/g with less than 1% of radioactivity in tissues attributed to DCOIT. To understand the findings in the in vitro fish bioaccumulation study, the in vitro metabolism of DCOIT was examined by using rainbow trout liver S9 (Fish S9) and glutathione (as protein
270 Zinc Content Determines the Toxicity of Tire Leachate in Girardia tigrina.

The practice of recycling old tires into various outdoor structures such as playground surfaces and landfill liners poses the risk of tire components moving into local watersheds and possibly affecting aquatic organisms. In this study we tested the hypothesis that the zinc content of tire leachate is a significant factor in its toxicity to Girardia tigrina (Girard, 1850), a freshwater planarian common to North American waterways. Planarians were cultured in tire leachate containing either 49.5 mg/L of zinc (BALT) or 0.13 mg/L (FRESH) of zinc or a control of extraction medium (EM) over a period of 24 hours. All planarians in the BALT group died within 24 hours while no planarians died in either the FRESH or EM group. To verify that zinc was the causative agent in the observed toxicity, planarians were maintained in a solution containing an equivalent amount of zinc (from zinc sulfate) for 24 hours. The survival rate of planarians in this group was not significantly different from the survival rate observed in the BALT group. These data strongly indicate zinc as the toxic agent. In addition to the lethality demonstrated by both high-zinc solutions, planarians displayed signs of distress indicated by increased activity, writhing, and loss of motor coordination prior to death when compared to controls, suggesting that neurotoxicity may be the mechanism of action. Future studies will examine the dose-response relationship of zinc toxicity in G. tigrina as well as evidence of neurotoxicity. (Support: NSF Award 0928444.)

271 Harmonizing Use of the 3Rs in Fish Toxicity Testing.

C. Willett1, S. Belanger1, M. Embury1, T. Jepson2, M. Halder1, A. Lillicrap3, H. Ruff1, L. Tourat1 and S. Zakh1. 1The Humane Society of the United States, Gaithersburg, MD; 2Procter & Gamble, Cincinnati, OH; 3Health and Environmental Sciences Institute, Washington DC; 4National Institute for Basic Biology, Okazaki, Japan; 5ECVAM, Joint Research Centre, Ispra, Italy; 6Norwegian Institute for Water Research, Ecotoxicology and Risk Assessment, Oslo, Norway.

Pursuit of methods that refine, reduce or replace animals is often discussed in the context of human health hazard and risk assessment; however, several approaches that are in common use for human health are more frequently being applied in ecological hazard and risk assessment as well. Organized testing frameworks such as tiered frameworks or integrated strategies can be used to prioritize information needs and focus testing on tests that would be the most informative for a given regulatory need. Specific application of integrated strategies has been used to minimize fish used for acute toxicity testing, for example the limit and threshold approaches. There are principles that can be applied to specific test protocols that minimize animal use, for example the use of historical controls where appropriate or using statistical analyses to define the minimum individuals needed to obtain statistically significant results. Computer modeling can assist in extrapolating information from one species to another or in predicting acute toxicity, bioaccumulation, and other biological activity in fish. While limited embryo, ex-vivo, and in vitro approaches are currently used in fish toxicity testing, opportunities exist for expanding the repertoire, particularly in the area of omics technologies. This presentation will describe these approaches as currently applied and present recommendations for improving the application and harmonization of 3Rs approaches to fish toxicity testing, as presented in Chapter 5 of the Fish Toxicity Testing Framework Guidance Document prepared by the Organization of Economic Cooperation and Development (August 2012).

272 Concentrations of Metals Associated with Crude Oil from the BP Makaondo Well in Sediments and Fish from the Northeastern Gulf of Mexico.

A. C. Nichols, D. A. Steffy and L. J. Morgan. Physical and Earth Sciences, Jacksonville State University, Jacksonville, AL.

To investigate if metals associated with crude oil from the BP Makaondo Well were entering the marine food chain, sediment and scad mackerel (TRACHURUS LATHAMI) samples were analyzed by ICP for five of these metals: chromium, nickel, lead, thallium and vanadium. Samples were collected from the carbonate shelf along the west coast of Florida in fall, 2010. A subset of these samples was collected from the western Florida Panhandle. This area was south of the Florida beaches where tar balls washed ashore during the summer of 2010. Nickel levels in samples from this subset ranged from 2.85 to 11.18 micrograms/g in dry sediments, and 0.00 to 0.86 micrograms/g in dry fish tissues. Chromium levels in samples from this area ranged from 7.08 to 12.43 micrograms/g in sediments, and from 0.00 to 0.76 micrograms/g in scad. Vanadium levels ranged from 3.32 to 10.07 micrograms/g in sediments. Vanadium was the only one of these metals not detected in any of the fish. Lead levels ranged from 1.13 to 5.89 micrograms/g in sediments, and 0.00 to 0.36 micrograms/g in scad. Thallium appears to be biomagnified in scad, as concentrations in fish ranged from 0.72 to 1.42 micrograms/g, while sediment levels ranged from 0.00 to 0.30 micrograms/g.

273 The Effect of Tributyltin (TBT) on Zebrafish Sexual Differentiation.

C. L. McGinnis, Quinipiac University, Hamden, CT.

Tributyltin (TBT), an antifouling agent, has been implicated in the masculinization of fish species worldwide, however the molecular mechanism is not fully understood. Our lab has previously examined the actions of TBT as an endocrine disruptor in zebrafish (Danio rerio) and determined, in vitro, that TBT inhibits zER-specific activity in a dose dependent manner and may potentially act through the RXR portion of the PPAR-RXR (peroxisome proliferator-activated receptor gamma - retinoid X receptor alpha) heterodimer. Additionally, zebrafish were exposed to increasing concentrations of TBT and sexual differentiation genes were analyzed via qPCR. Results from qPCR focused our experimental efforts on the candidate gene, SRY-box containing gene 9a (Sox9a). Sox9a is a key regulator in mammalian testis differentiation, where it is shuttled to the nucleus upon differentiation; this appears to be a conserved mechanism across fish, marsupials and placental mammals. Developing zebrafish embryos were exposed to 1pM and 2.5pM TBT from 10 days post hatch (dpf) to 90 dpf and sampling was done at 25, 35, 40, 45, 60 and 90 dpf. Fish were treated three times per week with either TBT, estrogen or vehicle. Following treatments, immunohistochemical (IHC) analysis was performed to assess Sox9a nuclear or cytoplasmic localization.

274 Heavy Metal Response in Daphnia magna: An Ecologically- Relevant Nonmodel Organism.

S. Ray and M. E. Pfrender. Biology, University of Notre Dame, Notre Dame, IN.

Environmental health issues have become a major focus of ecotoxicology research over the last decade. Due to rapid industrialization and urbanization, ecosystems are currently, and in the foreseeable future, under the threat of potential damage. In order to mitigate these risks, environmental scientists build predictive models to gauge the impact of pollutants, perform risk assessment studies to measure water quality, and protect organisms from potential damage due to the effects of pollutants.

One major pollutant is heavy metal. Since aquatic systems are the major sinks of industrial effluents they are often highly impacted by heavy metals than area terrestrial ecosystems. Numerous studies on individual organisms and populations have demonstrated the effects of acute exposure to metal pollutants, but few studies are available that show the consequences of long-term low dose metal exposure to aquatic organisms.

In regular risk assessment practice, acute and high dose/concentration exposure is a common approach to predict which metal/chemical has potentially harmful effects on a particular organism. This approach is informative, but not predictive of the long-term low dose/concentration scenario that is more likely happening in our
day-to-day life. Further, aquatic toxicity tests have historically been largely limited to model organisms. However, not all organisms show the same physiological response to a particular metal/chemical making these assessments species specific. Our approach is to use quantitative genetics/genomics tools applied in a ecologically relevant non-model organism to determine the genetic basis and mechanisms of response to a common, toxic metal pollutant. We use Daphnia magna, a widespread freshwater invertebrate, as a model organism to understand and interpret the genetic mechanisms of response to cadmium.

275 Characterization of the Hepatic Metabolome of Migrating Sockeye Salmon in British Columbia, Canada.

J. P. Benskin1,2, M. G. Ikonomou2, N. Veldhoen3, C. Dubetz2, C. C. Helbing2 and J. L. Congrove2. 1Product Development, AXYS Analytical Services Ltd., Sidney, BC, Canada; 2Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, BC, Canada; 3Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.

The health of British Columbia wild sockeye salmon (Oncorhynchus nerka) is of increasing concern due to recent extreme variation in the number of fish returning to spawn annually. Causes of this variability are unclear but may be related to contamination or viral exposures, climate change, or food shortages. Two key migratory routes for Pacific sockeye are the Fraser and Skeena River watersheds. These watersheds represent highly contrasting environments for spawning salmon; the former flows through populous and industrialized regions of Vancouver, while the latter flows through fairly remote regions with little industrial input. A recent comparison of hepatic mRNA profiles between Fraser and Skeena sockeye revealed stark differences in estrogen-associated signaling in Skeena fish, despite these fish spawn in a relatively pristine environment. In contrast, the status of hepatic gene transcripts for Fraser River sockeye showed normal reproduction-related changes in estrogen-associated signaling. To expand upon available toxicological endpoints and further define potential sources of exposure resulting in the observed hepatic mRNA profiles in Skeena River salmon, we compared aspects of the hepatic metabolome of fish from both populations. A total of 186 metabolites from 6 different metabolite classes were measured using a recently developed assay. Molecular targets included acylcarbinolacetin (n=40), amino acids (n=21), glycerophospholipids (n=90), hexose, sphingolipids (n=15), and biogenic amines (n=19). Major metabolites quantified in Sockeye salmon liver included glycine, carnitine, phosphatidylcholine acyl-alkyl C38:6, and sphingomyelene C24:1. The combined transcriptomic and metabolomic data provides a comprehensive molecular profile of fish health, and sheds light on the biochemical changes arising from alteration of estrogen-associated signaling.

276 Elevated Metals and Organic Concentrations Linked to Biomarkers’ Alterations in Organisms Exposed to Mining Effluent.

Q. T. Olubambi and V. Wepener. Centre for Aquatic Research, Department of Zoology, University of Johannesburg, Johannesburg, South Africa.

The Blesbokspruit wetland, South Africa, continuously receives diffuse and point source releases of mining effluent till date. Results are presented from a first time study conducted in the system on metals and organic bio-accumulation in sediments, residents and transplanted organisms. A suite of biomarkers assay was also carried out in bio-indicators. During the 2008 low and high flow periods, resident catfish, Clarias gariepinus and tilapia, Tilapia sparrmani species were collected from 5 sites in a field survey. During the 2009 high flow, a transection study (active bio-monitoring - ABM) was conducted using laboratory reared Tilapia spp. at four of the five sites in cages for four weeks. Biomarkers of exposure: cytochrome P-450 (CYP-P450) and acetylcholine esterase (ACHE) and biomarkers of effect: catalase (CAT) and superoxide dismutase (SOD) responses were determined in all samples. Metal and organic concentrations measured varied among sites and were elevated (p<0.05) during the field survey high flows over the low flows in most cases. This was always high for both periods in Site 1 which is upstream and close to mine dumps. Biomarkers were found altered both in resident and transplanted organisms at all sites. For example, triggered CAT activity and inhibition of SOD both bio-indicators showed altered responses during the field survey low flow but not during the high flow and ABM. Biomarkers were able to successfully demonstrate biological effects from toxicants in the system. It was possible to link these effects to observed elevated metal and organic concentrations for some bio-indicators. This study shows how bio-indicators can be applied within the proposed integrated management plan for the Blesbokspruit as well as other catchments.

277 Effects of Two Progestins, Norethindrone and Levonorgestrel, on Reproduction in a Marine Fish, Taurodalgobrus adspersus.

L. Mills1, D. Borsay Horowitz2, G. Zarooqian1, B. Rashleigh1, B. W. Rüffel1 and S. C. Laws1. 1Atlantic Ecology Division, US EPA, ORD, NHEERL, Narragansett, RI; 2Toxicology Assessment Division, US EPA, ORD, NHEERL, Research Triangle Park, NC.

Endocrine-active pharmaceuticals that enter the aquatic environment through sewage effluent may have unintended impacts on reproduction in fish, which in turn may affect the sustainability of exposed populations. Laboratory experiments were conducted with the marine fish cunner (Taurodalgobrus adspersus) to evaluate whether norethindrone (NOR) and levonorgestrel (LNG) affected reproduction in spawning adults. Both progestins are used in human contraceptive formulations and have been detected in low (ng/L) concentrations in aquatic environments. Synthetic progestins in aquatic environments are of special concern because some fish use natural progestrogens as phenotypes to coordinate reproduction, and evidence suggests progestins may be selectively taken up through the gills in some species. Reproductive endpoints of egg production, viability and fertility were assessed daily in spawning cunner treated with NOR or LNG (nominal concentrations of 0, 0.075 or 0.75 mg/kg) by oral gavage on days 0, 4, 8, 12 and 16 of the experiment. All fish were sacrificed on day 17 and gonadosomatic index (GSI) was determined. In NOR-treated fish, egg production per gram female was significantly reduced relative to controls at both concentrations, while egg fertility and viability was notably decreased, although not significantly, only in the 0.75 mg/kg treatment. GSI was significantly reduced in both males and females from the 0.75 mg/kg treatment. Female mortality in this treatment group was more than twice that in controls, indicating an increase in male aggression. In LNG-treated cunner, no significant effect was seen on egg production, fertility, viability, or GSI compared to control fish. Results indicate some progestins can impact fish reproduction, even in short-term exposures. Research is planned to determine if these fish selectively take up progestins from the aquatic environment. This abstract does not reflect U.S. EPA policy.

278 Effects of Fungicides on Honey Bee Development and Behavior.

L. A. Hooven. Oregon State University, Corvallis, OR.

Pesticides may contribute to the health challenges facing honey bees. Bees experience chronic exposures through contaminated beeswax and stored pollen and honey. There is a need to study possible sublethal or delayed effects from such exposures, which may ultimately result in the collapse of the colony. Fungicides are thought to have little effect on insects, and are routinely sprayed while bees are pollinating crops. Multiple fungicides are transported with pollen into the colony, and some are known to persist in beeswax. Beekeepers suspect that fungicides may have an effect on honey bee development, and some laboratory tests have demonstrated adverse effects of fungicides on bee larvae. We have developed laboratory methods to chronically expose young adult bees to pesticide-contaminated beeswax, in concentrations similar to those found in hives. By using Noluds Ethovisor to track the behavior of bees on video, we have found that the major contaminants of beeswax, including the fungicide chlorothalonil, delay behavioral development as measured by the initiation of circadian activity rhythms. Young adult bees consume pollen and secrete proteinaceous brood food and royal jelly to feed developing larva and the queen. In semi-field experiments, we fed pollen spiked with fungicides to colonies of bees, similar to field concentrations. By evaluating colonies weekly, we found that chlorothalonil and iprodione affect larval development, and ziram affects queen health several weeks after initial exposure. These results suggest that chronic contact exposure through wax and ingestion of fungicides through pollen may target the development and social function of young worker bees, and may have detrimental effects on the colony.

279 The Mediterranean Gecko, Hemidactylus turcicus (Gekkonidae : Squamata)—An Alternative Model for the Study of Redox Potential.

M. Y. Farooqui and R. Bloom. Biology, University of Texas Pan American, Edinburg, TX.

Glutathione and similar sulphydryl groups play an important role in redox cycling in mammals. In this study we have investigated the role of sulphydryls in the Mediterranean Gecko, Hemidactylus turcicus (Gekkonidae : Squamata). Concentrations of hepatic sulphydryls were determined in the field controls and the geckos maintained at various temperatures. Concentrations of sulphydryls in livers
of field controls were 46.3 ± 5 umoles/g and were significantly elevated (141 and 151 % of controls) in geckos maintained at 15 and 10°C, respectively. Female geckos had significantly higher (139 %) concentrations of sulfhydryls than did the males. This study indicates that this oxidative biochemical pathway is operative in geckos. Geckos may provide a very inexpensive alternative animal model for redox studies.

280 Recent Emergence of Perfluorooctanoate in Tap, River, and Sea Water in Japan.
N. Saito, K. Sasaki and S. Tsuda, Institute of Environmental Health Sciences, Morrisoka, Japan.

Environmental waters such as river water (RW) and sea water (SW) are expected to be the major exposure sources of Perfluorooctyl acids (PFAA) to humans via tap water (TW) and food fish. At the 2012 Annual Meeting of SOT, we reported the trend in PFAA contaminations in Japanese RW and TW from 2003 to 2010, based on the results of measurement of Perfluorocarboxylates (from C5 to C12 carbon backbone) and perfluorosulfonates (CS4, CS6, CS8 and CS10). The major PFAA (C6, C8, C9 and CS8) concentrations in both RW and TW were always highest in Kinki area. In 2010 extremely high RW C6 concentrations (46 and 24 μg/L) were detected in the lower reaches at the foot of a fluorochemical plant, where extremely high concentrations of C8 (67 and 244 μg/L) had been detected in 2003. From 2003 to 2010, Kinki showed drastic reduction of RW C8 concentration to one tenth. C6 concentration in TW in 2007 showed as low as 2.3 % of RW in 2010 compared to 42.3 % for that of C8. The conclusion was that the release of C6 to the environment had begun recently from the source in Kinki. In the present study, we measured PFAA (from C4 to C16; and CS4, CS6, CS8 and CS10) in RW (12 locations) and TW (6 locations) in the Kinki area and costal SW around Japan (31 locations) collected in 2011 using LC-MS/MS. The highest RW Perfluorocarboxylates (from C4 to C10) were detected in the lower reaches at the foot of the fluorochemical plant (for C6; 49 and 43 ng/L). The highest RW C6 concentration in the 2011 samples was 2.85 ng/L, which was greater than the highest C6 concentration (1.51 ng/L) in the 2007 samples. The highest SW C6 concentration in Kinki was far greater than the samples from the other areas and was 129 ng/L. From these results it was concluded that C6 release from the source to the river of recent onset is rapidly contaminating surrounding SW and gradually contaminating TW in the nearby areas.

281 Distributions of Metals (Cadmium, Lead, Iron, Manganese, Zinc, and Copper) in Water, Aquatic Plant, and Fish.
K. A. Abdou1, A. S. Mahmoud2, M. S. Housseni and K. I. Ahmed1. 1Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Beni Suef University, Beni Suef, Egypt; 2Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt. Sponsor: A. Kadry

Concentrations of cadmium (Cd), lead (Pb), iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu) were measured in water, Ceratophyllum demersum (C. demersum) aquatic plant, Clarias lazera plant (C. lazera) collected from nine sampling stations along El Ebrahimia canal and two districts located at the east bank of the Nile in the province of Beni Suef, Egypt during 2009-2010. Atomic Absorption analysis revealed that the studied metals were higher than the limit of detection (LOD) in all the examined samples. In water, Pb had the highest concentration among the metals detected in seven of the nine tested locations (0.3 - 0.9 ppm). The concentrations of Pb, Fe, and Mn were above the maximum Egyptian permitted limits in all tested sites, while Zn and Cu concentrations were below the permitted limits (4 mg/L and 2 mg/L) in the nine districts. Comparisons were made of the metal concentrations in water and aquatic plants with those in the catfish tissues obtained from water. The metal concentrations found in the C. demersum aquatic plant samples taken in the nine studied districts were distributed in this order; Mn > Zn > Cu > Pb > Fe > Cd. and were higher than the water In fish, metals accumulated in the various examined tissues at several levels, but the metal concentrations in muscles (edible part) were below the metal levels in the other organs (nondible) in the fish samples. The concentrations of Cd, Pb and Fe in fish tissues were above the international standard, while the concentrations of Mn, Zn and Cu were below this standard. The high concentrations of these metals in water, aquatic plants and fish in El Ebrahimia canal may be the result of both anthropogenic activities producing industrial, agricultural and domestic waste and accidental pollution incidents.

282 Cytochrome P450 Monoxygenases Expression in Human Epithelial Lung Cell Lines.

The pulmonary epithelium is the first barrier for airborne xenobiotics and inhaled drugs. Cytochrome P450 monoxygenases (CYP) participate in metabolic activation of xenobiotics. Beyond that some compounds require enzymatic activation to exert their toxic effects or their desirable functions. The bronchiolar epithelial cell line Calu-3 and the type II-like pulmonary epithelial cell line A549 serve as cell culture models for the mucosal respiratory epithelium. So far, there is little information regarding their metabolic properties especially for Calu-3 cells. The goal of this study was to further characterize both cell lines regarding their basal and inducible CYP isoform expression.

CYP expression was determined using real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR). Basal expression of CYP1B1, CYP1A1, CYP2D6, CYP2B6, CYP3A5, and CYP2J2, and slight amounts of further CYPs were detected in both cell lines, which is consistent with expression in the human lung.

Furthermore, potential CYP inducers were analyzed. Omeprazole acts on aryl hydrocarbon receptor (AhR) activation and induced CYP1A1 and CYP1B1 in both cell lines. Inhibiting actions on gene expression (PXR) and phase II-enzyme activities predominantly on constitutive androstane receptor (CAR), however, both receptors are not expressed in the lung. Accordingly, both agents did not induce any CYP in these cells. Besides PXR, dexamethasone acts on glucocorticoid receptors and we found induction of members of the CYP3A family, mainly CYP3A7 in Calu-3 cells, and CYP3A55 and CYP3A7 in A549 cells. CYP450 is known to act as a CAR agonist and is normally used to induce CYP2B6/7. However, it is a potent inducer of CYP1B1 in Calu-3 cells, and of CYP1A1 and CYP1B1 in A549 cells. Thus, Calu-3 cells and A549 cells express a broad range of CYPs with preserved inducibility and are valuable models of the airway epithelial barrier for metabolic in vitro experiments.

283 Role of Renal Proximal Tubule P450 Enzymes in Chlorof orm-Induced Nephrotoxicity.
S. Liu1, 2, Y. Yao1, S. Lu1, X. Ding1, C. Mei13, and J. Gu1. Wadsworth Center, Albany, NY; 2Changzhou Hospital, Shanghai, China.

The kidney is a primary target for numerous toxicants. Cytochrome P450 enzymes (P450s), responsible for the metabolic activation of various chemical compounds, are predominantly expressed in proximal tubules in the kidney. However, the specific role of proximal tubule P450s in chemical-induced nephrotoxicity is unclear. The aim of this study was to test the hypothesis that renal proximal tubule P450s are critical for the metabolic activation and nephrotoxicity of chloroform. To test this hypothesis, we have developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), named kidney-Cpr-null, and the other with proximal tubule-specific rescue of Cpr activity in a model with global suppression of Cpr activity in all extra-renal tissues, named extra-renal Cpr-low. The kidney-Cpr-null, extra-renal-Cpr-low, Cpr-low, and wild-type (WT) control mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Kidney toxicity was assessed by measuring serum levels of BUN and creatinine, and by pathological examination. The blood and tissue levels of chloroform were also determined. Chloroform-induced proximal tubular lesions and increases in BUN and creatinine levels were observed in all four genotypes, but the severity of toxicity was less in kidney-Cpr-null and Cpr-low mice, compared to WT and extra-renal-Cpr-low mice. These findings indicate that local P450 dependent expression of CPR activity in all extra-renal tissues, named extra-renal Cpr-low. The specific role of proximal tubule P450s in chemical-induced nephrotoxicity is unclear. The kidney is a primary target for numerous toxicants. Cytochrome P450 enzymes (P450s), responsible for the metabolic activation of various chemical compounds, are predominantly expressed in proximal tubules in the kidney. However, the specific role of proximal tubule P450s in chemical-induced nephrotoxicity is unclear. The aim of this study was to test the hypothesis that renal proximal tubule P450s are critical for the metabolic activation and nephrotoxicity of chloroform. To test this hypothesis, we have developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), named kidney-Cpr-null, and the other with proximal tubule-specific rescue of Cpr activity in a model with global suppression of Cpr activity in all extra-renal tissues, named extra-renal Cpr-low. The kidney-Cpr-null, extra-renal-Cpr-low, Cpr-low, and wild-type (WT) control mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Kidney toxicity was assessed by measuring serum levels of BUN and creatinine, and by pathological examination. The blood and tissue levels of chloroform were also determined. Chloroform-induced proximal tubular lesions and increases in BUN and creatinine levels were observed in all four genotypes, but the severity of toxicity was less in kidney-Cpr-null and Cpr-low mice, compared to WT and extra-renal-Cpr-low mice, respectively. There was no significant difference in chloroform levels in the blood, liver, or kidney, between kidney-Cpr-null and WT mice, or between extra-renal-Cpr-low and Cpr-low mice. These findings indicate that local P450 dependent metabolic activation plays an important role in renal toxicity induced by chloroform. Our results also demonstrate the utility of these novel mouse models for studies on the renal toxicity of other chemicals.

284 Green Tea Epigallocatechin Gallate Inhibits Drug Metabolizing Enzymes by Covalent-Binding to the Proteins and Formation of Protein Aggregates.

Green tea supplements have been reported to cause hepatotoxicity but the mechanisms of the toxic metabolite, epigallocatechin gallate (EGCG), are unknown. In this study, the rat liver microsomes were treated with 1 - 100 μM EGCG for 30
min, and the EGCG-binding proteins were affinity purified and probed with anti-
body against glyceroldehyde-3-phosphate dehydrogenase (GAPDH), actin, cy-
tochrome P450 (CYP) 1A1, CYP1A2, CYP2B1/2, CYP2E1, CYP3A, catechol-O-
methyltransferase (COMT) and microsomal glutathione transferase 1 (MGST1). All but actin and soluble COMT were positively detected at ≥1 μM EGCG, indi-
cating EGCG selectively bound to a subset of proteins including membrane-bound COMT. The binding correlated well with inhibition of CYP activities, except for CYP2E1 whose activity was unaffected despite evident binding. When microsomes were probed on Western Blots, all but the actin and CYP2E1 antibodies showed a significant reduction in binding at ≥1 μM EGCG, suggesting that a fraction of the indicated proteins formed aggregates that were not recognizable by antibodies against the intact proteins. Protein aggregate formation was also observed in Coomassie Blue-stained SDS-PAGE gels. EGCG effects were partially abolished in the presence of 1 μM glutathione. We conclude that EGCG inhibits drug metabo-
lizing enzymes by covalent-binding to the target proteins and formation of protein aggregates.

285 Metabolism of Rutacearpine in Freshly Isolated Hepatocytes from Rats and Mice.

Rutacearpine is an alkaloid originally isolated from *Evodia rutacearpa* that has been used for the treatment of gastrointestinal disorders in Asia. In the present study, Phase I and Phase II metabolisms of rutacearpine were investigated in freshly iso-
lated hepatocytes from rats and mice. The results indicated that the metabolism of rutacearpine in rats and mice was different. When rutacearpine was incubated with fresh hepatocytes isolated from either rats or mice for 2 hr, 5 major Phase I metabo-
lites were observed in both hepatocytes with different extents. Likewise, the pro-
duction of sulfate conjugates were observed. In rat hepatocytes, 4 sulfate conjugates were observed in both hepatocytes with different extents. Likewise, the pro-
duction of sulfate conjugates also showed difference. In rat hepatocytes, 4 sulfate conjugates were observed, whereas only two conjugates were observed in mouse hepatocytes. The results indicated that the species selection would be concerned in the process of preclinical investigation Supported by a grant from National Research Foundation of Korea (2010-00266220).

286 Effects of Intestinal Microflora on Oral Pharmacokinetics of Baicalin in Normal and Antibiotic-Treated Mice.

D. Oh, M. Kong, J. Kim, M. Kang, W. Kang and T. Jeong. Pharmacy, Yonsei University, Gyeonggi, Republic of Korea.

Baicalin (baicalein-7-glucuronide) is an ingredient of *Scutellaria baicalensis* Geogri which has been used as one of the most popular herbs in Korea for treatment of infl-
mation, cardiovascular diseases, hypertension, and microbial infections. In the present study, effects of intestinal microflora on oral pharmacokinetics of baicalin were investigated in normal SPF and antibiotic-treated mice. To control the num-err of intestinal bacteria, mice were pre-treated orally with erythromycin, oxytetra-
cyclin and cefadroxil for 3 consecutive days, followed by an oral administration with 100 mg/kg baicalin. Then baicalin and its possible metabolites in serum were then measured using liquid chromatography/tandem mass spectrometry. The present study, effects of intestinal microflora on oral pharmacokinetics of baicalin were investigated in normal SPF and antibiotic-treated mice. To control the num-err of intestinal bacteria, mice were pre-treated orally with erythromycin, oxytetra-
cyclin and cefadroxil for 3 consecutive days, followed by an oral administration with 100 mg/kg baicalin. Then baicalin and its possible metabolites in serum were then measured using liquid chromatography/tandem mass spectrometry. The results indicated that the intestinal microflora might have a critical role in modulating oral pharmacokinetics of baicalin. Supported by the grant from KFDA (09172KFDA996) and from National Research Foundation of Korea (2010-00266220).

287 Role of Intestinal Microflora in Oral Pharmacokinetics of Baicalin in a Germ-Free Mouse Model.

J. Kim1, D. Oh1, M. Kang1, W. Yun2, H. Kim2 and T. Jeong1. 1Pharmacy, Yonsei University, Gyeonggi, Republic of Korea; 2Biomedical Mouse Resource Center, KRIBB, Ochang, Republic of Korea.

Baicalin and its aglycone baicalein are bioactive flavonoids originally isolated from the root of *Scutellaria baicalensis* Geogri, a medicinal plant that has been used for the treatment of inflammation, hypertension, cardiovascular and allergic diseases. In the present study, role of intestinal microflora in baicalin metabolism was inves-
tigated following a single oral administration with 100 mg/kg baicalin in germ-free and control mice. Baicalin and its metabolites were determined by HPLC coupled with a tandem mass spectrometry. Serum concentrations of baicalin and its metabolite in germ-free animals were significantly lower than those in control mice having normal intestinal microflora. Likewise, transient hepatotoxicity induced by baicalin in germ-free mice was significantly different from that in control mice. These results indicated that the intestinal microflora might play a key role in met-
abolism of baicalin orally ingested. Supported by the grant from KFDA (09172KFDA996) and from National Research Foundation of Korea (2010-00266220).

288 Importance of Chirality Considerations in Risk Assessments: Enantiomer-Specific Pharmaceutical Metabolism with Rainbow Trout (Oncorhynchus mykiss) S9.

K. Connors1, B. Du1, P. N. Fitzsimmons2, C. K. Chamblish1, J. W. Nicholls2 and B. W. Brooks. 1 Baylor University, Waco, TX; 2US EPA, Duluth, MN.

Enantiomers are capable of having significantly different biological effects, selectiv-
ity for receptors/transporters/enzymes, potency, and biodegradation rates. Differences in environmental fate, bioavailability and toxicity have also been re-
ported. Despite this knowledge, enantiomers are often treated as a single chemical entity in environmental monitoring and risk assessment. Enantiomer-specific dif-
fferences in pharmaceuticals are especially well documented within mammalian lit-
erature. Finding a way to leverage existing pharmaceutical safety data and pharma-
cology information through biological “read-across” may aid our ability to perform more accurate environmental assessments. In this study, we examined the compara-
tive metabolism of R, S and the racemate of three pharmaceuticals (propranolol, ibuprofen and fluoxetine) in rainbow trout liver S9 using a substrate depletion ap-
proach. An isotope dilution liquid chromatography tandem mass spectrometry (LC-MS/MS) method was employed for quantification of parent chemical concen-
trations. Differences in substrate depletion was observed for the two enantiomer enan-
tiomers. The fastest clearance rates were observed with rac-propranolol, followed by S- and R-propranolol, respectively. Ibuprofen appeared to undergo limited me-
tabolism; however, the resulting depletion curves did not differ statistically from those obtained for denatured controls. No substrate depletion was observed for rac, R or S fluoxetine. Mammalian clearance rates will be compared and risk assessment implications discussed.

289 The Role of Intestine Differences in Trichloroethylene Metabolism in Kidney Effects in Mice.

Trichloroethylene (TCE) is a well-known environmental and occupational toxin-
ating contaminating air, water, and soil. The U.S. EPA recently issued the final IRIS as-
essessment of TCE and classified TCE as carcinogenic to humans. Still, several issues critical for assessing human health risks from TCE remain unresolved, such as (1) the amount of glutathione (GSH)-conjugated metabolites formed in various tis-
tures, and possible inter-individual and inter-species differences; and (2) the mode of action involved in kidney toxicity/carcinogenesis. The aim of this study was to use a panel of inbred mouse strains to investigate the relationship between inter-
strain differences in TCE metabolism and kidney toxicity. TCE (1000 mg/kg/day, in 5% Alkamuls EL-620 in saline) was administered by gavage to male mice (6-8 weeks old) from 7 inbred strains (129S1/SvImJ, A/J, BTBR T+tf/J, C57BL/6J, CAST/EiJ, NOD/ShiLtJ, NZW/LacJ) for 5 days. Liver, kidney, and serum were collected at 2 and 8 hrs after the last dose. Quantification of S-(1,2-
dichlorovinyl)-glutathione (DCVG), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and trichloroethanol (TCOH) was performed. In addition, blood urea nitrogen, kidney-to-body weight ratio, proximal tubular cell proliferation, expression of per-
oximes proliferator marker genes (Ppara, Acox1, and Cyph10), kidney injury molecule-1 in kidney were evaluated. Intestine variability in the levels of DCVG, DCVC, and TCOH in liver, serum, and kidney were observed. Overall, the level of TCOH was 10,000-fold greater than that of DCVG and DCVC in both liver and kidney. In conclusion, the inter-strain differences in TCE metabolism provide a mechanistic basis for examining the inter-strain differences in TCE organ-specific toxicity. This work was supported by the Superfund Basic Research Program grant P42 ES05948.
290 Interpretation of Multiroute Data for Chloroform-Induced Renal Toxicity in Rats and Mice Using an Updated Physiologically-Based Pharmacokinetic Model.

Chloroform (CF) is a tribromomethane present in drinking water as a byproduct of disinfection, and the kidney is one of the targets of toxicity in experimental animals. Since CF induces toxic effects via production of reactive metabolites, proper characterization of metabolism is essential for risk assessment. A revised physiologically-based pharmacokinetic (PBPK) model, in conjunction with benchmark dose (BMD) modeling, was used to interpret rat and mouse renal toxicity markers in three oral and inhalation studies. Large species differences in potency as a function of external dose became minimal when expressed in terms of a renal dose metric (daily mg CF metabolized per L cortex), indicating that species differences in susceptibility may be primarily mediated by toxicokinetics, rather than differences in toxicodynamics. The external BMD result for nuclear enlargement was 6 ppm for the mouse, but 40 ppm for the rat—a 7-fold difference. When the measure of dose was changed from inhaled concentration to the renal dose metric, the BMD result becomes 62 mg/L in the mouse; and 47 mg/L in the rat—a difference of 30%. Since results derived from drinking water data were also consistent with inhalation data, the work presented here increases confidence in the PBPK model, and the use of site-specific chloroform metabolism as the internal dose-metric. The views expressed in this publication are those of the authors and do not represent the views and policies of their respective Agencies.

291 The Use of Cytochrome P450-Embedded Nanodisks to Enhance Metabolism and Elimination of Chemical Toxins.

M. Malfatti1, E. Kuhn1, A. Kohlgruber1, Y. Li2, K. Lam2 and M. Coleman1. 1Lawrence Livermore National Laboratory, Livermore, CA; 2University of California Davis, Davis, CA.

Exposure to toxic chemicals and how to eliminate them from the body is a topic of great concern. Developing safe and effective methods that can mitigate exposures is critical for responding to many different exposure scenarios. In this study we are capitalizing on the body's endogenous detoxification capabilities by supplementing existing metabolic enzymes to increase the natural capacity for transforming toxic agents into less harmful constituents. We are developing a novel system that packages cytochrome P450 proteins, liposomes, and telodendrimer nanodisks, in an effort to enhance the metabolism of toxic chemicals into inactive compounds. Microsomes expressing human cytochrome P4503A4 (CYP3A4) were combined with POPC lipid and 1% telodendrimer, comprised of an octamer of cholic acid linked to the terminal end of a linear 5kDa PEG molecule. Assembly of CYP3A4 telodendrimer nanodisks (TND) was achieved after overnight incubation at 4°C. Activity of CYP3A4 in the TND was assayed by fluorescent intensity, using the P450-Glo assay (Promega), and determined to be 57.0 FU. This was comparable to the CYP3A4 positive control of 64.8 FU, indicating successful incorporation of functional CYP3A4 into the TND. Functional stability was assessed by monitoring TND-CYP3A4 activity over time at 4°C. TND-CYP3A4 activity was stable for 7 days post assembly. After 7 days, activity decreased by 42% and remained at that level for the 24-day study duration. In vitro metabolism tests demonstrated that the TND was able to metabolize the model substrate testosterone to 6β-OH-testosterone at rates comparable to the CYP3A4 microsomal control incubations. These results indicate that this system has the potential to improve one's ability to detoxify chemicals. Further studies are needed to determine the capability of the TNDs to metabolize chemicals in vivo.

This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344 and supported by LLNL LDRD 11-ERD-012.

292 Sulfonation of 1-Methyl-Phenanthrene and 9-Ethyl-Phenanthrene in Human Hepatoma (HepG2) Cells.

M. Huang, I. A. Blair and T. M. Penning. Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Pharmacology, University of Pennsylvania, Philadelphia, PA.

Exposure to petrogenic polycyclic aromatic hydrocarbons (PAHs) in the food-chain is the major human health hazard associated with the Deepwater Horizon gulf-oil spill. Risk assessment is based on the assumption that petrogenic and pyrogenic PAHs have similar toxicological profiles yet information on the metabolism of petrogenic PAHs is lacking. We report the metabolic fate of 1-methyl-phenanthrene and 9-ethyl-phenanthrene as representative alkylated petrogenic PAHs in human hepatoma (HepG2) cells. The structures of the metabolites were identified by HPLC-UV-fluorescence detection and LC-MS/MS. Both 1-methyl-phenanthrene and 9-ethyl-phenanthrene showed the formation of O-sulfated mono-phenols, O-sulfated bi-phenols, O-sulfated dihydrodiols, and O-sulfated catechols. The identification of these sulfate conjugates supports metabolic activation of 1-methyl-phenanthrene and 9-ethyl-phenanthrene by P450 and AHR isoforms followed by metabolic detoxification by SULT isoforms. (Supported by U19ES020676-01 to TMP)

293 N-Acetyltransferase 1 (NAT1) Expression and Activity during Keratinocyte Differentiation and Cell Cycle Progression.

J. Bonifas and B. Blümcke. Environmental Toxicology, University of Trier, Trier, Germany.

N-acetyltransferase 1 (NAT1) dependent N-acetylation is an important detoxification pathway for arylamines including certain dyes. Proliferating keratinocytes have high N-acetylation capacities, but the influence of differentiation on NAT1 is not clear. Keratinocyte differentiation is associated with an arrest of cells in the G0/G1 phase of the cell cycle. In order to analyze NAT1 regulation in the different cell cycle phases we synchronized HaCaT keratinocytes by serum starvation (83±4% G0/G1) and re-addition for 20hrs (66±1.7% S-phase) as well as by double thymidine block (68±2% G0/G1, 72±6% S-Phase) and analyzed NAT1 activity, protein, and mRNA expression. In line with the high N-acetylation capacity of the skin, NAT1 activity was, compared to S-phase, elevated (about 40±2%) in the G0/G1 phase, which is the predominant state of keratinocytes in the epidermis. NAT1 protein levels were also higher in G0/G1 phase, while NAT1 promoter P1 dependent steady state mRNA levels were not enhanced.

In the next step, we differentiated the keratinocyte cell line HaCaT and primary keratinocytes in vitro and analyzed NAT1 mRNA expression and NAT1 activity. With increasing differentiation we found no NAT1 variation after in vitro differentiation and detected NAT1 protein staining throughout the entire epidermis using human skin slices. These results indicate that in vitro differentiated keratinocytes do not loose N-acetylation capacity, although cell proliferation is terminated, possibly due to high NAT1 activities in G0/G1 phase arrested cells. However, variations of the keratinocyte cell cycle phase distribution may influence NAT1 activity and thereby detoxification capacities.

294 Characterization of Peroxidase Activity in Skin Tissue Reconstructed Human Skin Samples.

Skin metabolism is becoming a major consideration in the development of new cosmetic ingredients, skin being the first organ exposed to them. Consequently, the use of ex vivo samples of normal human skin (NHS) or reconstructed human skin models (skin models) as alternative tools to animal testing requires to characterize and compare their abilities to metabolize xenobiotics. In this work, we determined if they possessed a functional peroxidase activity. Previous studies showed that NHS and skin models from SkinEthic® Laboratories such as Episkin®, SkinEthic®-RHE® and the full thickness model of Episkin® expressed the mRNAs of several peroxidase isoforms (mainly in GpX and COX families). The catalytic activity of these enzymes was measured from dose-response studies using cumene hydroperoxide as substrate. Apparent Vmax, Km and ratio Vmax/Km (assessing metabolic clearance) were calculated for each biological model from 2-phenyl-2-propanol quantification. Results showed that in NHS and skin models, a peroxidase activity was demonstrated to be functional and that the obtained enzymatic parameters could be influenced by the lack of the glutathione co-factor. To conclude, a peroxidase activity is present and functional in NHS and skin models which can be easily used for studying the biotransformation process of peroxides and assessing their impact on cellular biomarkers.
Covalent protein adduction, which can underlie drug toxicity and/or reflect exposure, is largely unstudied in the case of illicit drugs of abuse. This research investigates the formation of protein adducts resulting from cocaine and morphine bio-transformation using in vitro assay systems. Human liver microsomal preparations were incubated for 1.5 or 6 h with cocaine or morphine in the presence of thiol-containing trapping agents at 37°C, pH 7.4. Thiols included N-acetylcysteine (NAC), glutathione (GSH), and a synthetic hexapeptide (AcPAACAA). Microsomes were removed by centrifugation and supernatants were subjected to LC-MS/MS analysis for characterization of metabolites and adducts. Isomeric hydroxycocaine adducts from thiol adduction on the arene ring were the major products with all three model thiols. Eight isomers of cocaine-adducted NAC were separated and characterized. While the structural complexity of adducted GSH and model peptide diminished the ability to separate isomers, MS/MS data supported adduct structures analogous to those with NAC. With morphine, two distinct metabolites were identified as the likely species responsible for thiol adduction, the known reactive metabolite morphinone and a novel metabolite, morphine quinone methide. Reaction between morphinone and NAC formed two isomeric products which underwent secondary reduction to form three additional stereoisomeric products. Likewise, morphine quinone methide formed two structural isomers, although no secondary reduction was noted. Individual structural isomers of morphine adducts with GSH and AcPAACAA could not be isolated; however, morphine-derived adduction products were nevertheless present. Analysis using recombinant cytochrome P450s determined that formation of cocaine adduction products was mediated by CYP1A2, 2C19, and 2D6, while those from morphine were produced by CYP3A4. Results obtained from this study enhance the existing knowledge of illicit drug metabolism and demonstrate novel mechanisms for covalent protein modification by these compounds.

Effect of Vinclozolin Exposure during Pregnancy on In Vitro Testosterone Metabolism.

F. G. García-Montes de Oca, M. L. Lopez-Gonzalez, D. C. Escobar-Wiliches and A. Sierra-Santoyo, Toxicology CINVESTAV-IPN, Mexico City, Mexico.

Vinclozolin (V) is a fungicide used for agricultural settings. V is classified as an endocrine disruptor by inhibition competitively the androgen receptor. V exposure during pregnancy alters morphogenesis of the masculine reproductive system. V regulates liver cytochrome P450 (CYP) expression and may affect the biotransformation of endogenous substances, such as testosterone (T) which is an important hormone during pregnancy. There is no information about the effect of V exposure during pregnancy on testosterone metabolism. The objective of this study was to evaluate the effect of V exposure during the pregnancy on in vitro testosterone metabolism. Pregnant Wistar rats were orally administered with V at the dose of 150 mg/kg/d from gestational days 14 to 21 suspended in corn oil. Two control groups were included, pregnant and non-pregnant rats in oestrus phase and received only vehicle. Animals were sacrificed at 2 h after last dose by asphyxia with CO2. Liver was removed and processed to obtain microsomes to carry out in vitro enzyme assays using T as substrate. T and its metabolites were analyzed by HPLC. The pregnancy decreased 50% the liver total CYP content as well as the formation of metabolites 7α-hydroxytestosterone (-OHT), 16β-OHT, androstenedione (AD) and 6β-OHT, 78, 40, 97 and 28%, respect to non-pregnant rats. V exposure significantly decreased the weight gain during pregnancy and increased 27% the content of total CYP, respect to the non-treated pregnant group. Moreover, V increased the formation of 7α-OHT, 2β-OHT, 16β-OHT, AD, 6β-OHT and 16α-OHT, 1.7-, 1.7-, 3.0-, 1.5-, 4.3- and 1.7-fold, respectively. These results suggest that V affects the pregnancy by reducing weight gain and modifying liver androgen expression. In addition, they also could that V exposure during pregnancy may alter the biotransformation of testosterone and affecting physiological processes regulated by this hormone. These effects may represent another mechanism of action associated to V exposure during the pregnancy.

In Vitro Metabolism of Benzo[a]pyrene and Dibenzo[Def,P]Chrysene in Rodents and Humans.

S. Hanson-Druy1, S. R. Cowell1, J. Soelberg1, R. A. Cotthey1 and D. F. Williams2,1. System Toxicology, Pacific Northwest National Laboratory, Richland, WA; 2Oregon State University, Corvallis, OR.

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and often carcinogenic contaminants released into the environment during natural and anthropogenic combustion processes. Benzo[a]pyrene (BaP) is the prototypical carcinogenic PAH, and dibenzo[def,p]chrysene (DBC) is a less prevalent, but highly potent transplacental carcinogenic PAH. Both are metabolically activated by isofoms of the cytochrome P450 (CYP450) enzyme superfamily to form reactive carcinogenic and co-existence metabolites. Metabolism of BaP and DBC was studied in hepatic microsomes of male Sprague Dawley rats, naive and pregnant female B6129SF1/J mice, and female humans, corresponding to available pharmacokinetic data. Michaelis Menten saturation kinetic parameters were calculated from substrate depletion data. Maximum rates of metabolism (VMAX, nmol/min/mg microsomal protein) and rates of intrinsic clearance (CLINT, ml/min/kg body weight) were higher for BaP than DBC, regardless of species. Clearance for both BaP and DBC was highest in naive female mice (1705 and 182 ml/min/kg) and lowest in female humans (27.2 and 7.5 ml/min/kg). Clearance rates of BaP and DBC in male rat (52.2 and 109.3 ml/min/kg) and female rat (24.8 and 25.9 ml/min/kg) were similar. However, the rates of intrinsic clearance were not significantly different between species. The Michaelis Menten saturation kinetic parameters were calculated from substrate depletion data. Maximum rates of metabolism (VMAX, nmol/min/mg microsomal protein) and rates of intrinsic clearance (CLINT, ml/min/kg body weight) were higher for BaP than DBC, regardless of species. Clearance for both BaP and DBC was highest in naive female mice (1705 and 182 ml/min/kg) and lowest in female humans (27.2 and 7.5 ml/min/kg). Clearance rates of BaP and DBC in male rat (52.2 and
18.8 ml/min/kg) were more similar to female mice than to female mice. Clearance of DBC in pregnant mice (136 ml/min/kg) was reduced compared to naïve mice, possibly contributing to elevated tissue concentrations and residence times observed in pharmacokinetic data. These parameters have been used in the development of physiologically based pharmacokinetic (PBPK) models of PAH exposure and dosimetry for rodents and humans, which accurately describe available pharmacokinetic data. Supported by Award Number P42 ES016465 from the National Institute of Environmental Health Sciences.

300 Hyperoxia Attenuates Cytochrome CYP1B1 Expression in Human Bronchial Epithelial Cell BEAS-2B: Implications for Oxygen-Mediated Lung Injury.

D. Dinu, C. Chu, W. Jiang, B. Shinnava, C. Couroucli and B. Moorthy.

Pediatrics, Baylor College of Medicine, Houston, TX.

Supplemental oxygen, used to treat premature infants with pulmonary insufficiency, contributes to the development of bronchopulmonary dysplasia (BPD) in animal models and infants by mechanisms that are not entirely known. We recently observed that cyp1b1-null mice are less susceptible to hypoxia lung injury, suggesting a pro-oxidant role for CYP1B1. Hyperoxia inhibits the growth of the cells, and β-naphthoflavone (BNF) was reported to protect cells from hyperoxic injury. This study tested the hypotheses: 1. hyperoxia attenuates endogenous and BNF inducible CYP1B1 expression in human lung cell line, BEAS-2B; 2. downregulation of CYP1B1 protects cells from hyperoxic injury while overexpression augments the damage. BEAS-2B cells treated with DMSO (control) or BNF were maintained in room air or hyperoxia for 24, 48, and 72 h. CYP1B1 promoter activity, mRNA and protein expression were evaluated. Cell proliferation, cell viability, apoptotic markers and reactive oxygen species were assessed. BEAS-2B cells expressed endogenous CYP1B1 protein, which was diminished by about 50% by 24 or 48 h of hyperoxia. BNF induced CYP1B1 mRNA and protein expression. Hyperoxia attenuated endogenous and BNF inducible CYP1B1 protein expression and mRNA expression. Also, hyperoxia attenuated luciferase driven CYP1B1 promoter activity. BNF had minimal improvement in cell viability. Downregulation of CYP1B1 using siRNA improved cell viability in hyperoxia, and overexpression of CYP1B1 was associated with a significant decrease in viability. Our finding that hyperoxia decreases CYP1B1 protein, mRNA and promoter expression suggests transcriptional or post-transcriptional mechanisms. The findings that downregulation of CYP1B1 improves cell viability, while the overexpression decreases the cell viability supports the role of CYP1B1 as pro-oxidant in hyperoxic injury. As CYP1B1 appears to contribute to lung injury mediated by hyperoxia, understanding the mechanisms of regulation of CYP1B1 may lead to new strategies to prevent or treat BPD.

301 Metabolism of Deltamethrin (DLM) and Trans-Permethrin (TPM) by Human Hepatic and Intestinal Preparations.

B. G. Lake1, R. J. Price1, B. Ing1, M. Scott1, R. N. Hines2, H. J. Clewell3, D. W. Cameron1, N. Asse4, M. Yoon5, S. S. Anand6 and T. G. Osumura7. 1LFR Molecular Sciences, Leatherhead, United Kingdom; 2Medical College of Wisconsin, Health Sciences, Research Triangle Park, NC; 3FMC, Ewing, NJ; 4DuPont Haskell, Wilmington, DE; 5Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; 6National Institute of Environmental Health Sciences, Research Triangle Park, NC; 7TPM (Supported by CAPHRA).

Pyrethroids can be metabolised by both cytochrome P450 (CYP) and carboxylesterases (CES) enzymes. DLM and TPM metabolism was studied using the substrate depletion approach in pooled human hepatic S9, microsomes and intestinal S9 fractions. Studies with liver S9 in the presence and absence of NADPH indicated that DLM was metabolised mainly by CES enzymes, whereas TPM was metabolised by both CES and CYP enzymes. Rates of DLM and TPM clearance in liver microsomes were 22.3 and 11.9 ml/min/mg protein, respectively, and in liver cytosol were 2.6 and 5.3 ml/min/mg protein, respectively. The hepatic clearance of both pyrethroids is thus due to both microsomal and cytosolic enzymes. Addition of cofactors for glucuronidation and sulfation did not enhance the metabolism of DLM and TPM by hepatic S9, suggesting that the rate limiting step for hepatic clearance of both pyrethroids is predominantly due to phase I enzymes and not to phase II enzymes. Rates of DLM and TPM clearance by intestinal S9 were 0.6 and 0.8 ml/min/mg protein, respectively. Rates of pyrethroid metabolism were not reduced in the absence of NADPH, suggesting that both compounds are largely metabolised by only intestinal CES enzymes. The metabolic data obtained with human tissue factions will be used to develop PBPK models for DLM and TPM (Supported by CAPHRA).

302 Biological Impact of a Dysfunctional CYP1/Ahr Auto-Regulatory Feedback Loop.

E. Wencin1,2, A. Kubitza2, A. R. Timme-Laragy2, M. E. Halu3, A. Rannug1 and J. Stegeman1. 1Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; 2Biochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA.

The toxicity of slowly metabolized AHR agonists (e.g., dioxins) can be explained by their persistent activation of the receptor, whereas transient AHR activation by readily metabolized chemicals leads to toxicity through cytochrome P450 (CYP)-dependent bioactivation of PAHs to toxic products. Still, CYP1A inhibition has been shown to amplify carcinogenic and teratogenic effects of PAHs, emphasizing the complex relationship between CYP1 induction and toxicity. The endogenous and proposed physiological ligand 6-formylindolo[3,2-b]carbazole (FICZ) has the highest AHR affinity found to date and is an almost perfect substrate for CYP1A1, resulting in an efficient auto-regulatory feedback of its activation. The importance of CYP1/AHR feedback regulation to in vivo responses to FICZ is unknown. We tested the hypothesis that blocking CYP1A expression would result in FICZ becoming toxic in vivo. Studies were performed using zebrafish (zebrafish) embryos with morpholino knockdown of CYP1A (CYP1A-KD) or AHR2 (AHR2-KD). ZF embryos were exposed to vehicle (DMSO) or FICZ (10 or 100 mM) starting at 24 h post fertilization (hpf), and morphology was monitored from 54 to 96 hpf. In the CYP1A-KD embryos, FICZ caused a dose-dependent increase in the incidence and severity of pericardial edema and circulation failure, and increased lethality. Hatching frequency was reduced and swimbladder inflation abolished. In control-KD and AHR2-KD embryos, FICZ (100 mM) had no significant morphological effects.

The results show that a functioning CYP1/AHR feedback loop is crucial for regulation of AHR signaling by a potential physiological ligand. Considering the large number of chemicals and drugs known to inhibit CYP1A, we suggest a novel mechanism of toxicity whereby chemicals inhibit the metabolism of FICZ, resulting in prolonged activation of the AHR. [FORMAS grant 2011-963; NIH grants R01ES015912, F32ES017585, and R01ES006272; JSPS Postdoctoral Fellowship for Research Abroad 820]

303 Metabolism and Disposition of 2-Ethylhexyl-p-Methoxycinnaminate in Male and Female Harlan Sprague-Dawley Rats and B6C3F1/N Mice After Gavage and Intravenous Administration.

S. Waidyanatha1, R. Snyder2, Y. Hong2, S. Watson3, S. Black2, B. McIntyre2 and J. Mathews2. 1Division of National Toxicology Program, NIEHS, Research Triangle Park, NC; 2RTI International, Research Triangle Park, NC.

2-Ethylhexyl-p-methoxycinnamate (EHMC) was nominated to the National Toxicology Program for toxicological evaluation based on its presence as one of the most common active ingredients in sunscreens. Therefore, the current study was undertaken to investigate the metabolism and disposition of [14C]EHMC in male and female Harlan Sprague-Dawley rats and B6C3F1/N mice 24 h or 72 h following gavage and intravenous administration. Intravenous doses to male rats and mice were 8 mg/kg. Gavage doses of 8, 80 and 800 mg/kg to rats were mostly excreted in urine (73-90% in 72 h), with 3-8% of the radioactivity recovered in feces and 1-4% as CO2; volatiles accounted for less than 0.25% of the radioactivity for the 800 mg/kg dose. Radioactive residues in tissues were <1% of the dose. There were no sex or route differences in disposition in rats. In male and female mice administered 8 mg/kg gavage and intravenous doses of EHMC, radioactivity was excreted mostly in urine (57-75% in 72 h), recovery in CO2, and volatiles traps was only 2-4% and 1%, respectively, and tissues contained <0.5% of the radioactivity 72 h post dosing without any apparent sex- or route-related differences in disposition. Urinary metabolites following gavage administration of 800 mg/kg EHMC were associated with hydrolysis of the ester and hydroxylolation of the ring; no parent EHMC was detected in urine. The metabolites 2-ethylhexanol and 2-ethylhexanoic acid, which are developmental toxicants, were identified by GC-MS in plasma from rats 1 and 2 h following a gavage dose of 800 mg/kg EHMC. These data indicate that oral doses of EHMC are well absorbed, completely metabolized and excreted chiefly in urine with no species or sex difference. [Supported by NIH, N01ES75563]
Immunochromatographic Characterization of Xenobiotic-Metabolizing Enzyme Expression in Adult Rat Testis.

R. R. Gilbibi, W. A. Vogl, T. K. Chang and S. M. Bandiera, 1Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada; 2Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.

Relatively little is known about the protein expression of xenobiotic-metabolizing enzymes, such as cytochrome P450 (CYP) and epoxide hydrolase (EH) in rat testis. These enzymes are expressed in liver and many other organs, and are known to play an important role in the oxidative biotransformation of various endogenous and exogenous compounds. Some xenobiotics such as benzo[a]pyrene are bioactivated to form genotoxic and/or carcinogenic metabolites. Formation of reactive metabolites in the testis could cause severe adverse effects on steroidogenesis and germ cell development. In the present study, we characterized the expression of various xenobiotic-metabolizing enzymes in adult rat testis using immunoblot and immunohistochemical analyses. Testicular microsomes prepared from adult male Sprague-Dawley rats were separated using SDS-PAGE and electrophoretically transferred onto membranes and probed with different antibodies. Immunoblot results indicated that CYP1B1, CYP2A1, NADPH-cytochrome P450 reductase, and EH were expressed in testicular microsomes isolated from adult rats. By comparison, CYP1A1, CYP1A2, CYP2B1, CYP2E1, CYP2D1, CYP2D2, CYP2C6, CYP2C7, CYP2C11, CYP2C12, CYP2C13, CYP3A1, CYP3A2, CYP4A1, CYP4A2 and CYP4A3 were not detected in the testicular microsomal samples. In addition, tissue sections were prepared from frozen adult rat testes and probed with antibodies to CYP1B1, CYP2A1, NADPH-cytochrome P450 reductase, and EH. Fluorescent staining indicated that CYP1B1 and CYP2A1 were expressed in interstitial cells, which are composed mainly of Leydig cells, but not in seminiferous tubules. In contrast, EH and NADPH-cytochrome P450 reductase were expressed in both interstitial cells and in seminiferous tubules. In summary, among the CYP enzymes studied, only CYP1B1 and CYP2A1 were detected in testicular microsomes and appeared to be confined to interstitial cells.

304

Demographic Differences by Age, BMI, Gender, and Disease States of Phase I and Phase II Enzyme Activities in Cryopreserved Human Hepatocytes.

Human hepatocytes are a key in vitro reagent for making predictions of in vivo drug metabolism, interactions and intrinsic clearance in drug discovery and development. However, inter-individual differences in drug metabolizing enzyme activities complicate pharmacokinetics, leading to varying efficacy and drug-drug interactions. To delineate the potential influences, we have reviewed phase I (CYP1A2, 2A6, 2C9, 2C19, 2E1 and 2A6) and phase II (UGT and SULT) enzymatic activities as they relate to age, BMI, gender and ethnicity. The data was generated using human hepatocytes cryopreserved with specific substrates (CYP1A2: phenacetin, 2A6: coumarin, 2C9: tolbutamide, 2C19: methylenephenol, 2E1: chlorozoxazine, 3A4: testosterone, UGT: 7- hydroxycoumarin and SULT: 7- hydroxycoumarin) under near Km conditions, as well as with multiple enzyme substrate 7- ethoxycoumarin (ECOD). From a minimum of 180 donors, several statistically significant trends were observed. For age-dependent differences, a loss of activity was observed for ECOD and CYP2C19, and an increase in CYP1A2 activity as the age increased from 1 to 89 years old. As BMI increased, ECOD, CYP1A2 and CYP2C19 decreased between the range of 14 and 53. As for gender-related differences, men showed higher activities in ECOD and CYP2E1. Diabetic donors had lower CYP2C9, CYP2C9 and CYP3A4 activities compared to non-diabetics. Overall, choosing appropriate hepatocyte preparations for metabolism studies as a reflection of ‘average’ are dependent upon gender, age, BMI and disease states in many drug metabolizing enzymes.
Urinary excretion at 72 h post administration was higher in females (-15%) compared to males (-4%) following a 34 mg/kg dose. Distribution of an intravenous dose of 34 mg/kg was similar to that following gavage, but with less excreted in urine in both males (0.62% for intravenous vs. 4.32% for gavage) and in females (7% for intravenous vs. 15% for gavage). About 52% of a 340 mg/kg gavage dose was excreted in bile by 24 h, indicating that high excretion in feces is not due mostly to indicative BPAF. BPAF glucuronide (major metabolite), diglucuronide, glucuronide-sulfate, and sulfate were identified in bile using LC/MS/MS. This study demonstrated that BPAF is well absorbed following gavage administration in rats, metabolized by glucuronidation and sulfation, and excreted mainly in feces. [Supported by NIH, N01ES75563].

PS 309 Absorption, Distribution, Metabolism, and Excretion Studies of n-Butylbenzenesulfonamide in Harlan Sprague-Dawley Rats following Gavage Administration.

1Pharmacology and Toxicology, RTI International, Research Triangle Park, NC; 2Division of National Toxicology Program, NIEHS, Research Triangle Park, NC.

n-Butylbenzenesulfonamide (NBBS) is used as a plasticizer and an antifungal agent. There is high potential for human exposure to NBBS due to its likely occurrence in drinking water and leaching from NBBS-containing products. The limited toxicity data in rodents suggests that NBBS can cause toxicity to the hematopoietic, nervous, and male reproductive systems. The present studies were conducted to investigate the clearance of NBBS in male Harlan Sprague Dawley (HSD) rat and B6C3F1/N mouse hepatocytes in vitro and metabolism and disposition of NBBS following gavage administration in HSD rats in vivo. The half-lives of disappearance of NBBS (1 μM) in rat and mouse hepatocytes were 136 ± 24 and 320 ± 41 min, respectively. Following gavage administration of ring-labeled [14C]NBBS to male HSD rats at 2 and 200 mg/kg and sacrificed at 72 h, NBBS was excreted primarily in urine (70-76%) with feces accounting for about 12% of the administered dose. Retention in tissues was 5-7% at 72 h, with no tissue exhibiting high concentrations of radioactivity relative to blood. Profiling of urine showed presence of numerous metabolites; however, the parent NBBS was not observed. Some of the polar metabolites were diminished upon treatment with β-glucuronidase or acetylase, indicating glucuronide and acetate conjugates that minimized after sulfatase treatment. In conclusion, NBBS is well absorbed following gavage administration and metabolized to products including glucuronides and mercapturates. [Supported by NIH, N01ES75563].

PS 310 Biotransformation of BDE-47 to Potentially Toxic Metabolites Is Predominantly Mediated by Human CYP2B6: Implications for Interindividual Variability in Metabolism and Retention of BDEs.

1Pharmacology and Toxicology, University at Buffalo, Buffalo, NY; 2Chemistry, University at Buffalo, Buffalo, NY; 3Environmental Chemistry, IDAEA CSIC, Barcelona, Spain.

Recent studies suggest that bioactivation by oxidative metabolism may add considerably to the neurotoxic potential of polybrominated diphenyl ethers (PBDEs), but critical data are lacking on PBDE metabolism in humans. The purpose of this study was to characterize the in vitro metabolism of 2,2′,4,4′-BDE (BDE-47), the most abundant PBDE detected in human serum, by human liver microsomes (HLMs) and recombinant human enzyme P450s (CYPs), and to identify the CYPs that are active in the oxidative metabolism of BDE-47. Human CYPs (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4) were incubated with BDE-47 (20 μM) and metabolites were measured and characterized using GC/MS/MS. For kinetic studies, CYP2B6 and pooled HLMs were incubated with BDE-47 (0-60 μM). CYP2B6 was the predominant CYP capable of forming six different OH-BDEs, including 3-OH-BDE-47, 5-OH-BDE-47, 6-OH-BDE-47, 2′-OH-BDE-66, 4-OH-BDE-42, and 4′-OH-BDE-49. GC/MS analysis also revealed formation of novel metabolites, di-OH-BDE-47 and di-OH-dioxin. Kinetic studies of BDE-47 metabolism by CYP2B6 and pooled HLMs found Km values ranging from 0.7±0.7 μM and 1.2±0.7 μM, respectively, indicating the high affinity to a 100-fold range in the level of CYP2B6 activity, and recombinant polymorphic alleles of CYP2B6. The predominant role of CYP2B6 in the metabolism of BDE-47 and suggest that in addition to variable exposures to PBDEs, genetic variability in CYP2B6-specific metabolism may contribute to interindividual variability in the body burden of PBDEs and the formation of potentially toxic metabolites. (NIEHS, grant # ES021554)

PS 311 Coculture of Antigen-Presenting Cells and Keratinocytes Increases Responsiveness to Prohaptons.

1Department of Environmental Toxicology, University Trier, Trier, Germany; 2Biochemical Institute for Environmental Carcinogens, Prof. Dr. Gerhard Grimmer Foundation, Grasbrunn, Germany.

Small chemical compounds can induce sensitization to humans that results in tolerance or allergic contact dermatitis after repeated skin exposure. A subgroup of chemicals (prohaptons) can induce an immune response only following metabolic activation, e.g. by cytochrome P450 (CYP). Related in vitro assays currently consist of either skin cells or dendritic cells (DC) but importance of cross talk between these two cell types including xenobiotic metabolism is becoming even evident (Modi et al., 2012). To study this cross talk in more detail we established a co-culture model consisting of THP-1 cells as DC-like cells and HaCaT keratinocytes (Hennen et al., 2011). Upregulated expression of costimulatory molecule CD86 was clearly increased in coculture after incubation with prohaptons and depended on phase I/II enzyme activity. It is not known whether proximate or ultimate metabolites are transported between these two cell types or whether coculture enhances THP-1 responsiveness towards prohaptons. As relevant metabolites have not been identified for most prohaptons, we used the strong sensitizer benz[a]pyrene (B[a]P) as model prohapton. In single cultured THP-1 cells, B[a]P neither induces CYP1 enzymes nor CD86 expression, whereas in coculture with HaCaTs CYP1A1 (>100-fold) and CYP1B1 (13-fold) as well as CD86 are clearly induced. In preliminary experiments, we could detect several B[a]P metabolites in both HaCaT and THP-1 supernatants, but the suspected ultimate metabolite was only formed in HaCaT cells and in coculture as indicated by the presence of B[a]P tetrode in the supernatants. Whether and how metabolites are transported needs further investigation, but results indicate that both cell types are needed for the activation of antigen-presenting cells and likely sensitization.

PS 312 Early Vertebrate Origin of ALDH1B1 from ALDH2 Gene and Inactivation of ALDH1B1 by Heteromerization with ALDH2*2.

B. C. Jackson, R. S. Holmes, D. S. Backos, R. Reigan, D. C. Thompson and V. Vasilion.

1Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO; 2Department of Clinical Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO; 3School of Biomolecular and Physical Sciences, Griffith University, Nathan, QLD, Australia.

Vertebrate ALDH2 genes encode mitochondrial enzymes capable of metabolizing acetaldehyde and other biological aldehydes in the body. Mammalian ALDH1B1, another mitochondrial enzyme sharing 72% identity with ALDH2, is also capable of metabolizing acetaldehyde but has a tissue distribution and pattern of activity distinct from that of ALDH2. Bioinformatic analyses of several vertebrate genomes were undertaken using known ALDH2 and ALDH1B1 amino acid sequences. Phylogenetic analysis of many representative vertebrate species (including fish, amphibians, birds and mammals) indicated the presence of ALDH1B1 in many mammalian species and in frogs (Xenopus tropicalis); no evidence was found for ALDH1B1 in the genomes of birds, reptiles or fish. Predicted vertebrate ALDH2 and ALDH1B1 subunit sequences and structures were highly conserved, including residues previously shown to be involved in catalysis and coenzyme binding for human ALDH2. Studies of ALDH1B1 sequences supported the hypothesis that the ALDH1B1 gene originated in early vertebrates from a retrotransposition of the vertebrate ALDH2 gene. Given the high degree of similarity between ALDH2 and ALDH1B1, it is surprising that individuals with an inactivating mutation in ALDH2 (ALDH2*2) do not exhibit a compensatory increase in ALDH1B1 activity. We hypothesized that the similarity between the two ALDHs allows for compensatory heterodimerization between the inactive ALDH2 mutants and ALDH1B1. Computational-based molecular modeling studies examining predicted protein-protein interactions indicated that heterodimerization between ALDH2 and ALDH1B1 subunits was highly probable and may partially explain a lack of compensation by ALDH1B1 in ALDH2*2 individuals.

PS 313 Epigallocatechin-3-Gallate Abrogates Cytotoxicity and DNA Damage Induced by Benzo[a]pyrene in Lung Epithelial Cells.

The Institute of Environmental and Human Health, Lubbock, TX.

Epigallocatechin-3-gallate (EGCG) is an active component isolated from green tea which has chemopreventive and anticancer properties. However, the molecular mechanisms of EGCG in these processes are still not very clear. The objective of the...
present study is to evaluate the potential protective effects of EGCG on benz[a]pyrene (BaP)-induced cytotoxicity and DNA damage in BEAS-2B, a human normal lung epithelial cell. BEAS-2B cells were treated with vehicle control (0.1% DMSO), BaP or BaP+EGCG for 24 hours. The cytotoxicity, cell cycle, benzo[a]pyrene diol epoxidation (BPDE)-DNA adducts, and mRNA expression levels of cytochrome P450 (CYPs) were determined by MTT assay, flow cytometry, high performance liquid chromatography (HPLC), and quantitative real-time PCR (qRT-PCR), respectively. BaP induced cell growth inhibition in a dose-dependent manner; while EGCG dose- dependently reversed this inhibition (P<0.05). The flow cytometry analysis showed that BaP caused significant G2/M phase arrest compared to controls, however, increased S phase and decreased G2/M phase were observed in cells co-treated with BaP and EGCG compared to BaP group (P<0.05). BEAS-2B cells exposed to BaP had a significant induction of BPDE-DNA adducts when compared with controls (P<0.01). Moreover, these adducts were diminished significantly by EGCG treatment with an 80% reduction. CYP1A1 and CYP1B1 expression levels analyzed by qRT-PCR dramatically increased after BaP exposure compared to controls (CYP1A1: 130.2-folds; CYP1B1: 6.0-folds; P<0.001). EGCG significantly reduced BaP-induced CYP1A1 and CYP1B1 expression (CYP1A1: 1.6-folds; CYP1B1: 1.2-folds; BaP vs. BaP+EGCG, P<0.05). On the other hand, CYP1A2 and CYP3A4 did not show any changes among the control, BaP-treated, and BaP and EGCG co-treated groups. In summary, BaP-induced adverse effects could be prevented by EGCG, suggesting a possible chemopreventive role for this natural polyphenol against the development of lung cancer.

314
17β-Estradiol Benzoate and Bisphenol A Suppress Xenobiotic-Metabolizing Enzyme Expression in Adult Rat Tests.
S. M. Bandiera, R. R. Glibili and T. K. Chang, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.

Previous studies showed that 17β-estradiol benzoate (EB) (at 4 μmol/kg) decreased testicular expression of cytochrome P450 1B1 (CYP1B1) in adult male rats. Bisphenol A (BPA) is an endocrine disrupting chemical that has been reported to exert estrogenic activity in vitro and in vivo. In the present study, we investigated the effect of treatment with EB and BPA at varying dosages on the expression of CYP and other xenobiotic-metabolizing enzymes in rat testis. In Experiment 1, five groups of adult male Sprague-Dawley rats (n = 4 per group, except for control, n = 5) were injected sc with EB (0.004, 0.04, 0.4 or 4 μmol/kg) or vehicle (propylene glycol, 1ml/kg), once daily for 14 days. Immunoblot analysis indicated that treatment with EB at 0.004, 0.04, 0.4 or 4 μmol/kg decreased testicular CYP1B1 (by 15, 56, 70 and 80%), CYP2A1 (by 48, 79, 97 and 95%) and CYP1B1 (by 15, 44, 94 and 98%) protein levels, respectively, when compared with vehicle-treated rats. The constitutive expression of EH and NADPH-cytochrome P450 reductase was not affected by EB at 0.004 μmol/kg, but EH (by 56, 70 and 80%) and NADPH-cytochrome P450 reductase (by 53, 58 and 48%) protein levels were decreased following EB treatment at 0.04, 0.4 and 4 μmol/kg, respectively. In Experiment 2, adult male Sprague-Dawley rats were injected sc (propylene glycol, 1ml/kg) or BPA at 400, 800 or 1600 μmol/kg, once daily for 14 days. Treatment with BPA at 400, 800 or 1600 μmol/kg decreased CYP1B1 (by 51, 87 and 89%), CYP2A1 (by 79, 92 and 92%), EH (by 50, 67 and 67%) and NADPH-cytochrome P450 reductase (by 43, 67 and 67%) protein levels, respectively, when compared with saline- or vehicle-treated rats. CYP1B1 protein levels were decreased by 49% by BPA at 400 μmol/kg dose and were not detectable at other BPA doses. In conclusion, testicular expression of CYP1B1, CYP2A1, CYP1B1 and EH and NADPH-cytochrome P450 reductase was down-regulated by exogenous estradiol and BPA, at higher dosages, produced a similar effect.

315
Acute Lead Exposure Induces Cardiotoxicity In Vitro and In Vitro Rat Model through the Cytochrome P450 1A1 Signaling Pathway.
H. M. Korashy, M. A. Ansari and Z. H. Maayah, Pharmacology & Toxicology, King Saud University, Riyadh, Saudi Arabia.

Humans are constantly exposed to polycyclic aromatic hydrocarbons (PAHs). Cytochrome P450 1A1 (CYP1A1) enzymes play important roles in the activation of PAHs such as 3-methylcholanthrene (MC) to DNA-binding metabolites, which in turn mediate carcinogenesis in target organs such as lung. In this study, we tested the hypothesis that CYP1A1 and 1A2 have reciprocal roles in PAH-mediated tumorigenesis. Eight-week-old female wild type (WT) (A/J) mice or mice lacking the gene for CYP1A1 or CYP1A2 on the A/J background were treated with a single dose of MC (40 μmol/kg), or vehicle (corn oil), and liver and lung tumors were studied after 28 weeks. While 100% of WT or Cyp1a2-null mice exposed to MC showed lung tumors after 28 weeks, about 80% of the Cyp1a2-null mice showed lung tumors. However, there were striking differences in the Cyp1a1-null and Cyp1a2-null mice in regard to lung tumor multiplicities. The WT mice treated with MC had about 15 lung tumors/animal. On the other hand, the Cyp1a2-null mice displayed about 40 lung tumors/animal. Eight-week-old Cyp1a1-null mice showed about 2-3 tumors/mouse. DNA adduct studies at early time points (8 days) showed increased MC-DNA adducts in lungs of Cyp1a2-null mice compared to WT mice, and decreased adduct formation in the Cyp1a1-null mice, supporting the hypothesis that DNA adducts are early biomarkers of PAH-mediated carcinogenesis. Overall, our results suggest that CYP1A1 contributes to the formation of tumorigenesis by PAHs, while CYP1A2 protects against carcinogenesis mediated by PAHs, presumably through its role in PAH detoxification. In conclusion, our results strongly suggest that CYP1A1 and 1A2 could be novel candidates for cancer prevention and therapy through either inhibition of CYP1A1 or induction of CYP1A2.

316
Reciprocal Roles of Cytochromes P450 1A1 and 1A2 in Lung Carcinogenesis Mediated by Polycyclic Aromatic Hydrocarbons (PAHs) in Mice.
W. Jiang1, L. Wang1, G. Zhou1, X. Courouci2 and B. Mourthi1, Pediatrics, Baylor College of Medicine, Houston, TX; 2Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX.

Activity-based protein profiling (ABPP) has recently emerged as a post-genomic technology for characterizing functional proteins in complex biological systems. This approach can provide high-content proteomic information but it must be coupled to affinity-based probes that display broad coverage across mouse and human phase I and II metabolizing enzymes. Each probe contains three moieties: (1) a reactive group that forms a covalent bond to a functional P450 through a mechanism-based reaction, (2) a binding group that targets a probe towards a P450 subunit, and (3) an alkene (C2) handle to exploit the bio-compatible click chemistry reaction for attachment of an enrichment moiety or fluoroscope reporter. In this study, we measured enzyme activity at key life stages in humans, including fetal development, normal adulthood, and pregnancy, as well as in human fetal tissues. Additionally, we compared the effects of exposure to the transplacental carcinogenic polycyclic aromatic hydrocarbon (PAH) dibenzo[def,p]chrysene (DBC) on enzyme activity in the mouse. We have determined that the activity of most hepatic phase I enzymes is associated with PAH metabolism (e.g., CYP 1A1, CYP2E1, epoxide hydrolase) was reduced by 2-10 fold during pregnancy in mice. By incorporating these reductions in enzyme activity
into a physiologically based pharmacokinetic (PBPK) model, along with normal changes in anatomy and physiology, we were able to describe the observed elevated concentrations of DBC in blood and tissues of pregnant mice versus naïve mice, following equivalent exposures. We additionally report, for the first time, developmentally driven changes in enzyme activity in both mice and humans. Supported by Award Number P42 ES016465 from the NIEHS, and DOE Laboratory Directed R&D Project 90001.

318 **Eulicidating the Catalytic Mechanisms of the Novel Steroide Detoxification System in Pseudomonas Bacteria.**

As the world becomes more polluted with styrene-based polymers, it is essential to consider how the 28 million tons of Styrofoam and commercial plastics produced in the United States impact human health. Stereone and its metabolites act as biological membrane disrupters and intracellularly where they are transformed by cytochrome p450 isomers to styrene oxide and vinylphenol, which have biological activity as pulmonary and hepatic poisons. This toxic vinyl benzene is a danger to living systems and for this reason we focused our research on the styrene detoxification pathway in Pseudomonas bacteria. The first enzyme, sterene monoxygenase (SMO), a two component flavoenzyme with an NADH specific reductase, SMOB, and a FAD specific epoxidase, SMOA, catalyzes the epoxidation of styrene to yield styrene oxide. Here, SMOB binds NADH and oxidized FAD as substrates and catalyzes the reduction of FAD by a hydride-transfer mechanism. Many details of the SMOB catalyzed flavin reduction and transfer still need to be explained. This research evaluates the catalytic mechanism of N-terminally histidine-tagged sterne monoxygenase reductase (N-SMOB) from Pseudomonas putida S12 bacteria. Over expression of N-SMOB in E.coli BL21(DE3) cells produces high amounts of the enzyme, which we purified using nickel affinity chromatography. A Spectromax190 microplate reader was used to measure the rate at which the hydride ion is transferred from NADH to FAD at 340nm. Previous data showed the native SMOB enzyme follows a sequential mechanism under identical conditions. However, preliminary data of N-SMOB at 10 °C suggests that a double displacement reaction with NADH as the leading substrate could be prevalent mechanism. These studies of N-SMOB at 10°C provided estimates of the Km of NADH, Km of FAD and Vmax of N-SMOB at 5.0 μM, 3.7 μM, and 38.0 μMs⁻¹, respectively. Through the use of high resolution kinetic analysis at 30°C, we confirm that the double displacement mechanism is the preferred reaction for N-SMOB and these findings will be used to elucidate the flavin-transfer reaction.

320 **Organ-Specific Ugt Locus Profiling in Defining the Toxic Response Towards Irinotecan Anticancer Drug Therapy.**

S. Chen, V. Devaraj, M. Fagan and R. H. Tukay. *Laboratory of Environmental Toxicology, Department of Chemistry & Biochemistry and Pharmacology, University of California San Diego, La Jolla, CA.*

Irinotecan (CPT-11) has been used as a first line drug in the treatment of colorectal cancer. However, its efficacy and safety is compromised because of severe late onset diarrhea, a result of enterocyte toxicity from the active metabolite SN-38. SN-38 is inactivated primarily by hepatic UGT1A1 catalyzed glucuronidation to form SN-38 glucuronide, which is excreted via the biliary ducts into the gastrointestinal (GI) tract, where it serves as a substrate for bacterial β-glucuronidase. Free SN-38 is then re-absorbed by entry through the GI tract. Since an abundance of the UGT1 proteins are rich in the GI tract, it was important to examine the association between SN-38 glucuronidation and the pending intestinal tissue damage resulting from CPT-11 therapy. To carry out these experiments, we have generated mouse models targeting deletion of the Ugt1 locus specifically in liver (Ugt1Δl) and the intestines (Ugt1Δi). Wild type (Ugt1Δl), Ugt1Δl and Ugt1Δi adult male mice were treated by the intraperitoneal route with CPT-11 daily for four constitutive days. At a daily dose of 75 mg/kg, survival curves of the Ugt1Δl mice showed a 50% lethality rate, comparable to the LD50 values of CPT-11 treated Ugt1Δi mice. Deletion of the Ugt1 locus in hepatic tissue had no impact on liver or GI toxicity when compared to wild type mice. Alternatively, Ugt1Δi mice were highly susceptible to CPT-11-induced diarrhea, developing severe ileocolitis. At a CPT-11 dose of 25 mg/kg, bloody diarrhea was observed in all Ugt1Δi mice and was associated with 100% lethality, while no diarrhea or lethality was observed in Ugt1Δl or Ugt1Δl mice at that dose. Thus, intestinal expression of the UGT1A proteins is critical towards the detoxification of SN-38. Regulation of the intestinal UGT1A1 gene may serve as a target for improving the therapeutic index and efficacy associated with CPT-11 treatment. (Supported by USPHS grants ES051337 and CA171008)

321 **Selective Criteria for Determining Catalytic Competency in CYP3A4: A Combined Docking and Pharmacophore Study on Triazole Fungicide Metabolism.**

D. T. Chang1, C. M. Grulke1, M. Goldsmith1, J. F. Kenneke1, S. Rawat1, S. A. Marchetti1, C. S. Mazure1, K. Holm1, M. B. Phillips2, Y. Tang1, R. Torner1, D. Curry1, M. T. C. Varnum1, N. Exposure Research Laboratory, USDA E8 Research Triangle Park, NC; 2National Exposure Research Laboratory, USDA EPA, Athens, GA; 3Student Services Authority, Athens, GA; 4National Exposure Research Laboratory, USDA EPA, Las Vegas, NV.

Cytochrome P450 (CYP) 3A4 is one of the major isozymes of enzymes that catalyzes via Phase 1 oxidation a wide variety of endogenous and exogenous compounds (i.e., broad substrate specificity) including environmental xenobiotics like chiral pesticides. In particular, several chiral pesticides are well-known to undergo differential kinetics within the homochiral environment of biological systems. The current ability to model such enzymatic processes within physiologically rich pharmacokinetic models from an exposure-dose perspective is limited by specific chiral information coupled together with accurate kinetic data. With available in-house stereochemical (i.e., individual stereoisomer) in vitro data, we have utilized a ligand–based approach to develop a prototype CYP3A4 pharmacophore model for triazole fungicides based on the observed stereoselective CYP3A4 clearance. The developed model was further used to discriminate between single isometric configurations thereby enriching the dataset and providing further criteria on putative ligand–receptor interactions. We also utilized a combined pharmacophore and docking approach within the CYP3A4 binding cavity (2V0M FBDID) to provide estimates on putative ligand stereoselective rate constants for a test set of triazole compounds. Observations and comparisons between high and low binding affinity poses as well as homolytic dissociation bond energy estimates at purported sites of metabolism indicate that this method may be helpful for selecting catalytically competent ligand substrates for CYP3A4 and thereby reducing the uncertainty within exposure-based pharmacokinetic models of chiral pesticides.

Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

322 **Chlorpyrifos Affects Specific Types of Zebrasfish Larval Behavior If Administered during Distinct Developmental Time Periods.**

H. Richendrfer and R. Creton. MCB, Brown University, Providence, RI.

Pesticides are widely used in agriculture and are found ubiquitously in the environment. While adults have enzymes that are able to break down pesticides, developing embryos lack the necessary enzymes for toxicant removal. Low doses of organophosphate pesticides during early embryonic development in animal models
and in humans have been documented to affect brain development and behavior. It is important to determine at which stages of development embryos are most affected by the exposure to organophosphate pesticides. Using zebrafish as a model system for pesticide exposure is advantageous because embryos can be exposed to organophosphates immediately after fertilization and large numbers of larvae can be used for high-throughput behavioral analysis. Behaviors such as swim speed, preference for edge of a well, and avoidance of a moving stimulus can be quickly obtained. In the present study, employing a high-throughput assay unique to our lab, we show that exposure to low doses of a widely used organophosphate, chlorpyrifos, affect discrete behaviors if administered during specific developmental time periods. The results indicate that even low levels of chlorpyrifos have the potential to impact important behaviors administered during critical periods of development and these behavioral abnormalities are emerge from pesticide exposure during different critical points. The results of the present study have the potential to affect food consumption guidelines, especially in pregnant women. Future studies will include larval zebrafish confocal brain imaging to detect neural patterning changes after chlorpyrifos exposure.

324 Characterization of glo1 Gene Expression during Development and Alterations Induced by Atrazine Exposure in Zebrafish.
G. Ryan1, G. J. Weber1, S. M. Peterson1, M. S. Sepulveda2 and J. L. Freeman1.
1Health Sciences, Purdue University, West Lafayette, IN; 2Forestry and Natural Resources, Purdue University, West Lafayette, IN.

Atrazine is a commonly used herbicide that is an endocrine disruptor and a suspected carcinogen. Although atrazine was recently banned by the European Union for widespread contamination risks in potable water supplies, this herbicide is still used in the United States with a current maximum contaminant level (MCL) of 3 ppb. The health risks associated with this MCL are currently being reviewed by the Environmental Protection Agency, but the mechanisms of atrazine toxicity are not very well defined. In this study, we are using [1] global gene expression analysis to identify altered genes, [2] in situ hybridization to qualitatively analyze toxic responses and other effects of FICZ in developing birds. Peanut oil-levithin emulsions or without FICZ were injected into the yolks of day-4 chicken embryos (0, 2, 20, or 200 µg FICZ/kg egg) and day-3 zebrafish embryos (0, 2, or 200 µg FICZ/kg egg). Twenty four hours post-injection CYP1A4 and CYP1A5 showed dose-dependent induction by FICZ in both chicken and zebrafish, and the degree of induction was similar in the two species. The CYP1B1 level in both species and the CYP1C1 level in chicken were unaffected by FICZ exposure. In chicken embryos exposed to 200 µg FICZ/kg the CYP1A levels remained induced in liver and thymus 13 days post-injection (day 17). Furthermore, liver lesions were observed in 48% of these animals, suggesting that FICZ is toxic at high doses. Our results suggest that while there is a large species variation in sensitivity to dioxin-like compounds the strong AHR activation by FICZ is evolutionarily conserved, indicating an important physiological function. Funding: The Swedish Research Council Formas and Carl Tryggers Stiftelse.

M. E. Jönsson1, S. Shaiki1, A. Rannug2 and B. Brunström1. 1Environmental Toxicology, Uppsala University, Uppsala, Sweden; 2Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.

Birds show a strikingly large species variation in susceptibility to developmental toxicity of dioxins and coplanar polychlorinated biphenyls (PCBs). The chicken is the most sensitive to these compounds among avian species, while e.g. the Japanese quail is much more resistant. Such differences are proposed to depend on binding affinity of dioxin to the aryl hydrocarbon receptor (AHR), i.e., the degree of sensitivity is linked to variation in a few amino acids in the ligand binding domain of avian AHRs. The proposed endogenous AHR ligand 6-formylindolo[3,2-b]carbazole (FICZ) has high AHR binding affinity and causes strong transient induction of CYP1 mRNA in human cells and zebrafish embryos. In Xenopus tropicalis tadpoles FICZ is almost as potent an inducer of CYP1A as in zebrafish embryos. However, Xenopus tadpoles are much less sensitive to PCB126-induced toxicity than zebrafish embryos. The goal of the present study was to determine mRNA expression responses and other effects of FICZ in developing birds. Peanut oil-levithin emulsions with or without FICZ were injected into the yolks of day-4 chicken embryos (0, 2, 20, or 200 µg FICZ/kg egg) and day-3 zebrafish embryos (0, 2, or 200 µg FICZ/kg egg). Twenty four hours post-injection CYP1A4 and CYP1A5 showed dose-dependent induction by FICZ in both chicken and zebrafish, and the degree of induction was similar in the two species. The CYP1B1 level in both species and the CYP1C1 level in chicken were unaffected by FICZ exposure. In chicken embryos exposed to 200 µg FICZ/kg the CYP1A levels remained induced in liver and thymus 13 days post-injection (day 17). Furthermore, liver lesions were observed in 48% of these animals, suggesting that FICZ is toxic at high doses. Our results suggest that while there is a large species variation in sensitivity to dioxin-like compounds the strong AHR activation by FICZ is evolutionarily conserved, indicating an important physiological function. Funding: The Swedish Research Council Formas and Carl Tryggers Stiftelse.
Cytotoxicity of P450 Gene Transcripts in Early Development of Zebrafish Danio rerio.

J. Stogeman, A. Kubota, B. Woodin, E. Hawley, Z. Janes, B. Lemaire and J. Goldstone

Understanding the roles of cytochromes P450 (CYPs) in zebrafish is important to the use of this non-mammalian model in toxicological, pharmacological and carcinogenesis research. In this study, we determined whether maternally derived transcripts for many CYP genes are present in zebrafish oocytes, and how levels change up to the mid-blastula transition (MBT) (3 hours post fertilization, hpf), focusing on genes involved in xenobiotic and endobiotic metabolism. The maternal contribution to transcript abundance in the eggs varied greatly among CYP genes examined. CYP2P1 showed the highest levels in the oocytes, followed by CYP20 and CYP1A. The transcript levels of all CYPs examined were similar between unfertilized eggs and fertilized eggs at <2 cell stage (prior to the first division). Many of CYPs including CYP1B1, 1C1, 1C2, 2P6, 2R1, 2A4, 11C1, 17A2, and 26A1 showed significant increases in their transcript levels at 3 hpf (1,000 cells). In contrast, CYP1A and the steroidogenic CYPs 11A1, 17A1, and 19A1, showed constant levels of transcript from egg to 3 hpf. Other CYPs, including CYP2P1, 2A3, 3C1, and CYP51 showed an increasing trend at 2 hpf (64 cells), well before the MBT. We also examined the effect of exposure to an aryl hydrocarbon receptor agonist, 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) on transcript levels of CYP1 and selected other genes in oocytes. Exposure of females to waterborne PCB126 caused increases in the transcript levels of CYP1A, 2A3, 3C1, 11A1, and CYP51 genes in eggs as compared to those from vehicle-exposed females. The results reveal maternal transcript deposition of a suite of CYP genes in the egg, and also show that temporal patterns of CYP transcript levels during early development from egg to the MBT differ substantially among different CYP genes. Maternal exposure to chemical was shown to cause changes in the transcript deposition of some CYP genes in the egg. [Support: JSPS Postdoctoral Fellowships for Research Abroad no. 820 (A.K.), and NIH Superfund Research Program grant P42ES00738 (J.S.)]

Methylmercury-Induced Notch Signaling Points to a Role for Muscle Targets in Motor Nerve Development in Drosophila.

C. T. Mahapatra1, M. D. Rand1, G. Engel1 and A. Delwig1, 1Environmental Medicine, University of Rochester, Rochester, NY; 2College of Agriculture, Purdue University, West Lafayette, IN.

Methylmercury (MeHg) is a ubiquitous environmental toxicant that targets the developing nervous system. Despite a wide variety of toxic mechanisms ascribed to MeHg, its specificity for neural targets is not completely understood. Previous work in mammalian and invertebrate models has shown that MeHg induces expression of Notch pathway target genes, notably the Enhancer of split m-delta (E(spl)mδ) gene. We have shown earlier that MeHg induction of E(spl)mδ can occur independently of the Notch receptor and thus may directly influence neural development. In this study, we examine the effects of MeHg on E(spl)mδ gene expression in parallel with neural development events in the Drosophila embryo. We now show that E(spl)mδ is specifically upregulated in MeHg-exposed embryos. We exclude the possibility that MeHg-induced E(spl)mδ expression is a by-product of a general stress response or a shift in developmental timing. MeHg phenotypes are apparent in the outgrowth of the embryonic intersegmental and segmental motor nerves. Genetic manipulations causing overactivity of the Notch pathway in neurons can mimic these phenotypes. Unexpectedly, induced expression of E(spl)mδ in neurons does not cause a failure of motor nerve outgrowth. We now demonstrate that endogenous E(spl)mδ expression localizes to developing muscle and that E(spl)mδ overexpression in embryonic muscles causes a segmental nerve phenotype similar to MeHg treatment. Closer examination shows altered patterning in muscle fields stemming from either MeHg treatment or E(spl)mδ overexpression. In contrast, targeting expression of the closely related E(spl)mγ to developing muscle shows no embryonic phenotype, whereas E(spl)mγ targeted to neurons is embryonic lethal. In summary these data highlight a novel mechanism whereby MeHg can engage the activity of a Notch pathway target gene to alter coordinated development of muscles and motor neurons.

Effects of Benzo[a]pyrene on Early Zebrafish Development.

K. M. Alharthy, F. T. Booc, J. Corrales, C. Thornton and K. L. Willett, Department of Pharmacology and ETRR University of Mississippi, Oxford, MS.

Benzo[a]pyrene (BaP) is a ubiquitous environmental contaminant that is an endocrine disrupting and carcinogenic high molecular weight polycyclic aromatic hydrocarbon. Our previous work found that BaP significantly decreased fish brain aromatase (CYP19b) expression, a key enzyme in steroidogenesis. We hypothesized that BaP deregulates the steroid hormone hypothalamus-pituitary-gonad feedback loop adversely affecting reproductive development and physiology. Zebrafish embryos were exposed to waterborne concentrations of BaP (0, 10, and 50 μg/L) for 96 hours postfertilization (hpf). Fifty μg/L BaP significantly increased mortality compared with the control and 10 μg/L groups at 24, 48, 72, and 96 hpf, whereas mortality was not significantly increased until 96 hpf in the 10 μg/L BaP group. In order to quantitate effects on involved in xenobiotic and endobiotic metabolism, larvae were collected at 48, 72, 96, 168 and 504 hpf. Histopathological assessment of gonad maturation was done on paraffin embedded and sectioned fish at 28, 32, 35, and 52 days post fertilization. In a treatment-blinded morphological assessment of larvae at 96 hpf, the high BaP dose significantly decreased the body length, optic vesicle, and swim bladder size while increasing pericardial and abdominal edema.
compared to control and 10 μM treatments. Body and tail shape and fin malformation scoring also indicated a dose-dependent adverse impact of BaP-treatment on development. Results extend previous studies highlighting the adverse impacts on early development of BaP-exposure. (Supported by NIEHS R03 ES018962)

332 Drosophila CYP6g1 and Its Human Homolog CYP3A4 Confer Tolerance to Methylmercury during Development.

M. D. Rand1, J. A. Lowe1 and C. T. Mahapatra2, 1Environmental Medicine, University of Rochester, Rochester, NY; 2College of Agriculture, Purdue University, West Lafayette, IN.

The fetal nervous system is a well-known primary target for methylmercury (MeHg) toxicity. Despite knowledge of numerous cellular processes that are affected by MeHg, the mechanisms that ultimately influence tolerance or susceptibility to MeHg in the developing fetus are not well understood. Using transcriptomic analyses of developing brains of MeHg tolerant and susceptible strains of Drosophila, we previously identified members of the cytochrome p450 (CYP) family of monooygenases/oxidoreductases as candidate MeHg tolerance genes. CYP genes encode Phase I enzymes best known for xenobiotic metabolism in the liver as well as synthesis and degradation of essential endobiotics, such as hormones and fatty acids, that are critical to normal development. We now demonstrate that natural and induced variation in expression CYP genes can strongly influence MeHg tolerance in the developing fly. We show that modulating expression of a single CYP, CYP6g1, specifically in neurons or the fat body (liver equivalent) is sufficient to rescue Drosophila development in the presence of MeHg in the diet. Furthermore, we identify CYP3A4 as a human homolog of CYP6g1 and show that it similarly confers MeHg tolerance when ectopically expressed in flies. Finally, pharmacological induction of endogenous CYPs with caffeine also results in elevated tolerance in the developing fly. We show that modulating expression of a single CYP, CYP6g1, specifically in neurons or the fat body (liver equivalent) is sufficient to rescue Drosophila development in the presence of MeHg in the diet. Furthermore, we identify CYP3A4 as a human homolog of CYP6g1 and show that it similarly confers MeHg tolerance when ectopically expressed in flies. Finally, pharmacological induction of endogenous CYPs with caffeine also results in elevated tolerance to MeHg in developing flies. These findings establish a previously unidentified role for CYPs in modulating MeHg toxicity and point to a potentially conserved role of CYP genes to influence susceptibility to MeHg toxicity across species.

333 Systems Approaches to Define the Developmental Toxicity of Polychlorinated Diphenyl Ethers.

M. T. Simonich, L. Truong, S. M. Bugel, B. C. Goodale, W. Bisson, D. C. Koch, S. K. Kohll and R. L. Tanguay, Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR.

Polychlorinated diphenyl ethers (PCDEs) are high production volume flame retardants used in a number of consumer products. PCDEs are ubiquitous environmental pollutants due to their widespread usage, persistence and lipophilicity. Developmental exposure to PCDEs is associated with a number of neurological and developmental effects in humans and wildlife. A major complexity in assessing the hazard and risk posed by PCDEs is the diversity of chemical congeners; chemical structure-toxicity relationships are not established for these compounds. Our hypothesis was that developmental toxicity of PCDEs is highly structure dependent and that the molecular targets of these compounds are distinct. We performed rapid throughput assessment of PCDE developmental and neurotoxicity in zebrafish with PCDE congeners 47, 77, 99, 100, 153, 154, and 183. All exposures were from 6 until 120 hours post fertilization (hpf) at which time larvae were assessed for photo-induced locomotor activity and changes in a suite of morphological endpoints. Preliminary global gene expression data suggested that some PCDE congeners may activate the aryl hydrocarbon receptor (AhR). We used our AhR PAS domain homology model for molecular docking analysis, which predicted that PBDE 47, 77, and 99 would bind to the human and zebrafish AhR. Immunohistochemistry confirmed CYP1A induction for PBDE 77 and PBDE 99. Mammalian AhR dependent in vitro reporter assays supported these results. Finally, PBDE exposures in AhR2 null fish confirmed that AhR2 is necessary for PBDE 77, and 99 neuro and developmental toxicity. Collectively these data indicate that some PBDEs induce toxicity primarily via activation of the AhR, while others act through uncharacterized AhR-independent pathways, and we are now positioned to identify these distinct mechanisms of PBDE action. This research is supported by NIEHS grants P30 ES00210, T32 ES07060 and R01ES019764.

334 Evaluating Morphological, Neurological, and Gene Expression Changes in Response to Developmental PAH Exposures.

A. Knecht and R. L. Tanguay, Oregon State University, Corvallis, OR.

Polychlorinated aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants present in urban air, dust, and soil resulting from incomplete combustion of organic materials or fossil fuels. It is widely recognized that PAHs pose risks to human health, especially for the developing fetus and infant where PAH exposures have been linked to low birth weight and in utero mortality and lower intelligence. Using the embryonic zebrafish model, we evaluated the developmental and neurotoxicity after exposure to two PAHs: benzo[a]pyrene (B[a]P) and dibenz[a,l]pyrene (DB[a,l]P). Dechorionated embryos were exposed from 6 to 120 hours post fertilization (hpf) to a broad concentration range of PAHs and assessed for mortality and 20 unique endpoints at 120 hpf. Using the Viewpoint Zebrabox, we identified that larvae exposed to B[a]P exhibited a hyperactive phenotype. To determine if this behavioral defect persists throughout development, a subset of exposed animals were raised to adulthood and assessed for learning and memory deficiencies using shuttleboxes. Previously, we have demonstrated that exposure to PAHs resulted in an induction of the oxidative stress genes set. Using the Seahorse Extracellular Flux Analyzer, we measured oxidative stress in vivo in 24hpf embryos exposed to PAHs from 6 – 24 hpf. The Seahorse results confirm the presence of oxidative stress and that exposure to PAHs cause decreased oxygen consumption rates and acidification rates suggesting the presence of mitochondrial damage. To explore what transcriptional events are occurring prior to the onset of developmental and neurotoxicity, a global gene expression analysis using RNA-seq was performed on 48 hpf embryos exposed to 1 and 10 ppm B[a]P and 10ppm DB[a,l]P. Analysis of our collective data will be discussed and provide insight into potential mechanism of action for some PAHs. This research was supported by the NIEHS grants P42 ES016465 and P30 ES00210.

335 Defining Pathways of Polycyclic Aromatic Hydrocarbon Developmental Toxicity in Zebrafish Using Systems-Based Transcriptional Profiling.

B. C. Goodale1, S. C. Tilton1, A. Knecht1, A. Swanson1, K. Anderson1, K. M. Waters1 and R. L. Tanguay1, Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR; 2Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA.

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. Defining toxicity mechanisms for this large family of multi-ring structures and substituted derivatives is a substantial challenge. In addition to the well-studied carcinogenic properties of several PAHs such as benzo(a)pyrene, reports of cardiac and developmental effects have increased concern about health risks of exposure to PAHs. Some PAHs induce toxicity via activation of the aryl hydrocarbon receptor (AhR), while others act through uncharacterized AhR-independent pathways. We employed the zebrafish model to rapidly assess developmental toxicity, global transcriptional responses and AhR activation in embryos exposed to parent, oxygenated PAHs (OPAHs) and environmental mixture samples during development. Using comparative analysis of mRNA expression profiles from microarrays with embryos exposed to benzo(a)anthracene (BAA), dibenzo[def]anthracene (DBTF) and pyrene (PYR), we identified expression biomarkers and disrupted biological processes that precede developmental abnormalities. These transcriptional responses were associated with PAH body burdens in the embryos detected by GC-MS. We found that uptake data was essential for discerning molecular pathways from dose-related differences, and identified two primary toxicity profiles. While BAA disrupted transcripts involved AhR signaling and vasculogenesis, DBTF and PYR misregulated ion homeostasis and muscle-related genes. Biomarkers of these toxicity pathways are under investigation with a diverse group of OPAHs, and comparative analysis of embryos exposed to OPAHs with different proposed molecular mechanisms using RNA-seq will expand and refine pathways of PAH-induced developmental toxicity. This research is supported by NIEHS grants P30ES00210, P42ES016465 and T32ES07060.

336 Ebselen As a Countermeasure for Nitrogen Mustard Viscant - Induced Toxicity.

J. L. Laskin1, Y. Jang1, D. E. Hecker2, B. P. Casillas2 and D. L. Laskin3, 1Environmental & Occupational Medicine, UMDNJ-RWJMS, Piscataway, NJ; 2Environmental Health Science, New York Medical College, Valhalla, NY; 3MBI Global, Kansas City, MO; 4Pharmacology & Toxicology, Rutgers University, Piscataway, NJ.

Mechlorethamine (HN2), a nitrogen mustard vesicant, is a bifunctional alkylating agent commonly used as a model to study sulfur mustard-induced lung injury. Previously, we reported that HN2 selectively targeted antioxidants in lung A549 epithelial cells including the selenoprotein thioredoxin reductase (TrxR) forming intra- and inter-molecular cross links. This resulted in dimer and oligomer formation, and enzyme inactivation, a process contributing to oxidative stress and toxicity. In this study, we examined the effects of ebselen, a selenium-containing antioxidant, on HN2-induced toxicity. In A549 cells, HN2 was found to be cytotoxic
both the piriform cortex and dentate gyrus region of the hippocampus, while 2-
5-HIAA; p<0.05), one hr after NIMP treatment, with early markers of oxidative
stress (isoprostanes) also being tested. These results indicate the potential therapeu-
tic efficacy of these oximes and suggest this innovative chemistry may protect
against nerve agent-induced toxicity.

5. Show Bipyridinium Nonoximes Direct Interactions with Muscle-Type Nicotinic Acetylcholine Receptors?

H. Thiermann, T. Seeger, E. Worek and K. V. Niessen. Bundeswehr Institute of
Pharmacology and Toxicology, Munich, Germany.

Objective: In poisoning with some organophosphorus nerve agents, e.g. soman,
therapeutic efficacy of oximes is limited. For such cases, a direct intervention at
nicotinic acetylcholine receptors (nAChR) might be an alternative. Studies with the
bipyridinium non-oxime MB327 (1,1’-(propene-1,3-diyl)bis(4-tert-butylicy-
dinium) di(iodide)) demonstrated a therapeutic effect against soman in vitro and in
vivo. As MB327 was found to interact most probably with muscle-type nAChRs,
improved therapeutic efficacy could possibly be achieved with compounds that
show enhanced activity. To identify potential candidates, homologous series of sub-
stituted and non substituted analogues (linker C1-C10) of MB327 were investi-
gated in binding and functional assays. In addition, their inhibitory activity was as-
sessed with human acetylcholinesterase (AChE).

Experimental procedures: In competition radioligand binding assays, the influence
on [3H]epibatidine binding sites of Torpedo californica nAChR was investigated.
Functional assessments were performed with cell-free electrophysiology based on
solid supported membranes (SSM). AChE inhibitory properties of the compounds
were assayed with a modified Ellman assay using haemoglobin-free human ery-
throcyte ghosts.

Results: MB327 and several bipyridinium structure analogues exhibit no regular
displacement curves at [3H]epibatidine binding sites. Compounds with unsubsti-
tuted pyridinium ring and long linkers (> C7) show regular competition but no in-
trinsic effect. Inhibition of human AChE (IC50 < 1 µM) for both bipyridinium
compound series (unsubstituted and with p-tert-butyl in both pyridine rings) was
observed with increasing distance between the pyridinium N (> C9 and > C6 re-
spectively).

Conclusion: The interaction with [3H]epibatidine binding sites and functional im-
provement of Torpedo californica nAChRs depend on the substitution and C-
linker between the pyridine N. Further research is necessary for better understand-
ing how these compounds interact with the nAChR.

338 Novel Therapeutic Compounds YEL001 and YEL002 Mitigate Radiation-Induced Toxicity Authors.

Y. Rivina and B. H. Schiessl. Pathology, Environmental Health Sciences, Radiation
Oncology, University of California Los Angeles, Los Angeles, CA.

The possibility of a radiation disaster from a nuclear detonation or accident has ex-
ested for over 50 years and spawned much of the basic research in radiobiology in
the 1950-60s. The recent Fukushima accident was yet another reminder that there
remains a dire need to develop novel therapies against radiation-induced toxicities.
Here we report on the development of two novel radiation countermeasure thera-
pies: YEL001 and YEL002. These small, biologically active, drug-like molecules were
uncovered in the DEL high throughput assay reducing radiation-induced cyto-
and genotoxicity in yeast. Radiation-modulating activity was further confirmed in
yeast plate-based DEL Assay; addition of either Yel001 or Yel002 to irradiated cul-
tures reduced cell death and genomic instability. Further, Yel compounds increases
survival to 75% in vivo following an LD100/30 dose of ionizing radiation (IR)
with the first therapeutic injection administered 24 hours post exposure followed
by injections at 48, 72, 96, and 120 hours. Additionally, treatment with Yel001 and
Yel002 compounds reduces radiation-induced leukemia from 90% to 50% and
40% respectively. Of note, treatment with either Yel001 or Yel002 reduced sponta-
neous leukemia rate from 10% to 0%. Treatment with Yel002 following IR accel-
10
erates the recovery of the hematopoietic cells after sub-lethal exposures. In addition,
treatment with Yel002 reduces EMS, MMS, UV, cigarette smoke extract as well as
nitrogen mustard induced toxicity as well as genotoxicity showing a broad applica-
tion spectrum. Toxicity has not been observed in either in vitro or in vivo adminis-
trations. Overall, Yel compounds have much potential as stockpile therapies for
radiation-induced lethality and cancer: they are highly effective when administered
up to 24hours post exposure, they reduce radiation-induced sequelae such as
leukemia, and appear to have an acceptable toxicity profile.
Sulfur mustard and the related skin vesicant nitrogen mustard (methyleneharnine hydrochloride, HN2) are bifunctional alkylating agents known to cause oxidative stress and persistent tissue damage including blistering. In the present studies we determined whether HN2-induced oxidative stress and cytotoxicity in mouse keratinocytes could be mitigated by upregulating antioxidant enzymes. Sulfuraphane (SFN), an isothiocyanate found in cruciferous vegetables including broccoli, is a well characterized inducer of antioxidants and phase II metabolizing enzymes through a pathway mediated by the transcription factor nuclear factor-erythroid-2-related factor 2 (Nrf2). Treatment of PAM212 mouse keratinocytes with HN2 inhibited keratinocyte growth (IC50 = 3.0 μM). Pretreatment of the cells with 3 μM SFN for 3 hours protected against growth inhibition (IC50 = 6.0 μM). SFN also protected primary mouse epidermal keratinocytes from HN2 (IC50 = 2.0 μM and 30 μM with and without SFN, respectively). SFN also decreased HN2-induced phosphorylation of histone H2A.X, a marker of DNA damage, in PAM212 cells. SFN was functionally active causing Nrf2 to translocate from the cytosol to the nucleus. This was associated with a marked increase in expression of the antioxidants heme oxygenase-1, thioredoxin reductase 1, and NADPH quinone oxidoreductase-1, as well as the phase II metabolizing enzyme glutathione-S-transferase A1. Taken together, these data indicate that oxidative stress is important in HN2-induced toxicity in mouse keratinocytes and that SFN may be an effective countermeasure against vesicant-induced toxicity. Supported by NIH grants AR055073, ES004738, CA132624, GM034310 and ES005022.

Sulforaphane Induces Antioxidants and Glutathione S-Transferase A1 and Protects against Vesicant-Induced Toxicity in Mouse Keratinocytes.

R. G. Udasin, M. Shakerjian, V. Mishin, D. E. Heck, R. P. Casillas, D. L. Laskin, and J. D. Laskin. Joint Graduate Program in Toxicology, Rutgers University/UMDNJ, Piscataway, NJ; 2Department of Medicine, UMDNJ-RWJMS, Piscataway, NJ; 3Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ; 4MIBl Global, Kansas City, MO; 5Environmental & Occupational Medicine, UMDNJ-RWJMS, Piscataway, NJ.

Toxicity in Mouse Keratinocytes.

E. C. Meek, H. W. Chambers, R. B. Pringle, J. E. Chambers, and J. M. Gearhart. 1College of Veterinary Medicine, Mississippi State University, Mississippi State, MS; 2Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS; 3AFRL, Wright-Patterson AFB, Dayton, OH.

Inhibition of AChE following exposure to toxic OPs (nerve agents and pesticides), results in the overstimulation of the nervous system. The approved therapies include an oxime, e.g. 2-PAM, to reactivate OP inhibited AChE; however these oximes have little, if any ability to cross the BBB. A series of novel pyridinium oximes have been synthesized that incorporate moieties that increase BBB penetration and AChE reactivation. Oximes were screened in vitro for their ability to reactivate AChE inhibited by a sarin surrogate, pthalimidyl isopropyl methylphosphonate (PIMP), or a VX surrogate, nitrophenyl ethyl methylphosphonate (NEMP), which phosphorylate AChE with the same moiety as sarin or VX, as well as with paraoxon, the active metabolite of the insecticide parathion. Rat brain homogenate was incubated with a concentration of OP that yielded about 80% AChE inhibition, followed by an oxime (0.1mM) and AChE activity measured. In vitro AChE reactivation varied among oximes but was similar for each of the nerve agent surrogates; PIMP, 14-79%, and NEMP 23-76%, but differed for paraaxon 16-93%. Oxime lipophilicities ranged from 0.009 to 2.244 (Kow) and were greater than for 2-PAM (0.006). A subset of oximes that demonstrated AChE reactivation ≥40% in vitro were selected for testing in vivo in rats with the nerve agent surrogates. A high sublethal dose of a stable sarin surrogate, nitrophenyl isopropyl methylphosphonate (NIMP) (0.325mg/kg) or NEMP (0.4mg/kg) was administered ip, yielding about 80% brain AChE inhibition, followed by an im injection (0.1mmol/kg) of an oxime at the time of peak brain AChE inhibition (1hr). Twelve of 25 novel oximes tested yielded 10-35% brain AChE reactivation and attenuated OP induced seizures, indicating their ability to cross the BBB, reactivate brain AChE and thus demonstrating their therapeutic potential. Supported by DTRA: 1E0056_08_AHB_C

Effects of Delayed Treatment with a Centrally Active Oxime on Acetylcholinesterase and Survival following Sarin Intoxication.

Organophosphorus (OP) nerve agents (NA), such as sarin, irreversibly inhibit the enzyme acetylcholinesterase (AChE), which leads to an excess of acetylcholine in the synapses, causing numerous toxic effects, such as convulsions, respiratory distress, and death. The current NA treatment regimen includes 2-pralidoxime (2-PAM) to reactivate NA-inhibited AChE. The quaternary structure of 2-PAM, however, does not allow it to cross the blood brain barrier to reactivate brain AChE and to mitigate CNS toxicity. We have shown earlier that the tertiary oxime monoisonicotinoyl hydroxylamine (MINA), when given soon after NA exposure, provides some AChE reactivation in the brain, enhanced survival and mitigated the seizure activity following NA exposure. In this study, we evaluated the efficacy of delayed MINA therapy in reactivating brain AChE and enhancing survival following lethal sarin intoxication. For the reactivation study, guinea pigs were treated with MINA (30, 60, or 120 mg/kg, im) 30 min after one LD90 of sarin, and AChE was assessed 60 min later. MINA was capable of producing a dose-related reactivation of brain (from 5.8 to 27.4% recovery) and peripheral tissue (from 4.1 to 21.0% recovery) AChE activity that was inhibited by sarin. In a 24-hour survival study, animals were challenged with 3 x LD50 of sarin and treated 1 min later with intramuscular atropine (0.5 mg/kg) and 2-PAM (25 mg/kg), and MINA (56 mg/kg, im) was given as an adjunct at 1, 3, 5, 15, or 30 min after sarin. Treatment with atropine and 2-PAM at 1 min resulted in 67% mortality, while additional therapy with MINA ensured 100% survival anytime from 3 to 30 min. These findings suggested that delayed therapy with a centrally active AChE reactivator for up to 30 min following lethal exposure to sarin is still capable of reactivating NA-inhibited AChE and saving lives. Thus, inclusion of a CNS penetrating oxime in the therapeutic regimen for OP NA intoxication is beneficial even when the therapy was delayed.

Support of NIH grants AR055073, ES004738, CA132624, GM034310 and ES005022.

Effects of Delayed Treatment with a Centrally Active Oxime on Acetylcholinesterase and Survival following Sarin Intoxication.

Smallpox is still considered a serious bioterror threat even though worldwide surveillance and vaccination eradicated the virus from the natural environment. ST-246 is an antiviral drug developed for the treatment of pathogenic orthopoxvirus infections (includes smallpox and monkeypox). Efficacy trials previously demonstrated that treatment of monkeypox virus-infected monkeys with ST-246 provided significant survival benefit at doses ≥40% in vitro at doses ≥40% in vivo. Once daily, 6-14 iv infusions of 3, 10 and 30 mg/kg ST-246 were administered for 14 days in a total of 19 male and female cynomolgus monkeys. Toxicokinetic (TK) parameters of ST-246 were evaluated with non-compartmental analysis methods on Day 1 and 14. Mean AUC0-24 and Cmax increased in a dose-proportional manner on Day 14, with values ranging from 6839 to 76908 ng.h/mL and 904 to 12827 ng/mL, respectively. Overall, ST-246 displayed favorable TK parameters, such as dose-proportional increase in exposure, limited accumulation following repeated dosing, and extensive distribution in peripheral tissues.

Toxicokinetics of ST-246, an Antiviral Product Developed for the Treatment of Human Pathogenic Orthopoxvirus Infection, in Cynomolgus Monkeys.

341 Sulforaphane Induces Antioxidants and Glutathione S-Transferase A1 and Protects against Vesicant-Induced Toxicity in Mouse Keratinocytes.

342 Effects of Delayed Treatment with a Centrally Active Oxime on Acetylcholinesterase and Survival following Sarin Intoxication.

343 Novel Oximes That Penetrate the Blood-Brain-Barrier (BBB) and Reactivate Organophosphate (OP) Inhibited Acetylcholinesterase (AChE).

344 Toxicokinetics of ST-246, an Antiviral Product Developed for the Treatment of Human Pathogenic Orthopoxvirus Infection, in Cynomolgus Monkeys.
345 Prediction of Human Equivalent Dose (HED) of Levofloxacin (LEVO) in New Zealand White Rabbits (NZW) to Support Efficacy of Combination Treatment with Novel Therapeutics against Inhalation Anthrax (IA).

M. Beliveau1, A. L. Menard2, J. P. Marier1, J. T. Troyer1 and E. K. Lefebvre2.
1Pharsight Consulting Services, Pharsight Corporation, Montreal, QC, Canada; 2Pharmaline, Inc., Annapolis, MD.

Regulatory agencies have suggested that novel therapeutics for treatment of IA do not diminish the efficacy of the standard-of-care (SOC) antibiotics in combination therapy, which would be the likely treatment. The NZW is an accepted animal model for IA where the SOC LEVO is both well tolerated, efficacious and where benefits of combination therapy would therefore need to be demonstrated. However, for proper demonstration of the added benefit of the new drug, the administered dose of LEVO must not be supra-therapeutic. Therefore, a HED of LEVO in NZW must be used. The objective of the current analysis was to determine pharmacokinetic (PK) parameters of LEVO in NZW and to determine the NZW dose equivalent to the HED of LEVO for IA. LEVO was administered to NZW by either PO or IV bolus administration and blood for PK analysis was collected at various times up to 48h post dose. Plasma samples were assayed for concentrations of LEVO using a validated LC/MS/MS method. Following calculation of PK parameters such as clearance (CL) and volume (Vss) by standard non-compartmental methods, the NZW HED was extrapolated from the clinical dose using the following equation: Dose_{rabbit}^{HED} = (HED/CL_{human}) x CL_{rabbit} where the HED = 500 mg and the CL_{human} was taken from the literature (175 mL/min). Following IV dosing, mean CL_{rabbit} and Vss of LEVO were 17.7 mL/min/kg and 1619 mL/kg, respectively. Bioavailability in NZW was dose dependent and ranged from 37.9% to 79.7%. Using CL_{rabbit}, CL_{human}, and the HED, the dose of LEVO in NZW corresponding to the HED was 50.5 mg/kg IV. If administered PO, the NZW HED would range from 53.8 mg/kg to 63.1 mg/kg. In conclusion, the above results suggest that LEVO IV dosing of 50.5 mg/kg or PO dosing of 53.8 to 63.1 mg/kg in NZW in combination with novel anthrax therapeutics are expected to allow sufficient demonstration of any added benefit of the novel drug.

346 The Beneficial Effect of a Treatment with Macrophages on Sulfur Mustard Cutaneous Burns.

S. Dach1, D. Kamus-Elimelech1, R. Sahar1, E. Fishbine1, R. Gez1, J. S. Graham1, A. Eisenkraft1, V. Horvitz1 and T. Kadar1.
1Pharmaceutical Institute for Biological Research, New Ziona, Israel; 2Office of the Commander, USAMRICD, Aberdeen Proving Ground, MD; 3NBC Protection Division, Ministry of Defense, Tel Aviv, Israel.

Sulfur mustard (HM) is a potent vesicant that its toxicity has been for many years a subject for research, yet, the exact mechanism of its toxicity is still elusive and treatment is only partially effective. Macrophages are known to play an essential role in almost every stage of wound healing and there is evidence for their beneficial effects in treating decubital ulcers and deep stoma wounds in human. This study was aimed to investigate the efficacy of a treatment with activated macrophages in ameliorating acute and long-term HM induced skin injuries in the hairless guinea pig (HGP) model. HGP were exposed to HM vapor creating superficial dermal skin lesions. They were treated with either a single or multiple intra-dermal injections of human activated macrophages (hAMs) into the wound bed. Clinical and histological evaluations were conducted up to four weeks post-exposure. A single intra-dermal injection into the wound bed administered early (15min or 6hr) after exposure inflicted an initial positive effect on the extent of the damage, demonstrating a temporary decrease in clinical symptoms, reduced number of acido philic epithelial cells and less micro-vascations compared to untreated control. Repeated injections with hAMs (15min, 48hr and 7d post-exposure), decreased significantly the wounds’ area and improved the integrity of the barrier function as expressed by trans-epidermal water loss measurements up to 10 days. Still, at 21 days there were no differences between the experimental groups. The results demonstrated a beneficial effect of macrophages on HM induced lesions. Further investigation is required to determine whether macrophages are required during the early phase of wound development or during the late phase of scar formation and remodeling. This work was supported by the US Army Medical Research and Material Command under award #: W81XWH-08-2-0128.

347 Comparative Anticonvulsant Effects of Diazepam in Rats and the Chemical Warfare Agent Soman.

Pharmacology, USAMRICD, Aberdeen Proving Ground, MD.

Diazepam is routinely used to control organophosphate-induced seizures. The present study was designed to evaluate the effectiveness of diazepam to control seizures induced by soman (GD), disopropylfluorophosphate (DFP) and paraxon. Prior to experimentation, animals were instrumented with cortical electrodes for monitoring brain activity. Animals exposed to GD (180 mg/kg, sc) were pretreated with HI-6 (125 mg/kg, ip) 30 min prior to GD challenge and treated with atropine methyl nitrate (2.0 mg/kg, im). Animals exposed to DFP (4.0 mg/kg, sc) were pretreated with pyridostigmine (0.026 mg/kg, ip) 30 min prior to DFP challenge and treated with atropine sulfate (AS; 0.2 mg/kg, im) and 2-PAM (25 mg/kg, im). Animals exposed to paraxon (1.05 mg/kg, sc) were treated with AS (2.0 mg/kg, im) and 2-PAM (25 mg/kg, im). In all cases, diazepam (10 mg/kg, im) was given within 40 min after the onset of seizures. Diazepam was effective in terminating DFP- and paraxon-induced seizures, but it was ineffective in terminating GD-induced seizures. In addition, neuropathology in animals treated with diazepam at 40 min after DFP or paraxon-induced seizures was markedly reduced at 24 hr after seizure onset. In contrast, diazepam treatment at 40 min after the onset of seizures induced by GD did not prevent or attenuate brain injury. DFP and paraxon were models developed as surrogate animal models for nerve agent (NA) biomedical research for evaluation of putative therapeutics. The difference in the effectiveness of diazepam in controlling seizures and reducing neuropathology induced by GD, DFP or paraxon indicates that DFP and paraxon are not suitable simulators for NA biomedically-related research due to the absence of the agonist effect. The current study demonstrates that diazepam is effective in terminating seizures induced by DFP or paraxon, but may not be efficacious against NA-induced seizures.

348 Determination of Cholinesterase Levels in the Blood and Brain following Galantamine Administration in the Guinea Pig Model.

1Battelle, Columbus, OH; 2CounterACT Program, NIH OD, Bethesda, MD.

The CounterACT Program at the National Institutes of Health is investigating galantamine hydrobromide (GAL) as a treatment for organophosphorus nerve agent (NA) intoxication and is establishing a dose response representation to determine optimal doses for future efficacy studies. GAL is a reversible acetylcholinesterase (AChE) inhibitor that crosses the blood–brain barrier and is presently approved for the treatment of mild to moderate Alzheimer’s disease. It has shown some efficacy against NA toxicity in animal studies. Ongoing studies are investigating the efficacy of GAL when administered either as a pre-treatment or post-treatment and when used in conjunction with standard NA treatments atropine and 2-PAM (pralidoxime). The objective of this study was to correlate clinical biomarkers and pharmacodynamics with clinical observations after treatment with GAL. Blood and brain levels of GAL and ChE inhibition were determined at various time-points along with standardized clinical observations. Cohort A used 36 animals with six dose levels of 0, 2, 4, 8, 12 and 16 mg/kg and serial blood collections from 5 minutes to 24 hours post treatment. These samples were assayed to determine the percent AChE activity at seven time-points. Cohort B used 144 male Hartley guinea pigs with six dose levels of 0, 2, 4, 8, 12 and 16 mg/kg with designated sacrifice time-points on 4 animals for each dose level at 5, 30, 60 min, 2, 4 and 24 hours post treatment. Clinical observations showed a trend of increasing severity of clinical observations as the dose level increased. All clinical signs started at 5 minutes post treatment and 2 animals were normal by the 24 hour post treatment time-point. Significant observations of toxicity were present at and above the 12 mg/kg dose level, combined with the greatest inhibition of AChE. Inhibition of AChE was seen at the 5 minute-time point (post treatment) with results showing a dose dependent inhibition from low to high dose levels.

349 Characterization of Protein Adducts of Nitrogen Mustards As Potential Exposure Biomarkers.

V. R. Thompson and A. P. DeCaprio.
Department of Chemistry & Biochemistry and International Forensic Research Institute, Florida International University, Miami, FL.

Protein adducts are useful as longer-term biomarkers of exposure to electrophilic xenobiotics, including chemical warfare agents (CWA) and their metabolites. The purpose of this study was to characterize protein adducts of the nitrogen mustards...
We have shown previously that chronic exposure to the glucocorticoid corticosterone, (CORT), at levels associated with high physiological stress, can prime the CNS proinflammatory response to neurotoxic insults. Persistent sickness behavior, a prominent component of Gulf War (GW) Illness, is associated with neuroinflammation. Veterans of the 1991 GW were exposed to the stresses of war, prophylactic agent sarin. Previously, we showed that subchronic CORT pretreatment primed the neuroinflammatory response to LPS and DFP. Marked neuroinflammation in response to LPS and DFP, 4 mg/kg, i.p.) or known inflammogen doses (days 15 or 45) of the sarin surrogate and irreversible AChE inhibitor diisopropyl phosphorofluoridate (DFP, 4 mg/kg, i.p.) or known inflammogen acute CORT (20 mg/kg, s.c., 2 injections, 7 h interval on day 14) exposures. Acute CORT pretreatment primed the neuroinflammatory response to LPS and DFP. Marked neuroinflammation in response to LPS and DFP, 4 mg/kg, i.p.) or known inflammogen adduct-based biomarkers for these important potential CWA.

Sulfur mustard (SM), a potent vesicant, damages follicular and interfollicular epidermis. We examined the effects of SM vapor on pilosebaceous units in dorsal skin of 5 wk old male SKH1-Hr mice. Control skin contains prominent sebaceous glands, atypical hair shafts, isolated pilosebaceous units, and small follicular cysts. Fatty acid synthase and proliferating cell nuclear antigen (PCNA) were expressed in sebocytes. PCNA was also expressed in hair root sheath and dermal papillae. Three to seven days following SM exposure, alterations in the pilosebaceous unit were evident in SM exposed animals (a time point equivalent to 6 yr post SM). Our findings are suggestive of a possible critical and yet unrecognized link between inflammation in response to LPS and DFP. Marked neuroinflammation in response to LPS and DFP, 4 mg/kg, i.p.) or known inflammogen adduct-based biomarkers for these important potential CWA.

Sulfur mustard (SM), a potent vesicant, damages follicular and interfollicular epidermis. We examined the effects of SM vapor on pilosebaceous units in dorsal skin of 5 wk old male SKH1-Hr mice. Control skin contains prominent sebaceous glands, atypical hair shafts, isolated pilosebaceous units, and small follicular cysts. Fatty acid synthase and proliferating cell nuclear antigen (PCNA) were expressed in sebocytes. PCNA was also expressed in hair root sheath and dermal papillae. Three to seven days following SM exposure, alterations in the pilosebaceous unit were evident in SM exposed animals (a time point equivalent to 6 yr post SM). Our findings are suggestive of a possible critical and yet unrecognized link between inflammation in response to LPS and DFP. Marked neuroinflammation in response to LPS and DFP, 4 mg/kg, i.p.) or known inflammogen adduct-based biomarkers for these important potential CWA.

Sulfur mustard (SM), a potent vesicant, damages follicular and interfollicular epidermis. We examined the effects of SM vapor on pilosebaceous units in dorsal skin of 5 wk old male SKH1-Hr mice. Control skin contains prominent sebaceous glands, atypical hair shafts, isolated pilosebaceous units, and small follicular cysts. Fatty acid synthase and proliferating cell nuclear antigen (PCNA) were expressed in sebocytes. PCNA was also expressed in hair root sheath and dermal papillae. Three to seven days following SM exposure, alterations in the pilosebaceous unit were evident in SM exposed animals (a time point equivalent to 6 yr post SM). Our findings are suggestive of a possible critical and yet unrecognized link between inflammation in response to LPS and DFP. Marked neuroinflammation in response to LPS and DFP, 4 mg/kg, i.p.) or known inflammogen adduct-based biomarkers for these important potential CWA.
The endoplasmic reticulum (ER) stress response, a cell survival pathway upregulated when cells are under severe stress, contributes to the pathogenesis of various diseases. It triggers the unfolded protein response (UPR) which initiates ER-to-nucleus signaling pathways to protect against cell death via several types of UPR sensor proteins. One of these, ATF6, is proteolytically cleaved and translocated into the nucleus to regulate gene expression. Skin exposed to the vesicant sulfur mustard (SM) results in increased expression of specific chaperone proteins. We performed time course studies with SM using the mouse ear vesicant model (MEVM) and showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, prolonged inflammation, and delayed wound repair from 24h to 168h post exposure. This study explored the contribution of UPR and increased ER chaperones in ER stress induced by SM injury. RT-PCR analysis of the ER stress survival gene GRP78, UPR gene ATF6, and ER stress apoptotic gene CHOP demonstrated at least a 2 fold increase as time progressed. Western blot analysis confirmed upregulation of GRP78 and CHOP as time progressed. Both the full length cytoplasmic ATF6 and the 50 kDa cleaved nuclear fragment of ATF6 were increased after 24h post SM. Immunofluorescent data showed cytoplasmic staining at 24h post exposure and significant nuclear staining in the proliferating keratinocytes at 168h post exposure. Double labeled immunofluorescent studies identified CHOP and GRP78 staining in basal, proliferating keratinocytes. In contrast, expression of CHOP was greater in the outermost migrating cells. These data suggest the ER stress response and UPR are activated in the proliferating keratinocytes to protect cells against SM induced skin injury. This work is supported by ES005022, EY09056, and AR055073.

354 Acute Respiratory and Neurological Toxicity in Rats following Inhalational Exposure to Lethal Doses of Soman.

Soman (GD) is a potent chemical warfare nerve agent (CWNA). GD irreversibly inhibits acetylcholinesterase (AChE), resulting in accumulation of the neurotransmitter acetylcholine (ACh). High ACh at synapses results in prolonged stimulation of muscarinic and nicotinic receptors leading to cholinergic crises. This study developed a novel head-out inhalation exposure system to serve as a realistic and applicable model for a mass casualty-type scenario to study the development of acute respiratory and neurological toxicity. GD vapor (520, 560, 600 and 825 mg/m3) was generated in a saturator cell and carried by filtered N2 into a customized glass exposure chamber. Male rats (250-300 g) were restrained in head-out exposure tubes and exposed to GD for 4-10 minutes. The probe analyzed LcC50 of vaporized GD was 593.1 mg/m3. A majority of the animals developed severe cholinergic responses followed by convulsions and died within 4-8 min post-exposure (PE). Mild to severe convulsions and muscular fasciculations were observed up to 24 h in animals exposed to 560 and 600 mg/m3. GD exposures produced significant, concentration-dependent inhibition in cardiac blood AChE activity. AChE activity was inhibited in bronchoalveolar lavage (BAL) fluid, lung and whole brain tissues. Rats exposed to a 600 mg/m3 exhibited severe brain damage in the piriform cortex, neocortex, dentate hilus, amygdala and thalamus. Analyses of lung tissue showed morphologic changes in alveolar histiocytosis, hemorrhage and inflammation consistent with neutrophilic exudate. Respiratory and neurological toxicity induced by GD vapor was determined by clinical observations, histopathology and biochemical analyses of tissues 24 h PE. We integrated novel technologies into inhalation toxicology and physiology to evaluate CWNA toxicity to develop an improved model suitable for testing medical countermeasures in a mass casualty scenario. This research was supported by the Defense Threat Reduction Agency project #3F0014.

355 Inflammatory Profile and Macrophages Population in Sulfur Mustard (SM)-Exposed Skin Wound Repair.

Y. Chang1, M. Soriano1, J. D. Laskin1, R. P. Casillas1, M. K. Gordon1 and D. R. Laskin2. 1Pharmacology and Toxicology, EOHSI, Rutgers University, Picatawatay, NJ; 2UMDNJ-RWJMS, Picatawatay, NJ.

Cutaneous SM induced injury is characterized by a severe inflammatory response and delayed wound repair. Development of quantifiable inflammatory biomarkers is needed for screening anti-inflammatory drugs against SM injury. Since most inflammatory marker studies with SM exposed skin are only available for early time points (less than 24h), we extended this study to 7 days to better understand the inflammatory profile by SM. We examined the macrophage population and inflammatory profile using the mouse ear vesicant model (MEVM). RT-PCR data showed neutrophil collagenase/MMP8 was significantly unregulated 6h,12h, and 168h post-SM exposure and macrophage elastase/MMP12 was significantly unregulated at 24h post SM exposure, increasing as time progressed. Immunohistochemical studies using a macrophage specific marker, F4/80 identified increased numbers of macrophages at 72h and 168h post-SM exposure. RT-PCR data showed early upregulation of Il6, Il1b, Cc3, Cc4, Cc2x, Cc15, Cc17 and CcR4. Upregulation at 72 h post-SM exposure included: Il1r1, Il2r2, Il4ra, Il10ra, Csfr2rb2, Tnfsf16b, and Tnfsf11. Using a mouse cytokine/chemokine multiplex protein assay, we showed upregulation and persistent expression of Il6 and KC/CXCl1, and downregulation of Il10. CCL2 significantly increased over time beginning at 24h post-SM exposure. CC13, GCSF, and IP10/CXCl10 were significantly increased at 72h and 168h post-SM exposures. These findings suggest that the cytokine/chemokines pattern we observed may be related to the persistent macrophage population that is generally seen in SM-exposed skin wounds. In addition, this inflammatory profile may be useful as in vivo biomarkers for evaluating anti-inflammatory drugs against SM-induced skin injury. This work is supported by ES005022, EY09056, and AR055073.

356 Activation of the Endoplasmic Reticulum Stress and Unfolded Protein Responses for Protection against Sulfur Mustard-Induced Skin Injury.

D. R. Gerecke1, J. D. Wang1, J. D. Laskin2, M. K. Gordon1 and Y. Chang1. 1Pharmacology and Toxicology, EOHSI, Rutgers University, Picatawatay, NJ; 2UMDNJ-RWJMS, Picatawatay, NJ.

The endoplasmic reticulum (ER) stress response, a cell survival pathway upregulated when cells are under severe stress, contributes to the pathogenesis of various diseases. It triggers the unfolded protein response (UPR) which initiates ER-to-nucleus signaling pathways to protect against cell death via several types of UPR sensor proteins. One of these, ATF6, is proteolytically cleaved and translocated into the nucleus to regulate gene expression. Skin exposed to the vesicant sulfur mustard (SM) results in increased expression of specific chaperone proteins. We performed time course studies with SM using the mouse ear vesicant model (MEVM) and showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, prolonged inflammation, and delayed wound repair from 24h to 168h post exposure. This study explored the contribution of UPR and increased ER chaperones in ER stress induced by SM injury. RT-PCR analysis of the ER stress survival gene GRP78, UPR gene ATF6, and ER stress apoptotic gene CHOP demonstrated at least a 2 fold increase as time progressed. Western blot analysis confirmed upregulation of GRP78 and CHOP as time progressed. Both the full length cytoplasmic ATF6 and the 50 kDa cleaved nuclear fragment of ATF6 were increased after 24h post SM. Immunofluorescent data showed cytoplasmic staining at 24h post exposure and significant nuclear staining in the proliferating keratinocytes at 168h post exposure. Double labeled immunofluorescent studies identified CHOP and GRP78 staining in basal, proliferating keratinocytes. In contrast, expression of CHOP was greater in the outermost migrating cells. These data suggest the ER stress response and UPR are activated in the proliferating keratinocytes to protect cells against SM induced skin injury. This work is supported by ES005022, EY09056, and AR055073.

357 Detection of Sulfur Mustard or Half Mustard-Induced DNA Adducts in Human Skin Cells.

Introduction: Sulfur mustard (SM) and 2-chloroethyl ethylsulfide (CEES) are bi- and monofunctional DNA alkylating agents, respectively. SM is an old chemical warfare agent causing blisters (vesicant). Both chemicals react with N7 guanine. SM will form 7-Hydroxyethylthioethyguanin for SM and CEES 7-ethyl thiouethylguanin for CEES. A specific monoclonal antibody (2F8) exists which detects SM and CEES adducts at N7 position.

Aim: The 2F8 antibody was used to develop a slot blot technique for detection of SM and CEES exposure in human keratinocytes (HaCaT cells).

Methods: HaCaT cells were exposed with different concentrations of SM or CEES (30 min). After exposure, cells were scraped and DNA was isolated, normalized and transferred to a Nylon membrane using slot blot technique. After incubation with 2F8 antibody, the DNA adducts were visualized with DAB staining.

Results: DNA adducts were detected after CEES and SM exposure below 30 μM which is the vesicant threshold.

Conclusion: The presented technique is potentially able to confirm SM or CEES exposure in blister roofs of exposed patients.

358 Differential Inhibition of Cytoplasmic and Mitochondrial Thioredoxin and Thioredoxin Reductase by Nitrogen Mustard in A549 Lung Epithelial Cells.

I. Wohlan1, Y. Jan2, D. E. Heck2, R. P. Casillas6, D. L. Laskin1 and J. D. Laskin2. 1Pharmacology and Toxicology, Rutgers University, Picatawatay, NJ; 2Environmental & Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Picatawatay, NJ; 3Environmental Health Science, New York Medical College, Valhalla, NY; 4MIRGlobal, Kansas City, MO.

The thioredoxin system, consisting of thioredoxin reductase (TrxR) and thioredoxin (Trx), plays an important role in cellular antioxidant defense. Both cytosolic (TrxR1, Trx) and mitochondrial (TrxR2, Trx2) forms of the enzymes have been identified in mammalian cells. Previously, we reported that the bifunctional nitrogen mustard vesicant, mechlorothamine (H2N2), targeted cytosolic TrxR1 by alkylating catalytic residues in the enzyme’s redox centers. In the present studies, we compared the effects of H2N2 on the cytoplasmic and mitochondrial forms of TrxR and Trx in A549 lung epithelial cells. H2N2 treatment was found to cause a concentration- and time-dependent inhibition of the activities of both cytoplasmic and
Nitrogen Mustard (NM)-Induced Pulmonary Injury and Inflammation Are Associated with Alterations in Histone Methylation and Acetylation.

A. Venosa¹, R. Malavia¹, J. D. Laskin² and D. L. Laskin³.¹Pharmacology and Toxicology, Rutgers University, Piscataway, NJ;²Environmental & Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ.

NM (methylene hydrochloride) is a highly toxic vesicant that acts by alkylating DNA and proteins and generating oxidative stress. The lung is known to be a major target for NM. Exposure to NM results in rapid structural changes including perivascular edema and thickening of the alveolar wall followed by bronchiolization of the epithelium which progresses to lung fibrosis. We have previously shown that inflammatory mediators including reactive nitrogen species and tumor necrosis factor-alpha contribute to NM-induced lung injury. Expression of these mediators, as well as antioxidants, is known to be regulated by methylation and acetylation of histones. In these studies we determine if NM-induced injury and inflammatory/antioxidant protein expression is associated with histone modification. Lung samples were collected 1−28 d after exposure of male Wistar rats to NM (0.125 mg/kg, intrastracheal) or PBS control. NM intoxication resulted in increased expression of inducible nitric oxide synthase, cyclooxygenase-2 and heme oxygenase-1 in the lung within 1 d, a response which persisted for 28 d; Mn-superoxide dismutase was also up regulated beginning at 7 d. Analysis of lung homogenates by western blotting using specific antibodies revealed that this was correlated with a time-dependent increase in NM-induced expression of glutathione (GSH) H2K36me3, which returned to baseline by 28 d. In contrast H3K4 methylation decreased 1−7 d post-NM; this was followed by an increase at 28 d. Additionally, whereas H3K36 methylation increased beginning 3 d post-NM and persisted up to 28 d, increases in H3K27 methylation were only evident 28 d after NM exposure. These data suggest that NM-induced lung injury leads to specific alterations in chromatin structure which may contribute to pro-inflammatory and antioxidant gene expression.

Supported by NIH Grants AR055073, ES004738, CA152624, GM034310, and ES005022.

Dose Modulation of a Potential Therapeutic for Neovascularization from Ocular Exposure to Sulfur Mustard.

M. L. Meade¹, J. J. Schlager¹ and M. C. Babin¹.¹Henry M Jackson Foundation, Wright-Patterson AFB, OH;²711th Human Performance Wing, Wright-Patterson AFB, OH;³Battelle Biomedical Research Center, Jeffersonville, OH.

Sulfur mustard is a potent alkylating agent affecting the skin, respiratory tract and eyes. Ocular exposure to HD can result in long term injuries including corneal neovascularization (NV) and blindness. The immunosuppressive, cyclosporine A, has shown promise for protecting epithelial cells against apoptosis in in vitro experiments. To investigate the effects of cyclosporine A in vivo, two studies were conducted, an initial long term study for 112 days, and a 28 day study using the white rabbit ocular model to evaluate the effects of different concentrations of cyclosporine A. The right cornea was insulted with 0.4 μl (0.51 mg) of neat HD while using the left as a control. Cyclosporine was administered beginning at five days post exposure for three weeks decreasing the frequency throughout the regimen. Clinical assessments, including stromal damage and corneal thickness were performed throughout the study. Following the study, corneas were harvested and shipped to Woffle Wright Patterson AFB for quantitative proteomic analysis. In the initial 16 week study, cyclosporine performed significantly better than did no treatment or other potential therapeutics thought to aid in NV prevention. H&E staining shows continued inflammation in the stroma in the untreated eyes at 15 weeks post exposure, while the cyclosporine treated eyes appear normal. A follow up study using differing concentrations of cyclosporine A was also performed. The clinical assessment data acquired during this study showed that all concentrations of cyclosporine performed well in eliminating stromal opacity at 28 post exposure compared to no treatment. The 2% cyclosporine group performed better than other concentrations in preventing NV with only one animal in the group experiencing NV at the conclusion of the study. Quantitative proteomics of the epithelium and endothelium of the corneas also showed protein expression levels consistent with the unexposed eyes in the 2% cyclosporine group.

Development and Optimization of In Vitro Models of Chemical Ocular Injury for High-Throughput siRNA Screening.

J. G. Lehman, S. L. Beach, R. D. Causey and A. L. Ruff. US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD.

Chemically induced ocular injuries are considered one of the few true ocular emergencies based on their high potential to inflict rapid and significant tissue damage. Currently there are no specific therapeutics to treat chemically induced corneal injury, and there is a pressing need to rapidly screen therapeutics to discover a treatment. Understanding of the molecular mechanisms of this injury is necessary to aid in rational therapeutic development. We intend to utilize high throughput small inhibitory RNA (siRNA) screening to elucidate the mechanisms of chemical cornea injury and to identify therapeutic targets. Herein we present the development of the in vitro models for this screening effort. Two immortalized human corneal epithelial cell lines will be used for screening: SV40 large T antigen immortalized corneal epithelial cells (SHECs) and telomerase immortalized corneal epithelial cells (TCECs). Hydrofluoric acid (HFA) is used for the induction of chemical injury. The major conditions optimized included cell line plating density, exposure dose, and transfection conditions. Matrices of these conditions were evaluated to ensure optimal target knockdown without sacrificing cell viability. Transfection conditions were optimized using siRNA targeting cyclophilin b, and knockdown was assessed using the QuantiGene Plex assay, a bead based assay using hybridization to amplify specific miRNAs allowing for quantification. A dose-response study of HFA injury was performed, and the HFA-induced production of the cytokines was evaluated by multiplex bead-based assay for a panel of 30 cytokines. Once optimized, these models will be used to screen subgenomic siRNA libraries targeting HF-induced ocular inflammation.

Disclaimer: The views expressed in this article are those of the author(s) and do not reflect the official policy of the Department of Army, Department of Defense, or the U.S. Government. This research was supported by the Defense Threat Reduction Agency – Joint Science and Technology Office, Medical S&T Division.
363 MicroRNA Microarray Analysis of Human-Induced Pluripotent Stem Cell-Derived Neurons and Cardiomyocytes following Exposure to the Organophosphate Nerve Agents Soman and VX.

Chemical warfare nerve agents (CWA) are potent cholinesterase inhibitors that may also have non-cholinesterase effects. Several in vivo studies have demonstrated CWA-induced damage in the brain and heart following CWA exposure. The mechanisms of this damage have been a critical area of research for the development of medical countermeasures. This study utilized microRNA (miRNA) analysis to evaluate potential direct cellular effects of the nerve agents soman (O-Pinacolyl methylphosphonofluoridate) or VX (O-ethyls-(2-diisopropylamino) ethyl) on human-induced pluripotent stem cell (iPSC)-derived neurons and cardiomyocytes. This approach was taken since miRNA expression changes are stimulus specific and there are no previous studies of miRNA profiles that have been conducted for CWA-induced exposure. Cells were treated with soman or VX at concentrations of 0 μM, 0.1 μM or 100 μM for either 1 hr or 6 hr. Following treatment, isolated total RNA was processed for miRNA microarray analysis and analyzed for significant changes. Soman- and VX-treated samples were analyzed separately. Principal component analysis (PCA) was used to identify major sources of variability in the dataset. PCA analysis of neurons identified differences in miRNA expression profiles between cells exposed for 6 hr to soman. Targets that were significantly altered under these conditions were miR-2277, miR-1910 and miR-1972. miR-2277 was significantly altered in soman- and VX-exposed neuron data sets that were analyzed by both time and dose. Minimal sample variability was observed with cardiomyocytes as determined by PCA analysis. One-way ANOVA with time as the factor identified miR-3178 as the only target that was altered significantly by both soman and VX in cardiomyocytes. This miRNA modulates several targets including complexin-1 and splicing factor-1. This study demonstrates the feasibility of using miRNA microarray analysis for the study of CWA cellular effects.

M. Kirk, P. I. Hakkinen, J. S. Ignaio, O. Kroner, A. Maier and L. Patterson. University of Virginia, Charlottesville, VA; National Library of Medicine, Bethesda, MD; Department of Homeland Security, Washington DC; TERA, Cincinnati, OH.

A common language to describe and recognize clinical manifestations of toxic chemical exposures is essential for emergency responders and hospital first responders to be prepared to provide rapid and appropriate medical care for victims of industrial chemical mass exposures and terrorist attacks. In these situations, when the identity of the chemical is not known, first responders need a tool to rapidly evaluate victims and identify the best course of treatment. Military and civilian emergency response communities use a “toxic syndrome” (toxidrome) approach to quickly assess victims and determine the best immediate treatment when information on chemical exposures is limited. Toxidromes can be defined by a unique group of clinical observations, such as vital signs, mental status, pupil size, mucous membrane irritation, and lung and skin examinations. Data on over 20 toxidrome systems were evaluated to identify salient features and develop a consistent lexicon for use by state, local, tribal, territorial, and federal first responders and first receivers. A workshop of over 40 practitioners and experts in emergency response, emergency medicine, and medical toxicology developed names and definitions for 12 unique toxidromes that describe and differentiate the clinical signs and symptoms from exposures to chemicals. These toxidromes focus on acute signs and symptoms caused by inhalation and dermal exposures. Each toxidrome is characterized by exposure routes and sources, organs/systems affected, initial signs and symptoms, underlying mode of action, and treatment/antidotes. Toxidrome names and definitions are designed to be readily understood and remembered by users. Communication in a crisis requires accurate and succinct terms that can quickly convey the health conditions of patients. These toxidromes lay the foundation for a consistent lexicon, that if adopted widely, will improve response to chemical mass exposure incidents.

365 Activation of DNA Damage Repair Pathways in Response to Nitrogen Mustard-Induced DNA Damage and Toxicity in Skin Keratinocytes.

S. Intiu, N. Tewari-Singh, C. Agarwal, C. W. White and R. Agarwal. Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO; Pediatrics, University of Colorado Denver, Aurora, CO.

Alkylating agent nitrogen mustard (NM), a structural analog of chemical warfare agent sulfur mustard (SM), upon exposure to tissues, forms adducts and crosslinks with DNA, RNA and proteins. The major mechanism of NM-induced toxicity involves DNA interstrand crosslinks (ICL) formation resulting in either induction of cell cycle arrest to facilitate DNA damage repair or cell death, in the case of inadequate repair. Consistently, NM (0.75 μM) exposure in mouse epidermal JB6 cells decreased cell growth and caused S-phase arrest by 16 h after exposure. Cells were then released to G2-M phase by 24 h and resumed normal cell cycle progression by 48 h after exposure. Repair of NM-induced DNA ICLs involves formation of DNA double strand breaks (DSB). Our studies showed an increase in comet tail extent moment starting between 4 and 8 h of NM exposure, as well as an increase in levels of DNA DSB repair molecules (phospho H2AX and p53, rad50 and XRCC1). The repair of DNA double strand breaks occurs via homologous recombination repair (HRR) or through the non homologous end joining pathway (NHEJ). The activation of the HRR pathway was evidenced by formation of Rad51 foci at 4 h after NM exposure, and activation of NHEJ pathway was indicated by increases in phospho and total DNA-PK levels. To confirm this, NHEJ and HRR pathways were inhibited by using DNA-PK inhibitor NU7026 and Rad51 siRNA, respectively. Inhibition of NHEJ did not result in a significant decrease in total cell number after 48 h of NM exposure and also did not affect the NM-induced S-phase arrest at 16 h. However, inhibition of the HRR pathway caused a 28% decrease in cell number, and a lack of NM-induced S-phase arrest, probably leading to an increase in the observed cell death. These studies indicate that HRR may be a key pathway involved in repair of NM-induced DNA DSBs. These findings may be useful in developing new therapeutic strategies against NM-induced skin toxicity.

366 Progression of Injury and Toxic Effects following Nitrogen Mustard Exposure in SKH-1 Hairless and C57BL6/J Mice Skin: Clinical and Pathological Significance.

N. Tewari-Singh, A. K. Jain, S. Intiu, D. J. Orlicky, C. W. White and R. Agarwal. Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO; Pathology, University of Colorado Denver, Aurora, CO; Pediatrics, University of Colorado Denver, Aurora, CO.

Lack of availability of relevant skin injury models and clinically applicable biomarkers are major limitations in developing therapies to rescue skin injury and vesicant by chemical warfare agent sulfur mustard (SM). Consequently, we conducted studies to establish useful clinical and histopathological endpoints with primary vesicating agent nitrogen mustard (NM). NM possesses strong vesicating and alkylating properties and causes damage to cellular macromolecules, exerting severe skin toxicity comparable to SM. Our comprehensive studies employing NM (3.2 mg) exposure for 12, 24, 72 and 120 h in both SKH-1 and C57BL/6J mice showed clinical sequelae of toxicity, including visible microblistering (12-24 h), edema (12-120 h), erythema (1.2-24 h), and hyper- and hypopigmentation, wounding, xerosis and scaly dry skin (72-120 h) that were comparable in both the mouse strains, and similar to those reported with SM in humans. In addition, 40% mortality was observed by 120 h after NM exposure in C57BL/6J mice. H&E stained skin sections of both mice showed that NM (12-120 h recovery) caused increased skin bi-fold thickness; histopathological effects such as hyperproliferation, microcrosiation, epidermal and dermal necrosis, denuding and scab formation, and parakeratosis (24-120 h), hypercornification (12-120 h), acanthosis and re-epithelialization (72-120 h); increase in inflammatory cells; and red blood cell extravasation into the dermis. These histopathological effects with NM were comparable to those reported in humans and other animal species with SM, and were quantified as percent of skin sections showing these effects, fold increases in histopathologic abnormalities, and prevalence among mice (% that showed these effects). These NM-induced effects are novel clinically relevant biomarkers to be used in screening and optimization of rescue therapies for skin injuries due to NM and SM in humans.
Sulfur mustard (SM) is a primary vesicating warfare agent that upon exposure causes severe skin injuries. Currently, we lack effective antidote against SM-induced skin injuries, in part due to lack of appropriate animal model(s) that can be used for mechanistic and efficacy studies in laboratory settings. Our earlier studies have established biomarkers related to inflammation and vesication in SKH-1 hairless mice using 2-chloroethyl ethyl sulfide (CEES), an SM analog. However, CEES is a monofunctional alkylating agent that is less toxic than SM. Therefore, to develop a more relevant skin injury model, we have now used nitrogen mustard (NM); a primary vesicant and a bifunctional alkylating agent that induces toxic effects comparable to SM. We compared the effect of NM (3.2 mg) exposure for 12, 24, 72 and 120 h in SKH-1 hairless and C57BL/6J mice. NM caused significant increases in skin microvesication, cell proliferation, apoptotic cell death, inflammatory cells (neutrophils, macrophages, and mast cells) and MPO activity in both mouse strains. However, in SKH-1 mice there was a more prominent increase in epidermal thickness, macrophages and mast cell infiltration, relative to that seen in C57BL/6J mice. NM also caused collagen degradation at early time points (12-24 h) with a decrease in collagen trichrome staining and an increase in dermal thickening, due, at least in part, to edema. However, at later time points (72 and 120 h), dense collagen staining with reduced dermal edema was observed, indicating a healing process. This study indicates that both mouse strains have comparable susceptibility to NM injury, as shown by inflammation and vesication. However, some inflammatory responses were more pronounced in NM-induced skin injury in SKH-1 mice. These newly established biomarkers in a more accessible and relevant NM skin injury model should aid in identifying effective therapies for treatment of skin injuries due to NM and SM.

PS 367

Long-Range Assessment and Treatment of Lung and Systemic Injury in Rats Exposed to Inhaled Sulfur Mustard.

Sulfur mustard (HD) causes severe chemical burns to the skin, eyes, and airways. HD was used as a chemical warfare agent (CWA) in the Iran/Iraq conflict, and more than half of surviving HD-exposed casualties suffer from permanent lung injuries. The mechanisms and timing of the development of these pathologies are poorly defined, and there is no effective antidote. Rats were intubated and ventilated for 10 min with nebulized HD or vehicle to achieve doses of 0.5, 0.175, 2.25, and 3 mg/kg. Pulmonary function was analyzed by whole-body plethysmography. Rats were euthanized at various time-points 6 months post-exposure, blood chemistry was analyzed, broncho-alveolar lavage fluid was analyzed for cytokerines/redox state, and lungs were subjected to pathologic analysis. The data show a high correlation between blood gas perturbations, upper airway necrosis and pulmonary function in the 24 h to 48 h after the 3 mg/kg HD exposure. In longer-ranged animals, the 3 to 7 wks period was a significant challenge because 15% of the 3 mg/kg group and 20% of the 2.25 mg/kg group died suddenly or required withdrawal from the study during this time. Alveolar exudates, edema, oxidative stress, and inflammation peaked at 3 wks and correlated with changes in pulmonary function and respiratory distress. Therefore, the first day and the second to third wks post-exposure may be crucial windows in the progression of HD inhalation injury, and treatment at these times may be the best approach. Based on this, we have evaluated single and multiple infusions of mesenchymal stem cells as a treatment and have found success in reducing HD-induced edema, necrosis, inflammation, and death at 5 wks post-exposure. This study provides the first long-term examination of HD-induced lung injury and systemic effects, and demonstrates the feasibility of stem cell therapies for treatment of HD inhalation injury.

PS 368

Therapeutic Efficacy of Serum-Derived Human Butyrylcholinesterase against Topical Challenges of VX in the Hartley Guinea Pig.

The protective efficacy of human serum butyrylcholinesterase (HuBChE) was assessed in the guinea pig against topical challenges of VX. Male Hartley guinea pigs with jugular catheters were clipped on the left flank and challenged with neat VX at multiples of the 24-h median lethal dose (LD50). Two hours after challenge, animals received either 1.04 mL/kg saline or HuBChE at 26 mg/1.04 mL/kg by intravenous (IV) infusion. Blood samples were collected at 5 min before challenge, 5 min before therapy, and 48 and 96 h after challenge, and assayed for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity. Clinical signs, recorded for up to 96 h after challenge, indicated that VX rapidly penetrated skin. The protective ratio of HuBChE was calculated as the LD50 determined by probit analysis among IV therapy-receiving guinea pigs (0.39 mg/kg) divided by the LD50 for unprotected guinea pigs (0.14 mg/kg). VX was lethal to all guinea pigs challenged at 4x and 8x LD50. AChE activity among survivors, likely through VX dissociation, rebounded to more than 80% of the baseline value by 96 h. BChE activity among survivors increased after therapy and remained at more than 30 times endogenous levels over the 4-day study. In a follow-on study, the therapeutic window was characterized by fixing the topical VX challenge dose at the LD15 (0.34 mg/kg) and changing the time interval to IV therapy. Probit modeling indicated that 50% lethality would be expected after a 4.3 h delay post-challenge of HuBChE therapy. Blood AChE activity profiles declined with delay in therapy followed by a rebound among survivors. BChE activity increased after therapy and remained at 30 to 54 times endogenous levels over the 4-day study. This work was conducted under the CBRNEAC Contract No. SF0 700-00-D-3180, Delivery Order 0599, Task 789.

PS 369

A Comparative Study of Biomarkers of Nitrogen Mustard-Induced Skin Injury in Male SKH-1 Hairless and C57BL/6J Mice.

Sulfur mustard (SM) is a primary vesicating warfare agent that upon exposure causes severe skin injuries. Currently, we lack effective antidote against SM-induced skin injuries, in part due to lack of appropriate animal model(s) that can be used for mechanistic and efficacy studies in laboratory settings. Our earlier studies have established biomarkers related to inflammation and vesication in SKH-1 hairless mice using 2-chloroethyl ethyl sulfide (CEES), an SM analog. However, CEES is a monofunctional alkylating agent that is less toxic than SM. Therefore, to develop a more relevant skin injury model, we have now used nitrogen mustard (NM); a primary vesicant and a bifunctional alkylating agent that induces toxic effects comparable to SM. We compared the effect of NM (3.2 mg) exposure for 12, 24, 72 and 120 h in SKH-1 hairless and C57BL/6J mice. NM caused significant increases in skin microvesication, cell proliferation, apoptotic cell death, inflammatory cells (neutrophils, macrophages, and mast cells) and MPO activity in both mouse strains. However, in SKH-1 mice there was a more prominent increase in epidermal thickness, macrophages and mast cell infiltration, relative to that seen in C57BL/6J mice. NM also caused collagen degradation at early time points (12-24 h) with a decrease in collagen trichrome staining and an increase in dermal thickening, due, at least in part, to edema. However, at later time points (72 and 120 h), dense collagen staining with reduced dermal edema was observed, indicating a healing process. This study indicates that both mouse strains have comparable susceptibility to NM injury, as shown by inflammation and vesication. However, some inflammatory responses were more pronounced in NM-induced skin injury in SKH-1 mice. These newly established biomarkers in a more accessible and relevant NM skin injury model should aid in identifying effective therapies for treatment of skin injuries due to NM and SM.

PS 370

24 h LD50 for Subcutaneous Exposure to Chemical Warfare Nerve Agents in Rats: Comparison across Multiple Age Groups.

In a mass casualty situation involving the release of chemical warfare nerve agents (CWNAs), infants, children and adolescents are likely to be exposed. These subgroups of the population may be more susceptible than adults to the toxicological effects of CWNAs exposure because of their closer proximities to a ground source, smaller body masses, higher respiratory rates, greater skin permeabilities and immature brains and metabolic systems. Unfortunately, there have only been a handful of studies on the effects of CWA in younger animals, and more research is needed to confirm this hypothesis. Using a stagewise, adaptive dose design, we determined the 24 h LD50 for subcutaneous (sc) exposure to sarin (GB), as well as VX, in both male and female Sprague-Dawley rats at five different time points during their development (postnatal day [PND] 7, 14, 21, 42 and 70). For males, the 24 h LD50 for GB and VX increased from PND 7 to PND 42 and then slightly decreased at PND 70. Similar results were observed for females; however, fewer significant differences between age groups were observed. Regardless of CWA, no significant differences were observed between males and females for any age group. Thus, younger rats are more susceptible to the lethal effects of subcutaneously administered CWA than older rats. The views expressed in this abstract are those of the authors and do not reflect the official policy of the Department of Army, Department of Defense, or the U.S. Government. The experimental protocol was approved by the Animal Care and Use Committee at the United States Army Medical Research Institute of Chemical Defense (USAMRIID), and all procedures were conducted in accordance with the principles stated in the Guide for the Care and Use of Laboratory Animals and the Animal Welfare Act of 1966 (PL 89-544), as amended. This research was supported by interagency agreement between the Biomedical Advanced Research and Development Authority and USAMRIID.
Mechanisms of Vesicating Agent Nitrogen Mustard-Induced Skin Injury in SKH-1 Hairless Mice

D. Kumar1, N. Tewari-Singh1, S. Inturi2, C. Agarwal1, A. K. Jain1, D. Dhar1, C. W. White2 and R. Agarwal1
1Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO; 2Pediatrics, University of Colorado Denver, Aurora, CO.

Lack of a comprehensive understanding of molecular mechanisms and signaling pathways involved in skin injuries due to chemical warfare agent sulfur mustard (SM)- is a major limitation in developing mechanism-based therapies for rescue of skin injuries by vesicating agents. Our recent studies in SKH-1 hairless mice show that exposure to nitrogen mustard (NM; 3.2 mg) for 12, 24, 72, 120 or 168 h triggers an inflammatory response, vesication, apoptotic cell death, and either initiation of healing or 40% mortality by 168 h of exposure. Both SM and NM vesicant-induced tissue injury is mainly due to alkylating properties, with DNA damage resulting from direct toxicity and/or oxidative stress. In this study we extended our efforts to identify the mechanisin/s involved in NM-induced toxic response at 12-120 h after exposure. In skin tissue of SKH-1 mice, NM exposure caused p53 ser15 phosphorylation and increased p53 accumulation, both indicating DNA damage. Our results also showed that NM exposure, with recovery for 12-168 h, induced expression of inflammatory mediators COX-2 and iNOS in mouse skin, and 2-fold increase in expression of protease MMP-9, that may contribute to NM-induced vesication. NM exposure, with recovery for 12-168 h, was also associated with phosphorylation of mitogen-activated protein kinases (MAPKs; ERK1/2, JNK, and p38) and increased oxidative stress, as indicated by enhanced 4-HNE (lipid peroxidation) and DMPD protein adduct formation. Our results thus far indicate that NM induces activation of upstream signaling pathways including MAPKs and oxidative stress that could be responsible for DNA damage, cell death, and expression of inflammatory and proteolytic mediators contributing to the inflammatory response and vesication. These molecular targets could be useful in developing therapeutic interventions against NM- and SM-related skin injuries.

Ovarian Hormones Affect the Physiological Response to VX in Female Rats

Chemical warfare nerve agents (CWA)s, such as VX, irreversibly bind to acetylcholinesterase, which induces a "cholinergic crisis" that causes numerous physiological events including seizures and death. Females are historically an understudied subset of the population, largely because of conflicting data related to the effects of CWA(s) both within groups of females and in comparison to males. The profound impact of circulating ovarian hormones on biological processes is well known, and parsimony suggests that these hormones contribute to these observed differences.

To date, few studies have investigated the impact of naturally circulating ovarian hormones in animals exposed to CWA(s). In the current study, we examined the effects of VX (1.0 X LD50) in female rats that had their ovaries removed (OVEX) or left intact. The estrous cycles of females left intact were monitored, and they were further divided by stage of the cycle (estru or diestrus). Results show that females in estrus survived for a significantly longer period of time than OVEX rats. Seizure activity was also significantly different, with 5/8 OVEX, 2/8 diestrus, and 0/8 estrous female rats exhibiting seizures. These data suggest that ovarian hormones, including estrogen, progesterone, and their metabolites, which tide the evening before estrus, offer protection against the seizure-inducing and lethal effects of VX.

The views expressed in this abstract are those of the authors and do not reflect the official policy of the Department of Army, Department of Defense, or the U.S. Government. The experimental protocol was approved by the Animal Care and Use Committee at the United States Army Medical Research Institute of Chemical Defense and all procedures were conducted in accordance with the principles stated in the Guide for the Care and Use of Laboratory Animals and the Animal Welfare Act of 1966 (PL 89-544), as amended. This research was supported by the U.S. Army's In-house Laboratory Independent Research (I2RI) program.

Inflammatory Response following Neurogenic Cardiotoxicity Induced by Exposure to the Chemical Warfare Agent Soman

Chemical warfare nerve agents (CWA)s are potent inhibitors of cholinesterase activity, causing inhibition of acetylcholinesterase and accumulation of acetylcholine (ACh) at synaptic junctions. Excess ACh causes hyperstimulation of the central and peripheral cholinergic systems, and seizure activity ensues in susceptible brain regions. In addition to the extensive neuronal damage and death caused by the resulting seizure activity, studies of CWA-induced injury have focused primarily on the effects to the central nervous system with few studies focused on other organ systems. Previous studies have demonstrated cardiac damage following exposure to seizurogenic doses of the CWA:s soman and sarin. Following acute exposure to soman, up to 20% of rats display cardiac lesions within the 24 hours of soman-induced seizure. Cytokine IL-6 concentrations peaked 3 hr after soman-induced seizure, indicating early involvement of inflammatory response in cardiac tissue. Chemokines MCP-1 and CXCL1 also increased, indicating that signals for neutrophil and monocyte recruitment to cardiac tissue are present following soman exposure. In addition, increases in TIMP-1 and VEGF concentrations within 6 hr of soman exposure suggest that cardiac injury occurs within hours of seizure initiation and that in response, repair mechanisms are activated. These results support development of anti-inflammatory medical countermeasures to treat the peripheral as well as the central effects of chemical warfare nerve agents.
The ability to predict and thus prevent drug-induced ventricular arrhythmia and torsades de Pointes (TdP) is a significant public health issue and a primary focus of regulatory safety pharmacology studies. Data are generated both nonclinically (via hERG, ECG, APD studies) and clinically primarily via a thorough QT study (TQT). The speakers in this roundtable session will consider the predictive value of each of these studies individually and their utility as a panel overall. Specifically, speakers will discuss concordance between nonclinical and clinical data for safety pharmacology endpoints; discuss optimization of nonclinical study design and data collection; identify opportunities for data from additional metrics; and discuss perspectives on the collection and use of nonclinical data to inform clinical trials. The panelists will also be challenged to identify strengths and weaknesses in current testing approaches and propose recommendations to improve or modify these approaches in the future. Participants will be engaged in these discussions and provide input in the debate of the predictive value of nonclinical QT studies as well as the potential for alternative assays or extrapolations to improve our ability to anticipate clinical outcome.

Predicting Human Thorough QT (TQT) Study Outcomes with Nonclinical Data—How Good Are We and How Good Do We Need to Be?

I. Valetin1, O. Della Paqua2, J. Koerner3, D. Leishman4, I. Ewart1 and M. Krucoff5.

1Health Effects Institute, Boston, MA; 2Toxicology and Human Health Risk Analysis, Albuquerque, NM; 3Lovelace Respiratory Research Institute, Albuquerque, NM; 4US FDA, Silver Spring, MD; 5Lilly, Greenfield, IN; 1Duke University Medical Center, Durham, NC.

In 1989, the International Agency for Research on Cancer (IARC) classified whole diesel exhaust as a “probable human carcinogen” and whole gasoline engine exhaust as a “possible human carcinogen.” Since then, stringent regulations on diesel engine emissions have been introduced, and there have been significant developments in engine technology and introduction of ultra-low sulfur fuel resulting in marked reductions in the hazardous components in diesel exhaust. These changes are expected to provide substantial benefits to air quality and human health. The time course for realizing the benefits will be related to the rate at which old engines are replaced with new technology. In June 2012, IARC re-evaluated the carcinogenic hazard of diesel and gasoline exhaust based on new information that has become available from studies in humans and animals, which has led to the current designation of diesel exhaust as a “known human carcinogen.” This session provides a historical overview of diesel engine technology and emissions, and the significant changes that have occurred over the past decades. We also take a look at what is known about the health effects of diesel and gasoline exhaust and its public perception over the years. We provide a detailed characterization of the June 2012 IARC Working Group re-evaluation of the carcinogenic hazard classification of diesel exhaust and gasoline emissions, both regarding the toxicologic and epidemiologic evidence, and discuss potential implications of the new hazard classification for public policy. Although the Working Group discussed whether to distinguish between “traditional diesel exhaust” and “new technology diesel exhaust” in the cancer hazard assessment, they concluded that this was not possible due to a lack of data on health effects associated with exposure to new technology diesel exhaust.

Diesel and Gasoline Exhaust and Cancer.

A. M. van Eng1, 1J. D. McDonald2, 2R. O. McClellan3 and E. Garshick4.

1Health Effects Institute, Boston, MA; 2Toxicology and Human Health Risk Analysis, Albuquerque, NM; 3Lovelace Respiratory Research Institute, Albuquerque, NM; 4Veterans Administration Boston Health Care System, Boston, MA.

Grant writing is a challenging endeavor. One must effectively communicate the significance, innovation, and approach of their research project in a clear, but concise manner with appropriate grammar. While there are some aspects of grant writing that apply regardless of the grant application phase, such as a clearly stated hypothesis and specific aims, the style, and required elements of the various phases of the grant writing process can differ significantly. Thus, the goal of this session is to discuss the various phases of the grant writing process, including preparing a new application versus a competitive renewal, composing the rebuttal and revised grant application, how best to create a “new” grant if a grant has not been funded after two review cycles, and an overview of the review process, and choosing the best scientific review group. Three speakers from NIEHS and a well-funded fourth speaker, who is also an experienced grant reviewer, will expertly cover these topics and participate in a panel discussion at the end of the session.

Phases of Grant Writing.

C. E. Sulentic1 and B. L. Kaplan2.

1Wright State University, Dayton, OH; 2Michigan State University, East Lansing, MI.

Erionite is a fibrous zeolite with similar morphological and physical properties to amphibole asbestos. Erionite can also cause malignant mesothelioma and other diseases similar to what is seen in individuals who have been exposed to asbestos. There is little known about how erionite affects the immune system or whether it is associated with systemic autoimmune diseases.

Given these similarities to amphibole asbestos, the hypothesis of this study is that erionite will evoke autoimmune reactions similar to what has been seen upon asbestos exposure. Certain cytokine profiles from macrophages and lymphocytes that may indicate autoimmunity were examined after exposure to asbestos. The cytokines belonging to the Th17 pathway have been implicated in the development of pathologies in some autoimmune diseases.

In vitro exposures were done using bone marrow derived macrophages from a cell line and macrophages and lymphocytes from spleens of C57BL/6 mice. Mice were also exposed in vivo through peritoneal injections for 1, 3 and 7 days. Cytokines from peritoneal fluid and spleenocyte cultures were examined using ELISAs.

Data has shown that erionite causes an increased production of cytokines belonging to the Th17 profile including IL-17, IL-6 and TNF-α. This may be a marker that indicates autoimmune reactions associated with erionite. There are populations in the United States that may be at risk to developing diseases due to erionite exposure. Understanding the mechanism of disease caused by erionite can provide targets for therapies and help implement regulations on its use.

Erionite Induces Th-17 Pathway Cytokines In Vitro and In Vivo.

N. Zebedeo and J. Pfau, Idaho State University, Pocatello, ID.

We have been investigating the immunological effects of asbestos. The establishment of a low-dose and continuously exposed human T cell line, HTLV-1 immortalized MT-2, to chrysotile (CB) caused a decline of tumor immunity. These effects were coupled with upregulation of IL-10, TGF-β, and BCL-2 in asbestos-exposed patients. To observe the immunological effects of crocidolite (CR) on human T cells, a trial to establish a low-dose and continuously exposed model was conducted and compared with a previously reported CB-exposed model (MT-2CB). Transient exposure of MT-2 original cells to CB or CR induced a similar level of apoptosis and growth inhibition. The establishment of a continuously exposed subline to CR (MT-2CR) revealed resistance against CR-induced apoptosis and upregulation of the BCL-2/BAX ratio similar to that recorded for MT-2CB. Both sublines showed reduced production of IFN-γ, TNF-α, and IL-6 with increased IL-10. cDNA microarray with network/pathway analyses focusing on transcription factors revealed that many similar factors related to cell proliferation were involved following continuous exposure to asbestos in both MT-2CB and MT-2CR. These results indicate that both CB and CR fibers affect human T cells with similar degrees even though the carcinogenic activity of these substances differs due to their chemical and physical forms. Trials to identify early detection markers for asbestos exposure or the occurrence of asbestos-inducing malignancies using these findings can potentially contribute to the development of clinical tools for asbestos-related diseases and chemoprevention that modifies the reduced tumor immunity.

Resistance to Asbestos-Induced Apoptosis with Continuous Exposure to Crocidolite on a Human T Cell.

T. Otsuki1, M. Maeda2, S. Yamamoto3, N. Kumagai-Takei4, S. Lee5, H. Mastuzaki5 and Y. Nishimura1.

1Hygiene, Kawasaki Medical School, Kanagawa, Japan; 2Biofunctional Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.

In this study, we investigated the immunological effects of asbestos. The establishment of a low-dose and continuously exposed human T cell line, HTLV-1 immortalized MT-2, to chrysotile (CB) caused a decline of tumor immunity. These effects were coupled with upregulation of IL-10, TGF-β, and BCL-2 in asbestos-exposed patients. To observe the immunological effects of asbestos (CR) on human T cells, a trial was established to a low-dose and continuously exposed model was conducted and compared with a previously reported CB-exposed model (MT-2CB). Transient exposure of MT-2 original cells to CB or CR induced a similar level of apoptosis and growth inhibition. The establishment of a continuously exposed subline to CR (MT-2CR) revealed resistance against CR-induced apoptosis and upregulation of the BCL-2/BAX ratio similar to that recorded for MT-2CB. Both sublines showed reduced production of IFN-γ, TNF-α, and IL-6 with increased IL-10. cDNA microarray with network/pathway analyses focusing on transcription factors revealed that many similar factors related to cell proliferation were involved following continuous exposure to asbestos in both MT-2CB and MT-2CR. These results indicate that both CB and CR fibers affect human T cells with similar degrees even though the carcinogenic activity of these substances differs due to their chemical and physical forms. Trials to identify early detection markers for asbestos exposure or the occurrence of asbestos-inducing malignancies using these findings can potentially contribute to the development of clinical tools for asbestos-related diseases and chemoprevention that modifies the reduced tumor immunity.

Data has shown that erionite causes an increased production of cytokines belonging to the Th17 profile including IL-17, IL-6 and TNF-α. This may be a marker that indicates autoimmune reactions associated with erionite. There are populations in the United States that may be at risk to developing diseases due to erionite exposure. Understanding the mechanism of disease caused by erionite can provide targets for therapies and help implement regulations on its use.

Resistance to Asbestos-Induced Apoptosis with Continuous Exposure to Crocidolite on a Human T Cell.

T. Otsuki1, M. Maeda2, S. Yamamoto3, N. Kumagai-Takei4, S. Lee5, H. Mastuzaki5 and Y. Nishimura1.

1Hygiene, Kawasaki Medical School, Kanagawa, Japan; 2Biofunctional Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.

We have been investigating the immunological effects of asbestos. The establishment of a low-dose and continuously exposed human T cell line, HTLV-1 immortalized MT-2, to chrysotile (CB) caused a decline of tumor immunity. These effects were coupled with upregulation of IL-10, TGF-β, and BCL-2 in asbestos-exposed patients. To observe the immunological effects of asbestos (CR) on human T cells, a trial was established to a low-dose and continuously exposed model was conducted and compared with a previously reported CB-exposed model (MT-2CB). Transient exposure of MT-2 original cells to CB or CR induced a similar level of apoptosis and growth inhibition. The establishment of a continuously exposed subline to CR (MT-2CR) revealed resistance against CR-induced apoptosis and upregulation of the BCL-2/BAX ratio similar to that recorded for MT-2CB. Both sublines showed reduced production of IFN-γ, TNF-α, and IL-6 with increased IL-10. cDNA microarray with network/pathway analyses focusing on transcription factors revealed that many similar factors related to cell proliferation were involved following continuous exposure to asbestos in both MT-2CB and MT-2CR. These results indicate that both CB and CR fibers affect human T cells with similar degrees even though the carcinogenic activity of these substances differs due to their chemical and physical forms. Trials to identify early detection markers for asbestos exposure or the occurrence of asbestos-inducing malignancies using these findings can potentially contribute to the development of clinical tools for asbestos-related diseases and chemoprevention that modifies the reduced tumor immunity.
Effect of Asbestos Exposure on Regulatory Role of NK Cells for Expanded Autologous CD4+ T Cells.

Y. Nishimura, N. Kumagai-Takei, H. Matsuzaki, S. Lee, and T. Otsuki, Hygiene, Kawasaki Medical School, Kanazawa, Japan.

We have studied effect of asbestos exposure on anti-tumor immunity to date, which demonstrated altered function of natural killer (NK) cells exposed to asbestos, showing decreased cytotoxicity against cancer cells with altered expression of NK cells receptors. Recently, it has been become known that NK cells show cytotoxicity for not only abnormal cells but also healthy autologous cells, by which NK cells play a regulatory role in immune response. Therefore, the present study examined effect of asbestos exposure on regulatory role of NK cells for CD4+ or CD8+ T cells. Human peripheral blood mononuclear cells (PBMCs) were cultured in IL-2-supplemented media with or without chrysotile B asbestos or silica, while CD4+ or CD8+ T cells were freshly sorted from PBMCs magnetically, and cultured upon stimulation by antibodies to CD3 and CD28. After 7 days, expanded CD4+ or CD8+ T cells were cultured with CD3-CD56+ NK cells isolated from harvested PBMCs by flow cytometry for a day. The culture with NK cells caused a decrease in the percentage of viable CD4+ T cells. However, CD4+ T cells cultured with NK cells exposed to asbestos, but not with silica-exposed those, showed more decrease in viable cells, compared with control culture. In addition, the expression levels of cell surface CD25 and CXCR3, activation and effector markers respectively, decreased in those CD4+ cells. In contrast, CD8+ T cells did not show alteration in percentage of viable cells and expression of Fasl and CXCR3 by culture with NK cells. These results indicate that asbestos-exposed NK cells show enhanced function to regulate expanded CD4+ T cells, in which effector cells are reduced more. The enhanced regulatory function might lead to insufficient anti-tumor response.

Long-Term Exposure of Asbestos on MT-2 Cell Affects Cell Cycle Progression and Cell Death.

S. Lee1, H. Matsuzaki1, M. Maeda2, N. Kumagai-Takei3, Y. Nishimura1 and T. Otsuki1, 1Hygiene, Kawasaki Medical School, Kanazawa, Japan; 2Laboratory of Functional Glycobiochemistry, Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.

Asbestos is a silicate mineral that causes serious illness such as malignant mesothelioma and lung cancer. Regulatory T cells (Treg), are known as a suppressor of immune activity and cause a less anti tumor immunity. We have hypothesized that asbestos causes less immune reaction including tumor immunity through the enhancement of Treg function. Here we used MT-2 cell line, an HTLV-transduced T cells. Human peripheral blood mononuclear cells (PBMCs) were cultured in IL-2, cultured with arsenic B and C. After 7 days, expanded CD4+ or CD8+ T cells were cultured with CD3-CD56+ NK cells isolated from harvested PBMCs by flow cytometry for a day. The culture with NK cells caused a decrease in the percentage of viable CD4+ T cells. However, CD4+ T cells cultured with NK cells exposed to asbestos, but not with silica-exposed those, showed more decrease in viable cells, compared with control culture. In addition, the expression levels of cell surface CD25 and CXCR3, activation and effector markers respectively, decreased in those CD4+ cells. In contrast, CD8+ T cells did not show alteration in percentage of viable cells and expression of Fasl and CXCR3 by culture with NK cells. These results indicate that asbestos-exposed NK cells show enhanced function to regulate expanded CD4+ T cells, in which effector cells are reduced more. The enhanced regulatory function might lead to insufficient anti-tumor response.

Arsenic Species Have Differential Impacts on Pseudomonas aeruginosa Induced Immune Response in Human Bronchial Epithelial Cells.

E. Notch, R. Barnaby, B. Coutermarsh, V. Taylor, B. Jackson, T. Hampton and B. Stanton, Geisel School of Medicine at Dartmouth, Hanover, NH.

Arsenic is the number one environmental contaminant of concern with regard to human health. In animal and epidemiological studies arsenic exposure has been associated with a variety of deleterious health outcomes. In utero and early life stage arsenic exposure has been linked to lung disease, including acute and chronic bacterial infections, and chronic obstructive pulmonary disease, all of which are associated with Pseudomonas aeruginosa (Pa) infection. Animal models have also shown that chronic arsenic exposure decreased immune response to viral challenge. However, little is known about the mechanisms by which these alterations occur or the relative contributions of different arsenic species. This study examined the impacts of inorganic sodium arsenite (As(III)) and two major metabolites, monomethylarsonic acid (MMA(III)) and dimethylarsenic acid (DMA(IV)), on Pa induced cytokine secretion by primary human bronchial epithelial cells (HBEC, n=4 donors). HBEC cells did not metabolize As(III), MMA(III) or DMA(IV). Exposure of HBEC to 10ppb MMA(III) for 7 days did not affect induced cytokine secretion. In contrast, 10ppb DMA(IV) for 6 days significantly decreased IL-8, IL-6, CXCL1 and CXCL2 secretion after Pa stimulation compared to cells exposed to Pa alone. Exposure to 10ppb MMA(III) increased Pa induced IL-8, and Gro-b secretion. HBEC exposed to DMA(IV) also had significantly decreased mRNA levels of IL-8, IL-6, CXCL1 and CXCL2 after Pa stimulation. These data provide the first evidence of arsenic species dependent alterations in the immune response of HBEC to infection by Pa. IL-8, IL-6, CXCL1 and CXCL2 are key proinflammatory cytokines that recruit mono-ocytes, macrophages and neutrophils to clear Pa. Thus, MMA(III) and DMA(IV)-induced
Evidence for Low-Dose Suppression of T Cell Proliferation by Arsenite in Certain Normal HPBMC Donors In Vitro.

F. T. Lauer, K. Liu, L. G. Hudson and S. W. Burchiel. College of Pharmacy, University of New Mexico, Albuquerque, NM.

Arsenic exposures in the United States and elsewhere in the world have been associated with numerous chronic diseases. People are exposed to arsenic via drinking water, diet, and air vectors. Arsenic exposure is now considered a top environmental public health concern worldwide. Several epidemiologic studies have shown that T cell proliferation is suppressed in individuals exposed to arsenic via drinking water. Previous studies in our laboratories have shown that sodium arsenite suppresses T cell proliferation in HPBMC obtained from normal donors. We have previously reported that some individuals respond to extremely low concentrations (<1 nm) of sodium arsenite when exposed to T cell mitogens (phytohemagglutinin, PHA) and arsenite in vitro for 72 hrs. We have now extended these studies to additional individuals and have examined additional assays for assessing T cell proliferation, including PHA-induced 3H-thymidine incorporation and a flow cytometry-based CFSE assay. Using the CFSE assay, we are examining differentially affected T cell subsets. In addition, the work has been extended to the activation of human T cells including PHA-induced 3H-thymidine incorporation and CFSE. In this poster we will present data illustrating the suppressive effects of arsenite on T lymphocyte function using 3H-thymidine incorporation and CFSE. Using the CFSE assay, we are examining differentially affected T cell subsets. In addition, the work has been extended to the activation of human T cells including PHA-induced 3H-thymidine incorporation and CFSE. In this poster we will present data illustrating the suppressive effects of arsenite on T lymphocyte function using 3H-thymidine incorporation and CFSE. Using the CFSE assay, we are examining differentially affected T cell subsets. In addition, the work has been extended to the activation of human T cells including PHA-induced 3H-thymidine incorporation and CFSE. In this poster we will present data illustrating the suppressive effects of arsenite on T lymphocyte function using 3H-thymidine incorporation and CFSE. Using the CFSE assay, we are examining differentially affected T cell subsets. In addition, the work has been extended to the activation of human T cells including PHA-induced 3H-thymidine incorporation and CFSE.
PCB126 at doses of 0.1; 1 or 10μg/kg of body weight, for 15 days, by nasal instillation. Control animal (saline + 0.5% DMSO). Five hours following the last exposure, animals were killed and bone marrow and blood leukocytes were evaluated as following: a) total number cells by hemocytometer; b) differential bone marrow cells were evaluated by anti-granulocyte, CD3 and CD45R expression analyzed by flow cytometer and differential leukocyte blood cells were quantified in stain smear; c) the expression adhesion molecules on circulating lymphocytes was analyzed by flow cytometer and differential leukocyte blood cells were evaluated as following: a) total number cells by hemocytometer; b) differential leukocyte blood cells were evaluated by flow cytometer at basal or in vitro IMPL stimulation conditions (N-formyl-methionyl-leucine-phenylalanine; 10-8M; 1 hour). All the experiments were conducted according to Ethics Committee in Animal Experiments approved by protocol number CEUA/FCP/315. Exposure to 10μg/kg of PCB126 reduced the number of total circulating leukocytes and bone marrow cells, which reflected reduced CD45 labeled lymphocytes in the bone marrow and cells and lymphocytes in the blood. Exposure to 0.1 or 10μg/kg of PCB126 reduced the expression of CD62L on circulating lymphocytes at basal conditions and in vitro IMPL stimulation impaired CD18 and CD51 expression in these cells. Our data indicates that PCB126 exposure modify the pattern of adhesion molecules expression by blood lymphocyte and it may affects the lymphocytes production, maturation or traffic between the body compartments. These effects may affect the host defense, as lymphocytes are pivotal cells in the immune response. Functional support: FAPESP and CNPq.

391 Alternariaol Induces Differentiation of Macrophages.

A. Solhaug1, C. Widesch1, T. E. Christoffersen1, L. Olsen2, T. Lea2, L. L. Vines4, J. A. Holme5 and G. S. Eriksen1.1University of Veterinary Institute, Oslo, Norway; 2Norwegian University of Life Sciences, Ås, Norway; 3Oslo University College, Halden, Norway; 4Michigan State University, East Lansing, MI; 5Norwegian Institute of Public Health, Oslo, Norway.

Mycoxotins are often found, as contaminants of food and feed, and may pose a risk for disease in humans and animals. Mycoxotins sometimes aberrantly affect the immune system and cause immune stimulation as well as immune suppression. The fungi Fusarium and Alternaria often co-occur in grain, and mixtures of mycoxotins are often more potent than the level of the pure well known toxins (eg. the trichothecenes from Fusarium) would indicate. The objective of this study was therefore to examine the potential immune effects of a frequently co-occurring mycoxotin, alternariool (AOH; Alternaria toxin). RAW 264.7 mouse macrophages as well as primary peritoneal mouse macrophages and human primary macrophages were therefore used as a model system. AOH was found to induce DNA damage, abnormal nuclei and cell cycle arrest in RAW 264.7 cultures. However, only low levels of cell death were observed. Instead the cells were found to change morphology into star-shaped cells, with increased expression of several cell surface receptors (CD80, CD11b, MHCII) increased TNF-alpha secretion as well as increased endolytic activity. Interestingly, the cells entered a senescent state after prolonged AOH exposure, possibly as a response to the different stresses induced by this mycoxotin. In contrast to RAW 264.7, peritoneal mouse macrophages and human primary macrophages do not proliferate in culture and as a likely consequence, did not exhibit abnormal nuclei upon AOH exposure. Interestingly, AOH was found to change the morphology and most of the cells got a dramatically elongated or a star-like shape, with no increase in cell death which is possibly associated with phenotypic changes. AOH-induced differentiation of macrophages might contribute in part to the observed effects of mycoxotins mixtures on the immune system.

392 Analysis of Epigenetic Reprogramming of CD8+ T Cell Responses by Developmental Aryl Hydrocarbon Receptor Activation.

B. Wisniewski1, A. Nogari2, M. Chae2, W. Kraus2 and B. Lowengberg1.1University of Rochester Medical Center, Rochester, NY; 2University of Texas Southwestern Medical Center, Dallas, TX.

The developing immune system is susceptible to environmental insults, leading to altered immune function later in life. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that acts as an environmental sensor and binds many dioxins and polychlorinated biphenyls (PCBs), pollutants to which humans are constantly exposed. AhR also plays a role in the development and function of the immune system. Human and animal data demonstrate that early life exposure to AhR-binding ligands leads to persistent alterations in immune function, supporting the idea that inappropriate AhR activation influences the developing immune system. In order to study the susceptibility of the immune system to perturbation by AhR signaling, our laboratory uses 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as a model developmental immunotoxicant and influenza A virus as a prototypical human pathogen. Mice exposed to TCDD during development have persistently reduced clonal expansion and differentiation of CD8+ T cells. This functional alteration is due to direct AhR signaling in the offspring, and results from a direct effect on hematopoietic cells. Furthermore, this altered function occurs without detectable changes in lymphoid organ cellularity or the distribution of immune cell subpopulations in naïve animals. These findings suggest the novel idea that inappropriate activation of AhR influences the epigenetic regulation of the developing immune system, leading to persistent changes in immune function. To test a direct effect on hematopoietic cells, we have developed an in vitro culture system in naïve and activated CD8+ T cells isolated from developmentally exposed mice, and correlated these with changes in gene expression. These novel data provide an important framework for understanding how changes in epigenetic marks, cued by developmental exposure, may affect gene expression and T cell function.

393 DES and Methoxychlor Metabolite, HPTE, Induction of Cell Death and Alteration of Thymocyte Development: Timing of Induction of Apoptosis.

Estrogen and putative endocrine-disrupting chemicals, such as diethylstilbestrol (DES) and methoxychlor, induce death of thymocytes and alter T cell development. Such alterations have the potential to profoundly affect the functioning of the immune system in the long term, particularly when they occur during gestation. We have previously shown that exposure of embryonic thymocytes to two EDCs, DES and hydroxyphenyl-trichloroethane (HPTE; the primary physiological metabolite of methoxychlor), results in death of the thymocytes and alteration of the development of T cells. We undertook the current study to elucidate the mechanism of action of DES and HPTE. C57BL/6 embryonic thymocytes were cultured in the presence of DES or HPTE in an assay that mimics the in vivo process of positive selection. Using Annexin V and propidium iodide staining we identified the time course for induction of cell death in the treated thymocytes. By six hours of treatment with DES or HPTE, thymocytes began to express markers of apoptosis, Annexin V+ and PI+. In addition, we assessed the induction of caspase activity, a later event in the apoptotic pathway. The induction of caspase activity distinguished the cell death we observed from other forms of cell death including necrosis and necroptosis. Our results suggest that death induced by DES and HPTE is rapid (beginning by 6 hours of exposure) and caspase-dependent, hallmarks of signal-mediated death induction.

394 Genetic Alterations by Prenatal Exposure to Mercury.

K. L. Kracke, D. L. Shirley and J. F. Nyland. Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC.

Background: Mercury (Hg) is an ubiquitous environmental toxicant which bioaccumulates and can produce many biological effects, including on the nervous and immune systems. Because Hg can cross the placenta and concentrates in the fetal compartment, the developing fetus is particularly vulnerable. We hypothesize that developmental exposure to Hg will cause immunological changes, leading to an increased susceptibility to, or exacerbation of, immune disorders later in life. Therefore, we exposed pregnant female mice to low doses of Hg for a short duration and examined the genetic effects related to immune function in the offspring. Methods: Pregnant BALb/c (migrant cells. Fed to Hg-Dosed fetus at PB2 or subcutaneous injection) or vehicle control every other day from gestation day (GD) 5 to GD15. Female offspring remained with the dam until weaning and were euthanized at 8 weeks of age with no further exposures to Hg. Spleenic RNA was isolated using RNeasy (Qiagen), then gene expression changes quantitated by microarray (Affymetrix). Gene expression data were analyzed with GeneSpring and differences in expression levels interrogated through Ingenuity Pathway Analysis software. Results: We found that a number of genes were differentially expressed when mice were prenatally exposed to Hg. Focusing on cytokines, macrophage activation, and regulatory T cells, we found that expression of IL-1, CTLA4, CX3CL1 and IGHM was upregulated at least two fold with prenatal Hg exposure. Discussion: In this project, we demonstrate that prenatal Hg exposure can produce lasting programming changes in the immune system. Increased expression of pro-inflammatory cytokine II-1 has been associated with autoimmune disorders, while pro-inflammatory chemokine CX3CL1 has been associated with microglial (macrophage-lineage cells of the brain) activation. These changes may increase the
risk of developing autoimmune disorders or the possibility of exacerbating existing immune disorders later in life. Future studies will include examining sex differences in the effects of prenatal Hg exposure effects.

395 Cannabinoid Receptors and PPAR-Gamma Interactions in Endocannabinoid-Modulated Differential CD8+ T Cell Responses.
S. T. Pike1, R. B. Crawford1, B. L. Kaplan1,2 and N. E. Kaminski1,2. 1Center for Integrative Toxicology, Michigan State University, East Lansing, MI; 2Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI.

Endogenous cannabinoids (endocannabinoids), eg, anandamide (AEA), bind cannabinoid receptors, CB1 and CB2, and modulate immune responses. In addition, PPARα-dependent but cannabinoid receptor-independent suppression of immune responses has been reported by endocannabinoids; however, the relationship between cannabinoid receptor-dependent and independent events is poorly characterized. In addition, phytocannabinoids, but not endocannabinoids, have been shown to both enhance and suppress immune function. Using AEA and an in vitro model mimicking the CD8+ T cell response to early HIV infection, we are seeking answers to two questions: 1) Do endocannabinoids differentially modulate CD8+ T cell responses? and 2) What roles do cannabinoid receptor-dependent and independent signaling play in these effects? In this model, the percentage of interferon-γ (IFN-γ) producing CD8+ T cells activated by a HIVgly120-expressing antigen presenting cell line is measured. These studies showed that in the presence of sub-optimal activation (Vh groups <28% CD8+IFN-γ+ cells), AEA significantly (~10%) enhanced IFN-γ production. Under supra-optimal activation conditions (>68%), the CD8+ T cell response decreased by ~5%. AEA was optimal (between 28% and 68%), little AEA-effect was observed. In addition, enhanced responses were AEA concentration-dependent. Using CB1-/-/CB2-/- mice, an increased baseline CD8+ T cell response (~8%) was observed compared to wild type mice, but an AEA-induced increase above this response was not evident. Surprisingly, addition of a PPARα antagonist over a range of activation levels was additive (~5%) to AEA-induced T cell effects. Overall, our results show endocannabinoids differentially modulate immune responses with cannabinoid receptors involved in the initial activation of CD8+ T cells. In addition, the AEA effects were PPARα-dependent. (Supported in part by R01DA020402 & F32DA030167)

396 Perinatal Exposure to Bisphenol A through Maternal Diet Alters Allergen-Induced Lung Inflammation in Adult Offspring.
E. O’Brien1, D. Dolinoy2, M. Peters-Golden2, Z. Zaslona2 and P. Mancuso1. 1Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI; 2Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI.

Bisphenol A (BPA), a monomer of polycarbonate plastics and epoxy resin, is a high production volume chemical that has been implicated in asthma pathogenesis when exposure occurs to the developing fetus. However, few studies have examined the effect of in utero and early-life BPA exposure on the pathogenesis of asthma in adulthood. Using an allergen-induced model of asthma, we examined whether perinatal BPA exposure through maternal diet alters lung inflammation in adult offspring by measuring cellular recruitment, cytokine production, lipid mediator production, and serum IgE levels. Two weeks before mating, BALB/c dams were randomly assigned to a diet containing low (50 ng BPA/kg diet), medium (100 ng), or high (500 ng) levels of BPA or a BPA-free control diet. Dams remained on the assigned diet throughout gestation and lactation until postnatal day 21 when offspring were weaned onto the BPA-free diet. Twelve-week-old offspring were sensitized to ovalbumin with alum by intraperitoneal injection and subsequently challenged with aerosolized ovalbumin to induce an allergic inflammatory response. Offspring exposed to medium or high levels of BPA exhibited increased serum anti-ovalbumin IgE levels compared to controls, while animals exposed to the low dose displayed increased lymphocyte recruitment, RANTES production, and TNF-α and IFN-γ production from splenocytes. Offspring exposed to low or high doses of BPA exhibited decreased macrophage, neutrophil, and eosinophil recruitment and decreased production of TNF-α, IFN-γ, IL-4, IL-13, cysteinyl leukotrienes, and prostaglandin D2. Our data show that perinatal BPA exposure has quantitatively different effects on various measures of allergen-induced inflammation. These data indicate that perinatal BPA exposure does not worsen allergen-mediated inflammation in the adult lung, but suggests that exposure may increase inflammation on a systemic level.

397 Direct Evidence of Altered Conformation and Evidence for a Binding Site on TLR3 for Ethanol at Relevant Concentrations.
S. B. Pruet1, V. Le1, E. Lewis1, S. Gwaltney1, B. Manikanthan1 and A. Shack2. 1Chemistry, Mississippi State University, Mississippi State, MS; 2Basic Sciences, Mississippi State University, Mississippi State, MS.

The mechanism by which ethanol causes a complex array of changes in animal models and humans has been vigorously debated and investigated for more than 50 years. Some progress has been made on the direct effects of ethanol on conformation and function of receptors for neurotransmitters, which apparently cause many of the neurological effects of ethanol. However, there has been no similar investigation of any component of the immune system. We selected TLR3 for this purpose because its 3-dimensional structure has been published, it forms dimers in solution in the presence of ligand which is also the initial event in signaling in vivo, the cytokines and other inflammatory mediators induced by this receptor are inhibited substantially by ethanol, and TLR3 plays an important role in innate immunity to viruses. We used molecular docking software (Autodock 4.2) to determine that there is a highly probable binding site for ethanol in both human and mouse TLR3, and they are at different locations. They are not within the ligand binding region of the molecule, so they should not directly affect ligand binding (though indirect effects are possible). We used circular dichroism to evaluate the dose-response effects of ethanol on the conformation of human or mouse TLR3 with ligand (poly I:C). The difference in rotation of light (millidegrees) in control and ethanol treated samples at 220 nm exhibits a biphasic concentration-response pattern with a peak at ~40 mM (a concentration which is not uncommon in human binge drinkers) and the lowest value at ~80-100 mM (a near lethal concentration of ethanol). The concentration at the peak of the response curve is near the binding constant calculated by the docking software, suggesting that conformational change may be related to the ethanol binding site on TLR3. This is the first report that ethanol at relevant concentrations alters the conformation of an immunological receptor.

398 Developmental Aryl Hydrocarbon Receptor (AhR) Activation Attenuates Hematopoietic Stem Cell (HSC) Capacity to Undergo Lymphocyte Differentiation.
L. Ahrenhoerster1, P. A. Lakatos and M. D. Lajous2. Ziller School of Public Health, University of Wisconsin—Milwaukee, Milwaukee, WI.

HSCs are the foundational cells of the blood system, responsible for balancing self-renewal and differentiation into mature effector cells. Environmental exposures to the HSCs in utero can profoundly affect future development of immune diseases. Indeed, transplacental exposure to 2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) leads to numerous later-life immunological deficits. TCDD mediates this developmental immunotoxicity by binding to and activating the AhR, which is an important regulator of immunological development and function. Given the centrality of hematopoiesis in immune development throughout the life-course, we investigated the effect AhR activation by TCDD has on murine HSCs. Since it is known that the AhR maintains HSCs in a state of non-proliferative quiescence, we hypothesized that persistent developmental AhR activation modulates HSC differentiation capacity and self-renewal ability. To test this hypothesis, pregnant dams were exposed to 3 ng/kg TCDD or vehicle control. On gestational day 14.5, lineage negative, cKit+, Sca-1+ (LSK) cells were harvested, quantified, and placed into T-lymphocyte differentiation cultures using a limiting dilution approach. We found approximately 2.5 fold more LSKs present in fetuses exposed to TCDD in utero. Measuring potential, we found approximately 1 in 17 vehicle-exposed LSKs had the capacity to undergo T-cell differentiation while only 1 in 39 did if developmentally exposed to TCDD. These effects are mediated by the AhR in the individual fetuses as supported by studies conducted in offspring from AhR+/-. Specifically, the T-cell differentiation potential of LSKs from TCDD-exposed AhR-/- fetuses approximates that of vehicle-exposed wild type LSKs. Conversely, the TCDD-exposed AhR-/+, AhR+/siblings produce LSKs with a diminished T-cell precursor potential. These data suggest that developmental AhR activation in HSCs reprograms the balance between self-renewal and differentiation, potentially affecting future immune system development and function.

84 SOT 2013 ANNUAL MEETING
2.75-fold increase in caspase-3 immunoreactivity in septal NALT compared to logically and using immunohistochemistry for caspase-3. SG exposure caused a respective saline-exposed nasal passages. NALT apoptosis was identified morphologically to the left nasal passage. Left and right nasal passages were sectioned and preserved for four consecutive days in the right nasal passage. Saline vehicle was administered to the nasal passages. NALT, resulting in a 19% (single) and 70% (repeated) reduction in the area of NALT. Both single dose and repeated dose exposure to SG caused atrophy of the nasal associated lymphoid tissue (NALT). Juvenile male rhesus macaques received either a single intranasal instillation of 20 μg SG (n=3), or daily instillations of 5 μg SG (n=3) for four consecutive days in the right nasal passage. Saline vehicle was administered to the left nasal passage. Left and right nasal passages were sectioned and preserved for light microscopic, immunohistochemical, and morphometric analyses of the NALT. Both single dose and repeated dose exposure to SG caused atrophy of the NALT, resulting in a 19% (single) and 70% (repeated) reduction in the area of NALT along the nasal septom in the SG-exposed nasal passages, compared to the respective saline-exposed nasal passages. NALT apoptosis was identified morphologically and using immunohistochemistry for caspase-3. SG exposure caused a 2.75-fold increase in caspase-3 immunoreactivity in septal NALT compared to saline exposure. The results in this model provide new insight into a potential mechanism of immune dysregulation associated with exposure to damp indoor environments.

H. Kääriö1, J. Nieminen2, K. Huttunen3, M. Hirvonen1, J. J. Pekkanen1, O. Vaarala2 and M. Roponen1. 1Environmental Science, University of Eastern Finland, Kuopio, Finland; 2Viral Diseases and Immunology, National Institute for Health and Welfare, Helsinki, Finland; 3Environmental Health, National Institute for Health and Welfare, Kuopio, Finland; Sponsor: M. Villukka.

Dendritic cells (DCs) are the major antigen presenting cells that play a central role in the induction of the cellular immune response. Exposure to farm-associated microbes might alter DC numbers or accelerate their maturation, thereby enhancing the development of healthy immune tolerance that would protect against allergic sensitization and disease. In early childhood still immature DCs are very susceptible to environmental exposure. Therefore, the objective of this study was to investigate if numbers or functional properties of DCs in 4-5 year old Finnish children (a selected part of a European birth cohort study, EFRAIM) are associated with the farm exposure and/or atopic outcome. Myeloid DC1 (mDC1, CD14+cDC1c), mDC2 (CD14+), plasmacytoid DC (pDC, CD123+CD303+), monocytes (CD14+), functional markers (CD80, CD86, TLR4) and intracellular cytokines (IL-6, TNF-α) were analyzed by flow cytometry per se and following 6 hour stimulation with lipopolysaccharide. The frequency of subpopulation mDC1 was lower in non-atopic children. Also, lower frequency of pDC subpopulation was associated clearly with food atopy. Consequently, the ratio of pDC/mDC1 was lower in children with food atopy. Other associations between DC phenotype/function and atopy were more complicated and dependent on the type of the atopy/sensitization and the selected IgE cut-off concentration. The main conclusions are that 1) the farm exposure seems to reduce the frequency of circulating mDC1 cells, possibly affecting the antigen-presenting function of the exposed children, 2) the reduced number of pDC cells predisposes children to the development of food atopy and 3) the definition of atopy is crucial when associations between DCs and atopy are studied.
Role of PKC Beta in Allergen-Induced CD86 Expression and IL-8 Release in THP-1 Cells.

V. Galbiati, M. Marinovich, E. Corsini and C. L. Galli, DiSFeR, Università degli Studi di Milano, Milan, Italy.

Protein kinase C (PKC) is a family of twelve serine-threonine kinases, involved in signal transduction of hormones, neurotransmitters, and cytokines. We have found an age-related alteration in PKC signaling and TNF-α release in epidermal cells exposed to different stimuli, including contact allergen DNCB. We demonstrated an age-related decrease in the receptor for activated C kinase (RACK-1) expression, which underlies defective PKC β activation and age-related functional deficit in Langerhans cells (LC) responsiveness (1). It has been indeed demonstrated that LC cannot migrate from the epidermis when PKC β is inhibited, indicating that PKC β transduces the signal for migration of LC from the epidermis (2).

The purpose of this study was to investigate the role of RACK-1 and PKC β in contact allergen-induced CD86 expression and IL-8 release. The human promyelocytic cell line THP-1 was used as surrogate of dendritic cells, while dinitrochlorobenzene (DNCB), p-phenylenediamine (PPD) and diethydmaleate (DEM) were used as reference allergens. CD86 expression was evaluated by FACS analysis and IL-8 release by commercially available ELISA. The selective cell-permeable inhibitor of PKC β, the specific kinase isoform interacting with RACK-1, and the broad PKC inhibitor GF109203X, completely prevented allergen-induced CD86 expression and significantly modulated the release of IL-8 (50% reduction). The use of a RACK-1 pseudosubstrate, which directly activates PKC, resulted in a dose-related increase in CD86 expression and IL-8 release. These effects were not due to cytotoxicity, as assessed by lactate dehydrogenase leakage, or to endotoxin contamination of RACK-1 pseudosubstrate, as assessed using polymixin B. Overall, we demonstrate a role of PKC β and RACK-1 in allergen-induced CD86 expression and IL-8 production, confirming the pivotal role of PKC in immune cell activation.

Acknowledgement. This project was supported by Ministero dell’Istruzione, dell’Università e della Ricerca (PRIN2009).

References
(1) Br J Dermatol 160:16-25, 2009
(2) Immunology 79:621-6, 1993

404 Perfluorooctanoic Acid Exposure Suppresses T-Independent Antibody Responses.

J. DeWitt1, N. Creech1, Q. Hu1, W. Williams1 and B. Luettek1, 1Pharmacology and Toxicology, East Carolina University, Greenville, NC; 2Cardiopulmonary & Immunotoxicology Branch, Research Triangle Park, NC.

Exposure to 3.75 mg/kg of perfluorooctanoic acid (PFOA) for 15 days suppresses T-dependent antibody responses (TDAR), suggesting that T helper cells and/or B cells/plasma cells may be impacted. This study evaluated effects of PFOA exposure on the T cell-independent antibody response (TIAR) to dinitrophenyl-ficollic (DNP). Groups of C57BL/6 mice were given 0, 0.94, 1.88, 3.75, or 7.5 mg/kg of PFOA in drinking water for 15 days and immunized with 1 µg of DNP in 0.2 ml of sterile saline on d11 of dosing. Seven days after immunizations and 3d after dosing, animals were euthanized and bled; sera were evaluated for IgM anti-DNP antibodies by ELISA. PFOA exposure did not alter body or lymphoid organ weights. Mean (log2) IgM serum titers of animals dosed with ≥ 1.88 mg/kg PFOA were statistically suppressed, on average, by 10% relative to control responses. Splenic B and T cell subset phenotypes were evaluated in separate groups of animals dosed with 0, 3.75 or 7.5 mg/kg of PFOA for 10, 13, or 15 days. Animals exposed for 13 or 15 days were immunized with sheep erythrocytes on d11 of dosing. In animals exposed for 15d, the mean percentage of B cells was increased by all doses. Within the CD4+ T cell population, the following changes were observed in the mean percentage of cells: CD4+CD8- T cells were increased at doses of 3.75 and 7.5 mg/kg after 10, 13, and 15d of exposure; CD4+CD8+ T cells were increased after 13d of exposure across all doses relative to 10 and 15d of exposure; CD4-CD8+ and CD4-CD8- T cells had dose and duration interactions, with no clear effect of dose or duration of exposure. Overall, PFOA exposure did not reduce splenic B or T cell populations. Suppression of TDAR and TIAR, in the absence of obvious lymphocyte subpopulation loss, suggests that effects on humoral immunity are likely mediated at least in part, by disruption of normal B cell/plasma cell function. This abstract does not represent EPA policy.

African Dust Fine PM Induce the Expression of GSTp, HO-1, IL-6 and IL-8 in BEAS-2B.

R. L. Rodríguez-1, 2 and B. D. Jiménez-Velázquez1, 2, 1Biochemistry, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico; 2Center for Environmental and Toxicological Research, University of Puerto Rico-Medical Sciences Campus, San Juan, Puerto Rico.

African dust travels seasonally across the Atlantic Ocean and impacts Puerto Rico increasing the airborne particulate matter (PM) load and the probability of developing an oxidant atmosphere over the Island. The impact of this global event on the general health of Puerto Ricans is still uncertain. We evaluated the generation of reactive oxygen species (ROS) by African dust (ADE) atmospheric load on bronchial epithelial cells (BEAS-2B). In addition, we also measured antioxidant [Glutathione-S-Transferase (GSTp); Heme Oxygenase 1, (HO-1)] and pro-inflammatory (Interleukins, IL-6 and IL-8) gene expressions in cells exposed to PM organic extracts. Cells were treated with extracts (50 µg/ml) from ADE and Non-ADE and the contribution of metals determined using 50 µM deferoxamine mesylate (DF). Cells were co-treated with N-acetyl-L-cysteine (NAC) to evaluate the extract oxidant capacity. The rate of ROS formation was monitored with dichlorofluorescein diacetate for 2 hrs reading fluorescence every 15 min. Quantitative fluorogenic amplification of CDNA was performed using the TaqMan Gene Expression Assays. ADE and Non-ADE induced generation of ROS, which was significantly reduced with DF GSTp and HO-1 mRNA expression increased 6 and 8 folds respectively after 4 hrs with ADE extract treatment. The use of DF or NAC significantly reduced both GSTp and HO-1 expression. ADE extracts also induced IL-8 mRNA (7 folds) and IL-6 (5 folds) after 8 hrs. DF or NAC co-treatments similarly reduced cytokine expression confirming the importance of metals in the extracts. African dust arriving Puerto Rico increases local concentrations of trace elements and other constituents in ambient PM2.5, which generate ROS and induce the expression of antioxidant and inflammatory gene responses as demonstrated in vitro by the use of BEAS-2B. Supported by MERS-RISE Grant R25GM061838 and by NCCRZ 2G12-R00305 and NCMHD 8G12-MD007600.

Aminoglutethimide-Induced Immune Changes and Idiosyncratic Drug Reactions.

W. Ng and J. Uetrecht, Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.

Aminoglutethimide (AMG) is an aromatic amine aromatase inhibitor associated with a high incidence of idiosyncratic blood dyscrasias, especially agranulocytosis. Despite evidence for immune involvement, the mechanisms of idiosyncratic drug reactions (IDRs) are poorly understood. Animal models of IDRs represent an essential tool to study these reactions; however, like humans, treating animals with drug alone does not usually induce an IDR. Conversely, studying the lack of response may be crucial in understanding why only certain people develop an IDR to a specific drug. Therefore, the objective of this study was to characterize the immune response of Brown Norway rats treated with 125 mg AMG/kg/day and to determine whether immune suppression may prevent the induction of IDRs. An early increase in peripheral blood neutrophils in AMG-treated rats corresponded to changes in the bone marrow that were consistent with an increase in the myeloid cell population. Expression of CD62L on neutrophils decreased at both 24 and 48 hours after AMG treatment, which suggests neutrophil activation, and this was followed by elevated serum levels of Gro/KC and MCP-1. In the spleen, increased proliferation was observed in the white pulp after 14 days of AMG treatment, which was attributed to CD4+ T-cells; however, this may be a local response because it did not extend to the auricular lymph nodes. Furthermore, an early increase in IL-17-expressing CD4+ T-cells in the spleen of the AMG-treated was followed by increased expression of IL-10 after 48 hours, which could modulate the immune response. These results suggest that the major immune response to AMG involves the innate immune system. Although there is some evidence to suggest activation of an adaptive immune response, further investigation of how the innate and adaptive immune interact may provide a better understanding of the mechanisms of IDRs. This research was funded by grants from the Canadian Institutes of Health Research.
407 The Dermal Exposure to Silica Nanoparticles Induces IgE-Mediated Hypersensitivity.

T. Hirai1, Y. Yoshioka1, H. Takahashi1, K. Ichihashi1, N. Nishijima1, T. Yoshi1, H. Nabet1, T. Yoshikawa1, S. Tsunoda1, K. Higashisaka1 and Y. Tsutsumi1, 2, 3, 4.
1Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; 2National Institute of Health Sciences, Tokyo, Japan; 3Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Osaka, Japan; 4MEI Center, Osaka University, Osaka, Japan.

To fully utilize the potential benefits of nanomaterials (NMs), it is crucial to evaluate the hazard associated with NMs on human health. Previously, we reported that amorphous silica nanoparticles (nSPs), one of the most frequently used NMs in cosmetics, could penetrate the skin barrier and might have potential risk to enhance allergic responses (Hirai T et al. Part. Fibre Toxicol. 2012). Thus, to ensure the safety of nSPs, it is needed to investigate the effect of dermal exposure to nSPs on allergic diseases. Here, we identified hazard of dermal exposure to nSPs using atopnic dermatitis (AD) model mice. The mixture of mite extract antigen (Dp) and nSPs with diameter of 30 nm (nSP30) were swabbed on upper back and both ears for 4 weeks. To evaluate whether nSP30 affects severity of Dp-induced AD, ear thickness and Dp-specific immune responses were measured. Dermal exposure to nSP30 did not affect Dp-induced ear swelling, indicating that nSP30 did not aggravate AD-like skin lesion. The levels of Dp-specific IgE were also not affected by dermal exposure to nSP30. In contrast, the level of Dp-specific IgG in nSP30 (Dp+) groups were significantly lower than those in Dp alone. Furthermore, we showed that the decrease of IgG levels in nSP30 (Dp+) groups induced IgE-mediated hypersensitivity in Dp-mediated anaphylaxis model. Recent epidemiologic study revealed that allergen exposure through the epidermis is important factor to initiate not only AD but also other allergic diseases such as asthma and food allergy. Considering our results together, it is important to examine the relationship between the dermal exposure to NMs and initiation of allergic diseases more precisely.

408 Effects of Clozapine on the Bone Marrow and Immune Cells in Rodents and Humans: Implications for Drug-Induced Agranulocytosis.

A. R. Lobach and J. Uetrecht. Leslie Don Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.

Clozapine is a very effective antipsychotic agent, but its use is limited by the risk of drug-induced agranulocytosis. At the start of treatment, the majority of clozapine patients display evidence of an inflammatory response paired with elevated neutrophil counts. These immune changes appear to be accompanied by changes in the bone marrow, specifically a faster release of neutrophils to the blood. To further investigate these immunomodulatory effects, studies were carried out in rats focused on the peripheral blood and bone marrow responses.

Methods: Rats were treated with clozapine for up to 10 days and bone marrow was collected at study endpoint. Flow cytometry was employed to measure changes in the balance of myeloid, lymphoid, and erythroid compartments in the bone marrow. Progenitor cell changes in vivo were assessed by the methylcellulose assay. Patient studies have been initiated in which the T cell response (ie. Th1/2, Th17, Treg) at the start of clozapine therapy will be monitored in the blood using flow cytometry.

Results: Clozapine treatment in rats was found to significantly elevate the number of mature myeloid cells in the bone marrow. This increase was found to be due to an upturn increase in the number of myeloid progenitor cells. Furthermore, these progenitor cells were observed to favor the formation of granulocyte (G) colonies over macrophage (M), or mixed GM colonies.

Conclusions: Clozapine alters the normal production of hematopoietic cells in the rat bone marrow by promoting the formation of granulocyte colonies. This is reflected in the blood as an increase in neutrophil counts, which is also observed in patients at the start of therapy. The mechanism of clozapine-induced agranulocytosis remains unclear; however, other studies suggest that it may be the result of clozapine-induced neutrophil apoptosis. Clozapine-induced agranulocytosis may occur in cases where this damage leads to an immune response, which doesn't resolve with tolerance. This research was supported by grants from the Canadian Institutes of Health Research.

409 A Mechanistic Analysis of Silica Nanoparticle-Induced Immune-Modulating Effect in Murine Dendritic Cells.

H. Takahashi1, Y. Yoshioka1, T. Hirai1, K. Ichihashi1, N. Nishijima1, T. Yoshi1, H. Nabet1, T. Yoshikawa1, S. Tsunoda1, K. Higashisaka1 and Y. Tsutsumi1, 2, 3, 4.
1Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; 2National Institute of Health Sciences, Tokyo, Japan; 3Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Osaka, Japan; 4MEI Center, Osaka University, Osaka, Japan.

Nanomaterials (NMs) exhibit unique physicochemical properties and innovative functions, and they are increasingly being used in a wide variety of fields. Ensuring the safety of NMs is now an urgent task. Recently, we reported that amorphous silica nanoparticles (nSPs), one of the most widely used NMs, induced immune modulating effect via the cross-presentation (CP) in murine dendritic cells (DCs). Here we investigated the mechanism of nSP-induced CP in DCs for the development of safer NMs. It is known that CP is induced by internalized antigens entered the cytosol via endosomes, and these antigens are then degraded by proteasomes. To examine whether this pathway is necessary for nSP-induced CP, we investigated the effect of the potent proteasome inhibitor lactacystin on nSP-induced CP. Lactacystin treatment strongly inhibited nSP-induced CP. In addition, we analyzed the effect of cellular uptake of nSPs on the induction of CP. Because some reports have shown that scavenger receptor (SR) was related to the uptake of nSPs, we examined nSP-induced CP after treatment with Poly I, which is a SR inhibitor. nSP-induced CP was inhibited with Poly I treatment. These results suggest nSPs enhanced CP in proteasome- and SR-dependent manner. We believe a detailed analysis of the mechanisms of nSP-induced CP will be invaluable for the design of safe NMs.

410 Programmed-Death-1 Receptor Interactions with Its Ligands May Play a Role in Inhibiting Drug-Induced Liver Injury Mediated by the Adaptive Immune System.

K. Semple, P. Ryan, M. Chakraborty, W. R. Proctor and L. Pohl. Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, Bethesda, MD.

Although clinical evidence suggests that many cases of serious idiiosyncratic drug-induced liver injury (SIDILI) are mediated by hepatic protein adducts of drugs and the adaptive immune system, detailed experimental proof for this mechanism of toxicity has remained elusive due to the lack of animal models. We have hypothesized that SIDILI is as rare in animals as it is in humans due in part to the tolerogenic nature of the liver, which consists of multiple negative regulators of the adaptive immune system. One negative regulatory pathway that may play a role in modulating the incidence of SIDILI involves the interaction of programmed death-1 receptor (PD-1) on the surface of activated T and B cells with its ligands (PD-L1 and PD-L2) found on a variety of other cells. This possibility has now been tested in an established murine model of halothane-induced liver injury. Twenty-four hours after female Balb/cJ mice were treated with halothane, analysis of the liver revealed perivenous necrosis and an infiltration of CD4+ and CD8+ T cells as well as neutrophils and eosinophils determined by flow cytometry. Further study revealed that T cells expressed PD-1 on their surface, while neutrophils and eosinophils too a lesser extent expressed PD-L1, but not PD-L2 on their surface. These findings suggest that neutrophils may play a role in directly regulating the adaptive immune system. This possibility can be tested in vitro and in vivo by modulating the activities of PD-L1 and PD-1 and may have a role in determining susceptibility to SIDILI that is mediated by cells of the adaptive immune system.

411 In Vitro Characterization of Immunostimulation by siRNA-Lipid Nanoparticles.

The treatment of human diseases using RNA interference (RNAi) therapeutics requires efficacious and safe delivery of short interfering RNA (siRNA) to target tissues. A well-established strategy for systemic delivery is formulation of siRNA in lipid nanoparticles (LNP). Our current multi-component lipid formulation has been shown to be highly efficient for liver delivery and silencing of therapeutically relevant gene targets. Similar to liposomal drug products, siRNA-LNP delivery can also cause minor transient increases in serum cytokines or complement activation in a small subset of patients. The aim of this study was to systematically assess factors influencing cytokine responses to siRNA-LNP in vitro to obtain insight into the mechanistic basis of immunostimulation. We established a consistent healthy
blood donor pool that gave us the unique opportunity to analyze both population heterogeneity and response consistency by repeat-characterization of single donors (41 donors, mean 3.7 visits per donor). Whole blood was incubated in vitro with siRNA-LNP and plasma levels of 13 cytokines were determined using multiplex analysis. As anticipated, we observed considerable variability in cytokine responses between donors. For large-scale analysis of 13-dimensional cytokine data, we applied Principal Component Analysis (PCA) to reduce redundancy among variables and to identify data patterns. We found that Principal Components 1 and 2 captured ~85% of variance in our dataset. Moreover, individual donors could be subclassified into three categories (High, Intermediate, Low) based on responsiveness to siRNA-LNP. Using an algorithm to analyze the reliability of our subclassification, we demonstrated that donor sensitivity to siRNA-LNP immunostimulation was consistent over time. Our data suggest that the observed heterogeneity in sensitivity to siRNA-LNP immunostimulation is due to stable, intrinsic immune differences.

412 Characterization of Suppression of the Innate Immune System by Sodium Methyleneiodihcarbonate.

W. Tan, B. Jan, X. Deng, M. Gadson and S. B. Pruett. Basic Sciences, Mississippi State University, Mississippi State, MS.

Sodium methyldihcarbonate (SMD) is the most widely used soil fumigant in the US. The parent compound and its major breakdown product – methyldithiocarbaminate (MITC) have been reported to suppress innate immunity in animal models. Our studies indicated that both SMD and MITC altered pro- and anti-inflammatory cytokine and chemokine production in a mouse sepsis model, and increased mortality in a similar manner at 72 hr. Experiments described here were conducted to understand the mechanisms by which SMD alters innate immunity. In NF-κB reporter mice, both SMD and MITC decreased the signal strength of NF-κB, which clearly suggested that the NF-κB pathway was inhibited by both compounds. Therefore, it is important to determine how SMD alters NF-κB signaling. Early studies showed that in vivo administration of SMD decreased the concentration of reduced glutathione in mouse peritoneal macrophages, which indicated that SMD administration induced oxidative stress. NF-κB signaling is known to be sensitive to oxidative stress. Hence, in our studies we showed that neither BSO nor NAC altered the signal inhibition of NF-κB induced by SMD, which indicated that other mechanisms are more important. Interestingly, NF-κB p65 was not altered by SMD. In contrast, NF-κB p50 was downregulated at the level of mRNA expression in microarray analysis. Meanwhile, microarray analysis indicated that other pathways could be potentially involved in the suppression of innate immune responses induced by SMD, such as hormone pathways, recognition receptors of bacteria and viruses, and others. Therefore, further studies are necessary to determine the interaction of these impaired pathways after methyldihcarbonate treatment. This work was supported by grant R01ES013708 from the National Institute of Environmental Health Sciences.

413 Submicrometer-Sized Iron Oxide Particles and Inflammation.

A. M. Nielsen and D. Mikhaelova. Norwegian University of Science and Technology, Trondheim, Norway.

Iron-containing nano- and sub-micrometer particles are increasingly used in daily life products such as clothes and paint as well as in nanomedicine. Thus, it is of importance to find if such particles might cause harmful inflammatory responses. The aim of the study was to determine if two types of iron oxide particles activate isolated immune cells and initiate inflammatory responses in blood, and if they differ in their potential for doing so.

We compared two superparamagnetic iron oxide particle types (100 nm and 1 μm diameter) functionalized with carboxyl or glucuronic acid carboxyl and determined if they activate human monocytes in culture or activate cells and initiate inflammatory responses in human whole blood. Activation of the immune cells were determined by quantification of secreted cytokines by ELISA and multi-plex, by induced expression of surface proteins (CD11b) on monocytes and granulocytes in whole blood using flow cytometry and by determining activation of the complement system (TCC) by ELISA. The results suggest that the 100 nm beads caused a dose dependent activation of isolated monocytes as seen by elevated levels of secreted IL-1β and TNF-α 6h after adding the beads. Multi-plex confirmed the increase in IL-1β and demonstrated in addition an elevation in IL-2, IL-6, GM-CSF and IFN-γ. The 1 μm beads were found much less potent in inducing the secretion of these pro-inflammatory cytokines. Priming of the cells using LPS (100 pg/ml for 2h) gave very minor effects on the cytokine responses to the particles. From the whole blood analysis it was found that the 100 nm beads at the highest concentration (100 μg/ml) caused an elevated level of CD11b on both monocytes and granulocytes, activated complement, and increased the secreted levels of IL-1β, IL-2, IL-6 and TNF-α. The 1 μm beads gave no cytokine changes compared to the negative control except for an activation of the complement system that was similar to the smaller beads. The functionalized 100 nm iron oxide particles seem to induce a higher inflammatory response in human monocytes and whole blood than the 1 μm beads.

414 A 28-Day Inhalation Immunotoxicity Study of Methyl Isothiocyanate in Female B6C3F1 Mice.

J. Weinberg1, D. Kirkpatrick1, V. Peachee1, V. Piccirillo1, A. Ionynas2 and J. Hauswirth1. 1WIL Research, Ashland, OH; 2Immunotox Inc., Richmond, VA; 3MITC Task Force, Washington DC.

The objective of this study was to evaluate potential immunotoxic effects of methyl isothiocyanate (MITC) when administered via whole-body inhalation to female B6C3F1 mice for 28 consecutive days. MITC is the active metabolite of metam sodium, a organosulfur compound used as a soil fumigant for protection against soil fungi and nematodes. Groups of 10 female mice were exposed to target vapor concentrations of 0, 1, 3 and 10 ppm. All animals were immunized with an intravenous injection of sheep red blood cells (sRBC) on study day 24. A concurrent positive control group received once daily intraperitoneal injections of cyclophosphamide monohydrate (CPs) at a dosage level of 50 mg/kg/day on study days 24-27. All animals were observed at the midpoint of exposures for signs of toxicity. Body weights were recorded twice weekly and food consumption was recorded weekly. A gross necropsy was conducted on all animals on study day 28. Spleen and thymus weights were recorded at necropsy. Immunotoxicity assessment was based on the results of a splenic antibody-forming cell (AFC) assay to assess the T-cell dependent antibody response. There were no MITC-related effects on survival, body weights, food consumption, macroscopic findings or spleen and thymus weights. An increase in eye closure was observed in mice at the 3 and 10 ppm exposure levels. Spleen cellularity, specific activity (AFC/106 spleen cells) and total activity (AFC/spleen) of splenic IgM antibody-forming cells to the T cell-dependent antigen SRBC were unaffected. CPS administration resulted in an expected suppression of the humoral component of the immune system. There was no suppression of the humoral component of the immune system when female B6C3F1 mice were exposed to concentrations of 1, 3 and 10 ppm MITC, vapor by whole-body inhalation for 28 consecutive days. In the absence of MITC-related effects on the AFC response, the No-Observed-Effect-Concentration (NOEC) on the immune system was greater than 10 ppm.

415 Activation of the Aryl Hydrocarbon Receptor during Development Leads to An Altered Cd4+ T Cell Response to Influenza Virus.

L. Boule1 and B. Lawrence1, 1Immunology, Microbiology, and Virology, University of Rochester Medical Center, Rochester, NY; 2Environmental Medicine, University of Rochester Medical Center, Rochester, NY.

Recent reports suggest developmental exposures to certain pollutants lead to lower antibody responses to childhood immunizations, but the mechanism by which this occurs is unknown. An intracellular receptor activated by a variety of chemicals is the transcription factor aryl hydrocarbon receptor (AhR). It is expressed by many cell types, including immune cells, and can alter their function upon activation. Previously, we have shown that developmental triggering of the AhR by one of its most potent ligands, the pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), results in a decrease in the class-switched antibody response to influenza virus infection. CD4+ T cells differentiate into various effector subsets dependent on the environment in which they are activated. CD4+ T cells that secrete IFN-γ and express the transcription factor TBet are defined as Th1 cells, and these Th1 cells are critical effectors in the class-switched antibody response to influenza virus. We examined the CD4+ T cell response to influenza virus in developmentally exposed mice and found that there are fewer activated and virus-specific CD4+ T cells in the draining lymph nodes of infected adult mice that were developmentally exposed to TCDD. In addition, there are fewer Th1 cells in the MLN of these mice. Conversely, the percentage of CD4+CD25+Foxp3+ regulatory T cells (Treg), responsible for suppressing immune responses, is increased in the MLNs of developmentally exposed mice. This is the first report in the context of an influenza virus infection that AhR activation during development disrupts the normal function and differentiation of CD4+ T cells, an effect of which may lead to decreased antibody responses to both infections and immunizations.
Exposure to Triclosan Augments the Allergic Response to Ovalbumin in a Mouse Model of Asthma. C. M. Long1, 2, J. Franko1, M. L. Kashon1, K. L. Anderson1, A. F. Hubba1, E. Lukomska1, B. J. Meade1 and S. Anderson1, 1HELD/ACIB, CDC-NIOSH, Morgantown, WV; 2WV Virginia University, Morgantown, WV; 3Bethany College, Bethany, WV.

During the last decade there has been a remarkable and unexplained increase in the prevalence of asthma. These studies were conducted to investigate the role of dermal exposure to triclosan, an endocrine-disrupting compound, on the hypersensitivity response to ovalbumin (OVA) in a murine model of asthma. Triclosan has had widespread use in the general population as an antibacterial and antifungal agent and is commonly found in consumer products such as soaps, deodorants, toothpastes, shaving creams, mouth washes, and cleaning supplies. For these studies, BALB/c mice were exposed dermally to concentrations of triclosan ranging from 0.75-3% (0.375-1.5 mg/mouse/day) for 28 consecutive days. Concordantly, mice were intraperitoneally injected with OVA (0.9 ug) and aluminum hydroxide (0.5 mg) on days 1 and 10 and challenged with OVA (125 ug) by pharyngeal aspiration on days 19 and 27. Compared to the animals exposed to OVA alone, increased spleen weights, OVA-specific IgE, Interleukin (IL)-13 cytokine levels, and lung eosinophils were demonstrated when mice were co-exposed to OVA and triclosan. Statistically significant increases in OVA-specific CD44+CD25- cell responses were detected. The spleens of OVA-primed mice challenged with recombinant triclosan (DAZ), another soy isoflavone. There were no significant changes in the body weight. Activation of CD4+ T cells (20 mg/kg: 69%) and CD8+ T cells (6 mg/kg: 69%; 20 mg/kg: 43%) was increased in the spleen. In the thymus, GIN exposure increased the percentage of CD44-CD25- cells (20 mg/kg: 53%). Exposure to DAZ increased the percentages of CD44-CD25- cells (6 mg/kg: 45%; 20 mg/kg: 43%). In the spleen, GIN exposure increased the percentage of neutrophils (20 mg/kg: 48%). In correla- tion, the differential effects of GIN and DAZ suggest that appropriate or excessive Ca2+ affected T cell activation differentially. To determine if exposure to GIN (2, 6 or 20 mg/kg) by daily gavage for 28 days modulated immune responses in female B6C3F1 mice in comparison with daidzein (DAZ), another soy isoflavone. There were no significant changes in the body weight and absolute weights of thymus, spleen, lungs, kidneys, or liver in either GIN or DAZ-treated mice. However, exposure to GIN increased relative kidney weight (20 mg/kg: 11%). In contrast, exposure to OVA-activated splenic hyperactivity (AHR) were observed for all triclosan co-exposed groups when compared to the vehicle and OVA controls. In these studies exposure to triclosan alone was not demonstrated to be allergenic, however co-exposure with a known allergen resulted in enhancement of the hypersensitivity response to that allergen, suggesting that triclosan exposure may augment the allergic responses to other environmental allergens.

Modulation of HIV-gp120-Specific T Cell Responses by Δ9-Tetrahydrocannabinol In Vivo and In Vitro. W. Chen1, 2, B. L. Kaplan1, 3, E. T. Pike1 and N. E. Kaminz1, 3, 1Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI; 2Pharmacology and Toxicology, Michigan State University, East Lansing, MI; 3Center for Integrative Toxicology, Michigan State University, East Lansing, MI.

Approximately 25% of HIV patients use marijuana for its putative therapeutic benefit; however, it is unknown how cannabinoids affect the immune status of immunocompromised HIV patients. A surrogate in vitro mouse model was established to investigate the effects of cannabinoids on the early stages of the anti-HIV response. Specifically, T cell responses to HIV-1 were induced using gp120-expressing antigen presenting cells and target cells. CD8+ T cell proliferation and IFN-γ production were observed, which was suppressed or enhanced by Δ9-tetrahydrocannabinol (THC), the predominant psychoactive compound in marijuana, depending on the magnitude of cellular activation. To further determine the molecular mechanisms by which THC differentially modulates T cell responses, Fas/ligand (FasL), TNF-α, and Fas were measured in vitro. The gp120-specific IFN-γ response was detected by ELISPOT, when splenocytes were stimulated with the pooled gp120-derived peptides 81-84, which were identified as the putative immunodominant ones among 211 tested peptides. The THC effect on the gp120-specific response in vivo will be characterized. Overall, our data will provide in-depth understanding of cannabinoid effects on HIV antigen-specific T cell responses in vitro and in vivo. (Supported by NIH DA07908)

Neural Autoimmunity and Low-Level Mercury Exposure. C. Wright, D. L. Shirley and J. F Nyland, Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Columbia, SC.

Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) involving demyelination; the mechanism of disease pathology involves stimulated auto-reactive T cells that are elicited against myelin proteins and primarily strikes more women than men. Mercury (Hg), a heavy metal found in many consumer products and as an environmental contaminant, affects the immune system, although there is little data linking low-level Hg exposure to the development of autoimmune disease. In contrast, high-level Hg exposure has been shown to be toxic to the human CNS, specifically on neurons and glial cells. Since glial cells are CNS-resi- dent immune lineage cells, we hypothesized that low-level Hg pre-exposure will in- crease neural autoimmunity in the animal model of MS, experimental autoimmune encephalomyelitis (EAE), induced with myelin oligodendrocyte glycoprotein (MOG). Adult C57Bl/6 male mice were first pre-treated with HgCl2, or PBS every other day by subcutaneous injection for 2 weeks pre-disease induction, then di- vided into 3 groups: (1) Hg only; (2) disease (MOG35-55 peptide) only, and (3) Hg+ disease. Clinical scores were recorded daily until day 25 when mice were euthan- aized. Brain, spinal cord, and spleen tissues were collected and analyzed for 9 cy- tokines (pro- & anti-inflammatory) using a multiplex assay. Hg alone raised levels of both pro-inflammatory and anti-inflammatory cytokines in the spinal cord; however, in diseased animals, Hg did not have the same effects and only increased IFN-γ in the brain. Low-level Hg alone is insufficient to prompt disease in males but exposure does upregulate cytokine levels in the CNS (IFN-γ) when disease is present. These data indicate that low-dose Hg interacts with components of the CNS milieu, specifically cytokine-producing cells of the immune system. Future studies will focus on exploring sex-specific effects of disease severity with Hg pre-treatment in female mice of the same animal model.

Cannabinoid Enhancement of Humoral Immunity in CB/CB Null Mice Is Correlated with Enhanced Splenic Noradrenaline (NE) Concentration. T. J. Simkins1, 2, 3, K. J. Lookingland1, 2 and B. L. Kaplan1, 4, 3, 1Center for Integrative Toxicology, Michigan State University, East Lansing, MI; 2Pharmacology and Toxicology, Michigan State University, East Lansing, MI; 3Neuromere Program, Michigan State University, East Lansing, MI.

Cannabinoid compounds, such as Δ9-tetrahydrocannabinol (THC), are immune suppressive as evidenced, in part, by their ability to inhibit T cell-dependent B cell responses. In response to sheep erythrocytes (SRBC), THC increases immunoglobulin M (IgM) antibody production in a cannabinoid receptor (CB) 1 and/or CB2-dependent manner. Moreover, previous studies demonstrated that the magnitude of IgM production in response to sheep erythrocytes was higher in CB1/CB2 null mice as compared to wild type mice, suggesting endogenous cannabinoid control of humoral immunity. Thus, the focus of the present studies was to determine the mech- anisms by which cannabinoids regulate humoral immunity. A direct comparison of female and male wild type and CB1/CB2 null mice demonstrated that CB1/CB2 null mice produce more circulating IgM and IgG, even in the absence of immune...
sensitization. In response to various antigens, including influenza and lipopolysaccharide (LPS), CD1/CB2 null mice also produced more IgM. It has been demonstrated that NE engagement of β2 adrenergic receptor (β2AR) on B cells is part of the normal physiological mechanism that contributes to antibody production, and in fact, splenic NE concentration and β2AR expression on B cells were higher in CB1/CB2 null mice as compared to wild type mice. These results provide a correlation between splenic NE concentration and antibody production, suggesting the possibility that cannabinoid-mediated suppression of NE release from splenic sympathetic neurons contributes to cannabinoid-induced inhibition of antibody responses. (Supported in part by NIH DA007908).

421 Differential Effects of Delta(9)-Tetrahydrocannabinol on NFκB Activation in T Cell-Dependent Humoral Immune Response in Humans.

T. Ngaotepprutaram1, 2, L. B. Kaplan1, 2 and N. E. Kaminski1, 2. Pharmacology and Toxicology, Michigan State University, East Lansing, MI; 1Center of Integrative Toxicology, Michigan State University, East Lansing, MI.

Delta(9)-Tetrahydrocannabinol (THC), a major psychoactive constituent found in marijuana, modulates immune function. Previously, our laboratory demonstrated that THC inhibits humoral immune responses to T cell-dependent antigens in mice by suppressing sheep erythrocyte or CD40 ligand (CD40L)-induced immunoglobulin M (IgM) secretion and antibody forming cell (AFC) response. CD40 is constitutively expressed on B cells, whereas CD40L is induced in activated T cells. Thus, the objective of this study was to investigate the role of the CD40-CD40L interaction in THC-mediated suppression of the T cell-dependent humoral immune response in humans. These studies show that THC suppressed the anti-CD3/CD28-induced DNA binding activity of NFκB and NFκB, two transcription factors critical in the upregulation of CD40L in activated human CD4 T cells. An assessment of the effect of THC on proximal T cell receptor signaling induced by anti-CD3/CD28 revealed modest impairment of sustained elevation in intracellular calcium, but no significant effect on the phosphorylation of Zap70, PLCγ, Akt, and Gsk3β. Additional findings, using an in vitro T cell-dependent antibody response model, which employs cell surface-expressed CD40L and recombinant cytokines [interleukin (IL)-2, IL-6, and IL-10], to induce B cell responses demonstrated that THC suppressed STAT3, but not NFκB activation in B cells. Moreover, THC impaired B cell activation and proliferation, ultimately resulting in suppression of IgM AFC response. Collectively, these findings suggest that THC exhibits stimulation- and/or cell type-specific selectivity in NFκB inhibition, and identifies many aspects of the multi-faceted mechanism by which THC suppresses T cell-dependent humoral immunity in humans. Supported in part by DA07908 and Royal Thai Government Scholarships.

422 Phenotypic Comparison of Leukocyte Populations between Wild Type and Aryl Hydrocarbon Receptor (AhR) Null Rat in the Developing and Mature Spleen and Thymus.

R. B. Crawford1, N. Joshi1, B. S. Thomas2, and N. E. Kaminski. 1Department of Pharmacology & Toxicology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI; 2Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC.

The immunotoxic effects produced by dioxin and dioxin-like polyaromatic hydrocarbons are mediated through the AhR; however, little is known concerning the role of the AhR in the development or functionality of the immune system. The objective of the present study was to investigate whether targeted deletion of the AhR in the Sprague-Dawley rat altered the leukocyte composition within the developing (3 week) and/or mature (8 week) thymus or spleen of male and female rats. No significant differences were observed between AhR null and wild type rats in the spleen or thymus body to organ weight ratios or cellularity of the thymus or spleen at 3 or 8 weeks of age. Similarly, leukocyte populations as characterized by comprehensive phenotyping using multiple panels of antibodies directed against specific cell surface proteins (i.e., B cells, T cell subtypes, monocyte-derived lineages, neutrophils and NK cells) using flow cytometry showed no significant differences in the cellular composition of the thymus between the wild type and AhR null rat. Similar analysis of the spleen showed an increase in the CD8+NK+ (NKT) population at week 3 in the AhR null rat. A trend toward an increase in NKT cells was also present at week 8 but this difference was not statistically significant. These studies show that targeted deletion of the AhR in the Sprague-Dawley rat has minimal effects on the leukocyte composition of the developing and mature rat thymus and spleen. (Supported in part by the Dow Chemical Company).

423 Differential Expression Kinetics of miRNA Involved in Allergic Chemical Sensitization following Dermal Exposure in a Murine Model.

S. Anderson1, K. Beechold2, E. Lukomska1, J. Richardson1, C. M. Long1, K. Anderson1, J. Franko1, B. J. Meade1 and D. H. Beechold1. 1NIOSH, Morgantown, WV; 2University of Pittsburgh, Pittsburgh, PA; 3Bethany College, Bethany, WV.

Allergic disease is an important occupational health concern with work related asthma and allergic contact dermatitis among the most frequently diagnosed occupational illnesses. The development of rapid and sensitive methods for hazard identification of the responsible agents is critical. MicroRNAs (miRNAs) are small non-coding RNAs 20-22 nucleotides long whose primary function is to regulate gene expression by functioning as endogenous inhibitors of protein translation. Allergic disease is characterized by an imbalance between Th1 and Th2 cytokines; however the role of posttranscriptional mechanisms like the ones regulated by miRNAs is just starting to be explored. These studies describe the kinetics of miRNA expression during the sensitization phase of an allergic response following dermal exposure to prototypical chemical sensitizers in a mouse model. Using microarray and other data, six miRNAs were identified for further analysis with RT-PCR including mi-21, 22, 210, 155, 133a, and 27b. These data demonstrate that miRNAs may have a central role early in the allergic response focused on establishing the baseline of Th1 verses Th2 responses to chemical sensitizers. Identification of unique miRNA expression profiles may help to elucidate the mechanisms by which exposure to sensitizing chemicals induce immune cell activation and can potentially help to identify biomarkers for new treatments and preventions.

424 Potential for Immune Sensitization following Dermal Exposure to Indium Tin Oxide.

B. J. Meade1, E. Lukomska1, K. Brock1, C. M. Long1, K. Anderson1 and S. Anderson1. 1NIOSH, Morgantown, WV; 2West Virginia University, Morgantown, WV.

Pulmonary disease including pulmonary fibrosis, emphysema and pulmonary alveolar proteinosis has been observed in workers in the indium industry. The mechanisms underlying this disease and its natural history have not been fully elucidated. Among other findings, following inhalation exposure to Indium-tin Oxide (ITO) animal studies have revealed hyperplasia of mediastinal lymph nodes and granulomas of mediastinal nodes and bronchus-associated lymphoid tissue. These studies were undertaken to investigate the potential for ITO to induce immune sensitization using the mouse Local Lymph Node Assay. Furthermore studies were conducted following exposure to both intact and abraded skin to begin to evaluate the potential for dermal penetration of the nanoparticles. BALB/c mice (5 animals/per group for both intact and abraded skin groups) were exposed to either vehicle (dimethyl sulfoxide), increasing concentrations 2.5%-10% ITO (90% indium oxide/tin oxide, particle size <50 nm) or positive control (30% alpha-hestycin-namaldehyde). A dose response was observed in both groups reaching statistical significance and a SI of 4 in the 5% intact dose group (EC3 value of 2.6). Students t-test showed no statistical differences when responses were compared between intact and breash skin exposures at the same dose levels. These studies demonstrate the potential for ITO to induce sensitization following dermal exposure and suggest that the particles may have similar bioavailability through intact and abraded skin.
ventilation. Two independent methods were used to characterize the asthma-like response at the last challenge, the analysis of pulmonary inflammation by bronchoalveolar lavage (BAL) and physiologic endpoints showing changes in respiration delayed in onset. The most distinct outcomes characterizing the asthmatic response in this bioassay were increased neutrophils in BAL and the delayed respiratory response. These data demonstrated further that the vigor of asthma-like response after challenge was nearly dependent on the inhalation elicitation dose (C x t) of pre-challenged rats to attain the asthmatic state. This relationship of the elicitation response served as basis for the dose-response analysis and estimation of the benchmark NOAEL. After adjustments accounting for differences exposure durations, in the rat-to-human pulmonary doses, and the intra-human variability, the resultant threshold Cxt of asthmatic rats and humans converged into the same threshold limit value.

O. Janouskova1, M. Orecza2, T. Teggen3, S. Laerdal3, K. Holada1 and J. Simák1. 1First Faculty of Medicine, Charles University, Prague, Czech Republic; 2Division of Hematology, CBER, US FDA, Rockville, MD.

Carbon nanotubes (CNTs) are attractive for various nanomedicine applications including their intravascular use. Therefore, the vascular biocompatibility of CNTs is a critical safety issue. Here we investigate the effect of carboxylated multi-walled CNTs (M60COOH) and their pristine counterparts (M60) on cultured human umbilical vein endothelial cells (HUVECs) by evaluating the changes in the expression of selected genes with known involvement in autophagy, apoptosis or necrosis. We have utilized Death PathwayFinder RT® Profiler PCR Array (Qagen), to monitor expression of 84 selected genes. HUVECs were treated for 24 h with 100μg/ml of M60 or M60COOH. Controls included HUVECs with serum starvation, or treatment with 1μM camptothecin for 24h, or incubation with 1mM H2O2 for 2h. The cDNA was constructed from isolated RNA and the level of gene expression was analyzed by real time PCR using the PCR Array Data Analysis software (Qagen).

Out of 84 monitored genes just 40 genes changed the expression significantly (P<0.05) often only after one or two treatments. The Bonferroni correction reduced the number of significantly changed genes to 14. Expression profiles after treatment with M60 and M60COOH differed (P<0.05). Both nanomaterials upregulated different proapoptotic genes. In contrast to M60, only M60COOH upregulated autophagy related genes for NFKB1, SQSTM1, and INS. Comparably, these gene array results complement our previous finding of a significant accumulation of the autophagosome protein marker LC3B in M60COOH but not in M60 treated HUVECs.

Our study suggests that the screening of mRNA levels of cell death pathway genes may be a valuable complementary tool in the testing of cellular toxicity of nanomaterials. However, further gene selection, standardization and validation of assays are required.
Carbon nanotubes (CNTs) are attractive for various nanomedicine applications including their intravascular use. Therefore, the vascular biocompatibility of CNTs is a critical safety issue.

We have previously shown that, in contrast to their pristine counterparts M60, carboxylated multiwalled carbon nanotubes M60COOH at 100 μg/ml induced an increase in the LC3B autophagosome protein marker in cultured human umbilical vein endothelial cells (HUVECs). Here we investigate a mechanism of this process. The autophagosome accumulation in M60COOH treated HUVECs was visualized by Laser Scanning Confocal Microscopy (LSCM) using immunodetection of the LC3B as well as in HUVECs transfected with Premo™ Autophagy Sensor LC3B-Green Fluorescent Protein using the baculovirus BacMam 2.0 technology. Moreover, western blotting (WB) analysis confirmed accumulation of LC3B in M60COOH treated HUVECs. The classical pathway of induction of autophagy involves inhibition of the mTOR kinase. The WB analysis of the mTOR substrate p-S6K showed no changes in levels of phosphorylation of this protein after M60COOH treatment. In addition, the LSCM kinetic study of HUVECs treated with Alexa555-conjugated M60COOH indicated the autophagy flux blockade. Our results showed that the accumulation of autophagosomes in HUVECs induced by M60COOH likely resulted from the blockade of autophagic flux, rather than induction of autophagy. This presentation reflects the views of the author and should not be construed to represent FDA’s views or policies. (CR grant LH12014)

433 Loss of Epithelial Monolayer Integrity following Exposure of Primary Human Airway Cells to Multiwalled Carbon Nanotubes.

Pulmonary health effects due to inhaled multi-walled carbon nanotubes (MWCNT) have been a growing concern, as MWCNT become more widely used due to their unique physical and chemical properties. Studies have implicated MWCNTs in the pathogenesis of pulmonary fibrosis and inflammation. Airway epithelia are crucial for the maintenance of airway homeostasis and epithelial injury leads to airway remodeling and inflammation. We therefore tested the effect of MWCNT on airway epithelial integrity. In vivo mouse exposure to MWCNTs decreased thickness of airway columnar and ciliated epithelium within 7 days, and changes consistent with airway epithelial metaplasia. We then explored the mechanism for these changes in vitro. Bronchial epithelial cells (BECs) were obtained from healthy human volunteers via bronchoscopy, grown on E10+ electrode arrays until confluent, and electrical resistance across monolayers was measured continuously for 7 days after treatment with either dispersion medium, nanographene shape control (12μg/ml), or MWCNT (3 or 12 μg/ml). MWCNT treatment induced a significant reduction in epithelial resistance over time, suggesting breakdown of monolayer integrity, as well as alterations in cell morphology, but cytotoxicity was observed only in the higher MWCNT dose. Epithelial-mesenchymal transition was ruled out by western blotting, RT-PCR and staining for relevant markers. Microarray analysis revealed that MWCNT induced significant downregulation of corinulin, cadherins, and keratins, as well as upregulation of genes involved in retinoid signaling. These results suggest that MWCNT disrupt airway epithelial integrity through cytotoxicity and metaplasia linked to retinoid-related dedifferentiation.

434 Human Pleural Mesothelial Mt-5A Cells Are A Limited In Vitro Model for Detection of Potential Asbestos-Like Genotoxic Effects of Multilayer Carbon Nanotubes.

Multiwall carbon nanotubes (MWCNT) are nanomaterials with important technological impact. But, depending on diameter and length some MWCNT may induce fiber-like toxicity/genotoxicity, similar to asbestos. Thus, a project funded by
the German Federal Ministry of Education and Research (contract No. 03X0109A) focuses on potential adverse biological effects and toxicological determining characteristics of diverse MWCNT, both in vitro and in vivo, using long fiber amosite asbestos (LFA) as positive control. Since mesothelial cells are targets for adverse effects of asbestos, notably mesothelioma development, human SV40-transformed, non-malignant pleural mesothelial MeT-5A cells were initially chosen as in vitro model. In this study part, their usefulness for investigation of potential asbestos-like adverse effects of MWCNT in vitro was characterized. Proliferation parameters and a MWCNT-optimized lactate dehydrogenase assay indicated concentration-dependent cytotoxicity of LFA (2, 10 and 20 μg/cm²) in MeT-5A cells. LFA also induced DNA-strand breaks and oxidative DNA-damage in the hOGG1-modified comet assay. For determination of MWCNT-related aneugenic effects/spindle fiber damage, basal frequency of micronuclei, chromosome aberrations, and altered meta-, ana- and telophase morphology was firstly determined. MeT-5A cells exhibited higher variable chromosome numbers (6.5% cells with normal 46 chromosomes), a markedly higher spontaneous micronuclear frequency, compared to rodent bone marrow erythrocytes (15-fold) and V79 cells 5-fold (GILCE/C, CD11c, CSF3) being significantly downregulated. Since exposure to IAV results in a robust immune response we investigated whether SWNTs could enhance IAV infectability. LEC were exposed to SWNTs for 24 hours followed by co-incubation with H1N1 IAV. After immunofluorescence staining with an H1N1-specific antibody, we observed that LEC pre-exposed to SWNTs had significantly higher levels of IAV infection (~10%). These results were consistent with the quantified number of virus particles released into the cell culture media as determined by a titer assay showing an increase of 5.6 times over cells exposed to IAV only. To investigate the impact of SWNT on immune response, we measured secretion of a panel of cytokines (TNFα, IFNγ, G-CSF, GM-CSF, IL-1α, IL-12, IL-16, IL-6) in media exposure supernatants. Overall the cytokine profiles showed that cytokines induced by IAV were repressed or enhanced in the presence of SWNT. Overall results from these studies indicate that SWNTs have the potential to increase the susceptibility of lung cells to IAV infection and modulate IAV-associated classical immune response.

Multidisciplinary Approach to Determination of C60 Fullerene Presence in Lipid Membranes.

K. A. Russ1, P. T. Williams1, P. Elvati2, A. Dew5, T. A. Adzemovic1, M. Ray1, A. Viol1, P. Smith1 and M. A. Philipp1.1. Environmental Health Sciences, University of Michigan, Ann Arbor, MI; 2. Mechanical Engineering, University of Michigan, Ann Arbor, MI; 3. Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom; 4. Institute for Life Sciences, University of Southampton, Southampton, United Kingdom.

The incorporation of C60 fullerenes into cell membranes was confirmed by computational modeling. 31P and 2H solid-state NMR, and transmission electron microscopy. Computational modeling shows that the free energy required for C60 to exist in or near the lipid bilayer is lowest when the C60 is positioned between the lipid tails of the membrane. Static 31P and 2H solid-state NMR were used to study the interaction of the C60 with model lipid bilayers composed of deuterated 1-palmitoyl-2-oleoylphosphatidylcholine. Temperature-dependent 31P NMR spectra show that C60 are able to enter the membrane. Reduced magnetic deformation in the 31P spectra suggests that C60 increases the rigidity of the membrane. Increased motional averaging in the phosphate groups and reduction in quadrupolar splitting (resulting in a higher density of motions occurring on the microsecond timescale in the glycerol backbone) were also seen with increasing concentrations of C60s (resulting in a higher density of motions occurring on the microsecond timescale in motional averaging in the phosphate groups and reduction in quadrupolar splitting).

Single-Walled Carbon Nanotubes Increase Influenza Virus Infection in Lung Cells.

P. Sanpui1, J. Loeb2, J. Ledneov3, N. B. Saleh4 and T. Sabo-Attwood5.

1. Department of Environmental & Global Health, University of Florida, Gainesville, FL; 2. Department of Environmental Engineering, University of South Carolina, Columbia, SC.

Possibility of engineered nanoparticles to influence the behavior of infectious agents, such as influenza A viruses (IAV) can have critical consequences. We are mainly interested in single-walled carbon nanotubes (SWNTs) because of their ever-increasing use in consumer products and structural resemblance with asbestos that may be relevant to their long-term health effects. Here, we aim to identify mechanisms controlling the immune response of lung epithelial cells (LEC) exposed to SWNTs and determine their influence on IAV infection. We concentrate mainly interested in single-walled carbon nanotubes (SWNTs) because of their ever-increasing use in consumer products and structural resemblance with asbestos that may be relevant to their long-term health effects. Here, we aim to identify mechanisms controlling the immune response of lung epithelial cells (LEC) exposed to SWNTs and determine their influence on IAV infection. We concentrate...
significant greater in differentiated cells, showing that activation of THP-1 cells increases their response to MWCNT stimulation. Cells co-exposed to IL-4 or IL-13 showed a significant decrease in MWCNT-induced IL-1β levels. Western blotting showed that IL-13, but not MWCNT, activated STAT-6 in THP-1 cells. Conclusions: IL-4 and IL-13 suppress MWCNT-induced expression of IL-1β in macrophages via STAT-6 phosphorylation. Our data suggest that Th2 cytokines up-regulate in asthmatic inhibit the innate immune response of macrophages to carbon nanotubes. (Funded by NIEHS RC2 ES018772 and R01 ES020897)

449 Zinc Oxide Surface Modification of Multiwalled Carbon Nanotubes Enhances Chemokine and Growth Factor Production in Human Monocytes and Lung Fibroblasts In Vitro.

A. J. Taylor1, C. K. Devine2, G. N. Parsons1 and L. C. Bonnet1, 1Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC; 2Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC.

Carbon nanotubes, a product of emerging nanotechnologies, are gaining increasing attention due to possible health risks from occupational and environmental exposures. Previous studies with rodents have shown that MWCNTs stimulate the production of pro-fibrogenic growth factors such as transforming growth factor-beta (TGF-β1) and platelet-derived growth factor (PDGF) in vivo. Thin-film coating of MWCNT with metal oxides by a process called atomic layer deposition (ALD) modifies and enhances the functionality of MWCNTs in electronics and engineering. We hypothesize that metal oxide surface coating of MWCNT with zinc oxide (ZnO) alters the production of pro-inflammatory cytokines & chemokines as well as growth factors (such as PDGF and TGF-β1) by human monocytes (THP-1) and human lung fibroblasts (HLF-16Lu). To test our hypothesis MWCNTs were coated with ZnO via ALD. THP-1 and HLF-16Lu were exposed to coated or uncoated MWCNT for 24 hr and then we measured mRNAs levels (via RT-PCR) of the growth factors PDGF and TGF-β1, the pro-inflammatory cytokine IL-1β, and the mononuclear cell chemokine CXCL10. THP-1 cells exposed to ZnO-coated MWCNTs showed a 6-fold increase in IL-1β mRNA expression, and ~2-fold increase in TGF-β1 mRNA and PDGF mRNA levels. In the HLF-16Lu fibroblasts, ZnO-coated MWCNTs increased the mRNA expression of TGF-β1 3-fold and CXCL10 6.10-fold but proved to be cytotoxic at higher doses. Uncoated MWCNTs had no effect on any of the target mediators in either cell line. Our findings indicate that surface modification of MWCNTs with ZnO enhances the production of pro-fibrogenic proteins by macrophages and fibroblasts in vitro. These findings suggest that MWCNT modified by ALD coating with ZnO could increase the toxicity and pathogenicity of MWCNT in the lung. (Funded by: NIEHS Grants R01ES020897 & RC2-ES018772)

440 Metabolic Analysis of Liver Cells Exposed to Carbon Nanotubes and Graphene Oxide.

W. M. Henderson1, D. Bouchard1, X. Chang1, I. Chowdhury1, B. Foster2, S. Aronson3 and Q. Teng1, 1National Exposure Research Laboratory, Office of Research and Development, US EPA, Athens, GA; 2Student Service Authority Contractor to US EPA, Athens, GA; 3Grantee to US EPA via National Research Council Cooperative Agreement, Athens, GA.

Carbon nanotubes (CNTs) and other graphenic nanomaterials are being used extensively in industrial, consumer, and mechanical applications based in part on their unique structural, optical and electronic properties. Due to the widespread use of these nanoparticles (NPs), human and ecological exposure is probable and inevitable. To determine the effects CNTs and graphene oxide (GO) have on biochemical processes, metabolomics-based profiling of human (C3A) and zebrafish (ZFL) liver cells was utilized. Cell cultures were exposed to 0, 10, or 100 ng/mL of covalently or non-covalently modified nanomaterial for 24 and 48 hrs while particle size distribution, charge, and aggregation kinetics were monitored concurrently with exposure studies. Metabolites in metabolic networks extracted and derivatized prior to GC/MS analysis or lyophilized and buffered for 1H NMR analysis. Acquired spectra and chromatograms were subjected to multivariate analysis to determine the consequence of NP exposure on the metabolite profile of C3A and ZFL cells. The resulting scores plots illustrated temporal and dose dependent responses to all classes of NPs tested. Loadings plots coupled with univariate analysis were then used to identify the metabolites of interest. Preliminary data suggest that CNT and GO exposure causes perturbations in processes involved in cellular oxidation as well as fluxes in lipid metabolism and fatty acid synthesis. Dose-response trajectories are apparent for each nanomaterial tested and spectral components related to both background and NP metabolism were determined. Correlations of the significant changes in metabolites will aid in identifying potential biomarkers associated with carbonaceous nanoparticle exposure in both humans and ecologically relevant species.

441 Physical Characterization of Multiwalled Carbon Nanotubes for Inhalation Studies.

B. T. Chen, D. Schweger-Berry, W. McKinney, S. Stone, J. L. Cumpton, S. Friend, D. W. Porter, V. Castranova and D. Frazer, PRPB, NIOSH, Morgantown, WV.

Animal inhalation studies have reported that adverse pulmonary, cardiovascular, and immune reactions may result from exposure to multi-walled carbon nanotubes (MWCNTs). At the present time, however, there is little guidance for adequate sampling and characterization of MWCNT aerosols for evaluating exposures and obtaining an applicable dose metric for risk assessment. This is mainly because MWCNTs tend to agglomerate and form complex structures making them difficult to characterize. To address this problem, we conducted detailed sampling and characterization studies of MWCNTs that had similar particle morphologies to those found in the workplace. Representative samples were collected using filters, a cascade impactor, and direct reading instruments, and they were used for microscopic observation, gravimetric analysis, and real-time monitoring. Particle number distributions on a filter (0.008–0.10 particles/mm2), and mass distributions using an impactor (0.1–0.3 mg on peak stages) were determined. Microscopic analyses indicated that MWCNTs can be classified into three shape categories: irregular, isometric, and fibrous particle structures. Each particle structure contained a mean of 18 nanotubes, and 1 μg of MWCNTs contained 2.7 x 10^9 particle structures composed of 4.9 x 10^12 individual nanotubes. Impactor measurements showed that the mass median aerodynamic diameter of the aerosol was 1.5 μm with a geometric standard deviation of 1.67. The shape factor of individual fibers was 1.94–2.71, and the isometric particles had an effective density of 0.71–0.88 g/cm³. Results also indicated that real-time particle number counts were realistic, but without an index of agglomeration, they were insufficient for adequate risk assessment. Information from this study can be used to estimate initial lung burden and to design an improved lung deposition model that considers three individual MWCNT particle shapes. The described methods can be used as guidance for sampling and characterizing other engineered nanoparticles.

442 Cellular Responses Induced by Single-Wall Carbon Nanotubes with Varying Physical Properties in Alveolar Epithelial Cells.

K. Fujita1,2, M. Fukuda3, S. Endoh3, H. Kato1,2, N. Shinohara1,2, R. Nagano3, M. Horie3, S. Kinugasa4,2, H. Hashimoto5 and A. Kishimoto1,2, 1AIST, Tsukuba, Japan; 2TASC, Tsukuba, Japan; 3University Occupational Environmental Health, Kitakyushu, Japan.

Concern over the influence of carbon nanotubes (CNTs) on human health has risen due to advances in the development of nanotechnology. Some studies have shown that unpurified CNTs induced high levels of cellular responses than those of purified CNTs. They suggest that the residual metals involved in CNTs attribute to induction of oxidative stress. Here, we examine our hypothesis that the physico-chemical properties of single-wall carbon nanotubes (SWCNTs) may have important implications for biological responses. We have developed novel dispersion procedures of CNTs with their different physical properties in culture medium. In vitro cytotoxicity assays were performed on human alveolar epithelial cell lines (A549) using impunity-free SWCNTs with varying physical properties and commercial SWCNTs with residual metals as a reference. Cell viability, apoptosis, intracellular reactive oxygen species (ROS) generation, cell cycle distribution, and cellular uptake of SWCNTs were investigated. Impurity-free SWCNTs with different physical properties (CNT-1, CNT-2) and SWCNTs containing trace amounts of metals (CNT-3) did not cause significant inhibition of cell proliferation, induction of apoptosis and arresting cell cycle progression. On the other hand, all samples significantly increased level of the intracellular ROS production after 24h incubation. These results show that residual metals involved in SWCNTs may not be a definitive parameter for induction of oxidative stress. The relatively short line shape of SWCNTs small bundles were observed in the vacuoles of cells exposed to CNT-1. The relatively long line shape of SWCNTs large bundles were observed in the cytoplasm and vacuoles of cells exposed to CNT-2. A large number of aggregated SWCNTs with punctate structures were observed in the cytoplasm and vacuoles of cells exposed to CNT-3. We suggest that the physical properties of SWCNTs are closely related to the cellular uptake and induction of oxidative stress.

R. K. Draper1, 2, R. Wang1, 2, H. Tyler1, S. Beck1, S. Vakil1, S. Li1 and P. Pantano2.
1 Molecular & Cell Biology, University of Texas at Dallas, Richardson, TX; 2 Chemistry, University of Texas at Dallas, Richardson, TX.

Poloxamers (known by the trade name Pluronic®) are triblock copolymer surfactants that contain two polyethylene glycol blocks and one propylene glycol block of various sizes. Poloxamers are widely used as nanoparticle dispersants for nanotoxicity studies wherein nanoparticles are sonicated with a dispersant to prepare suspensions. It is known that poloxamers can be degraded during sonication and that reactive oxygen species contribute to the degradation process. However, the possibility that poloxamer degradation products are toxic to mammalian cells has not been well studied. We report here that aqueous solutions of poloxamer 188 (Pluronic® F-68) and poloxamer 407 (Pluronic® F-127) sonicated in the presence or absence of nanoparticles of multi-walled carbon nanotubes (MWCNT) can be toxic to mammalian cells. Moreover, toxicity correlated with the sonolytic degradation of the polymers. These findings suggest that caution should be used in interpreting the results of nanotoxicity studies where the potential sonolytic degradation of dispersants was not controlled.

Effects of Carbon Black Nanoparticles on Human Pulmonary Cell Lines and Precision Cut Lung Slices.

T. Hansen1, J. Kopf1, O. Danov1, K. Braun1, K. Sewald1, P. Steinberg1 and H. Fehrenbach1.
1 Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany; 2 Research Center Borstel, Borstel, Germany;
3 Karolinska Institute of Technology (KIT), Karlsruhe, Germany; 4 University of Veterinary Medicine Hannover, Hannover, Germany.

Carbon black nanoparticles (CBNPs) are among the most abundantly used nanomaterials and have been reported to cause adverse health effects after inhalation exposure. The aim of this study was to compare the effects of Printex® 90 and acetylene soot particles in human pulmonary cell lines (16HBE14o-, Calu-3, A549) and precision cut lung slices (PCLS) of mice, rats and humans using a wide concentration range. Particle size distribution in the cell culture medium was determined by dynamic light scattering. Viability assays were live/DEAD® staining and WST-1 assay for PCLS and WST-8 and neutral red assay for cell lines. CBNP-induced formation of reactive oxygen species (ROS) was assessed in A549 and 16HBE14o-cells by flow cytometry using the DCFH-DA assay. Furthermore, the effect of CBNP exposure on the transepithelial electrical resistance (TEER) was investigated in Calu-3 cells after 24, 48 and 120h treatment with 10 and 50μg/ml CBNPs. With PCLS, the inflammatory response was assessed by measuring pro-inflammatory cytokines (i.e. IL-1β, TNF-α, IL-8). Both CBNPs tested were not toxic in physiologically relevant concentrations. Significant cytotoxicity was observed in the WST-8 assay for both CBNPs at 50 μg/ml after 48h, whereas no effects were found in the neutral red assay. Increased ROS formation was observed with both CBNPs after 24 and 48h. Interestingly, acetylene soot particles decreased TEER reduction at both dose levels and all time points tested whereas Printex® 90 reduced the TEER only after 120h at the high dose. Neither Printex® 90 nor acetylene soot particles induced the secretion of proinflammatory cytokines in mouse and rat PCLS. In conclusion, the combination of in vitro and ex vivo models provides a valuable tool to assess the acute irritation and inflammatory effects of CBNPs on lung tissue.

Rho-Kinases Are Involved in Caspase-1-Mediated IL-1β Secretion following In Vitro Exposure to Multivalved Carbon Nanotubes and Asbestos in Human Monocyte.

S. Kanno1, S. Hiranoi2, S. Chiba1, H. Takehashi1, T. Nagai1, M. Takada1 and T. Murak1.
1 Department of Legal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan; 2 Research Center for Environmental Risk, National Institute for Environmental Studies, Tsukuba, Japan.

It has been reported that fibrous particles such as asbestos and carbon nanotubes (CNT) trigger interleukin (IL)-1β release through NLRP3 inflammasome in phagocytic cells. GTPase effector Rho kinases (ROCK1 and 2) are known to be associated with the organization of the actin cytoskeleton during phagocytosis. In this study we examined whether ROCKs are involved in asbestos- and multi-walled CNT (MWCNT)-induced IL-1β release in human monocyctic THP-1 cells. THP-1 were differentiated to macrophages by PMA and were exposed to crocidolite, MWCNT or lipopolysaccharide (LPS) in the presence or absence of Y27632 (ROCK inhibitor) or Z-VYAD (caspase-1 inhibitor). Concentrations of IL-1β in the culture medium were measured using ELISA. Cell-associated MWCNT or asbestos were assessed by turbidimetry. Protein levels of ROCK1 and ROCK2 were analyzed by western blotting. Treatment with PMA increased expression of ROCK1, whereas that of ROCK2 was not changed in THP-1 cells. Exposure of the cells to asbestos or MWCNT provoked IL-1β secretion. IL-1β secretion was suppressed by either Y27632 or Z-VYAD, whereas LPS-induced IL-1β secretion was inhibited only by Z-VYAD, but not by Y27632. These results indicate that IL-1β secretion was increased by caspase-1 activation and ROCKs are involved in both asbestos- and MWCNT-induced IL-1β secretion. On the contrary, treatment with Y27632 did not change the amount of those fibrous particles associated with the cells. To further examine the effect of ROCK1 and ROCK2 on asbestos and CNT-induced IL-1β secretion, differentiated THP-1 were transfected with siRNA to knockdown ROCK1, siRNA designed for both ROCK1 and ROCK2 decreased asbestos- or MWCNT-induced IL-1β secretion and did not change LPS-induced IL-1β secretion, indicating that ROCKs are implicated in fiber-induced inflammation responses.

Carbon nanotubes (CNTs) are novel material with unique electronic and mechanical properties. Here, we report that multi-walled carbon nanotubes (MWCNT) have potent, dose-dependent toxicity on cultured human cells. Molecular characterization revealed that MWCNT induced substantial ROS production and mitochondrial membrane depolarization at sub-toxic doses. MWCNT stimulated the secretion of a panel of inflammatory cytokines and chemokines (TNFα, IL-1β, IL-6, IL-10 and MCP1) from macrophages (Raw264.7) by activating the canonical NF-kB signaling pathway. Activation of NF-kB signaling involves rapid degradation of IκBα, nuclear accumulation of NF-kBp65, binding of NF-kB to specific DNA-binding sequences, and transactivation of target gene promoters. Finally, MWCNTs induced the production of fibrogenic growth factors TGFβ1 and PDGF that function as paracrine signals to promote the transformation of lung fibroblasts into myofibroblasts, a key molecular step in the development of lung fibrosis. These results demonstrated that MWCNT elicit multiple and interwining molecular signaling events involving oxidative damage, inflammatory cytokine production, and myofibroblast transformation, which potentially underlie the toxicity and fibrosis in human lungs by MWCNTs.

Functionalization-Associated Effects of Carboxylated Fullerenes on Cellular Aging.

I. Gao and I. Rashi.
Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM.

The systematic evaluation of critical cellular responses such as apoptosis, cellular proliferation, reproductive clonogenicity and cell cycle responses in lung cells by distinctly functionalized fullerenes demonstrated that fulleren-mediated responses are dependent on their ability to perturb cell division that ultimately impact cellular fate. Moreover, we postulate that the observed cellular responses were charge and functionalization specific, in that the positively charged fullerenes were cytotoxic as opposed to the negatively charged fullerenes. Interestingly, the negatively charged fullerenes inhibited cellular apoptosis and necrosis. On further investigation we discovered that, depending on the functionalization, the negatively charged fullerenes could induce senescence in bronchial epithelial cells, a cellular response that we have previously reported as a potential toxicological endpoint of fullerenes in dermal cells. We demonstrate that the observed non-cytotoxic or cyto-protective effect of fullerenes may in fact be due to a more novel function of fullerenes to induce premature senescence in cells. In the present study we utilized immortalized but not tumorigenic human bronchial epithelial cells (Bau-2b) and normal human-derived bronchial epithelial cells (NHBE) to perform a systematic evaluation of the effect of a suite of positively and negatively charged engineered fullerenes on key biological properties.
responses. We found that the biological response(s) elicited by fullerences on interaction with lung cells may depend upon their ability to perturb cell cycle checkpoints potentially inducing senescence. Further elucidation of the underlying molecular mechanisms involved in this senescence response indicated the involvement of GADD45α, p16, p21 and p53α, a response characteristic of cells undergoing senescence. Finally, we correlated the physicochemical properties of engineered fullerences with the observed biological responses to obtain a better understanding of property-dependent bioactivity of fullerences.

448 An In Vitro Assay Detects Enhancement of Mouse T Cell Sensitization to Ovalbumin by Carbon Nanoparticles.

D. E. Lefebvre1, B. Parcell1, E. Chomynshyn1, N. Ross1, S. Halappanavar2, A. F. Tayabali2, I. Curran1, and G. S. Bonds3, 1 Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada; 2Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada.

RATIONALE AND SCOPE: Previous studies suggested that some nanomaterials can promote allergic sensitization. At present there are no in vitro tools to study this risk. The hypothesis was that an in vitro screening assay could be developed to assess the adjuvancy of agglomerated carbon black nanoparticles (CBNP). EXPERIMENTAL PROCEDURES: DO11.10 transgenic mice have a T cell receptor which recognizes the ovalbumin (OVA) protein from chicken egg. Splenic leukocytes from these mice were cultured with 0.0125, 0.12, 1.2 or 12 μg/ml CBNP OVA, or OVA with CBNP T cell mitosis rate was quantified by flow cytometry on day 3 post-exposure. T helper (Th1/Th2) cytokine production was measured by qPCR and ELISA. RESULTS: Printex 90 and Aldrich carbon CBNP products were characterized. These powders consisted of micron-sized agglomerates made up of 22 nm and 39 nm diameter CBNP base particles, respectively. Following sonication in saline RP-10 solution, the fraction of agglomerates smaller than 220 nm was purified by filtration for cell culture. These particles did not induce T cell mitosis, and they did not modify this parameter during the response to OVA. These CBNP alone did not induce Th1/Th2 cytokine expression. However, OVA in combination with 12 μg/ml of either Printex 90 or Aldrich carbon significantly increased the allergy-related Th2 cytokines IL-4, IL-10 and IL-13 compared with OVA alone (p<0.05; n=3-5/group). This was concurrent with a decrease in the Th1 transcription factor Star1. Lower CBNP doses had no effect. CONCLUSIONS: An in vitro immunotoxicology tool was developed. At the highest dose, carbon nanoparticles enhanced allergic pathways in mouse immune cells responding to ovalbumin. This assay will be used to further characterize nanomaterials for risk assessment purposes.

449 Role of Transforming Growth Factor-β1 Pathway in Carbon Nanotube Stimulated Collagen Production in Human Lung Cells.

A. Mishra1, 2, T. A. Stuckle1, R. Derk1, V. Castranova1, 3, Y. Rojanasakul1, J. Yuan4 and L. Wang5, 1Pathology and Physiology Research Branch, Health Effects Laboratory Division, NIOSH, Morgantown, WV; 2School of Pharmacy, West Virginia University, Morgantown, WV; 3School of Public Health, Hebei United University, Tangshan, China.

Accumulated studies have shown that carbon nanotubes (CNT) induce rapid and progressive lung fibrosis in animal models but the mechanisms are not clear. Following CNT exposure transforming growth factor-β (TGF-β), a pro-fibrogenic mediator, was induced in both in vivo and in vitro models and was correlated with in vivo fibrosis and in vitro collagen induction. To understand the signaling mechanism of this fibrogenic response, we investigated the contribution of TGF-β signaling in CNT-induced collagen production. We used a hallmark model of fibrosis, using cultured human lung cells and determined the role of TGF-β receptor-Smad signaling as a potential mechanism for CNT-induced fibrosis. Human lung epithelial (BEAS2B) cells and fibroblast (CRL1490) cells were exposed to doses relevant to in vivo exposure (0.02-0.6 μg/cm² in vitro - 10-80 μg/mouse lung) of well-characterized and dispersed multi-walled CNT (MWCNT), single-walled CNT (SWCNT) and ultrafine carbon black (UCFB). Protein expression was measured by immunofluorescence, western blotting and ELISA. Present results indicate: 1) CNT exposure caused induction of TGF-β1 production in lung epithelial cells; 2) TGF-β, TGF-β1, p-Smad2, and collagen type 1 were overexpressed in CNT-exposed fibroblast cells; 3) collagen I stimulating effects of MWCNT were partially blocked in TGF-β1 and Smad-2 knockdown fibroblast cells. In conclusion, CNT stimulate lung fibroblasts to induce collagen I in vitro through activation of the TGF-β1-Smad Signaling pathway.

450 Factors Associated with the Releasability of Carbon Nanotubes (CNTs) from Nanocomposites in Potential Consumer or Industrial Applications.

Engineered nanomaterials offer innovative advancements for a wide range of industrial and consumer product technologies which promise to have global economic impact. Engineered nanomaterials in composites (nanocomposites) are currently being used in applications ranging from basic consumer goods to critical national defense technologies, with carbon nanotubes (CNTs) being popular for nanocomposites due to their enhanced mechanical, thermal, and electrical properties. With comparisons of CNTs to other high aspect ratio fibers, some concerns have been raised regarding the potential implications for exposure and health risk of nanocomposites containing CNTs. We hypothesized that the physical and chemical interactions between CNTs and the composite matrix, as well as settings in which nanocomposites are handled will influence the release of these nanomaterials. We analyzed available data on the release of CNTs from different composites as a result of various stressors. Although no release was detected under UV weathering conditions, CNT surface aggregation was detected in thermoplastic and epoxy composites compared with cementitious material. Matrix type, nanomaterial dispersion within the matrix, and chemical bonding were critical determinants for releasability. Mechanical stress tests such as cutting, grinding, sanding, and abrasion showed both positive and negative releasability results. Taken together, data indicate that physical, chemical, and environmental factors can affect the release of CNTs from nanocomposites including the location of the CNTs within the matrix, the chemical and physical bonding between the CNTs and the matrix, as well as the physical stress applied to the matrix. Analytical methods distinguishing release of CNTs versus matrix nanoparticles are critical to characterizing nanomaterials. Understanding the factors that play a role in the release of CNTs will aid in technological development and safe handling of nanocomposites while minimizing any potential health risks.

451 In Vitro Endothelial Exposure to Carbon Nanotubes Produce Reactive Oxygen Species.

Y. Rodriguez Yanez1, I. Poblete-Naredo2, B. Chavez-Munqui³, B. Cisternos1 and A. Alburges2, 1Toxicology, Cinvestav, Mexico City, Mexico; 2Infectious and Molecular Pathology, Cinvestav, Mexico City, Mexico; 3Genetic and Molecular Biology, Cinvestav, Mexico City, Mexico.

Recent studies are focused to carbon nanotubes (CNT) effects on blood coagulation, and have demonstrated that CNT are able to induce platelet aggregation and vascular thrombosis. However, there is little information on CNT effects on fibrinolysis. Therefore, we investigated the role of CNT on fibrinolysis and their contribution to eliciting a prothrombotic process in vascular endothelium and the reactive oxygen species (ROS) participation. In the present study we examined the CNT oxidative potential by ROS production and the inducible expression of fibrinolysis-related gene expression in human umbilical vein endothelial cells (HUVEC) isolated from the vein of the umbilical cord. Primary HUVEC cultures were exposed to single-walled carbon nanotubes (SWCNT) at 5, 25 and 50 μg/ml during 24 h, and oxidation potential (free-cell dihydroxylation assay assay), cytotoxicity (propidium iodide), and cell morphology (transmission electron microscopy, TEM) were assessed. SWCNT exposure resulted in concentration-dependent changes: a) oxidation potential increases that suggest a ROS increase and, b) viability decreases. Additionally, morphological changes in mitochondria, chromatine and nucleus were observed by TEM. It is expected that the oxidative stress caused by ROS may affect the transcription of the fibrinolysis related genes, activators: tissue- and urokinase-activator, tissue kallikrein, [pPA, pPA, KLK1]); and inhibitors: plasminogen activator inhibitor type 1 and kallistatin [serpine1, serpin4]), altering the physiological fibrinolysis pathway in the vascular endothelium (Supported by grants SAA/IMSS/SSSTE/CONACyT grant 162391 and IG-T/DF51/2012, YRY received a Conacyt scholarship 203482).

452 Transport of Inhaled MWCNT to the Pleura, Respiratory Muscles and Systemic Organs.

Inhalation exposure studies of mice were conducted to determine if multi-walled carbon nanotubes (MWCNT) distribution to the parietal pleura, respiratory musculature and systemic organs. Male C57BL/6J mice were exposed in a whole-body inhalation system to a 5 mg/m³ MWCNT aerosol for 5 hours/day for 14 days (4 times/week for 3 weeks). At 1 day and 48 weeks after the 12 day exposure period,
mice were anesthetized and lungs and systemic tissues were preserved by whole body vascular perfusion of paraformaldehyde while inflated with air. A separate, clean-air control group was studied. Sirius Red stained sections from lung, diaphragm, chest wall, heart, kidney and liver were analyzed. Enhanced darkfield microscopy and morphometric methods were used to detect and count MWCNT in tissue sections. Counts in tissue sections were expressed as number of MWCNT per cm² of tissue (mean±SD). Although agglomerates account for approximately 60% of lung burden, only singlet MWCNT were observed in diaphragm, chest wall and systemic tissues. At one day post exposure, the average length of singlet MWCNT in diaphragm was comparable to that of singlet MWCNT in the lungs 5.6 ± 0.6 versus 5.1 ± 0.6 μm, respectively. There were 26 ± 13 and 1.34 ± 2.5 per cm² in tissue sections of diaphragm at 1 day and 48 weeks post exposure, respectively. On average, there were 18 ± 5 and 50 ± 20 per cm² singlet MWCNT observed in systemic organ tissue sections at 1 day and 48 weeks, respectively. The burden of singlet MWCNT in parietal pleura, respiratory musculature and systemic organs at 48 weeks post exposure was significantly higher than at 1 day post exposure. Results demonstrate that inhaled MWCNT, which deposit in the lungs, are transported to the parietal pleura, the respiratory musculature and the systemic organs in a singlet form and accumulate with time following exposure.

453 Genotoxicity of Long, Tangled Carbon Nanotubes in Mice.

J. Catalán¹,², H. Järventaus¹, S. Suhonen¹, K. Sivivola¹, C. Moreno⁵, E. Rossii, J. Kivistô¹, E. Vanhala¹, H. Wolff¹, H. Alenius¹, K. Savolainen¹ and H. Noppari¹, ¹Nanofibre Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland; ²University of Zaragoza, Zaragoza, Spain.

Long, needle-like multiwalled carbon nanotubes (MWCNTs) have been described to induce inflammation, genotoxic effects and mesothelioma in the respiratory system of mice, but the mechanisms behind these adverse effects are not well understood. The stiffness of the CNTs has been suggested to play a crucial role in their clearance from the lungs, affecting their toxicity. We have earlier observed that long, needle-like MWCNTs increase DNA damage in murine lungs. To find out whether the shape of the CNTs could affect their genotoxic properties, we examined here whether also long, but tangled MWCNTs (outer diameter 8-15 nm; Cheaptubes Inc), administrated either by pharyngeal aspiration or inhalation, could be genotoxic in C57BL/6J mice, locally in the lungs or systematically in peripheral leukocytes. DNA double strand breaks were assessed by the γHAX assay in peripheral leukocytes and (after pharyngeal aspiration) in lung cells. Micronuclei, a biomarker of chromosome damage, were analyzed in bone marrow polychromatic erythrocytes sampled 24 h after the inhalation of exposure. No significant dose-dependent increase in DNA damage (comet assay) was seen in the BAL or lung cells of mice treated by pharyngeal aspiration or by inhalation exposure. The long, tangled MWCNTs neither induced systemic genotoxic effects in peripheral leukocytes or bone marrow. Our findings suggest that the stiffness of long MWCNTs is a central characteristic with respect to their genotoxicity in vivo, with thinner and flexible tangled MWCNTs, which tend to form agglomerates, showing no genotoxic effects. (Fundied by the Finnish Work Environment Fund)

454 High-Fat Diet Leads to Increased Lung Inflammation and Airway Resistance following Multiwalled Carbon Nanotubes Exposure.

T. A. Brown, Center for Environmental Health Sciences, University of Montana, Missoula, MT.

Obesity has become a worldwide epidemic responsible in large part for the rising costs of health care. Obesity leads to systemic low-grade inflammation increasing risk for the development of diseases such as diabetes, but the link for respiratory disease is less clear. We investigated the effect of a high fat diet on lung inflammation and lung physiology when exposed to multi-walled carbon nanotubes (MWCNT). Nanomaterials, including MWCNT, are used in an increasing number of consumer products. Given their small dimensions with large surface area and often unique properties with high deposition efficiency they can induce significant immune responses in the lung. In this study, C57BL/6 mice were kept on a high fat diet for 6 weeks and then exposed to MWCNT, via oropharyngeal instillation. Measurements were taken 24 h later to determine changes in inflammation and respiratory physiology, specifically lung resistance. Mice given particle on the high fat diet had significantly increased levels of IL-1β, a pro-inflammatory cytokine produced by the inflammatory complex the inflammasome, as well as increased lung resistance compared to mice on the control diet given particle. In order to further investigate inflammatory changes due to the high fat diet additional studies were carried out. Mice on the high fat diet exposed to MWCNT had a greater influx of neutrophils and eosinophils compared to control diet mice exposed to particle. These results indicate that a high fat diet leads to an increase inflammatory response with measurable physiological alterations in the lungs when exposed to MWCNT. This work was supported by NIH grants RC2 ES018742 and P20 RR017670.

455 Multiwalled Carbon Nanotubes Cause Mild Inflammation in the Aorta without Pulmonary Toxicity in a Rapidly Aging Mouse Model.

Exposure to ambient particulates has been shown to cause co-morbidity in elderly. Brain and muscle ARNT-like protein-1 (Bmal1) clock gene-deficient mice, with an accelerated aging and prothrombotic phenotype, were used to study the pulmonary and cardiovascular toxicity of multiwalled carbon nanotubes (CNTs). At the age of 8 weeks, wildtype and knockout Bmal1 mice were oropharyngally aspirated once weekly during 5 consecutive weeks with 6.4 μg (32 μg in total), 25.6 μg (128 μg in total) of CNTs or the vehicle as control. Cell counts in the bronchoalveolar lavage fluid indicated no inflammatory response 24 hours or 2 months after the last aspiration despite the presence of particle-laden macrophages. Cytokine measurements in lung homogenates showed trends for IL-1β, IL-6 and KC increases only in the wildtype mice aspirated with 128 μg CNTs but this response disappeared after 2 months. In wildtype mice, aspiration of 128 μg CNTs caused a non-significant decrease in platelet and red blood cell counts, no significant differences for the aPTT and PT clotting tests were found and clotting factor FVIII was (non-significantly) decreased 24 hours after the last aspiration and increased 2 months later. In the BMAL1 knockout mice, FVIII was increased after 24 hours but decreased after 2 months. A macrophage staining (MAC-3) on sections of the aorta showed endothelial acti- vation and vascular inflammation in 60% of the 128 μg dosed knockout animals. There were no changes observed in the aortas of the wildtype mice.

In this study we showed that multiple dosing (5 weekly doses) of CNTs induced a mild vascular inflammation in the high dosed Bmal1 knockout mice in the absence of pulmonary toxicity. ENPRA Project NMP4-SL-2009-228789 IW7 101661

456 Investigation of the Pulmonary Bioactivity of Double-Walled Carbon Nanotubes.

T. M. Sagg1, M. Wolfarth1, D. W. Porter2 and T. Steinbach2, 1NIOSH, Morgantown, WV; 2Experimental Pathology Laboratories, Sterling, VA.

Nanotechnology is one of the world's most promising new technologies. In turn, carbon nanotube production is estimated to reach into the millions of tons within the decade. Our laboratory has previously established that exposure to multi-walled carbon nanotubes (MWCNT) causes lung inflammation and fibrosis in mice after pharyngeal exposure. However, the bioactivity of double-walled carbon nanotubes (DWCNT) has not been determined. In this study we explored the hypothesis that DWCNT would promote pulmonary toxicity by analyzing the pulmonary bioac- tivity of the DWCNT. To test this hypothesis, male mice (C57BL/6J) were given a single dose of one of the following pharyngeal aspiration: 1) 0.9% saline with 0.3% (w/v) carbamylmethyl cellulose (CMC; vehicle control), or 2) DWCNT (0-40 μg/mouse) suspended in vehicle (0.9% saline with 0.3% (w/v) CMC). Whole lung lavage (WLL) was conducted at 1 and 7 days post-exposure. Lungs of non-lavaged animals were also collected and processed for histopathologic analysis at 7 and 56 days post-exposure. The results show the DWCNT exposure caused a dose-de- pendent increase in WLL polymorphonuclear leukocytes, indicating that DWCNT exposure initiates pulmonary inflammation. DWCNT exposure also caused a dose-de- pendent decrease in LDH activity as well as albumin levels in WLL fluid, indicat- ing that DWCNT exposure promotes cytotoxicity as well as decreases in the in- tegrity of the blood-gas barrier in the lung. Also, at 56 days post-exposure, the presence of fibrosis was noted in the highest dose exposure group (40 μg/mouse). In conclusion, this study provides insight into the previously uninvestigated pul- monary bioactivity of DWCNT exposure. The results confirm that DWCNT ex- posure does promote inflammation and fibrosis in the lung. The results also indi- cate that DWCNT have a similar pulmonary bioactivity as the previously studied MWCNT.
Carbon nanotubes have many promising applications. Although the low density and small size of carbon nanotubes makes respiratory exposure to workers likely during the production or use of commercial products, there is limited data on carcinogenicity of inhaled multi-walled carbon nanotubes (MWCNTs). We have therefore utilized a two stage initiation/promotion protocol to determine whether inhaled MWCNTs act as a complete carcinogen and/or promote the growth of cells with existing DNA damage. Six week old, male, B6C3F1 mice received a single dose of either methylcholanganthrene (MC, 10 μg/g BW, i.p.) or vehicle (corn oil). One week after i.p. injections, mice were exposed by inhalation to MWCNTs (5 mg/m3, 5 hours/day, 5 days/week) or filtered air (controls) for a total of 15 days. The B6C3F1 mouse used in this study has intermediate susceptibility to lung carcinogenesis, and data obtained will have relevancy to existing human lung tumor data because lung tumors in this mouse strain exhibit many molecular and morphological similarities to human pulmonary tumors. At 17 months post-exposure, mice were euthanized and examined for lung tumor formation. Twenty percent of the filtered air controls, 33% of the MWCNT-exposed, and 50% of the MC-exposed mice had larger tumor volumes than their corresponding air-exposed controls. This study demonstrated that inhaled MWCNTs increase lung tumor formation, which may have implications for existing human lung tumor data and future human health and environmental hazards of MWCNTs. For this reason, the current study investigated the inhalation toxicity potential of MWCNTs. Eight-week-old rats were divided into 4 groups (10 rats in each group), including the fresh air control (0 mg/m3), low-concentration group (0.2 mg/m3), middle concentration group (0.5 mg/m3), and high-concentration group (1.0 mg/m3), and exposed to MWCNTs for 5 days (6 hrs/day) in nose-only inhalation exposure system. Then the rats were allowed to recover for 1 and 3 months by ceasing the exposure. At the end of the study, the rats were subjected to a full necropsy. Cellular differential counts and inflammatory measurements, such as albumin, lactate dehydrogenase (LDH), total protein, and cytokines were also monitored in the cell chamber. Histopathological, hematological and clinical chemistry examinations indicated that there were no significant findings related to MWCNT exposure after 28 days of MWCNT inhalation exposure.

There is a lack of available information on the human health and environmental hazards of MWCNTs. For this reason, the current study investigated the inhalation toxicity potential of MWCNTs. Eight-week-old rats were divided into 4 groups (10 rats in each group), including the fresh air control (0 mg/m3), low-concentration group (0.2 mg/m3), middle concentration group (0.5 mg/m3), and high-concentration group (1.0 mg/m3), and exposed to MWCNTs for 5 days (6 hrs/day) in nose-only inhalation exposure system. Then the rats were allowed to recover for 1 and 3 months by ceasing the exposure. At the end of the study, the rats were subjected to a full necropsy. Cellular differential counts and inflammatory measurements, such as albumin, lactate dehydrogenase (LDH), total protein, and cytokines were also monitored in the cell chamber. Histopathological, hematological and clinical chemistry examinations indicated that there were no significant findings related to MWCNT exposure after 28 days of MWCNT inhalation exposure.

Multiwall carbon nanotubes (MWCNTs) are discussed to exhibit a toxic potential depending on their length and fiber-like shape. For this reason, potential adverse biological effects in vivo (rat) and in vitro (human peritonal mesothelial IP9/TERT-1 cells) of MWCNT are investigated in a project funded by the German BMBF (contract No. 03X0109A). In this project MWCNT data are compared with long amosite asbestos as a positive control and more particle-like MWCNT (Baytubes®, milled MWCNT, and Printex 90) as negative controls. For this study costum made MWCNT with different length and diameter were produced. To investigate the carcinogenic potential of these MWCNT, they were suspended in artificial lung-like medium using a sonotrode. The separated MWCNT were applied to the rats by intraperitoneal injection. After the carcinogenicity study, the proliferation of cells in the diaphragm was investigated as a short time screening test after 3 month, using a BrdU method. To determine cytotoxicity in vitro IP9/TERT-1 cells were incubated for 24h with the same MWCNT, suspended in culture medium, and the toxic potential was estimated by cell counting and subsequent calculation of the relative increase in cell count (RICC).

Multiwall carbon nanotubes (MWCNTs) are discussed to exhibit a toxic potential depending on their length and fiber-like shape. For this reason, potential adverse biological effects in vivo (rat) and in vitro (human peritonal mesothelial IP9/TERT-1 cells) of MWCNT are investigated in a project funded by the German BMBF (contract No. 03X0109A). In this project MWCNT data are compared with long amosite asbestos as a positive control and more particle-like MWCNT (Baytubes®, milled MWCNT, and Printex 90) as negative controls. For this study costum made MWCNT with different length and diameter were produced. To investigate the carcinogenic potential of these MWCNT, they were suspended in artificial lung-like medium using a sonotrode. The separated MWCNT were applied to the rats by intraperitoneal injection. After the carcinogenicity study, the proliferation of cells in the diaphragm was investigated as a short time screening test after 3 month, using a BrdU method. To determine cytotoxicity in vitro IP9/TERT-1 cells were incubated for 24h with the same MWCNT, suspended in culture medium, and the toxic potential was estimated by cell counting and subsequent calculation of the relative increase in cell count (RICC).
IL-33 Modulates Chronic Airway Resistance Changes Induced by Multiwalled Carbon Nanotubes.

X. Wang, J. Shannahan and J. M. Brown, Pharmacology & Toxicology, East Carolina University, Greenville, NC.

As the field of nanotechnology rapidly grows, the potential health hazards for human exposure rise. We have previously demonstrated that oropharyngeal instillation of multi-walled carbon nanotubes (MWCNTs) in C57BL/6 mice leads to increases in total respiratory system resistance (R) and Newtonian resistance (Rn), which is a measure of central airway resistance. In this study, we hypothesized that IL-33, a critical immune system alarmin, modulates mechanisms of pulmonary toxicity following exposure to MWCNTs. We assessed lung histology and pulmonary function in C57BL/6 and IL-33−/− mice 30 days following oropharyngeal aspiration of MWCNTs. The total number of bronchoalveolar laveage cells and the recruitment of neutrophils was increased in C57BL/6 mice following MWCNT exposure. In contrast, IL-33−/− mice exposed to MWCNTs did not demonstrate alterations in bronchoalveolar lavage cell content. Furthermore, C57BL/6 mice displayed increased inflammation around the airways demonstrated by histopathology which was unseen in IL-33−/− mice. To determine if these histopathological changes played increased inflammation around the airways demonstrated by histopathology methods, and bronchoalveolar lavage fluid (BALF) analyses. Results demonstrated that MWCNT exposures produced no significant adverse extrapulmonary effects. Absolute and relative lung weights were increased in high exposure conc. vs. controls and to a lesser extent after the recovery period. The results of BALF studies demonstrated increased GGT, LDH and ALK PHOS levels vs. controls in mid/high exposure groups. In addition, increased numbers of BALB cells were recovered at 0.53 mg/m3 MWCNT. Principal histopathological findings consisted of granulomatous lesions in centriacinar regions of male/female rats exposed to 0.53 mg/m3, and in some females at 0.055 mg/m3. The lesion was characterized by aggregation of pulmonary macrophages and focal pulmonary hypertrophy/hyperplasia of lung epithelial cells. In the nasal cavities, an increase of eosinophilic inclusions in the respiratory/olfactory epithelium was noted at 0.53 mg/m3 which was followed by the olfactory epithelial injury in the recovery animals. Based on the findings in respiratory tract tissues (lungs and nasal cavities), the overall LOEL was considered to be 0.055 mg/m3, and the corresponding NOAEL was determined to be 0.013 mg/m3 under the conditions of this study.

Pulmonary Toxicity Assessment of Multivalved Carbon Nanotubes after Single Intratracheal Instillation in a One-Year Bioassay of Rats.

M. Naya, N. Kobayashi, K. Honda, M. Emi and J. Nakanishi, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.

Well-dispersed multi-wall carbon nanotubes (MWCNTs) were instilled intratracheally at dosage of 1.0 or 2.6 mg/kg body weight to male Wistar rats. A negative (vehicle) control, 0.5 mg/mL Triton X-100 was administered in a similar manner. After instillation, the bronchoalveolar lavage fluid (BALF) was assessed for the inflammatory biomarkers, and the lung, liver, kidney, spleen, and cerebrum were examined histopathologically at 1-day, 3-day, 1-week, 4-week, 3-month, 6-month, and 12-month post-exposure. Transient pulmonary inflammatory responses were observed up to 3-month post-exposure. In the histopathological examination, 1.0 and 2.6 mg/kg of MWCNTs deposited in the lungs were phagocytosed by the alveolar macrophages and these macrophages were accumulated in the alveoli up to 12-month post-exposure. There was no evidence of chronic inflammation, such as angiogenesis or fibrosis which induced by MWCNT instillation. These results suggest that MWCNTs were being processed and cleared by alveolar macrophages.

A subchronic inhalation toxicity study of an inhaled vapor-grown multiwall carbon nanotube (MWCNT) test substance was conducted in male and female Wistar rats. The test sample was composed of >99.5% carbon, containing limited (Fe) catalyst metals; BET surface area measurements of -25 m2/g and average lengths/diameters of 9 μm and 100 nm, respectively. Four groups of rats per sex were exposed nose-only, 6 h/day, for 5 days/week to aerosol concs. of 0.013 (low), 0.055 (mid) or 0.53 (high) mg/m3 MWCNT (MMAD ranging from 0.85 – 1.64 μm) over a 91-day period and evaluated 1 day later. Toxicity evaluations included clinical and histopathology methods, and bronchoalveolar lavage fluid (BALF) analyses. Additional control and high exposure groups were evaluated at 3 months PE. Results demonstrated that MWCNT exposures produced no significant adverse extrapulmonary effects. Absolute and relative lung weights were increased in high exposure conc. vs. controls and to a lesser extent after the recovery period. The results of BALF studies demonstrated increased GGT, LDH and ALK PHOS levels vs. controls in mid/high exposure groups. In addition, increased numbers of BALB cells were recovered at 0.53 mg/m3 MWCNT. Principal histopathological findings consisted of granulomatous lesions in centriacinar regions of male/female rats exposed to 0.53 mg/m3, and in some females at 0.055 mg/m3. The lesion was characterized by aggregation of pulmonary macrophages and focal pulmonary hypertrophy/hyperplasia of lung epithelial cells. In the nasal cavities, an increase of eosinophilic inclusions in the respiratory/olfactory epithelium was noted at 0.53 mg/m3 which was followed by the olfactory epithelial injury in the recovery animals. Based on the findings in respiratory tract tissues (lungs and nasal cavities), the overall LOAE was considered to be 0.055 mg/m3, and the corresponding NOAEL was determined to be 0.013 mg/m3 under the conditions of this study.
Pregnancy and lactation represent periods in which the female and her offspring may be more sensitive to adverse effects from exposure to nanoparticles. The distribution of nanoparticles during pregnancy and lactation has not been comprehensively investigated. We therefore examined the absorption, distribution, and excretion of C60 and two sizes of nanosilver (NS) in nonpregnant, pregnant, and lactating rats. Rats were dosed via tail vein injection with C60 or NS nanospheres. Lung histology, cytology, surfactant composition, and function, inflammatory gene expression, and pulmonary function were measured at 1, 3, and 7 days post exposure. One-day post-exposure, high dose carbon black resulted in a classic inflammatory response: increased lung elastance (19 ± 0.002 v. 2.5 ± 0.0004 x10^3 cells), increased cytokine production (IL-1β 2.6 and IL-6 1.7 mRNA fold induction vs control), peribronchial infiltration, and increased low-pressure lung elastance. Low dose carbon black did not differ significantly from control. Examination of these markers 3 days post exposure shows a classic injury response with neutrophilia (28.7 ± 6.1 v. 2.7 ± 0.2 x10^3 cells) and increased macrophage numbers (139 ± 0.006 v. 147 ± 2.6 x10^3 cells at day 1 v. 3). At day 7, neutrophilia has resolved, while macrophage numbers remain high (198 ± 5.6 x10^3 cells). Carbon nanospheres persist within recruited macrophages. Neither low nor high dose silver particles resulted in inflammation 1 day post exposure. There was significantly increased tissue stiffness compared to control, which was reduced by a reduced surfactant function and disrupted surfactant protein expression. Lung function begins to resolve 3 days post exposure to silver particles; however, there is a delayed inflammatory response which is resolving by day 7. These data suggest that silver nanoparticles may have a unique toxicological profile that is dependent upon disruption of lung function.

Carbon-based nanomaterials are currently being tested for a range of medical uses from drug delivery vehicles to contrast enhancing agents for magnetic resonance imaging (MRI). Ensuring biocompatibility is essential for each compound and formulation. Our goal was to evaluate the microvascular effect of graphene nanoparticle known as graphene oxide nanofibers (GONFs). The hydrophobic GONFs (20-60nm by 15-35nm, 3-4nm thick) were water-solubilized via non-covalent functionalization with 3.5 mg/ml of the biocompatible natural polymer dextran (GPN-Dex). Adult male hamsters (N=11) were anesthetized (isofluroane) and prepared for intravital microscopy observation of the cheek pouch tissue terminal arterioles; these arterioles control nutrient flow. GPN-Dex (0.5-5mg/ml) was microdropette applied to small terminal arterioles (~10um dia., 30s), where 0 mg/ml was dextran alone. 2.5mg/ml was the projected therapeutic circulation dose, and 50mg/ml was the highest expected i.v. injection dose when used as a drug delivery or MRI contrast agent. Based on the pipette delivery conditions, the dose of 50mg/ml would expose the arteriole to 127 pg of GPN-Dex. GPN-Dex induced a dose dependent dilation (EC50 6.9x10^-4mg/ml, maximal dilation 70±2% increase from baseline). Dextran alone was not vasoactive. We next tested whether acute exposure to 50mg/ml induced endothelial dysfunction, a hallmark sign of cardiovascular inflammation. Comparing before vs. after GPN-Dex exposure, dilator (acyetylcholine, 10-4M) and constrictor (phenylephrine, 10-4M) responses were unchanged, unlike our prior work with single-walled carbon nanotubes, which induced profound endothelial dysfunction. Thus, the direct effect of GPN-Dex is dilation, but there is no residual adverse effect of this formulation on terminal arteriole control of tone. (NIH HL55492; AHA 0655908T; Wallace H. Coulter Foundation)

Dendrimers are highly branched stable polymeric nanoparticles with terminal functional groups capable of binding other molecules. There is concern about the potential for dendrimers to increase skin absorption of ingredients currently considered safe in cosmetics. We evaluated the skin penetration of amine-terminated dendrimers into pig and human skin. M. E. Kraeling1, V. D. Topping1, X. Gao1, O. A. Ogunsola1, K. Schlick1, E. Simanek2, S. Man3, A. K. Parsi3, R. L. Sprando1 and L.J. Yourell.1 (1Office of Applied Research and Safety Assessment, US FDA, Laurel, MD; 2Department of Chemistry, Texas Christian University, Fort Worth, TX; 3Nanotechnology Characterization Laboratory, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, MD)

Dendrimers are highly branched stable polymeric nanoparticles with terminal functional groups capable of binding other molecules. There is concern about the potential for dendrimers to increase skin absorption of ingredients currently considered safe in cosmetics. We evaluated the skin penetration of amine-terminated dendrimers into pig and human skin. M. E. Kraeling1, V. D. Topping1, X. Gao1, O. A. Ogunsola1, K. Schlick1, E. Simanek2, S. Man3, A. K. Parsi3, R. L. Sprando1 and L.J. Yourell.1 (1Office of Applied Research and Safety Assessment, US FDA, Laurel, MD; 2Department of Chemistry, Texas Christian University, Fort Worth, TX; 3Nanotechnology Characterization Laboratory, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, MD)

In Vitro Penetration of Amine Terminated Dendrimer Nanoparticles into Pig and Human Skin.
fluorophore was removed by ultrafiltration followed by gel filtration, and characterized. Dendrimers were applied (0.2% concentration) in aqueous solutions or cosmetic emulsion formulation onto viable pig or human cadaver skin assembled in diffusion cells. After a 24 hour exposure, the skin surface was washed to remove unabsorbed dendrimer. The extent of skin penetration was determined by laser scanning confocal microscopy. Most fluorescence from the applied dendrimers appeared on or in the stratum corneum, in hair follicles, or in folds of both pig and human skin. Fluorescence appeared in the upper regions of the epidermis of pig skin with the small generation dendrimers using both the solution and emulsion application. Fluorescence also appeared deeper in the dermal layers of pig skin when smaller generation dendrimers were applied at a higher dose. In human skin, small generation dendrimers penetrated skin at the low and high dose applications. Dendrimers applied in emulsions did not penetrate beyond the stratum corneum of human skin. Further studies will examine dendrimer surface functionalization on skin penetration.

K. Fedak, A. Turner, A. Harris and D. Burch. ICF International, Durham, NC.

The pace of chemical hazard assessment has not maintained pace with the introduction of new chemicals into the marketplace, with much of the growth in consumer products applications. As a result, scientists must prioritize resources towards research that fills key data gaps and enables better risk assessment and management. The application of the first step of an iterative comprehensive environmental assessment (CEA) process is used to describe hazard and identify research priorities as well as inform risk management decisions for a range of different chemicals, products, and technologies. The CEA framework allows risk assessors to evaluate the state-of-the-science regarding a new chemical for application in hazard assessment. A case study on an emerging nano-enabled consumer product—multwalled carbon nanotube (MWCNT) flame retardant coatings on upholstery textiles—was conducted using the CEA framework to identify what is known and not yet known about the substance. Side-by-side information on decabromodiphenyl ether (decaBDE), a nonanoenamed flame retardant that is currently in the process of being phased out, was presented as a comparison to illustrate the suitability of available MWCNT data for informed risk assessment and risk management decisions. For each material, the case study synthesized the available data on primary and secondary contaminants, analytical techniques, fate and transport processes, cumulative and aggregate exposure, and ecological and human health impacts throughout the life cycle of the product. The case study was subsequently used as an informative tool in a stakeholder-involved collective judgment process to identify data gaps and prioritize research areas critical to future risk assessment of MWCNTs and carbon nanomaterials in general.

Disclaimer: The views expressed in this abstract are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

472 Association of Rice and Grain Consumption with Urinary Concentrations of Total Arsenic and Dimethylarsionic Acid in US Adults.

Y. Wei1, J. Zhu2 and A. Nguyen1. 1Department of Community Medicine, Mercer University School of Medicine, Macon, GA; 2Department of Mathematics and Computer Science, Fort Valley State University, Fort Valley, GA.

Exposure to inorganic arsenic in the general population occurs mainly from drinking water and food sources. In the United States, levels of exposure are relatively low and the drinking water might not be the main source of exposure, compared to those endemic regions where the pump well water has been used as drinking water supply. To this end, we examined the association between dietary intake and urinary concentrations of arsenic in the U.S. adult population, aged 20-85 years, in the 2003-2006 National Health and Nutrition Examination Survey. Total arsenic (tAs) and dimethylarsionic acid (DMA) were detected in urine of 99% and 87% of the study participants, respectively, and were analyzed in the study. Statistical analyses were performed using SAS 9.3. To control for urine dilution in spot urine samples, creatinine-adjusted urinary concentrations of tAs and DMA were determined. Urinary concentrations of tAs and DMA were categorized into low and high exposure groups by a cutoff value of 50th percentiles. A significantly higher percentage of high exposure to both arsenic species was found in participants who consumed rice and grain ≥ once per week, compared to the reference group with consumption < once per week (55.67% vs. 45.33% for tAs; p<0.0001 and 59.61% vs. 43.48% for DMA; p<0.0001). Logistic regression analysis revealed a statistically significant association between rice and grain consumption and urinary concentrations of tAs [adjusted OR=1.39 (1.03, 1.87)] and DMA [adjusted OR=1.97 (1.41, 2.74)] after adjustment for age, gender, race, family income, education, seafood intake (the main source of organic arsenic), and source of drinking water. This study demonstrated that rice and grain consumption contributed to inorganic arsenic exposure in U.S. adults. Racial groups consuming high amounts of rice and grain showed significantly higher exposure to arsenic, especially to DMA.

473 Prenatal Exposure to Inorganic Arsenic in Gómez Palacio, Mexico, Links to Contaminated Drinking Water.

J. E. Laine2, M. Rubio-Andrade3, A. E. Olshanski2, M. Styblo1, G. G. Garcia-Vargas2 and R. C. Fry1, 1Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC; 3Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC; 4Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Mexico.

Exposure to inorganic arsenic (iAs) from drinking water is a global public health problem, however much is still unknown about the amount of exposure in susceptible populations, such as pregnant women. The aim of this study is to examine arsenic (As) exposure levels in a new prospective cohort in Gómez Palacio, Mexico. tAs and its methylated metabolites (e.g. methylationaric acid (MMA) and dimethylaric acid (DMA)) were measured in a cohort of pregnant women in Gómez Palacio, Mexico. Levels of As in drinking water and urine were measured by hydride generation atomic absorption spectrometry (AAS). In the case of urine analysis, As species were separated by cryotrapping in liquid nitrogen prior to AAS detection. All women had detectable levels of As in their drinking water (n=202). The mean iAs concentration in drinking water was 24.5 μg/L, with a range of 0.46 μg/L to 236 μg/L. Over half (n=107) of women's household samples had values that were above the WHO's safe drinking water guidelines of 10 μg/L, and 21 percent were above the MCL (50 μg/L) for Mexico. There was an association with iAs in drinking water and urine (p<0.01). Most women (n=188) had detectable levels of iAs in their urine. Mean concentrations were 46.7 μg/L, 6.6 μg/L, and 35.3 μg/L for total iAs, total MMA and total DMA, respectively. These data show that pregnant women are exposed to iAs in their drinking water in Mexico. Findings from this study support the need for further investigation into the association of health effects from prenatal exposure to arsenic contaminated drinking water.

474 Is the Relationship Between Prenatal Exposure to Polychlorinated Biphenyls (PCB) and Birthweight Attributable to Pharmacokinetics?

M. Verner1,2, R. McDougall4, A. Glynn4, M. E. Andersen4, H. L. Clewell5 and M. P. Longnecker6, 1Channing Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA; 2Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; 4Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada; 5Swedish National Food Administration, Uppsala, Sweden; 6The Hamner Institutes for Health Sciences, Research Triangle Park, NC; 7Epidemiology Branch, National Institutes of Environmental Health Sciences, Research Triangle Park, NC.

Epidemiologic studies have reported an association between exposure to PCBs and reduced birthweight. However, gestational weight gain is associated negatively with PCB levels during pregnancy and positively with birthweight, so whether the reported association is mainly driven by noncausal, pharmacokinetic effects is unclear. We evaluated the influence of gestational weight gain on the association between PCB exposure and birthweight using a previously developed physiologically based pharmacokinetic (PBPK) model that was modified to account for the relation between maternal weight and fat gain and birthweight. We ran Monte Carlo simulations to generate realistic profiles of blood PCB-153 levels throughout pregnancy. The association between PCB-153 levels and birthweight was evaluated in the simulated population using linear regression analyses. We observed a small nonstatistically significant association between maternal blood levels and birthweight. In models that did not adjust for maternal weight gain, at delivery, a 69 g decrease in birthweight was observed for each 10-fold increase in blood PCB-153. However, the effect size was reduced to 8 g when we adjusted for gestational weight gain. Results from this study suggest that the association between prenatal exposure to PCBs and birthweight is strongly confounded by gestational weight gain. Epidemiologic studies on lipophilic persistent organic pollutants that do not control for gestational weight gain may strongly overestimate the size of the association.
Association of Serum Levels of PCBs with IL-8 mRNA Expression in Blood Samples from Asthmatic and Nonasthmatic Japanese Children.

M. Tsuji1,2, T. Kawamoto1, C. Koriyama1, S. Akiba1, C. Vogel1, Y. Hsu-Sheng2 and F. Matsumura1, 1Department of Environmental Toxicology and the Center for Health and the Environment, University of California Davis, Davis, CA; 2Department of Environmental Health, University of Occupational and Environmental Health, Kitakyushu, Japan; 3Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.

Polychlorinated biphenyls (PCBs) are one of the most commonly found toxins in the environment. One suggested outcome of PCB exposure during early developmental periods in humans is childhood asthma. The primary objective of the current study was to clarify the causal relationship between PCB exposure and development of childhood asthma through the development of reliable biomarkers. Blood samples from fifteen asthmatic children and an equal number of non-asthmatic children (averaging 2 years of age) were collected and analyzed for selected marker expression using qRT-PCR. At the time of collection, an interview included questions about the number of siblings, duration of breast feeding, smoking habits of parents, the parental history of allergic diseases and history of allergies of the study subjects.

Among biomarkers examined IL-8 expression was significantly correlated to serum levels of PCB #163/#164 (P=0.022), #170 (P=0.046), #177 (P=0.022), #178 (P=0.022) and #180/#193 (P=0.046) in a dose-dependent manner, which was found only among asthmatic children. In contrast to IL-8, significant correlations between COX-2 mRNA levels and individual congener levels were recognized only among control subjects, and not among asthmatic subjects.

In conclusion, the most important finding from the current study is that there exist significant correlations between children's exposure to PCBs and the occurrence of childhood asthma, which could be recognized by the use of a reliable biomarker such as IL-8 and selecting certain individual PCB congeners.

Association between Copper, Iron, and Zinc Levels in Private Wells and Birth Defects Prevalence in North Carolina.

A. P. Sanders1, T. A. Desrosiers1,2, A. H. Herring1, D. Enright1, A. F. Olshan1, R. E. Meyer2 and R. C. Fry1, 1University of North Carolina Chapel Hill, Chapel Hill, NC; 2State Center for Health Statistics, Division of Public Health, Raleigh, NC.

Environmental metals including copper, iron and zinc are typically considered essential metals that are able to cross the placental barrier from mother to fetus. In excess, however, many essential metals are development toxicants. In this population-based study, we assessed the association between essential metal concentrations in private well water and birth defect prevalence in North Carolina. We conducted an ecologic study including 3,923 infants born between 2003 and 2005 with selected birth defects (cases) identified by the North Carolina Birth Defects Monitoring Program, and 347,587 non-malformed infants (controls). Residence at birth as well as over 20,000 measurements of metal concentrations in residential wells were geocoded. Analyses were conducted at the Census Tract level. Prevalence ratios (PR) with 95% confidence intervals (CI) were calculated to estimate the association between average concentration of each metal within Census Tracts and the prevalence of birth defects, adjusted for maternal age and race. The highest quartile of iron exposure was associated with a higher prevalence of conotruncal heart defects (PR: 2.2; 95%CI: 1.1-4.1) and a decreased prevalence of chromosomal defects (PR: 0.5; 95%CI: 0.3-0.9). In addition, the highest quartile of zinc exposure was associated with a higher prevalence of heart defects (PR: 2.3; 95%CI: 0.7-7.1) and reduction defects of the limbs (PR: 1.7; 95%CI: 0.8-3.5). Sensitivity analyses revealed similar associations. Our findings suggest evidence of a possible relationship between levels of environmental metals in drinking water and specific birth defects. Further research is needed to evaluate the potential associations. Given the known health effects of in utero metal exposure, these data suggest that it would be prudent for pregnant women relying on private wells for drinking water to have their wells tested.

Diatom and Changes in Pulmonary Health among Workers at a Food Flavorings Manufacturer.

Emergency responders may be exposed to a variety of fumes, gases, and particulates during the course of their job that may affect pulmonary function (PF) and may require the use of respiratory protection. This investigation used occupational health monitoring examination data to characterize PF in a population currently employed as emergency responders in the state of Florida. PF tests for workers (n=127) who required health examinations to ensure fitness for continued respirator use were compared to NHANES III Raw Spirometry subjects (n=9,792) to determine if decreased PF was associated with employment as an emergency responder. Mean FVC and FEV1 values were determined and multivariate regression was used to evaluate the impact of emergency responder status on PF after adjusting for confounders. Emergency responders produced a higher mean FVC of 5.11L (95%CI 4.95-5.26) compared to a mean NHANES III subject value of 4.01L (95%CI 3.99-4.03) (p<0.0001). Emergency responders also produced a higher mean FEV1 of 3.21L (95%CI 3.19-3.23) (p<0.0001). Stratification by age, sex, height, and smoking history yielded similar results. Multivariate regression analysis demonstrated significant predictors of FEV1 included age, height, sex, smoking history, and emergency responder status (p<0.0001). The direction of effect for emergency responder status was beneficial for lung function (parameter estimates 0.45L FEV1 and 0.54L FVC). Logistic regression was used to determine the effect of PF predictors on generating and FEV1/FVC ratio less than 0.8. Emergency worker status was not associated with the presence of a FEV1/FVC ratio less than 0.8. The modest increase in PF observed in emergency responders in multivariate analysis is likely due to a combination of effective exposure controls in the workplace and the healthier worker effect among aging workers.

The biological basis for an investigation of dichlorodiphenyltrichloroethane (DDT) exposure and breast cancer risk stems from research indicating that DDT has estrogenic effects in both in vitro and animal systems. A meta-analysis report published in 2004 by Lopez Cervantes et al. found no relationship between DDE and breast cancer.
The objective of this study was: (1) to update the Lopez Cervantes meta-analyses, and (2) to analyze NHANES 1999-2004 data for any relationship between DDE exposure and breast cancer prevalence. Methods Meta-Analyses: PubMed and Web of Science databases were searched for studies published through June 2012 assessing DDT exposure and breast cancer. From the 500 studies screened, 40 studies were used for the meta-analyses to quantify the summary Odds Ratios (OR) for breast cancer to DDT exposure in the highest versus the corresponding lowest exposed group. Both random and fixed effect models were used. Heterogeneity across studies was calculated using the 12 measure of inconsistency. Heterogeneity was resolved through stratification analyses by study design, tissue sample type, and control population. Publication bias was assessed by the Begg and Egger tests. Survey Analyses: Data from NHANES 1999–2004 female participants aged 20 years and older for levels of DDE were analyzed in relation to self-reported breast cancer (n=51). Logistic regression models were adjusted for age, race/ethnicity, education, alcohol intake, smoking status, body mass index and c-reactive protein. Results: Slightly elevated, but not statistically significant summary ORs were found for the selected studies for DDE (1.05; 95%CI: 0.93 – 1.18) and DDT (1.02; 95%CI: 0.92 – 1.13). Logistic regression of NHANES data showed that women in the higher serum DDE tertile had a not-statistically significant OR (0.89; 95% CI: 0.27 – 2.94; p= 0.75) to have breast cancer compared to those in the lowest serum DDE tertile. Conclusion: The existing information does not support the hypothesis that exposure to DDT/DDE increases the risk of breast cancer in humans.

J. P. Monte Leone1, R. Gunawan1 and K. Lee2, 1Pharsight Corporation, Cary, NC; 2TT International SA, Geneva, Switzerland.

An increasing amount of tobacco-control literature use DPSMs to predict changes in tobacco-related excess mortality (EM) and smoking prevalence (SP), typically using point estimates as model inputs. Point estimate information is often criticized because estimates are based on limited data and difficult to defend resulting in potentially questionable model predictions. One method for testing prediction quality is sensitivity analysis (SA), which tests predictions using specific values for point estimates. Unfortunately, for complex models, only limited subsets of values are typically tested. An alternative method uses a prediction interval (PI), which provides information on the expected distribution of the predictions from numerous randomly generated sets of point estimates. In this study, these methods for assessing prediction quality were evaluated using a tobacco-related DPSM from the literature. After reproducing the DPSM, a SA was performed using the author’s simulation scenarios (consisting of a limited selection of point estimate model inputs). A PI was also constructed by applying a uniform distribution to the minimum and maximum values for each of the model inputs and randomly drawing samples (using Monte Carlo simulation) to create 1,000 unique sets of model inputs. Predictions for EM or SP were simulated annually for the years 2010 to 2050. A 90% PI plot was created by removing the highest and lowest 5% of the predicted values for each of the 40 years. When the two approaches were compared, most predictions from the author’s SA fell within the PI, while the SA results were constrained to only a small region of the PI, most likely because only a limited number of scenarios were tested. Furthermore, the PI demonstrated how variability among multiple model inputs can interact with each other by illustrating expected variability in the EM or SP predictions. A PI approach may therefore prove robust and efficient, compared to SA, in assessing how well point estimate model inputs predict outcomes from complex simulation models.

PS 481 Multiple Myeloma Risk and Benzene Exposure among Pliofilm Workers—A Reanalysis Using an Internal Reference Group.

S. Lamm1, J. Britt and R. James, 1Consultants in Epidemiology and Occupational Health, Washington DC; 2T3Strategies, Tallahassee, FL.

The Pliofilm worker cohort (Rinsky et al., 2002) is comprised of 1,291 benzene-exposed and 554 unexposed workers with follow-up for leukemia and multiple myeloma (MM) mortality through 1996. Five of the exposed workers and three of the unexposed workers died from MM. Prior risk analyses of this benzene cohort showed that the risk analysis be done by using the unexposed population as an internal reference group. The crude mortality ratio (CMR) for MM for the exposed population (5/1,291 = 0.004) is 0.9% (95% CI, 0.1-0.9), and CMR for the unexposed population (3/554=0.005) is 0.5% (95% CI, 0.1-1.0). The relative risk is 0.72 (95% CI, 0.17-2.98; Fisher two-tailed p-value = 0.45). The CMR analysis indicates that the MM risk in benzene-exposed workers is actually not greater than that of the unexposed. The marginally lower difference seen here is not significant. These results, like others reported in the literature, reinforce the importance of examining an internal reference group analysis when evaluating the potential risks associated with occupational chemical exposures. Analytic use of an internal reference population reduces bias from the healthy worker effect or other risk factors associated with employment.

PS 482 Expression of DNA Repair Genes in Breast Cancer Tumors from Puerto Rican Women.

J. L. Marta1, L. Morales1, A. Cruz2, M. Bayona3, J. Dutil4, A. Gjyshi5, A. Monteiro6 and E. Suarez7, 1Pharmacology Physiology and Toxicology, Ponce School of Medicine and Health Sciences, Ponce, Puerto Rico; 2ToxStrategies, Tallahassee, FL; 3Hematology-Oncology-Fellowship Program, SJCH with VACHS, San Juan, Puerto Rico; 4US FDA, Division of Epidemiology/OCS/BDRH, Silver Spring, MD; 5Biochemistry, Ponce School of Medicine and Health Sciences, Ponce, Puerto Rico; 6Cancer Epidemiology Program, University of Puerto Rico, Ponce, Puerto Rico.

DNA repair is a critical defense system in the human body aimed at protecting the integrity and stability of the genome from the harmful effects of cancer-causing agents. Specific genetic alterations in DNA repair genes have been clinically associated with risk, survival, aggressiveness, and treatment outcome of breast cancer (BC). Even though diminished DNA repair capacity is recognized as a risk factor for BC, no studies to date have identified gene expression profiles in tumors from Puerto Rican women. Study participants were women with histopathologically confirmed primary BC (n =35) and normal breast tissue obtained during cosmetic surgery (n=2). Tumors were snap frozen in liquid nitrogen and RNA was extracted. Microarrays data were obtained from Affymetrix Plus 2.0 chip to assess whole genome gene expression. The assessment of differentially expressed genes was performed using Permutation method with 5% false discovery rate. Genome-wide gene expression levels were initially measured using the Affymetrix Plus 2.0 array, and DNA repair genes showing significant changes in expression levels were validated by RT-PCR. Most of the DNA repair genes were over expressed. Twenty-three candidate DNA repair genes were found to be differentially expressed (including PARP-1, therapeutic target). Of these 21 were overexpressed and 2 were underexpressed (p<0.001). This is the first report of DNA repair candidate genes in Puerto Rican women with BC, a population with mixed ancestry. Supported by grants S06 GM008239-20, 1CA5175250-2 and 5U56CA126379 from the NCI Center to Reduce Health Disparities and NIH-MBRS Program (NIGMS).

PS 483 Investigation of Route-Dependent Exposure and Metabolism of Bisphenol A (BPA) in Neonatal Mice following Oral and Subcutaneous Administration of 1H-BPA.

D. Draganova1, D. Markami2, D. Bevers1, J. Moore1, T. Riehl1, J. Wachter1, S. Dimond1, R. Shionoaka1, K. Ehrman1 and S. Hentges2, 1Metabolism, WIL Research, Ashland, OH; 2The Dow Chemical Co., Midland, MI; 3Bay Health Care Ag, Wuppertal, Germany; 4SABIC, Pittsfield, MA; 5Bayter Biomaterial Science, Pittsburgh, PA; 6TRIS, Inc., Charlottesville, VA; 7ACC, Washington DC.

Orally administered bisphenol A (BPA) undergoes efficient first-pass metabolism in the liver to produce inactive metabolites, including BPA-glucuronide (BPA-G) and BPA-sulfate (BPA-S). The current study was conducted to evaluate the pharmacokinetics of BPA and its conjugated metabolites, specifically BPA-G and BPA-S, in juvenile mice following a single oral or subcutaneous (SC) administration. This study had 3 phases: 1) Mass-balance phase in which effective dose delivery procedures for oral or SC administration of 1H-BPA to post natal day (PND) 3 mouse pups were developed; 2) Pharmacokinetic phase during which systemic exposure to total 1H-BPA-derived radioactivity in female PND 3 mice was evaluated; and 3) Metabolite profiling phase in which two groups of 50 female PND 3 mice received either a single oral or SC dose of 1H-BPA at 400 μg/kg bw with ▼ 4.4 μCi/kg bw of radioactivity. Blood was collected from 5 pups/route/time point at 5, 10, 20, and 30 minutes, and 1, 2, 3, 4, 6, and 24 hours post-dosing and processed to plasma. The plasma samples were pooled by group and time point and profiled by HPLC with fraction collection. Fractions were analyzed for total radioactivity and data used to generate radiochromatograms and integrate individual peaks. The identity of the BPA, BPA-G and BPA-S peaks was confirmed using authenticated standards and LC-MS/MS analysis. Metabolic profiles and key parameter as AUC0-24h and Cmax were derived for free-BPA, BPA-G and BPA-S. The result of this study reveals that female PND 3 mice have metabolic capacity to metabolize BPA to BPA-G, BPA-S and other metabolites after both routes of administration and that systemic exposure to free-BPA is route-dependent as the plasma concentrations were lower following oral administration compared to SC injection.
Disposition and Kinetics of Tetrabromobisphenol A (TBBPA) in Female Wistar-Han Rats.

Tetrabromobisphenol A (TBBPA) is the brominated flame retardant with the largest production volume (~150,000 tons/year), representing nearly 60% of all worldwide demand for brominated flame retardants. TBBPA is used in printed circuit boards, ABS plastic casings, and laminates. Studies were conducted to characterize the disposition and toxicokinetic profile of TBBPA in female Wistar-Han rats following single oral bolus (25, 250 or 1,000 mg/kg) or intravenous (25 mg/kg) administration. All dosing solutions provided 50 μCi/kg of [14C]-labeled TBBPA. Following oral administration of [14C]-TBBPA the primary route of elimination of radioactivity was in feces; dose recoveries in 72h were 95±3.5%, 94.3±3.6% and 98.8±2.2%, respectively. After a single IV administration of 25 mg/kg of [14C]-TBBPA, ~10% of the administered radioactivity was eliminated in the feces within 6h. Recoveries in urine ranged from 0.2-2% of dose. Less than 0.1% of the administered [14C]-radioactivity was in feces; dose recoveries in 72h were 95.7±μCi/kg.

Investigation of BPA-Glucuronide As a Substrate for Human BCRP, MRD1, MRP2, and MRP3 Transporters.

M. V. Driscoll and A. L. Slitt, Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI.

Bisphenol A (BPA) is a chemical used in plastic manufacturing that is present in polycarbonate bottles, food containers, and resins that line metal cans. Exposure to BPA occurs mainly through consumption of food products that are in direct contact with plastics and polycarbonate. Recently, BPA exposure in humans has been linked to the development of obesity and diabetes, as well as having effects on reproductive health and cancer. BPA is metabolized to BPA-glucuronide (BPA-gluc) and BPA-sulfate by Phase II enzymes and is eliminated by ATP-binding cassette (ABC) transporters. In humans, BPA-gluc is predominantly excreted through urine, whereas in rodents, it is excreted through bile into feces. One class of ABC transporters, multidrug resistance-associated proteins (MRPs), is thought to be involved in BPA clearance. There are nine known human MRPs (MRP1-9), and mouse orthologs exist for all human MRP genes except MRP8. Multidrug resistance protein (MRD1) and breast cancer-resistant protein (BCRP) are also possible transporters for BPA metabolites. However, despite numerous studies, the mechanism of BPA metabolite clearance remains unclear. In this study we examined whether BPA-gluc is a substrate for human xenobiotic transporters BCRP, MRD1, MRP2, or MRP3. Membranes expressing human BCRP, MRD1, MRP2, or MRP3 were used in a colorimetric ATPase assay. The amount of inorganic phosphate (Pi) released from BPA-gluc-stimulated ATP hydrolysis was measured. Preliminary data suggest that BPA-gluc is a substrate for MRP3 (Km: 48.2 μM). Furthermore, BPA-glucuronide is a potential activator of MRP2 at low concentrations, with an ATPase activity of 30% at 0.046 μM, but inhibits transport at higher concentrations. Low to negative percent ATPase activation values for MDR1 strongly suggest that MDR1 is inhibited by BPA-glucuronide. As differences exist between rodents and humans, identification of the ABC transporters involved in BPA clearance will be an important tool in the pharmacokinetic assessment of BPA.

A Physiologically-Based Pharmacokinetic Model for Bisphenol A in Rats at Different Developmental Ages.

Bisphenol A (BPA) is an industrial chemical that has been used in the manufacture of a wide variety of consumer products such as hard plastic products and the lining of metal food and beverage cans. Widespread exposure to BPA has raised public health concerns about BPA in food and the environment. A physiologically-based pharmacokinetic model (PBPK) was developed to describe the pharmacokinetic behavior of BPA and its metabolites (Phase II conjugates) in adult and neonatal rats. The model was calibrated using published BPA studies on in vitro hepatic and intestinal metabolism, in vivo biliary excretion of BPA metabolites, and in vivo serum time course data after oral and intravenous administration of BPA. Metabolism of BPA in the small intestine was predicted to substantially reduce the oral bioavailability of BPA and enterohpatic recirculation of BPA metabolites was predicted to prolong the systemic levels of BPA and its metabolites. The dosimetry of the aglycone BPA was age-dependent, in part, because of immature phase II metabolism in neonatal rats.

Dose-Response Relationship of an Environmental Mixture of Pyrethroids following an Acute Oral Administration in the Rat.

Human exposure to multiple pyrethroid insecticides may occur because of their wide use on crops and for residential pest control. To address the potential risk from exposure to pyrethroids, it is important to understand their toxicity and disposition in vivo. This study suggests that BPA-glucuronide is a potential activator of MRP2 at low concentrations, with an ATPase activation value of 30% at 0.046 μM.

Partition Coefficients of Deltamethrin (DLM) and Cis-Permethrin (CIS) in Male Sprague-Dawley Rats.

M. Amaraneni1, D. Gullick1, P. Sethi1, T. Mortuza1, T. Ozmit1, S. S. Anand1, D. W. Gammong1, C. A. White1, L. V. Bruckner1 and B. S. Cummings3,1University of Georgia, Athens, GA; 2Science Strategies, LLC, Charlottesville, VA; 3DuPont Haskell, Newark, DE; 4FMC, Ewing, NJ.

Pyrethroid insecticides are widely used to control a wide variety of pests in and around homes, food handling establishments, in mosquito control, and in agriculture. Partition coefficients are essential to the construction of PBPK models, because of their role in determining systemic distribution. The main aim of this study was to determine tissue/blood partition coefficients (Kt/p) of two commonly used pyrethroids, DLM and CIS. In vitro plasma to BPC partition coefficients, as determined by HPLC analysis, ranged from 0.7 to 1.0 for DLM, and 1.1 to 1.7 for CIS. The steady state levels of both DLM and CIS were obtained in vivo by constant infusion (0.36 mg/hr) using subcutaneous implantation of Alzet™ pumps, combined with oral loading doses of 34 mg/kg for DLM, or 150 mg/kg for CIS given 4 hr after the implantation of the pump in male rats. The time to reach steady-state was determined by analyzing blood samples collected by tail vein puncture 24, 48 and 72 hr post loading. Rats were sacrificed at 72 hr and blood and tissues collected and analyzed for DLM and CIS using a modified GC-MS method. DLM levels in plasma after 72 hr of constant infusion were 960 ng/mL, compared to 222 ng/mL in brain, 272 ng/mL in liver, 132 ng/mL in muscle, and 1,384 ng/mL in fat. This corresponded to Kt/p values of 0.23 for brain, 1.45 for fat, 0.28 for liver and 0.14 for muscle.

In contrast, the CIS level in plasma was 78 ng/mL, compared to 43 ng/mL in brain, 27 ng/mL in liver, 107 ng/mL in muscle and 1,625 ng/mL in fat. These corresponded to Kt/p values of 0.55 for brain, 20.78 for fat, 0.34 for liver and 1.37 for muscle. These data show that both pyrethroids are sequestered in fat, and that differences exist in Kt/p for DLM and CIS, as Kt/p values were generally higher for CIS. Supported by the Council For Advancement of Pyrethroid Human Risk Assessment.
N-butylbenzenesulfonamide (NBBS) is a common plasticizer with limited toxicity that has been detected in environmental samples. A preliminary toxicokinetic study was conducted in Harlan Sprague Dawley rats and B6C3F1/N mice following a single intravenous (2 mg/kg) and gavage (2 or 200 mg/kg) administration of NBBS, and plasma and brain toxicokinetics were evaluated. Intravenous and gavage TK profiles of NBBS were characterized by a one-compartment kinetic model in both rats and mice. Following intravenous administration, male and female elimination (kₐ) half-life values were 0.300 and 0.387 hours, respectively, in rats, and 0.383 and 0.268 hours, respectively, in mice. Following gavage administration, male and female elimination half-life values were 0.657 and 1.11 hours (2 mg/kg) and 4.88 and 3.86 hours (200 mg/kg), respectively, in rats, and 1.21 and 0.494 hours, respectively, in mice. Male and female AUC values following gavage administration were 45.0 and 16.0 hours·ng/mL (2 mg/kg) and 17.800 and 46,800 hours·ng/mL (200 mg/kg), respectively, in rats indicating saturation of elimination kinetics around 200 mg/kg. The absolute bioavailability of NBBS after gavage administration to 2 mg/kg was 13% and 39% for male and female rats, respectively. AUC values for male and female mice after gavage administration were 20,000 and 15,500 hours·ng/mL, respectively. The absolute bioavailability of NBBS after gavage administration to mice at 200 mg/kg was 25% for both sexes. NBBS was extensively distributed into the brain with concentrations similar to plasma in mice but greater than plasma in rats.

Atrazine (ATR) is a widely used chlorotriazine herbicide that is commonly detected in the environment and in human specimens, including pregnant women’s urine, umbilical cord blood and breast milk. To help address concerns about reported adverse effects of ATR exposure during development, gestational and lactational PBPK models for ATR in the rat were developed. The models accounted for potential differences in the metabolism of ATR in dams, fetuses, and neonates and between single and repeated oral exposures and incorporated binding of ATR and its major metabolite deethylatrazine (DACT) with target tissue (maternal/neonatal brain and fetus), plasma proteins, and red blood cells. Model predictions correlate well with recently reported measured data on the concentrations of ATR and its metabolites in maternal/neonatal plasma, tissue, fetus, and milk following repeated oral exposure to the dam during gestation, lactation, or both, including with data from a study (lactational exposure) not used for model calibration. The model simulations indicate that: (1) the fetus is exposed to ATR and DACT at levels that are similar to maternal plasma levels, (2) the neonate is exposed mostly to DACT at levels about two-thirds of the maternal plasma DACT levels and (3) gestational carryover of DACT greatly affects neonatal dosimetry up until mid-lactation. Hence, excessive exposure to ATR and/or its metabolites during pregnancy or early lactation may be of particular concern. These models provide insights into designing and interpreting early life toxicity and pharmacokinetic studies with this herbicide and could be used in fetal and neonatal tissue dosimetry prediction and for improvement of ATR’s exposure assessment.

Perfluoroalkyl sulfonates (PFSAs) are a group of persistent environmental contaminants that have been detected in wildlife and human serum. Based on estimations from retired biochemical production workers, the elimination half-lives of certain PFSAs, such as perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS), are very long (several years). Pharmacokinetic studies in animal models indicate that the long half-lives of these compounds are due to slow renal clearance and strong hepatic accumulation. In previous studies we have demonstrated certain organic anion transporters expressed in the kidney and the liver are involved in the disposition of another family of perfluoralkyl substances, perfluoralkyl carboxylates. However, far less is known about whether these same transporters are also substrates for the same drug transporters. Therefore, we wanted to test whether the organic anion transporters involved in the disposition of PFCAs are also responsible for the disposition of PFSAs. We used HEK293 cells overexpressing rat OAT1, OAT3 and OATP1A1 and measured the uptake of model substrates in the absence and presence of PFSAs with different carbon chain-lengths, namely perfluorobutanesulfonate (PFBS), PFHxS and PFOS. PFHxS showed the strongest inhibition for both rat OAT1 and OAT3, while rat OATP1A1 was only inhibited by PFOS. Direct uptake determination of these PFSAs demonstrated that rat OAT1 and OAT3 can transport PFBS and PFHxS while rat OAT3 and OATP1A1 might transport PFOS. In conclusion, these results suggest that the same families of transporters for the rat that are involved in the disposition of PFCAs are also involved in the disposition of PFBS, PFHxS and PFOS.
494 Absorption, Distribution, Metabolism, and Elimination of [14C] 6:2 Fluorotelomer Alcohol in the Rat.

R. T. Mingoa1, S. C. Carpenter1, T. L. Whyte1, M. Collins2, A. Gutierrez1, R. Mathias1, D. Slade1, C. Couch1, K. Allion1, J. Algaier1 and R. Harris1.

Fluorotelomer alcohols (FTOHs; F(CF2)xC2H4OH, x=6, 8, or 10) are used in the manufacture of specialty fluorinated surfactants and polymers. Fluorotelomer manufacturers are moving away from raw materials that are potential precursors to perfluorooctanoic acid (PFOA), such as the higher fluorotelomer alcohol homologues, to products based on 6:2 FTOH as a raw material. To better understand 6:2 FTOH biological fate, the absorption, distribution, metabolism, and elimination of [1,2-14C] 6:2 FTOH was investigated following a single oral dose administration of 5 and 125 mg/kg to male and female rats. The majority of the administered radioactivity was present in tissues with the highest concentration occurring in fat, adrenals, and thyroid. The plasma terminal elimination half-life values for total radioactivity were approximately 79 h in male rats at both dose levels and 78 and 63 h in female rats following a 5 and 125 mg/kg dose, respectively. Terminal elimination half-life values in red blood cells were approximately twice that in plasma, ranging from 121 h to 160 h. The internal dose as measured by area under the concentration-time curve to infinity (AUCin) was similar for both male and female rats. The increase in AUCin was slightly less than dose proportional from 5 mg/kg to 125 mg/kg. Preliminary material balance and tissue distribution data following an oral 5 mg/kg dose suggests that at 7 days postdose, less than 5% of the administered radioactivity was present in tissues with the highest concentrations occurring in fat, adrenals, and thyroid. The majority of the [1,2-14C] 6:2 FTOH dose was excreted in feces with 65% and 50% excreted in male and female rats, respectively. Renal excretion was also a significant elimination pathway with 10% and 18% excreted in urine in male and female rats, respectively.

495 Analysis of tris(2-Chloroisopropyl)phosphate Metabolites in Rat Plasma for Toxicology Studies.

B. Collins¹, S. Washyaniath2, M. Stout¹, A. Gutierrez³, R. Mathias⁴, C. Dillón¹, D. Slade¹, C. Couch1, K. Allion1, J. Algaier1 and R. Harris1.

Tris(2-Chloroisopropyl)phosphate, TCP, is an organophosphate compound used as a flame retardant and plasticizer especially in polyurethane foam in furniture and home insulation. Due to its environmental prevalence and resulting human exposure, TCP is under study by the NTP. In support of NTP toxicological studies, MRIGlobal developed methods to analyze TCP and two major metabolites, Mono (MCPP, 2 isomers) and Bis 2-chloroisopropyl phosphate (BCPP, 3 isomers) in rodent plasma and blood. Because of its similarity to Tris(2-chlorohexyl)phosphate, BCP, BCP in rats was expected to be the major TCP metabolite. During the analytical method development, multiple isomers of MCPP were observed and hence were included in the method. The 5 isomers of the two metabolites were characterized using synthetic standards following derivatization with BSTFA/pyridine prior to analysis by GC/MS without using an internal standard. The ions monitored in the selected ion monitoring mode were for MCPP, m/z 211, 227, 283 and for BCPP, m/z 155, 171, 197. The quantitation of MCPP and BCPP was achieved without derivatization using LC/MS/MS following extraction of 100 μL of plasma with 200 μL acetonitrile, removing acetonitrile by evaporation, and reconstituting the residue in 100 μL of 2% MeOH in water containing 50 mM tributylamine, TrBA (pH 5 with formic acid) with internal standard dibenzylphosphate. The LC/MS analysis used a phenyl-hexyl column, which resulted in good linearity with a preliminary limit of detection value of 5 to 10 ng/mL of plasma ranging to over 500 ng/mL. Multiple MCPP and BCPP isomers were quantified as one MCPP and one BCPP peak. Plasma samples from rats and mice from single and multiple exposures to TCP were analyzed to show the applicability of this method. The data show the presence of MCPP and BCPP at levels significantly higher than the parent TCP.

496 In Vitro-In Vivo Extrapolation of 7-Ethoxycoumarin Metabolism Using 3D-Organotypic Liver Bioreactor.

K. Choi1, L. Campbell1, W. P. Pfund1, J. McKim1, E. L. LeCluyse2 and H. L. Cplewell1, 1The Hamner Institutes for Health Sciences, Research Triangle Park, NC; 2RealBio Technology, Inc., Kalamazoo, MI; 3GeTex Corp., Kalamazoo, MI.

A liver bioreactor system was developed to simulate the metabolism and clearance of compounds similar to the liver in vivo to provide better prediction of in vivo clearance and metabolite profiles of compounds from in vitro data. Primary rat and cryopreserved human hepatocytes were maintained in a RealBio D4™ Culture System for up to one month. General metabolic and liver-specific functions and cellular damage of rat/human hepatocytes inside liver bioreactor were monitored. Stable levels of biomarkers and related functional endpoints were achieved after a 7-10 day period for both rat and human liver bioreactors, respectively (glucose 64.6 – 86.6/152 – 182 mg/dL; lactate 0.6 – 1.9/0.1 – 3.5 mmol/L; pH 7.4 – 8.0/7.4 – 7.5; albumin 0.8 – 1.0/1.0 – 1.1 mg/mL; total protein 7.5 – 8.8/1.8 – 2.0 mg/mL; ALT 4.9 – 13.6/6.0 – 9.9 U/L; AST 6.8 – 25.4/18.9 – 53.1 U/L). The activities of drug metabolizing enzymes, CYP2B2, CYP2C11 and CYP3A were monitored by the production of 16β-OH testosterone, 16αt-OH testosterone and 6β-OH testosterone, respectively. Rat hepatocytes at 28 days in a liver bioreactor and treated with 5 μM demethylsone for 24 hr showed 3-fold increase in CYP3A activity. Metabolism of 7-ethoxy- coumarin (7-EC) was characterized in the rat liver bioreactor. 7-Hydroxycoumarin was the predominant metabolite produced, which was further metabolized to the glucuronide and sulfate conjugates. The depletion of 7-EC showed monoeponential decay with an estimated intrinsic clearance of 113.3 μL/min/106 cells. Scaling of the in vitro CLeT to in vivo CLint yielded in vivo prediction of 135.98 mL/min/rat body weight (250g). In conclusion, hepatocytes maintained in a 3D organotypic liver bioreactor showed stable liver functional capacity and intrinsic clearance over an extended period. This system may help resolve current limitations in assessing the clearance mechanisms and long-term effects of compounds and their major metabolites on chemical-induced liver toxicity.

497 Enhanced Intranasal Delivery of Gemcitabine to the Central Nervous System.

M. Krishan1, G. Gudelsky2, P. Desai2 and M. Genter1, 1Environmental Health, University of Cincinnati, Cincinnati, OH; 2College of Pharmacy, University of Cincinnati, Cincinnati, OH.

Delivery of therapeutics to the brain to treat neurological diseases is a challenge due to the impenetrable nature of the blood brain barrier (BBB). Intranasal (IN) drug administration is a non-invasive approach for rapid direct drug delivery from the nose to the central nervous system (CNS), thereby minimizing systemic exposure. The current study focuses on a strategy to enhance the delivery of the nucleoside drug gemcitabine (GEM) to the CNS via IN administration. Our approach takes advantage of the fact that the BBB and olfactory epithelial (OE) tight junctions (TJs) share many proteins in common. We hypothesized that by transiently increasing the permeability of nasal epithelial tight junctions using the BBB permeabilizer paclitaxel (PV), we will increase GEM uptake through the brain extra- cellular fluid (BECF) following IN delivery, with the goal of delivering therapeutic concentrations of nucleoside drugs to the CNS. Experimental methods included IN administration of fluorescein isothiocyanate-dextran beads (FD4), in-vitro GEM recovery, in vivo brain microdialysis for BECF collection, HPLC analysis to measure GEM in BECF, histopathology, and western blot analysis. Distribution studies with FD4 showed significant deposition in the ethmoid turbinate, suggesting drug uptake through OE. Clinically-relevant doses of PV (up to 1.4% IN) did not cause histological evidence of cytotoxicity or inflammation in nasal epithelia, lung, liver, spleen, or kidney. Pharmacokinetics of GEM in BECF showed area under the curve (AUC) = 5.5±0.4 μg.h/ml for PV (1.4%) and GEM (50mg/kg) treated groups, compared to an area under the curve of 0.29 μg.h/ml for GEM without PV treatment. Western blot analysis suggested that IN PV treatment increased permeability through OE TJ by transiently decreasing the levels of TJ protein occludin. Thus, it appears that transient permeabilization of nasal epithelial TJ provides a non-invasive means to enhance delivery of nucleoside drugs to the CNS.

498 Altered Irinotecan Pharmacokinetics in Diet-Induced Obesity.

Purpose: Irinotecan (CPT-11) is a topoisomerase I inhibitor that has been shown to be highly effective in treatment of variety of cancers. It has recently been shown that CPT-11 administration is associated with liver toxicity and this effect is compounded by baseline obesity. It was found that patients with a BMI index of >25
were twice as much susceptible to developing liver toxicity than patients with BMI index of <25. CPT-11 metabolizes to SN-38, which then undergoes glucuronidation by uridine glucuronosyl transferase (UGT) 1A1 to form SN-38 glucuronide (SN-38G). Excess accumulation of the toxic metabolite SN-38 is known to cause fatal diarrea in cancer patients. We hypothesize that accumulation of SN-38 is associated with increased liver toxicity of CPT-11 in obesity.

Methods: For metabolism studies, liver S9 fractions were prepared from diet-induced obese (DIO, 60% fat) and lean mice (10% fat). UGT1A-mediated metabolism of SN-38 was determined in liver S9 fractions. For pharmacokinetic studies, mice were injected with a single oral dose of 10 mg/kg CPT-11 and blood and feces samples were collected from 0-8 hr. Samples were analyzed for CPT-11 and SN-38 concentrations using LC-MS/MS. Liver tissues were harvested for real-time PCR studies. The mRNA and serum TNF-α levels were measured in liver and plasma samples, respectively.

Results: We found that the rate of formation of SN-38G was 2 fold lower in the DIO mice compared to the lean controls. This corresponded with reduced expression of UGT1A1 in the DIO mice. Moreover, we observed a significant increase in area under the curve (AUC) or clearance of CPT-11 between the DIO and lean mice. However, plasma and fecal exposure of SN-38 was increased by 2 folds in the DIO mice compared to the lean controls. We also observed significantly higher mRNA and serum levels of TNF-α in the DIO mice as compared to the lean mice. Higher TNF-α levels were found to be associated with liver toxicity.

Conclusion: CPT-11 dosage should be closely monitored for effective and safe chemotherapy in obese patients who are at a higher risk of developing liver toxicity.

500 Accumulation of β-N-methylamino-L-Alanine in Tissues following Repeat Oral Administration to Harlan Sprague-Dawley Rats.

C. Garner1, C. J. Wegerki2, M. Doyle-Fiehe1, J. Lukac1, S. Waidyanatha1, J. D. McDonald3, and J. M. Sanders1.1 Lovelace Respiratory Research Institute, Albuquerque, NM; 2National Toxicology Program, NIEHS, Research Triangle Park, NC; 3Lovelace Respiratory Research Institute, Albuquerque, NM; 4National Toxicology Program, NIEHS, Research Triangle Park, NC.

β-N-methylamino-L-alanine (L-BMAA) was nominated to the National Toxicology Program for toxicological assessment based on widespread environmental distribution and evidence that the potentially neurotoxic compound may accumulate in CNS tissue. Data describing metabolism and disposition of L-BMAA are needed to support claims that L-BMAA toxicity study animals were dosed by gavage with [1,2-14C]L-BMAA (1 mg/kg/d for 1, 5, and 10 consecutive days. Excreta and tissues were collected for up to 72 hours after the final dose. The majority of 14C was recovered as 14CO2 (50-60%) across 10 days of dosing indicated in rat, dog, and monkey. HPLC analysis of urine showed multiple polar metabolites and L-BMAA was not detected. Over 10 days of dosing 14C continued to accumulate in tissues including the brain. After single and up to 10 day repeat doses the majority of the 14C recovered in tissues was found in liver, adi- pose, muscle, and skin; <0.01% dose was recovered in the brain. Accumulation rate of brain 14C over 10 days exceeded elimination by 3 fold. On days 1, 5, and 10 a majority of 14C in brain tissue 24 h following the final dose was recovered in the protein after exhaustive extraction. The nature of BMAA associated with brain protein was investigated in vitro. Incubation of 1[2,14C]-L-BMAA in vitro with rat brain homogenates released 14CO2 and 14C was incorporated into protein. HPLC analysis of in vitro protein hydrolysates showed that [14C]-L-BMAA itself and other 14C-equivalents made up the radioactive components. Thus accumulation of L-BMAA and its equivalents in brain tissue may be due in part to incorporation into protein. Brain tissue from repeat dose administration in rats is currently being analyzed to investigate the nature of the radiolabel associated with the protein. This work was conducted for the NTP under NIHES Contract N01-ES-75562.

502 Development of Sustained Release Buprenorphine for Use As an Improved Analgesic in Toxicology Studies: Assessment of Formulation Pharmacokinetics.

L. Koetzner1, W. Stokes2, W. Lance3, G. Wnorowski4, N. South4, and J. Boulet4.1 Product Safety Labs, Dayton, NJ; 2NICEATM, NIEHS, Research Triangle Park, NC; 3Wildlife Pharmaceuticals, Fort Collins, CO; 4Battelle, Columbus, OH.

Acute toxicology safety testing procedures can involve animal pain and distress. U.S. regulatory agencies and the OECD recently adopted and updated procedures that incorporate the routine use of systemic analgesics to avoid or reduce pain and distress for eye irritation testing procedures. Buprenorphine is recommended as a useful analgesic for such toxicology studies. However, buprenorphine requires a minimum of twice-daily dosing at 12 hour intervals to maintain effective analgesia. A study was therefore conducted to evaluate sustained release formulations to determine their usefulness for once-per-day or less frequent dosing. The pharmacokinetics of two sustained release formulations of buprenorphine powder formulated for buprenorphine in saline using male 2-2.5 kg New Zealand White rabbits. Sustained release formulations were prepared using N-methyl-pyrrolidone (NMP) or Triacetin as the vehicle. Following subcutaneous dosing, blood samples were collected at intervals to four days; plasma buprenorphine was determined using liquid chromatography with mass spectrometry. Both the NMP and Triacetin formulations produced higher plasma buprenorphine concentrations than the saline formulation at time points from 12 hours on. The Triacetin formulation also resulted in higher concentrations at earlier time points, as well as concentrations near or
above 0.1 ng/mL—a concentration previously associated with analgesic activity in other species—both blood and exhaled air were sampled until next day and analyzed for the parent substance by head-space gas chromatography.

Fluoride and other potential metabolites were analyzed in urine using an ion selective electrode and 19F-NMR analysis, respectively. All HFCs had similar toxicokinetic profiles in blood with a rapid initial increase of HFC and an apparent steady-state reached within a few minutes. The area under the concentration-time curves (AUC) of HFC152a and HFC245fa in blood was proportional to the exposure level, suggesting first-order kinetics. For all four HFCs, the inhalation uptake was low (less than 4%) and only minor amounts were excreted unchanged in breath and urine after exposure. No signs of metabolism were detected except a slightly increased urinary excretion of fluoride after exposure to 1000 ppm HFC152a. No other urinary metabolites were detected. The observed time courses in blood and breath could be well described with a physiologically-based pharmacokinetic (PBPK) model. In conclusion, the uptake and disposition of the four HFCs are consistent with the PC's determined in vitro and with zero or insignificant biotransformation.

There is a lack of information and increased interest on the risks associated with chronic inhalation exposures to low levels of ethanol (< 1000 ppm). A physiologically-based pharmacokinetic model (PBPK) for inhaled ethanol was previously developed based on exposed volunteers but only for levels above 5000 ppm. Uncertainty still remains about the validity of this model to predict the blood levels of ethanol (BE) for lower exposure levels. This project aims to determine the BE resulting from exposure to low concentrations (<1000 ppm) in order to adjust/validate the PBPK model. Ten volunteers (5 men and 5 women) were exposed for 4 hr to vapors of ethanol (125, 250, 500, 750 and 1000 ppm) in resting conditions in an inhalation chamber. An additional exposure to 750 ppm that included 4 periods of 12 minutes of exercise at 50 W was performed. Blood samples and alveolar air were collected during and after the exposure. Results show that there is a linear relationship between the ethanol inhaled air concentrations and (i) BE (women: r2 = 0.98/men: r2 = 0.99), as well as (ii) ethanol concentrations in the alveolar air at end of exposure period (men: r2 = 0.99/women: r2 = 0.99). Furthermore, exercise resulted in a significant increase (2 to 3 times) in BE after each period of 12 min of exercise, whereas the model prediction was overestimated at lower exposure levels (<2616 ppm for men and <2300 ppm for women). At lower exposure concentrations, limiting the clearance to the liver compartment was insufficient to account for total ethanol clearance. Adjusting the model by adding extra-hepatic biotransformation of high affinity and low capacity associated with the richly perfused tissues allowed the model to fit adequately the low and high exposure level toxicokinetic data. These new toxicokinetic data and improved PBPK model for ethanol will facilitate the refinement of risk assessment for chronic inhalation exposure to low levels of ethanol. (Project funded by ANSES, France).

PBPK models are useful extrapolation tools requiring time course data for calibration. A unique data set for rodents and humans was used with an existing PBPK model for ethanol exposure. The model predictions were overestimated for exposure levels < 2616 ppm men and <2300 ppm for women. At lower exposure concentrations, limiting the clearance to the liver compartment was insufficient to account for total ethanol clearance. Adjusting the model by adding extra-hepatic biotransformation of high affinity and low capacity associated with the richly perfused tissues allowed the model to fit adequately the low and high exposure level toxicokinetic data. These new toxicokinetic data and improved PBPK model for ethanol will facilitate the refinement of risk assessment for chronic inhalation exposure to low levels of ethanol. (Project funded by ANSES, France).

507 Physiologically-Based Pharmacokinetic (PBPK) Modeling: Extrapolation from In Vitro to In Vivo, a Case Study Using a Novel Dermal Compartment.

PBPK models are useful extrapolation tools requiring time course data for calibration. A unique data set for rodents and humans was used with an existing PBPK model for oral exposure. The model predictions were overestimated for exposure levels < 2616 ppm men and <2300 ppm for women. At lower exposure concentrations, limiting the clearance to the liver compartment was insufficient to account for total ethanol clearance. Adjusting the model by adding extra-hepatic biotransformation of high affinity and low capacity associated with the richly perfused tissues allowed the model to fit adequately the low and high exposure level toxicokinetic data. These new toxicokinetic data and improved PBPK model for ethanol will facilitate the refinement of risk assessment for chronic inhalation exposure to low levels of ethanol. (Project funded by ANSES, France).

508 Ethanol Toxicokinetics Resulting from Inhalation Exposure in Human Volunteers and Toxicokinetic Modeling.

J. Dumas-Campagna, G. Charest-Tardif, R. Tardif and S. Haddad, Environmental and Occupational Health, Hôpital Universitaire de Montréal, Montréal, QC, Canada.

509 Uptake and Disposition in Humans of Hydrofluorocarbons (HFCs) Used As Refrigerants.

L. Ernstgård, B. Sjögren and G. Johanson, Work Environmental Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
508 Evaluation of Toxicity Adjustment Factors Used for the Risk Assessment of Chlorpyrifos Oxon in Drinking Water.

M. Bartels1, S. Martly1, J. E. Chambers1, J. J. Galligan1, D. W. Lickfeldt2 and D. R. Juberg3. 1Toxicology, Dow Chemical, Midland, MI; 2Toxicology, Dow Chemical, Midland, MI; 3College of Veterinary Medicine, Mississippi State University, Mississippi State, MS; 4Neuroscience Program, Michigan State University, East Lansing, MI; 5Regulatory Laboratory, Dow AgroSciences LLC, Indianapolis, IN.

In the Preliminary Human Health Risk Assessment for chlorpyrifos (CPF), EPA has derived toxicity adjustment factors (TAF) for chlorpyrifos oxon (Oxon), for both acute and chronic dietary scenarios, of 12 and 18, respectively, based on relative inhibition of RBC acetylcholinesterase (AChE) by Oxon, relative to CPF. However, a comprehensive evaluation of the biological effects of Oxon, following oral exposure, has shown that this test material undergoes complete first-pass metabolism, via chemical and/or enzymatic processes in the GI tract, GI tissue, portal vein blood and liver. As a result, no test material is systemically available at ≥10 mg/kg, as shown by non-detectable levels of Oxon in blood and no inhibition of brain ChE activity at doses up to 10 mg/kg in adult rats. Numerous datasets on tissue sensitivity to Oxon show that effects in brain are predictive and conservative for brain ChE activity at doses up to 10 mg/kg in adult rats. No test material is systemically available at >10 mg/kg, as shown by non-detectable levels of Oxon in blood and no inhibition of brain ChE activity at doses up to 10 mg/kg in adult rats. Numerous datasets on tissue sensitivity to Oxon show that effects in brain are predictive and conservative for ChE inhibition, relative to other target tissues. Minor effects seen in the GI tract, at dose levels ≥5 mg/kg, are limited to the portal of entry (i.e., do not directly affect other tissues); Oxon is not considered to have long-term clinical consequences, and would not be expected given the predicted, low level exposures to Oxon in drinking water. As a result of these analyses, it is proposed that the potency of Oxon be based on a relevant toxicity endpoint (e.g., brain effects seen at >10 mg/kg) and not on RBC ChE inhibition, which is an indicator of low levels of Oxon that are not systemically available.

509 Effects of Leucine Administration on Plasma and Brain Levels of Other Amino Acids.

Leucine (leu), one of the essential branch-chained amino acids (AAs), has been shown to activate mTOR to increase protein synthesis, and for the brain, may provide enhanced cognitive memory deposition. However, little is known regarding leu kinetics. Investigations into the leu kinetics revealed that it was eliminated very fast from the blood after dosing, and leu levels in brain were higher than blood, indicating active transport of leu across the blood brain barrier (BBB). The objective of this work was to investigate the effects of leu administration on blood and brain levels of 20 AAs, and the BBB role (if any) to leu kinetics. A rodent model was dosed leu iv (5 & 12.9 mg/kg) for dose-response and time-course studies, and orally (319 mg/kg) for time-course analysis. Tissue leu levels were measured at various time points (5m–6h, iv and 30m–4h, orally). Interestingly, more than 65% of all AAs were increased in brain. At the 5 mg/kg dose, valine, lysine and proline in brain were increased, while threonine and methionine decreased (all relative to control, p<0.05). With oral dosing, 16 AAs in brain were increased at the 1h time point. Isoleucine (time point 1 & 4h), lysine (0.5 & 1h), histidine (0.5 & 1h) and proline (all time points: 0.5, 1, 2, and 4h) in brain were increased significantly from control at p<0.05 or less. Brains to plasma AA ratios were increased following dosing for lysine, methionine and valine at 5 mg/kg, proline at 12.9 mg/kg and isoleucine and proline for oral dosing groups. Our results indicate that leucine administration initiate complex time- and dose-dependent responses in both plasma and brain levels of the other AAs. These preliminary data show that neither the specific BBB transport system for AAs (most AAs use the L1 large neutral AA transporter for crossing the BBB), nor obvious general chemical or biological AA properties determine the brain levels and uptake behavior observed in these studies.

510 Screening for Substrates of the P-Glycoprotein Transporter.

P-glycoprotein (Pgp) is an ATP-dependent efflux transporter of xenobiotic compounds with broad substrate specificity. Pgp is an important component of the blood-brain barrier and frequently mediates resistance of tumors to chemotherapeutic agents. Attempts to predict the in vitro toxicity of environmental chemicals based upon in vitro screening test results can be erroneous if transporter effects are not considered. In this study, a multi-tiered in silico/in vitro testing approach was used to predict Pgp substrates within a set of ToxCast chemicals. An in silico analysis using a support vector machine predicted 45 of the 280 chemicals to be Pgp substrates; these predictions matched the results of a separate in silico docking analysis. Only 5% of the chemicals with MW <400 (and none with MW <300) were predicted as substrates, while 87% with MW >400 were predicted substrates. In vitro cell-based assays were used to further screen for Pgp substrates among chemicals with MW >300. Dye efflux experiments were conducted with NIH 3T3 MDRI cells that stably express human Pgp. A number of potential substrates were identified by this assay (including imvermectin and abamectin), as shown by their capability to interfere with efflux of Hoechst 33342 dye from the cells. A more definitive assay was used to test chemicals with known cytotoxicity by comparing toxicity in the MDRI cells and wild type 3T3 cells. Pgp substrates (i.e., chemicals that were less toxic to MDRI cells) included captan, naproxen, thiophanate, thiocarb, abamectin, niclosamide, and rotenone. These results demonstrate that a systematic approach involving a combination of in silico and cell-based in vitro assays can successfully predict Pgp substrates within large chemical test sets. In vitro toxicants that are identified as Pgp substrates will require additional toxicokinetic assessment to correctly predict their potential in vivo toxicity. (This abstract does not reflect EPA policy.)

511 Transport Mediated Mechanism for Nucleoside Penetration of the Blood-Testis Barrier.

D. M. Klein1, R. N. Hardwick1, K. K. Evans2, W. H. Dautler3, S. H. Wright4 and N. J. Chernington4. 1Pharmacology/Toxicology, University of Arizona, Tucson, AZ; 2Physiology, University of Arizona, Tucson, AZ.

The blood-testis barrier (BTB) is formed by tight junctions between Sertoli cells and prevents the entry of many therapeutics into the lumen of the seminiferous tubules (STs) shielding developing germ cells from chemical exposure. One drug class of HIV therapeutics, nucleoside reverse transcriptase inhibitors (NRTIs), can penetrate the BTB and be detected in human seminal plasma at concentrations higher than that of blood plasma. The purpose of this study is to determine the mechanisms by which NRTI drugs are transported across the BTB. Transport studies in isolated rodent seminiferous tubules using H3uridine (Ki 89.7±2μM) as a model nucleoside substrate indicate that seminiferous tubules take nucleosides almost exclusively via equilibrative nucleoside transporter 1 (ENT1). The IC50 for NBMPR, an ENT inhibitor, is 12.9 nM. Trans-epithelial transport of uridine by primary rat Sertoli cells can also be blocked by ENT1 inhibition. Blocking ENT1 function on the basolateral membrane also prevents uridine uptake into cells. These data correspond with immunohistochemical staining of rat testes showing ENT1 on the basolateral membrane, whereas ENT2 is on the apical membrane of Sertoli cells. This localization suggests that ENT1 acts as an uptake transporter and ENT2 may facilitate the efflux of nucleosides and NRTI drugs into the lumen of STs. Uridine transport can also be inhibited by NRTI drugs. We also demonstrate transepithelial transport of radiolabeled NRTIs zidovudine (AZT) and didanosine (ddI) through primary Sertoli cells is partially blocked by ENT1 inhibition (88% and 67% for AZT and ddI respectively). These data indicate a novel ENT dominant mechanism for the transepithelial transport of nucleosides and NRTI drugs across the BTB.

512 Pharmacokinetics and Bioavailability Testing of Levofloxacin in Rats.

K. K. Kabirov, A. Banerjee, E. Omaa, M. Hautmann and A. Lyubimov. Toxicology Research Laboratory/UIC, Chicago, IL.

Drug exposure of the antibiotic levofloxacin was examined in male and female Sprague Dawley rats following oral and intravenous administration. Pharmacokinetic modeling and determination of bioavailability were conducted following single dose treatment and subsequent measurements of levofloxacin levels in plasma. Dose levels studied were 50 mg/kg oral (PO) and 25 mg/kg intravenous
(IV). There were no abnormal clinical signs observed following dosing, which might have otherwise affected the pharmacokinetic modeling. The systemic bioavailability of levofloxacin in rats after PO administration ranges between 33.7–42.7%, and appears to be lower in males. The volume of distribution (Vd) appeared to be higher in female than in male rats following IV administration. Other pharmacokinetic parameters appeared to be similar in both male and female rats for both routes of administration. Levofloxacin appears to distribute widely in rat tissues and possibly exhibits a large affinity for tissue proteins. The half-life of the drug is short (4.33 hr and 4.96 hr in males and females, respectively, following PO administration; 1.38 hr and 1.55 hr in males and females, respectively, following IV administration), probably due to a high systemic clearance. Levofloxacin single IV (25 mg/kg) and PO (50 mg/kg) doses were well tolerated by male and female rats. Mean (±SD) AUC(0-inf) values following IV administration were 11339.0 ± 572.3 hr·ng/mL and 9422.7 ± 1169.4 hr·ng/mL, in males and females, respectively, and following PO administration were 8051.4 hr·ng/mL and 10211.6 hr·ng/mL in males and females, respectively. Based on mean Tmax and terminal elimination half-life values, levofloxacin is rapidly absorbed and eliminated.

513

Comparative Disposition and Metabolism of 2,2'-Dithiobisbenzanilide following Dermal, Oral, and Intravenous Administration to Harlan Sprague-Dawley Rats and B6C3F1/N Mice.

J. Luca1, C. Garner1, C. J. Wegerski1, L. M. Sanders2, M. Doyle-Eiselle1, J. D. McDonald1, and S. Waidyanatha.1Lovelace Respiratory Research Institute, Albuquerque, NM; 2National Toxicology Program, NIEHS, Research Triangle Park, NC.

2,2'-Dithiobisbenzanilide (DTBBA) is used as a peptizing agent in tires and rubber products and occupational exposure to DTBBA may occur mainly through dermal contact. Potential systemic exposure via the dermal route was investigated in rodents and compared to intravenous and oral routes. A single dermal doses of [14C]DTBBA (4 mg/kg, in acetone) were applied (protected from oral grooming) to male Harlan Sprague-Dawley rats and B6C3F1/N mice and its disposition and metabolism 72 h after was compared to 4 mg/kg intravenous and gavage doses. Following a dermal dose of [14C]-DTBBA in rats and mice, 10.9 ± 2.96% and 10.6 ± 2.99% of the dose was absorbed, respectively. Excretion of absorbed dose was via urine (18.4 ± 3.3%; 34.7 ± 7.7%) and feces (32.6 ± 10.7%; 43.5 ± 10.8%) for rats and mice, respectively. Following gavage administration in both species, the absorption was complete. Excretion of 14C after rat intravenous doses was mostly via urine (73.1 ± 7%). After mouse intravenous, mouse or rat dermal or gavage doses -30% to -40% was recovered in urine and feces. The percent dose in tissues after dermal dosing was 4.58 ± 1.92% for the rat and 0.98 ± 1.13% for mouse and in both species non dose site skin had the highest 14C levels. Radioactivity remaining in tissues followed the trend of dermal ≥ intravenous > gavage in rat and intravenous > gavage = dermal in mouse. DTBBA was not detected in urine. Urine metabolite profiles were qualitatively similar between species but the levels of some metabolites varied between dose routes. The structure of the predominant urinary metabolite was identified as thiobisbenzanilide-S-glucuronide by LC/MS/MS and 1H and 13C-

515

Lipophilicity and Membrane Affinity of Munitions Constituents Using Biolipid Beads.

A. B. Goins1, D. R. Johnson2, C. Y. Ang1, A. M. Scott3, A. J. Bednar2, T. M. Reese1 and F. C. Hilf, 1Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS; 2Badger Technical Services, Vicksburg, MS; 3Jackson State University, Jackson, MS.

Bioaccumulation of organic molecules into fat can be predicted by chemical lipophatics which provides the highest systemic absorption of HMB and there is a difference in absorption between rats and mice. This work was conducted for the NTP under NIEHS Contract N01-ES-75562.

516

Less Is More: Better Toxicity Data from Fewer Rodents Using Plasma Microsampling.

The standard design of drug development rodent toxicity studies today involves numerous large volume blood samplings to characterize the toxicokinetics of a drug candidate. Due to the large volume and generally required anesthesia, standard practice is to use additional satellite animals. Using the plasma microsampling technique developed by Ove Jonsson et al. (Bioanalysis (2012), 4(6), 661-674) would change this. With this technique, satellite animals for kinetic bleedings are no longer required (3R-Reduce), anesthesia is no longer required for small (i.e., μL) blood volume sampling from the tail vein (3R-Refine), and lastly less animals means less test compound is tested. Ultimately, plasma microsampling would be used for toxicokinetic blood collection in all types of rodent toxicity studies performed at or under sponsorship of F. Hoffmann-La Roche. To reach this goal, a method validation study has been initiated using acetaminophen and an anti-CD20 monoclonal antibody as model compounds. These compounds were selected to investigate the different analytical methods needed for small versus large molecule, i.e., liquid chromatography coupled to mass spectrometry versus an enzyme-linked immunosorbant assay, respectively. For each compound, one low and one high dose were selected to check for dose exposure dependence. The validation study design would use both the microsampling and conventional large volume sampling in the same animals in an authentic 14-day rat toxicity study and compare the exposure data obtained from each technique. If successful (i.e, comparable exposure data), the use of the microsampling technique in rodent toxicity studies will...
517 Using PBPK Modeling to Address Diurnal Variation and Age Differences in Hexavalent Chromium Toxicokinetics in Humans.

1Summit Toxicology LLP, Orange, OH; 2ToxStrategies, Katy, TX; 3ToxStrategies, Rancho Santa Margarita, CA; 4ToxStrategies, Austin, TX; 5Summit Toxicology LLP, Allenpark, PA.

A physiologically based pharmacokinetic (PBPK) model has been developed to describe the toxicokinetics of hexavalent chromium (Cr(VI)) in mice, rats, and humans. The PBPK model was used to support a human health risk assessment (HHRA) based upon mouse small intestinal (SI) tumors. Key factors contributing to the delivery of Cr(VI) to the SI were identified by sensitivity analyses, and include gastric pH, gastric transit time, and gastric reducing equivalents. These factors affect the rate of Cr(VI) reduction in gastric contents, with a higher delivery of Cr(VI) resulting from higher pH values (which causes slower rates of Cr(VI) reduction), shorter stomach transit times, and lower reducing equivalent concentrations. The PBPK model was used to address 4 important sources of variation. First, the model was used to account for normal diurnal variation in gastric lumen factors (e.g., in normal individuals, baseline gastric pH is typically between 1-3 between meals, but rises rapidly to levels of 5-7 at the start of a meal, then returning to baseline levels within a 2-3 hours). Second, the model was used to simulate exposures to different age groups, including infants, children, youths, adults, and elderly, since some age groups (e.g., infants) normally exhibit higher pH values than adults. Age-specific differences in the key factors were incorporated in the modeling to estimate an equivalent lifetime average daily dose corresponding to point of departures determined for mouse SI lesions. Third, the model was used to assess risk to specific populations (proton-pump inhibitor users) that may be sensitive to Cr(VI) due to alterations in gastric pH. Lastly, the model was used to assess the impact of the timing of Cr(VI) exposure events on delivery of Cr(VI) to the SI with respect to their occurrence during or between meals. The implications to HHRA are quantified and discussed.

518 Advantages of Using Quadrupole Time-of-Flight (QTOF) in the Bioanalysis of Large Therapeutic Peptides.

Purpose.

Significant reduction of matrix effect due to phospholipids (PL) in plasma sample by using aprotic solvent to improve the performance of bioanalytical methods used for drug quantification in toxicokinetic and pharmacokinetic studies.

Methods.

Rivastigmine was extracted using liquid-liquid extraction and injected using HILIC column with ammonium acetate / Acetonitrile (ACN) with a flow rate=0.8mL/min. Analysis was performed on ABSciexAP31000 with electrospray(-). Lower limit of quantification=10pg/mL. PL were monitored at m/z 184. The PL extractability was evaluated by samples evaporated in polypropylene (PP) instead of glass tubes and reconstituted with ACN.

Results.

Extracted plasma samples were reconstituted in mobile phase (MP blank) or in ACN blank and injected with post-column infusion of rivastigmine. The post-column infusion of MP and ACN blanks showed no suppression at the drug retention time. However, the baseline from the post-column infusion of MP blank dropped by 50% after seven injections. However, ion-suppression was not observed for the ACN blank. These results suggest that the late eluting suppressors are not reconstituted in ACN. PL peak was observed after seven MP blank injections suggesting that the late eluting suppressors in the MP blank are phospholipids. This peak was not observed in ACN blank. These results suggest that PL are reconstituted in mobile phase and elute as late eluting suppressors under the chromatographic conditions. However, PL are not reconstituted using ACN. The extracted blank plasma samples were reconstituted in PP tubes with ACN and compared to MP and ACN blanks reconstituted in glass tubes to determine if the PL are insoluble in ACN or if adsorption occurred on the glass tube surface. The PP ACN & MP blanks chromatograms were identical thus demonstrating that PL are soluble in ACN but were adsorbed on silica surface.

Conclusion.

The reconstitution of extracted samples in glass test tube using 100% ACN successfully eliminates the matrix effect caused by phospholipids.

519 A New Strategy to Effectively Reduce Matrix Effect Caused by Phospholipids in Plasma Samples under Hydrophilic Interaction Liquid Chromatography (HILIC).

Purpose.

Evaluation of plasma integrity over time due to addition of organic solvent in quality control samples (QCs) for morphine-6-glucuronide (M6G) bioanalytical method that was validated to be used in pharmacokinetic studies.

Methods.

The samples were extracted using solid phase cartridges. The injection of the samples was performed on XBridge Phenyl column (2.1X50mm, 5μ) in gradient conditions on Agilent1100 coupled with ABSiexAP31000 in electrospray(-). The QCs were prepared with M6G alone and M6G + naltrexone (Co-Administered Drug - CAD) at 1.0% organic content vs. 1.5% respectively. M6G and M6G-D3 (IS) were monitored at m/z 462/201 and 465/289 respectively. Full scans and post-column infusion were performed to evaluate the presence and determine the impact of interfering compounds.

Results.

A significant decrease in signal (~35%) was observed for M6G/IS over time for the QC containing naltrexone. A post-column infusion profile of these QCs showed the presence of suppressors which co-eluted with M6G/IS. Chromatographic separation was achieved between naltrexone and M6G/IS thus eliminating any possible suppression from naltrexone. Full scan experiments enabled the detection of two specific masses co-eluting with M6G/IS only in the QCs stored over time and containing naltrexone. QCs containing only the analyte and others containing the analyte with naltrexone were prepared in different plasma matrices. Some blank matrices were tested alongside with blank matrix containing different organic solvent percentage. The freshly prepared QCs did not show ion suppression; either in the presence of naltrexone or of the extra organic solvent. The long-term evaluation of the matrices in the presence of organic solvent (1.5%), showed two unknown compounds to appear over time and elute at the retention time of M6G thus creating a suppression zone.
Conclusion. The amount of organic solvent added impacted the integrity of the plasma samples over time. The ion suppression observed in plasma was not due to the addition of the CAD (naltrexone) but due to the amount of organic.

521 Dried Blood Spots (DBS) On-Card Derivatization: An Easy & Alternative Form for Sample Handling to Overcome the Biological Matrix Instability of Thiorphan.

Purpose: Use of in-house pre-treatment of DBS cards to overcome stability challenges of thiorphan in toxicokinetic and pharmacokinetic studies.

Methods: Thiorphan was spiked in whole blood (range of 5-600ng/mL) and 40ul of whole blood were applied on untreated or in-house pretreated cards with 2-bromo-3'-methoxycytophenone FTA DMPK-A, B and C cards. Disks (6mm) were punched from the blood spots, transferred into tubes and 200ul of internal standard (thiorphan-D5) in methanol was added. Samples were vortexed and left on bench for one hour. 100ul of the supernatant was transferred into 96wellplate already containing 100ul of water prior to injection on a Zorbax BonusRP column eluted using a gradient. Analysis was performed on an ABSciex API3000 in electrospray(+).

Results: The instability of thiorphan in biological matrix was demonstrated and minimized by derivatization to thiorphan-MP with 2-bromo-3'-methoxycytophenone (BMP). In order to simplify sample handling process, on-card derivatization using DBS was investigated. The instability of thiorphan on-card, without derivatization, was demonstrated on all DBS cards used. Therefore, on-card derivatization technique was investigated. BMP could be added directly to the card box at least 2 days prior to blood spotting without compromising thiorphan derivatization. Although the on-card derivatization of thiorphan was successful on the A and C cards, the derivatization reaction seemed to be inhibited on the B card. Linearity of a calibration curve for a range of 5-600ng/mL was demonstrated using A and C cards pretreated with 0.5% BMP. Precision was 2.8% and the accuracy was 97-104%. Results showed on-card stability of thiorphan-MP for at least 2 days.

Conclusion: It was clearly demonstrated that DBS on-card derivatization offers a practical alternative for the bioanalysis of thiorphan in TK & PK studies since it requires less manipulation than the regular sample handling process.

522 Superparamagnetic Iron Oxide Loaded Cross-Linked Nanossemblies Improve Tumor Accumulation and Magnetic Resonance Imaging In Vivo.

M. Dan1,2, M. T. Dickerson3, P. A. Hardy3, Y. Bae3 and R. A. Yokel1,2.
1Pharmacological Sciences, University of Kentucky, Lexington, KY; 2Toxicology, University of Kentucky, Lexington, KY; 3Anatomy and Neurobiology, University of Kentucky, Lexington, KY.

Purpose: To improve accumulation and contrast-enhanced magnetic resonance imaging of glioma using cross-linked nanossemblies loaded with superparamagnetic iron oxide nanoparticles (CNA-IONPs) for potential glioma theranostic applications.

Methods: CNA-IONPs were synthesized and characterized. Gd-DTPA was used to monitor glioma tumor growth as a T1 contrast agent. CNA-IONPs were injected via the tail vein of a glioma xenograft rat model. T2 weighted MR images were taken via the tail vein of a glioma xenograft rat model. T2 weighted MR images were taken immediately and 2 h after injection. T2* was used to predict CNA-IONPs concentration. A significant R2* (1/T2*) increase in specific regions of glioma 2 h after injection was observed. In the glioma region, R2* increased 48% from 10 min to 2 h after CNA-IONP injection. CNA-IONP iron concentration in glioma tissue was 3 to 9 times higher than in contralateral brain tissue at 2 h. The iron concentrations in blood and peripheral organs did not significantly change from 2 to 6 h.

Conclusions: CNA-IONPs had the potential to improve MRI diagnosis and provide a platform for incorporating glioma therapeutics.

523 Age-Dependent Capability of Drug Metabolism in Commercial Aviable Human Hepatocytes.

M. Sunouchi1, K. Nakazawa1, R. Kikura-Hanajiri2, K. Kobayashi3, H. Kojima1 and M. Usami2. 1Pharmacology, National Institute of Health Sciences, Tokyo, Japan; 2Pharmacogenetics and Phytoc hemistry, National Institute of Health Sciences, Tokyo, Japan; 3Shizuoka Prefectural Agriculture and Forestry College, Iwata, Japan. Sponsor: H. Kojima.

Primary human hepatocytes have been worldwide used as a good tool to evaluate the safety of chemicals containing environmental pollutants, pesticides and drugs. On the other hand, it is known that the drug-metabolizing enzyme activities of hepatocytes are changing with aging. There, however, are large interindividual variations in the levels of CYP enzyme activities and the response to inducers among hepatocyte donors. Therefore, in this study we analyze the relation between the enzyme activities and the induction levels of the enzymes.

We analyzed the enzyme activities of CYP1A1, CYP2B6, CYP3A4, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and UGT and their responses to CYP inducers by comparing the data of cryopreserved human hepatic cell suspension and platable hepatocytes regarding the enzyme activities and the levels of mRNAs encoding the enzymes presented from multiple suppliers. Total samples used in this study were obtained from more than 100 donors (5 months - 82 years old).

CYP1A2 activities in hepatocytes from young donors (< 4 years old) tended to be reduced in cell suspension and were largely inducted both in the activity and the mRNA levels in platable hepatocytes by beta-naphthoflavone. The enzyme activities and the mRNA levels of CYP3A4 and CYP2B6 in the young donors were positively induced by rifampicin. There was large variability in CYP activities and the abilities of the inducers. The utility of these cryopreserved human hepatocytes as an evaluation system for the safety of chemicals will be discussed.

524 AhR-Mediated Epigenetic Modulation of CYP19 and BCRP in Human Breast Adipose Fibroblasts and MCF-7 Cells.

M. B. van Duursen1, S. M. Nijmeijer, M. de Dreu and M. van den Berg, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands.

The epithelial-stromal microenvironment in breast cancer largely determines chances of therapeutic success, due to modulation of tumor cell gene expression and drug resistance. In breast adipose fibroblasts (BAFs) surrounding a tumor, expression of aromatase (CYP19), the enzyme responsible for local estrogen production, is elevated. In breast cancer cells, over-expression of breast cancer resistance protein (BCRP) is one of the major causes of multi-drug resistance and chemotherapeutic failure. Both BCRP and CYP19 over-expression have been related to hypomethylation of the promoter regions by DNA methyltransferases (DNMTs). Earlier studies have suggested that the aryl hydrocarbon receptor (AhR) can function as an epigenetic regulator. Here, the effect of the non-toxic AhR agonist tranilast on CYP19 and BCRP expression was investigated in BAFs and MCF-7 cells. In BAFs, tranilast caused a significant 70% reduction of CYP19 expression, which concurred with a 1.5pI2 to 1.4-promoter switch. In MCF-7 cells, tranilast induced expression of the AhR-responsive gene CYP1A1 (5-fold) and breast cancer resistance protein (BCRP, 2-fold), but had no effect on the expression of DNM1, 3a and 3b. CYP19 expression in MCF-7 cells was too low to be detected. Inhibition of DNA methylation by 5-aza-2'-deoxycytidine (5-aza-dC, 10 µM) significantly up-regulated expression of CYP19, BCRP (28-fold) and DNMTs (2 to 5-fold) in vehicle control-treated MCF-7 cells. In combination with tranilast, the induction of gene expression by 5-aza-dC was attenuated, except for CYP1A1 expression. Changes in EROD (CYP1A1) and aromatase activity in MCF-7 cells concurred with the gene expression profiles. These data show that AhR activation by tranilast leads to epigenetic modulation. This results in downregulation of CYP19 possibly through alternate promoter use and potential abrogation of multidrug resistance as result of BCRP overexpression. Our results indicate that the AhR might provide a novel target in the emerging field of epigenetic therapeutics.

525 The Ah Receptor Recruits Protein Kinases to Phosphorylate Ser10 in Histone H3 of the CYP1A1 Promoter Chromatin.

H. Kurita and A. Pugg. Department of Environmental Health, University of Cincinnati, Cincinnati, OH.

Halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxid (TCDD) cause many types of toxicity via the aryl hydrocarbon receptor (AhR). One of the best known proteins induced by TCDD is the cytochrome P450 1A1

Support: NCI Cancer Nanotechnology Training Center grant R25CA153954.
overall methylation patterns are similar between the age groups, but there are distinct methylation patterns between male and female rats. The results indicate that there are slightly more methylated sites at 2wk of age compared to later ages. A higher number of methylated sites were found on the X chromosome in females than males, suggesting involvement in repression of X-inactivated genes. These results provide a comprehensive global view of the DNA methylation status in the kidney over the entire rat life cycle. These age- and sex-related differences in DNA methylation may provide insights in susceptibility to kidney disease and its progression.

528 Phylogenetic Identification of Variably Methylated Transposons As Biomarkers for Early Environmental Exposures.

C. Faulk, A. K. Barke and D. Dolinoy, Environmental Health Sciences, University of Michigan, Ann Arbor, MI.

A small number of retrotransposons in the long terminal repeat (LTR) class are known to exhibit environmental sensitivity in DNA methylation status, and are termed “metastable epialleles”. Two of the sequenced examples, the agouti viable yellow (Avy) and the CDK5 activator-binding protein (CabpIAP) result from a recently inserted LTR, an intracisternal A particle (IAP) element. These insertions are from the same family, and show high sequence identity (98.5%). Additionally, both act as biomarkers of early exposure. Until now, neither the full extent of variability at these metastable epialleles, nor the phylogenetic relationship underlying variable elements was well understood. Using a computational approach, we identified 10,802 IAP LTRs in mice, and filtered by subtype to yield 1,388 IAP LTRs in the family that includes Avy and CabpIAP. Phylogenetic analysis revealed duplication and divergence events subdividing this family into three clades, DNA from isogenic mice was subjected to combined bisulphite and restriction analysis (CoBRA) at 21 LTR transposons (7 per clade). To validate our candidate IAP LTRs for interindividual variation, we assayed 17 isogenic mice for shifts in liver DNA methylation patterns. Methylation levels at individual LTRs varied widely with mean methylation ranging from a low of 59% to a high of 89%. Among mice, average methylation across all LTRs was not significantly different (71%±7%, p < 0.09). Finally we determined that the clade with the most conserved elements had significantly higher average methylation across LTRs than either diverged clade. Thus, we increased the number of known epigenetically modifiable loci and provide evidence that sequence identity is predictive of methylation level. Since repetitive elements comprise nearly half of mammalian genomes, they are likely targets for toxicological disruption, especially during early development. The characterization of murine metastable epialleles is crucial for the development of treatments for environmentally-induced disease.

529 Chromatin Context Modules Genomic-Wide p53 Sequence-Specific Occupancy and Exposure-Induced Gene Expression.

D. A. Bell, D. Su, M. R. Campbell and X. Wang, NIEHS, Research Triangle Park, NC. Sponsor: B. McIntyre

DNA damaging agents activate p53 to bind to DNA response elements leading to transactivation of p53 pathway genes and directing cells toward arrest or apoptosis. To understand the determinants of treatment-specific and tissue-specific responses to DNA damage, we have carried out our treatments using ENCODE cells in an exposure model and generated genome-wide data (p53 ChIPseq, H3K4me3 ChIPseq, sequence specificity, evolutionary conservation and gene expression). Effects of doxorubicin and nutlin-3 treatments in lymphoid cells have been compared with other cell types and analyzed in relation to chromatin context based on the ENCODE chromatin hidden Markov model (ChromHMM). We identified novel chromatin interactions that modulate the transcriptional response to p53 activation following DNA damage. Highly induced p53 genes typically display both low H3K4me3 marks and low baseline expression. Among the 2568 high confidence p53-occupied genes detected by p53 ChIP-seq, 45% have active promoter marks (H3K4me2, H3K4me3, H3K27ac, H3K9ac) prior to treatment. Surprisingly, based on ChromHMM categorization, ~22% of p53 genes displayed repressive chromatin states; including many highly-induced p53 response genes. Many p53 peaks were located in genomic regions with preexisting states classified as promoters (16%) or enhancers. However, notably a large percentage (31%) of all p53 binding peaks were found in repressed or heterochromatin regions far distant from a transcription start site. Thus p53 binding occurs in regions of both accessible and inaccessible chromatin although induced expression was most commonly associated with inaccessible chromatin. We identified p53 DNA binding motifs in 95% of p53 ChIPseq peaks and used a position weight matrix model (PWM) to score similarity to the consensus p53 motif. PWM strength and spacer length have distinctive distributions between different chromatin states. Thus both epigenetic and sequence-based factors modulate the DNA damage response regulated by p53.
A Clinical Study to Clarify Effect of Blueberry (Vaccinium spp.) on Oxidative Stress and Global Methylation.

M. Kim and M. Yang, Sookmyung Women's University, Seoul, Republic of Korea.

Blueberry (Vaccinium spp.) has shown a broad spectrum of biomedical functions including anti-oxidative and anti-inflammatory effects through in vitro or animal studies. However, its human studies are relatively few. In addition, food-based epigenetic modulators, e.g. folate, genistein, etc., can recover environmental exposure -related epigenetic alterations. Therefore, epigenetics can be a useful screening method to find a new functional food. We performed a two-weeks intervention study to evaluate anti-oxidative and epigenetic effects of blueberry in young women (N=8, age 22.6 ± 0.7 yrs, BMI=20.2 ±1.97 kg/m2). Among the subjects, two persons took C (1 g/day) as positive controls and the others took blueberry juice (240 ml (total polyphenol 300mg, anthocyanin 76mg/g) /day). From genomic DNA of their peripheral blood, we analyzed global methylation status with MethylationFlashTM methylated DNA quantification kit (Epigentek). We also analyzed urinary malondialdehyde (MDA), a biomarker of oxidative stress with HPLC/UVD. As a result, we found that blueberry did not reduce urinary MDA levels as such as vt C. In addition, blueberry did not show what increased global DNA methylation. There were no significant differences in the global DNA methylation between the two treatments (p=0.89). Therefore, anti-oxidative activity of blueberry was not found in this trial, compared to vt C. However, its epigenetic effects can be similar to vt C's. In conclusion, the present study provides that a medicinal function of blueberry can be induced by global hypermethylation rather than anti-oxidative effects.

The Role of microRNAs in the Pathogenesis of MMP1-Induced Skin Fibrosarplasia.

D. P. Tonge1, J. D. Tugwood2 and T. W. Gant1. 1CRCE, Health Protection Agency, Oxford, United Kingdom; 2Global Safety Assessment, AstraZeneca, Cheshire, United Kingdom.

This study sought to investigate the roles of microRNAs (miRNAs) in the pathogenesis of matrix metalloproteinase inhibitor (MMP) induced skin fibrosarplasia (FD) in the dog. MicroRNAs are short non-protein-coding RNAs that modulate protein translation from specific mRNAs. Certain miRNAs exhibit tissue specificity, and are dysregulated in response to specific pathologies. MicroRNAs are detectable in biological fluids, paving the way for their use as biomarkers. Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes and have an attractive pharmacological target for a number of indications. However, development has been hampered by the propensity of these compounds to cause connective tissue pathologies. The broad-spectrum MMP inhibitor AZM551248 has been shown to induce such effects in the dog, characterised by fibroblast proliferation and collagen deposition in subcutaneous tissues. Thirty 12-month old female beagle dogs were assigned to six groups. Animals were dosed orally once daily with vehicle, or with vehicle plus 20mg/kg/day AZM551248 for between 4 and 17 days. miRNA expression profiles in subcutaneous skin were determined by both physiologic and pathologic conditions. miRNA profiles revealed that the miR-200 family and were attenuated in response to MMPi. As the severity of FD increased at the later time-points, miRNAs associated with TGFβ synthesis were modulated. Evidence of epithelial to mesenchymal transition was present at all study time points. Receiver operator curve analysis revealed that miR-21 expression in the cervical subcutaneous tissue was a sensitive and specific biomarker of FD incidence.

Epigenetic Modifications from Lead Exposure: Influences of Sex, Exposure Level, and Developmental Timing of Exposure on DNA Methytransferases and Methyl Cytosine-Binding Proteins.

S. Kidd, D. Anderson and J. Schneider, Thomas Jefferson University, Philadelphia, PA.

Maintaining normal DNA methylation levels is critical during development and in adults, DNA methylation may maintain a subtle balance of global gene expression pattern, crucial for normal neuronal function. DNA methylation is catalyzed by a family of DNA methyltransferases (Dnmmts) that include the maintenance enzyme Dnmt1 and the de novo methyltransferase Dnmt3a. DNA methyltransferase (Dnmt) expression is subject to active regulation under both physiologic or pathologic conditions, and is related to the regulation of synaptic plasticity in the mature brain. Dysregulation of Dnmts has been associated with a variety of cognitive disorders. Likewise, methyl cytosine-binding proteins such as McCP2 and MB1 play important roles in transcriptional regulation. The present study investigated the effects of lead on these enzymes and affected by developmental exposure. Long Evans dams were fed Pb-containing food (RMH 1000 with or without added Pb acetate: 0, 150, 375, 750 ppm) prior to breeding and stayed on the same diet through weaning at postnatal day 25 (perinatal exposure group (Peri)). Other animals were exposed to the same doses of lead but exposure started on postnatal day 1 and continued through postnatal day 25 (early postnatal exposure group (EPN)). A third group had Pb exposure from postnatal day 1 through day 45 (long postnatal exposure (LPE)). All animals were euthanized on day 45 and hippocampi were removed, frozen and stored until processed. Analyses showed significant effects on Dnmtn1 and McCP2 in particular, lesser effects on Dnmtn3a and MB1, with effects modified by sex, developmental window of exposure and level of Pb exposure. Importantly, the degree of modulation appeared to be more related to when the exposure occurred developmentally than to the absolute duration of the exposure. These data suggest epigenetic effects of developmental Pb exposure on DNA methylation that depend on sex, level of exposure and developmental period of exposure. Supported by NIH RO1-E5015295.

A Clinical Study to Clarify Effect of Blueberry (Vaccinium spp.) on Oxidative Stress and Global Methylation.

M. Kim and M. Yang, Sookmyung Women's University, Seoul, Republic of Korea.

Blueberry (Vaccinium spp.) has shown a broad spectrum of biomedical functions including anti-oxidative and anti-inflammatory effects through in vitro or animal studies. However, its human studies are relatively few. In addition, food-based epigenetic modulators, e.g. folate, genistein, etc., can recover environmental exposure -related epigenetic alterations. Therefore, epigenetics can be a useful screening method to find a new functional food. We performed a two-weeks intervention study to evaluate anti-oxidative and epigenetic effects of blueberry in young women (N=8, age 22.6 ± 0.7 yrs, BMI=20.2 ±1.97 kg/m2). Among the subjects, two persons took C (1 g/day) as positive controls and the others took blueberry juice (240 ml (total polyphenol 300mg, anthocyanin 76mg/g) /day). From genomic DNA of their peripheral blood, we analyzed global methylation status with MethylationFlashTM methylated DNA quantification kit (Epigentek). We also analyzed urinary malondialdehyde (MDA), a biomarker of oxidative stress with HPLC/UVD. As a result, we found that blueberry did not reduce urinary MDA levels as such as vt C. In addition, blueberry did not show what increased global DNA methylation. There were no significant differences in the global DNA methylation between the two treatments (p=0.89). Therefore, anti-oxidative activity of blueberry was not found in this trial, compared to vt C. However, its epigenetic effects can be similar to vt C's. In conclusion, the present study provides that a medicinal function of blueberry can be induced by global hypermethylation rather than anti-oxidative effects.

The Role of microRNAs in the Pathogenesis of MMP1-Induced Skin Fibrosarplasia.

D. P. Tonge1, J. D. Tugwood2 and T. W. Gant1. 1CRCE, Health Protection Agency, Oxford, United Kingdom; 2Global Safety Assessment, AstraZeneca, Cheshire, United Kingdom.

This study sought to investigate the roles of microRNAs (miRNAs) in the pathogenesis of matrix metalloproteinase inhibitor (MMP) induced skin fibrosarplasia (FD) in the dog. MicroRNAs are short non-protein-coding RNAs that modulate protein translation from specific mRNAs. Certain miRNAs exhibit tissue specificity, and are dysregulated in response to specific pathologies. MicroRNAs are detectable in biological fluids, paving the way for their use as biomarkers. Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes and have an attractive pharmacological target for a number of indications. However, development has been hampered by the propensity of these compounds to cause connective tissue pathologies. The broad-spectrum MMP inhibitor AZM551248 has been shown to induce such effects in the dog, characterised by fibroblast proliferation and collagen deposition in subcutaneous tissues. Thirty 12-month old female beagle dogs were assigned to six groups. Animals were dosed orally once daily with vehicle, or with vehicle plus 20mg/kg/day AZM551248 for between 4 and 17 days. miRNA expression profiles in subcutaneous skin were determined by both physiologic and pathologic conditions. miRNA profiles revealed that the miR-200 family and were attenuated in response to MMPi. As the severity of FD increased at the later time-points, miRNAs associated with TGFβ synthesis were modulated. Evidence of epithelial to mesenchymal transition was present at all study time points. Receiver operator curve analysis revealed that miR-21 expression in the cervical subcutaneous tissue was a sensitive and specific biomarker of FD incidence.

Epigenetic Modifications from Lead Exposure: Influences of Sex, Exposure Level, and Developmental Timing of Exposure on DNA Methytransferases and Methyl Cytosine-Binding Proteins.

S. Kidd, D. Anderson and J. Schneider, Thomas Jefferson University, Philadelphia, PA.

Maintaining normal DNA methylation levels is critical during development and in adults, DNA methylation may maintain a subtle balance of global gene expression pattern, crucial for normal neuronal function. DNA methylation is catalyzed by a family of DNA methyltransferases (Dnmmts) that include the maintenance enzyme Dnmt1 and the de novo methyltransferase Dnmt3a. DNA methyltransferase (Dnmt) expression is subject to active regulation under both physiologic or pathologic conditions, and is related to the regulation of synaptic plasticity in the mature brain. Dysregulation of Dnmts has been associated with a variety of cognitive disorders. Likewise, methyl cytosine-binding proteins such as McCP2 and MB1 play important roles in transcriptional regulation. The present study investigated the effects of lead on these enzymes and affected by developmental exposure. Long Evans dams were fed Pb-containing food (RMH 1000 with or without added Pb acetate: 0, 150, 375, 750 ppm) prior to breeding and stayed on the same diet through weaning at postnatal day 25 (perinatal exposure group (Peri)). Other animals were exposed to the same doses of lead but exposure started on postnatal day 1 and continued through postnatal day 25 (early postnatal exposure group (EPN)). A third group had Pb exposure from postnatal day 1 through day 45 (long postnatal exposure (LPE)). All animals were euthanized on day 45 and hippocampi were removed, frozen and stored until processed. Analyses showed significant effects on Dnmtn1 and McCP2 in particular, lesser effects on Dnmtn3a and MB1, with effects modified by sex, developmental window of exposure and level of Pb exposure. Importantly, the degree of modulation appeared to be more related to when the exposure occurred developmentally than to the absolute duration of the exposure. These data suggest epigenetic effects of developmental Pb exposure on DNA methylation that depend on sex, level of exposure and developmental period of exposure. Supported by NIH RO1-E5015295.
We have described a role for miRNAs in processes relevant to the key histopathological events associated with MMPs-induced FD. Furthermore, we have identified key miRNAs with the potential to be used as informative biomarkers of FD.

535 Exposure of Pregancy Mice to Chlophytros-Methyl Alters Embryonic H19 Gene Methylation Patterns.

H. Kang1, H. Shin1, J. Seo1, S. Park1, Y. Park1, S. Son1, S. Jeong2 and J. Kim2
1Virology and Chemistry and Chemistry, National Veterinary Research and Quarantine Service, Anyang, Republic of Korea; 2Toxicology Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea; 1G.E.P Research Center, College of Natural Science, Haeo University, Asan, Republic of Korea.

The aim of this study was to identify whether chlophytros methyl (CPM) exposure during pregnancy leads to changes in the methylation patterns of H19 gene. CPM 4, 20, 100,mg/kg bw/day was administered to 4 pregnant mice per group between 7 and 12 days post coitum (d.p.c.). Pregnant mice were killed at 13 d.p.c. and genomic methylation in primordial germ cells (PGCs) and fetal organs (the liver, intestine, and placenta) was examined. Four polymorphism sites in the H19 alleles of male (C57/BL6j) and female (CAST/Ei) alleles were identified at nucleotide position 1407, 1485, 1566 and 1654 and the methylation patterns of 17 CpG sites were analyzed. The methylation level in male and female PGCs was not altered by CPM treatment in the male allele H19. The methylation level of the paternal H19 allele was altered in only male PGCs in response to the CPM treatment. The methylation level at a binding site for the transcriptional regulator CTCF2 was higher than that at the CTCF1 binding site in all CPM-treated groups. In the placenta, the aggregate methylation level of H19 was 35.98% (control) and ranged from 47.7% to 49.89% after treatment with increasing doses of CPM. H19 gene from the liver and intestine of 13 d.p.c. fetuses treated with CPM was hypomethylated compared with controls, although H19 mRNA expression was unaltered. In the placenta, H19 expression was slightly increased in the CPM-treated group, although not significantly. IGF2 expression levels were not significantly changed in the placenta.

In conclusion, CPM exposure during pregnancy alters the methylation status of the H19 gene in PGCs and embryonic tissues. We infer that these alterations are likely related to changes in DNA demethylation activity.

536 Autoimmune Disease Triggered by Trichloroethylene Is Associated with Epigenetic Alterations in Cd4+ T Cells.

K. Gilbert1, S. Blossom1 and C. Cooney3, 1University of Arkansas for Medical Sciences/Arkansas Children’s Hospital Research Institute, Little Rock, AR; 2Central Arkansas Veterans Healthcare System, Little Rock, AR.

Previous studies have shown that chronic (32-week) exposure to occupationally-relevant concentrations of trichloroethylene (TCE) in the drinking water of female MRL/+ mice promoted autoimmune hepatitis. This was accompanied by the expansion of CD4+ T-cells that secreted increased levels of INF-γ and expressed an activated (CD44hiCD62Llo) phenotype. The current study was initiated to determine the mechanism by which TCE altered CD4+ T-cell function. The study constituted an longitudinal evaluation of mouse TCE exposure over 40 weeks. Alterations in INF-γ production corresponded to changes in the expression of markers used to assess DNA methylation, namely retrotransposons Iap (Intracisternal A Particle) and H19 (murine endogenous retrovirus). In addition, global DNA methylation was significantly altered in CD4+ T cells from TCE-treated mice. Most recently, bisulfite sequencing revealed that DNA methylation of Cpg sites associated with the Igr promoter was significantly, and time-dependently altered by TCE exposure. Thus, for the first time, a toxicant known to promote autoimmune disease has been shown to alter epigenetic processes (DNA methylation) in the cell type that mediates pathology, namely CD4+ T cells.

537 Is the Current Product Safety Assessment Paradigm Protective for Transgenerational Epigenetic Effects?

R. A. Alvery1, M. J. LeBaron1, R. Sura1, J. A. Murray1, J. P. Poirrini2, J. K. Passage1, R. G. Ellis-Hutchings1, N. P. Moore3, E. W. Carney4, B. Gollapudi5 and R. J. Rasoulpour1
1The Dow Chemical Company, Midland, MI; 2Division of Biochemical Toxicology, National Center for Toxicological Research, US FDA, Jefferson, AR; 3Dow Europe GmbH, Horgen, Switzerland.

Placement of epigenetic effects appropriately into the product safety paradigm is challenging due to an incomplete understanding of causal associations between epigenetics and apical adverse effects. To begin to understand this relationship, groups of 25 pregnant F0 CD-1 mice were administered -10 µg/kg/day diethylstilbestrol (DES) or -30 µg/kg/day 17β-estradiol (E2) via the diet or by subcutaneous injection (SC) from gestation day 9 - lactation day 20. F1 offspring were mated for two additional generations, with F1-F3 offspring evaluated for uterotropic effects on postnatal day (PND) 21 and 18 months. IGF2 gene expression and 537 is the Current Product Safety Assessment Paradigm Protective for Transgenerational Epigenetic Effects?

C. J. Omiecinski, X. Cai, S. Su and W. D. Hedrich. Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, PA.

Previous studies from our laboratory demonstrated that expression of the human epoxide hydrolase gene (EPHX1) is driven by a far upstream E1-b promoter in most human tissues, whereas the proximal E1 promoter selectively drives hepatic EPHX1 expression. The molecular mechanisms underlying the differential promoter usage are not well elucidated. CpG islands are short stretches of DNA harboring relatively higher frequencies of the cytosine/guanine repeat sequence, potentially reflective of higher gene methylation modifications. In-silico analysis of the human EPHX1 gene indicated that the upstream regions of E1 and E1b promoters of human EPHX1 gene are both rich in CpG islands. As methylation status of CpG islands around gene promoter regions is often associated with transcriptional repression of genes, we investigated the methylation status of CpG islands proximal to the upstream regions of the E1b and E1 promoters in several human cell lines and in primary human hepatocytes. Our data demonstrate that the methylation status of all the CpG islands in upstream regions of the E1b promoter from different cell lines is essentially the same and only sparsely methylated (<10%). In contrast, the CpG islands located at regions close to the E1 promoter are highly methylated (>60%) in cell lines originating from lung and kidney. In contrast, in hepatocellular carcinoma HepG2/C3A cells, the CpG islands localized at -128bp, -89bp, -488bp and +8bp of the E1 promoter are 0%, 0%, 0%, 0% and 25% methylated, respectively. Similarly, the CpG islands located at -724bp, -602bp, -128bp, -89bp, -488bp and +8bp of the E1 promoter in human primary hepatocytes are all unmethylated. The methylation status of these promoters from human hepatic and non-hepatic tissues are also consistent with our results from different cell lines and primary hepatocytes. These findings suggest that differential methylation status determines tissue selective promoter usage for EPHX1 expression in humans.

Identification of Arsenic-Responsive microRNAs in Rats by Genome-Wide High-Throughput Sequencing.

Y. Ge1, J. R. Olson1, H. Wu1 and X. Ren1. 1Social and Preventive Medicine & Pharmacology and Toxicology, The State University of New York at Buffalo, Buffalo, NY; 2School of Environmental and Public Health, Wenzhou Medical College, Wenzhou, China.

Consumption of drinking water contaminated with arsenic, a naturally occurring carcinogenic metalloid, constitutes a major public health problem. Although the relationship between exposure and carcinogenesis is well documented, the mechanisms by which arsenic participates in tumorigenesis are not fully elucidated. Epigenetic modifications are often dysregulated in cancer and occur following exposure to a number of carcinogenic chemicals and are suggested to play a key role in arsenic-induced carcinogenesis. Beyond DNA methylation, other epigenetic mechanisms, in particular miRNA expression, play a critical role in regulation of gene expression, have yet to be adequately investigated for arsenic. In the current study, we hypothesized that arsenic exposure to sodium arsenite and drinking water for 60 days would result in significant changes in genome-wide promoter DNA methylation patterns associated with specific changes in transcription factor binding induced by cadmium and arsenic. These results provide crucial information relating to the mechanism by which arsenic induces epigenetic changes. In the current study, we will discuss the preliminary results indicating that exposure to environmental stimuli, selective occupancy of DNA regions by transcription factors can alter the access of epigenetic modifiers to DNA, resulting in gene-specific DNA methylation patterns. To support our hypothesis, we utilized in vitro culture of human cells to study changes in genome-wide promoter DNA methylation patterns associated with specific changes in transcription factor binding sites that we postulate represent “environmental footprints” of transcription factor occupancy. Based on these results, we hypothesize that in response to environmental stimuli, selective occupancy of DNA regions by transcription factors can alter the access of epigenetic modifiers to DNA, resulting in gene-specific DNA methylation patterns. To support our hypothesis, we utilized in vitro culture of human cells to study changes in genome-wide promoter DNA methylation patterns associated with specific changes in transcription factor binding sites that we postulate represent “environmental footprints” of transcription factor occupancy.
Differential Expression of Long Intervening Noncoding RNAs in the Livers of Female B6C3F1 Mice Exposed to the Carcinogen Furan.

J. Recio1, S. Phillips1, T. Maynor1, M. D. Waters1, F. Jackson2,3 and C. Yauk1,2
1 ILS, Research Triangle Park, NC; 2Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada; 3Department of Biology, Carleton University, Ottawa, ON, Canada.

The mammalian genome is transcribed into mRNAs that code for protein as well as a broad spectrum of other noncoding (nc) RNA products. Long ncRNAs (lncRNA), defined as noncoding RNA species > 200 nucleotides long, are emerging as important epigenetic regulators of gene expression and are involved in a spectrum of biological processes relevant to toxicology. We have conducted a gene expression profiling study in liver using female B6C3F1 mice exposed to the car cinogen furan at 0.0, 1.0, 2.0, 4.0, and 8.0 mg/kg for 3 weeks. LncRNAs showed a non-linear dose response with no lncRNAs differentially expressed at 1.0 or 2.0 mg/kg and two lncRNAs differentially expressed at 4.0 or 5.0 mg/kg furan. At 8.0 mg/kg furan, 13.3% (83/632) of the differentially expressed transcriptome was comprised of lncRNAs. Among the lncRNAs observed, a number showed transcriptional clustering with nearby protein coding genes. For example, in furan-exposed mouse liver there was increased expression of lncRNA-p21. LncRNA-p21 is an anti-sense transcript that is 15 kb downstream from Cdkn1a locus and is known to be induced by p53 in human cells. LncRNA-p21 appeared to be co-transcribed with the protein coding gene Cdkn1a in response to 8.0 mg/kg furan. These data suggest that lncRNAs are transcriptional targets of furan-induced cytotoxicity and cell proliferation. We hypothesize that lncRNAs have potential as epigenomic biomarkers of carcinogenic exposures and we are currently examining lncRNA expression in the liver of mice exposed to a number of other carcinogens.

ROS-Generation Leads to 5-Hydroxymethylcytosine Formation and DNA Demethylation.

J. B. Coultar1,2, C. M. O’Driscoll1,2 and J. P. Breslauer1,2
1 Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada; 2Department of Biological Chemistry, University of California, Irvine, CA.

DNA methylation is a chemical modification at the 5’ position on cytosine residues involved in gene repression. Notably, DNA methylation plays a vital role in stem cell differentiation. A better understanding of the dynamic processes controlling methylation and demethylation is critical to identifying chemicals with potential to disrupt programming of the methylome and may uncover targets in diseases such as neurodegenerative disease and cancer. While enzymes which methylate cytosines neighboring guanines (CpGs) have been identified, no demethylase has been discovered. Inhibition of DNA methyltransferases leads to demethylation, though these mechanisms depend on cell division and may not explain active demethylation in post-mitotic cells such as neurons. Recent work has uncovered the role of Tet proteins in converting 5-methylcytosine to 5-hydroxymethylcytosine (5-hmC). Subsequent deamination by cytidine deaminases followed by base excision repair results in unmethylated cytosine. Here, we show that sub-lethal exposures of the benzene metabolite hydroquinone (HQ) led to formation of 5-hmC in HEK293 cells and a human neural progenitor cell line. In HEK293 cells, HQ exposure led to increases in reactive oxygen species (ROS), reactivation of a methylation-silenced reporter plasmid, and demethylation of CpG’s within its promoter. Both 5-hmC formation and plasmid reactivation were inhibited by the antioxidants α-tocopherol and N-acetyl-L-cysteine, indicating ROS formation was involved. Moreover, reactivation of the silenced plasmid by HQ was enhanced in cells overexpressing cytidine deaminase APOBEC2. These effects were observed with no detectable changes in Tet gene expression, though activity may have changed. Our data indicate toxicant-induced ROS leads to CpG demethylation in a manner consistent with previous-demonstration mechanisms catalyzed by Tet proteins and suggest a link between cellular redox status and maintenance of the epigenome.

548 Effect of Increased Reactive Oxygen Species on microRNA Expression in First Trimester Placental Trophoblasts.

In early pregnancy, the conceptus is highly sensitive to reactive oxygen species (ROS). Expression of superoxide dismutase, catalase, glutathione peroxidase and high levels of glutathione, taurine, and vitamins A and D protect the conceptus by 5 weeks. During implantation, maternal spiral artery remodeling and trophoblast invasion serves as the beginning of placental development and would result in increased protection of the fetus to normal ROS signaling. However, improper invasion and remodeling can result in disease development. Although debated, the current proposed model for preeclampsia, which manifest as abnormally high blood pressure (>140/80) after 20 weeks gestation in a previously normotensive woman, is aberrant maternal spiral artery remodeling, subsequent altered angiogenesis and localized ischemia/reperfusion due to continued muscularization of the spiral arteries. Preeclampsia is associated with low birth weight, preterm labor, small gestational age, and intrauterine growth retardation. As for altered gene expression in the placenta as a result of increased ROS production. Epidemiological screening studies for preeclampsia indicate alterations in placental microRNA (miRNA) expression as a result of increased trophoblast apoptosis. The goal of this project is to determine the effect of increased ROS during early placental development on miRNA expression to better understand the time frame of gene expression alteration. The villous 3A first trimester cell line was exposed to varying concentrations of H2O2 over 24 hours to determine the amount of intracellular ROS generated from this model. Using an optimal exposure of 50 μM, we then determined the effect of increased ROS exposure on the expression of 1008 miRNAs using the human miRNA microarray (Qiagen). The miRNAs shown to be altered from increased ROS production are being selected for pathway analysis and further study using miRNA mimics and inhibitors (Supported by T32-07454; P30-006676).

549 Identification of Mode-of-Action Specific Toxicity Transcript Profiles In Vitro Using a Connectivity Mapping Approach.

J. M. Nagel1, N. DeAlbrecht1, G. Overmann1, R. Adams1, G. Carr1, R. Pettit1, J. Timman1, C. Edward1 and G. Daston1
1 Procter & Gamble, Cincinnati, OH; 2 Dow Chemical Company, Midland, MI.

We hypothesize that it is possible to predict toxicity by assessing changes in gene expression in a small number of cell types enriched in toxicologically relevant pathways. We have validated this approach with a profile of 34 chemicals in HepG2, Ishikawa and MCF7 cells, using microarrays (U219, Affymetrix). These chemicals act via a number of modes of toxicity and do not involve direct chemical
reactivity, as this can be adequately detected by a number of simple in vitro methods. Each of the 34 chemicals was tested at 3 doses and at 3 different time points; however, data presented here are for only one dose and one time point (6h). The re- latedness of each transcript profile to each other was analyzed using the CMAP plat- form (Broad Institute). The results indicate that not all cell lines responded to all chemicals. For example the response of the Ishikawa cells to methotrexate is minimal (16 genes significantly affected), while the MCF7 and HepG2 cells have a robust response to this chemical (>3000 genes significantly affected). A comparison of responses to chemicals that share similar modes of action (MOA) exhibited very high correlation, even among different cell lines. These correlations held true for both agonists (CMAP score ≥ 1) and antagonists (score ≤ -1) and extended to MOAs mediated through receptors (AR, ER, FX, PR, etc.) and enzyme inhibition (histone deacetylase, DHFR, etc.). For example, using the signature from valproic acid (VA) treated cells to query the CMAP database yield high positive connectivity scores for VA in all three cell lines tested, as well as with other HDAC inhibitors (vorinastat, trichostatin, bufexamac, depudecin and HC toxin), regardless of cell lines or concentrations. The transcript profile elicited by chemicals with various MOAs in selected cell types, coupled with a CMAP approach for the analysis of the response, offers relevant biological data to predict biological activity and MOA, and thus toxicity, in a defined in vitro system.

550 Analysis of Longitudinal Metabolomic Data from Endocrine Disruption Studies: The A-SCA Method.

C. Canlet1, 2, M. Tremeau-Franco1, 1, N. J. Cabaton1, 2, R. Gautier1, 2, L. Debrauwe1, 2, A. M. Soto3 and D. Zeller1, 1, 1NRA, UMR 1331 TOXALIM Research Center in Food Toxicology, Toulouse, France; 2Univ de Toulouse, INP, UMR1331, TOXALIM, F-31000, Toulouse, France; 3Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA.

Metabolomics are increasingly being used in the field of toxicology. Experimental designs involving the study of dynamic changes in the metabolome take new methodological challenges in the field of data analysis, regarding long term and perinatal in vivo studies. Multivariate analysis of variance (MANOVA), often used to analyze experimental data, is not always appropriate for metabolomics, especially when sample size is much smaller than the total number of variables, which pre- vents the testing of underlying hypotheses (normality, homoscedasticity). Multivariate methods, such as Principal Component Analysis (PCA) or Partial Least Squares-Discriminant Analysis (PLS-DA), often used to analyze metabolic data, do not take into account data’s temporal structure, resulting in a loss of infor- mation when used alone. In this study, we applied a method combining ANOVA and PCA: A-SCA (Anova-Simultaneous Component Analysis; SCA is a generaliza- tion of PCA) taking into account the experimental design, as well as the relation- ship between variables, to allow data modelisation. Data were first separated into blocks corresponding to the different sources of variation (experimental design fac- tors). Then SCA was independently applied on each block, and permutations test was used to evaluate the significance of model parameters. This method was applied to the study of the effects of low doses of bisphenol A (BPA) on global metabolism in SD rats exposed in the perinatal period, (NIEHS project #5RC2ES018822). Pregnant rats were exposed to DMSO (vehicle-control), 0.25, 2.5, 25 or 250 ng in SD rats exposed in the perinatal period, (NIEHS project #5RC2ES018822).

551 A Systems Chemical Biology Approach to Predict Effects from Chemical Cocktail Exposure.

K. Kongbak1, 2, N. Hadrup1, A. Vingard1 and K. Audouze2. (National Food Institute, Technical University of Denmark, Sabborg, Denmark; 1Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark.

Purpose: In its report, Toxicity Testing in the 21st Century, the National Research Council called for the development of new approaches to human health risk assessment that would rely, in part, on computer-based models rather than animal testing and epidemiology (National Research Council 2007). Using a systems chemical biology approach, we have studied the five commonly used pesticides (organophosphates, neonicotinoids and pyrethroids) that are all known to have effects on male reproductive development. The pur- pose of this study was to apply a method previously described by Audouze and Grandjean (Audouze & Grandjean, 2011) to generate hypotheses on the mecha- nisms linking relevant human outcomes to specific compounds.

Methods: An integrative systems biology approach was adapted to investigate simi- lar or shared modes of action for the chemicals in mixture of the five pesticides. Human chemical-protein/gene associations were collected from the databases ChemProt, STITCH, and CTD. These associations were then enriched using known protein-protein interactions (PPIs) to yield associations between the chemi- cals and PPI networks. Subsequently, data integration was performed using in- house tools to extrapolate data to human diseases and pathways affected by the se- lected chemicals.

552 Modeling Species-Specific Metabolic Responses to TCDD in Mice and Rats Using a Reconstructed Metabolic Network.

R. Naull1, 4, M. Wu2, 3, 4 and T. R. Zacharewski1, 4, 1Center for Integrative Toxicology, MSU, East Lansing, MI; 2Chemical Engineering & Material Science, MSU, East Lansing, MI; 3Computer Science & Engineering, MSU, East Lansing, MI; 4Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI.

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) elicits species-specific transcriptomic and metabolomic responses. Using a reconstructed metabolic network and published microarray datasets, we examined the ability of the network to predict hepatic metabolic responses based on TCDD-elicted differential gene expression profiles. Previously published temporal whole-genome microarray datasets (2-16h) for TCDD-treated female C57BL/6 mice (30 μg/kg) and female Sprague- Dawley rats (10 μg/kg) were combined. Context-specific metabolic networks were gen- erated using the Gene Inactivity Moderated by Metabolism and Expression (GIMME) method by including induced genes (fold change ≥ 1.5, P1(0) ≥ 0.99) and reactions necessary to maintain a steady-state flux. The mouse context-specific metabolic network revealed more reactions involved in fatty acid (FA) activation and triglyceride synthesis suggesting an increased flux towards lipid synthesis rela- tive to the rat. Meanwhile, mice had fewer reactions involved in FA oxidation, car- nitine shuttling, and glycerophospholipid metabolism suggesting FA catabolism is induced in rats exposed to TCDD. Moreover, the predicted induction of glyc- erophospholipid metabolism is consistent with reported changes in phospho- ethanolamine in mice, and phosphocholine and phosphatidylserine in rats. In sum- mary, we show that context-specific metabolic networks based on transcriptomic data are consistent with observed species-specific metabolic changes elicited by TCDD including hepatic lipid accumulation observed in mice and species-specific glycerophospholipid metabolism effects. Moreover, the reconstructed metabolic network facilitated differential gene expression interpretation by providing valuable insights into the species-specific disruption of metabolic responses. Funded by SRF P42ES04911.

553 Multiscale Modeling for Individualized Spatiotemporal Prediction of Drug Effects.

Recently, in silico models for biokinetics have become a relevant way to test the distri- bution and metabolism of substances in single cells and in organisms. Its relevance is accentuated by the fact that in the next future an animal free toxicity as- sessment must be implemented in the European Union. Inside the COSMOS project (HEALTH-F5-2010-266835), which is funded by the European Union and a consortium of cosmetic industries (Cosmetics Europe), the central aim is to de- velop computational methods and in silico models for the prediction of long term toxicity upon repeated exposure to compounds. The power of such methods is (i) to derive quantitative predictions and (ii) to extrapolate results from in vitro measurements into in vivo predictions.

In this contribution, we present a case study that addresses acetaminophen induced hepatotoxicity. Based on a metabolic network model assigned to individual cells, which includes transport, drug metabolism, and intracellular mechanisms leading to toxicity, we were able to predict the metabolism of acetaminophen and produc- tion of toxic substances in the liver lobules in different time periods. Depending on the accumulation of these substances, the cell integrity in the liver was estimated. Such estimation is relevant not only for the prediction of physical changes in the organ but also for the prediction of changes in the clearance of the liver under high or repeated drug dosage. Our model also predicted variations of drug toxicity de- pending on alterations in metabolic enzyme activities. Variations in enzyme activi- ties reflect genetic characteristics or diseases of individuals, thus allowing stratified or even personalized predictions of drug toxicity as well as drug efficacy.
Toxicogenomic Analysis of Environmental PAH Mixtures in a Model of Transplacental Carcinogenesis.

Several polycyclic aromatic hydrocarbons (PAHs) are bioavailable to the fetus in utero, can generate DNA damage after transplacental exposure and result in increased incidence of carcinogenesis in offspring in arylhydrocarbon (Ahr)-dependent manner. However, little is known about the effects of environmental PAH mixtures or mechanisms of carcinogenesis. Therefore, we utilized a mouse model of transplacental carcinogenesis to investigate the effect of PAH mixtures collected from environmental samples compared to the known carcinogen, dibenz[a,h]anthracene (DABC). Ahr−/− mice were exposed to Ahr−/− (non-responsive) male mice at eight weeks of age. Females were gavaged on gestation day 17 with DABC, an artificial atmospheric PAH mixture or PAH extract collected from Portland Harbor Superfund Site. Subsamples from each treatment (n=4) were euthanized 24 hrs post-treatment to collect fetal thymus, lung and liver for microarrays.

3-6 months of age, 1% of the offspring from DABC-treated dams were euthanized due to severe T-cell lymphoma, as expected, which was not detected in the other treatment groups. Exposure of mice to both DABC and the artificial atmospheric mixture resulted in significant (p<0.05) increase in the overall incidence of lung nodules, 100% and 46%, respectively, in offspring at 10 months of age compared to controls. Global transcriptional analysis of fetal tissues 24 hrs post-treatment results in treatment-dependent, tissue-dependent and genotype-dependent gene signatures. A pathway-based approach was utilized to identify mechanisms of exposure and link gene signatures to tumor outcome. Network and transcription factor analysis of the gene clusters further resulted in identification of upstream regulators associated with PAH-induced carcinogenesis. These data describe potential mechanisms for DABC and PAH mixtures in vivo that may be linked to downstream carcinogenesis in offspring. Supported by P42 ES016465.

Functional Profiling to Reveal Toxicity Pathways.

C. Vulpe1, W. Varasally1, R. Thomas1, I. Garlova1, B. Garvan1, Y. De La Rosa1, M. Nett1, A. E. Hubbard1, P. Anczkiewicz1 and F. Palcic2. 1Norrional Science and Toxicology, University of California Berkeley, Berkeley, CA; 2Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA; 3University of Liverpool, Liverpool, United Kingdom.

We contend that functionally conserved toxicity pathways underlie adverse cellular responses to toxicants. Therefore, we are using functional profiling in Saccharomyces cerevisiae, to identify the pathways involved in cellular toxicity. In this approach, the ~4500 viable deletion strains were pooled, grown for multiple generations in the presence of a toxicant, and sensitivity of each strain is individually quantified. If a deletion strain is significantly sensitive/resistant, then it provides evidence that the gene product absent in that strain plays a functional role in toxicity. We utilized this approach to identify key susceptibility genes to a wide variety of toxicants. We then assembled functional networks. We used the network inference ARACNE algorithm (using a mutual information threshold of 0.39 (equating to a p-value of 10−8) to infer a network containing 2604 nodes and 33 593 edges representing functional linkage between non-essential genes. We identified key network modules of liver and blood samples. The list of genes that comprise the liver network was found to be enriched in biological processes related to xenobiotic metabolism, cytoprotective, immune response and inflammatory processes. The liver network was found to be significantly enriched for toxicogenomic signatures.

Analyzing screens from multiple toxicant classes, we identified a set of toxicogenomic signatures that are consistently activated in different tissues, including liver, blood and lung. We then performed global transcriptional analysis to identify the pathways involved in cellular toxicity. In this approach, we performed unbiased gene expression analysis of fetal tissues harvested 24 hrs and 10 days post-treatment to identify the key events leading to their toxic effects are not fully elucidated. In addition, little is known about the molecular basis and the underlying toxic mechanisms of exposure to these high levels of pollutants in pregnant women were recruited in Jinchang and Zhangye for collection of paired maternal and cord blood samples. ICP-MS was used to measure the concentrations of Ni, Cu, As, Se and Co in blood samples. ELISA kits were used to measure human C-reactive protein (CRP), interleukin 6 (IL-6), nitrotyrosine, and cotinine. Results: All metals measured were elevated in both maternal and cord blood collected from Jinchang as compared to those from Zhangye, while significant differences were only detected for As, Co, and Se. In addition, Ni and As in cord blood were significantly higher than in maternal blood with cord/maternal ratios of 1.56 ± 0.13 and 1.41 ± 0.25, respectively. Surprisingly, the levels of Cu in cord blood were significantly lower than paired maternal blood (cord/maternal ratios of 0.41 ± 0.04).

The cord blood level of nitrotyrosine in Jinchang was significantly higher than that in Zhangye (p<0.0001). The other inflammatory biomarkers were not significantly different between these two groups. In contrast, CRP in maternal blood was 9 fold higher than cord blood (p<0.0001). The levels of IL-6 and nitrotyrosine were higher in cord blood compared with maternal blood although the differences were not statistically significant. Conclusion: The results suggest that the blood-placenta barrier may effectively prevent transportation of Cu from mother to fetus. On the other hand, Ni and As may easily penetrate placenta barrier and accumulated in cord blood, which may be responsible for the up-regulation of nitrotyrosine.

Objective: Our previous study indicated that the ambient levels of nickel (Ni), copper (Cu), arsenic (As), and selenium (Se) in Jinchang were 76, 25, 17, and 7 fold higher than Zhangye, respectively. This pilot study was conducted in both cities to assess potential adverse effects of prenatal exposures to these high levels of pollutants on the fetus. Methods: A total of 60 healthy non-smoking pregnant women were recruited in Jinchang and Zhangye for collection of paired maternal and cord blood samples. ICP-MS was used to measure the concentrations of Ni, Cu, As, Se and Co in blood samples. ELISA kits were used to measure human C-reactive protein (CRP), interleukin 6 (IL-6), nitrotyrosine, and cotinine. Results: All metals measured were elevated in both maternal and cord blood collected from Jinchang as compared to those from Zhangye, while significant differences were only detected for As, Co, and Se. In addition, Ni and As in cord blood were significantly higher than in maternal blood with cord/maternal ratios of 1.56 ± 0.13 and 1.41 ± 0.25, respectively. Surprisingly, the levels of Cu in cord blood were significantly lower than paired maternal blood (cord/maternal ratios of 0.41 ± 0.04).

The cord blood level of nitrotyrosine in Jinchang was significantly higher than that in Zhangye (p<0.0001). The other inflammatory biomarkers were not significantly different between these two groups. In contrast, CRP in maternal blood was 9 fold higher than cord blood (p<0.0001). The levels of IL-6 and nitrotyrosine were higher in cord blood compared with maternal blood although the differences were not statistically significant. Conclusion: The results suggest that the blood-placenta barrier may effectively prevent transportation of Cu from mother to fetus. On the other hand, Ni and As may easily penetrate placenta barrier and accumulated in cord blood, which may be responsible for the up-regulation of nitrotyrosine.

A comprehensive survey of chemical, diet and genetic perturbations that activate PPARalpha in the mouse liver has not been carried out but would be useful to identify factors that may contribute to PPARalpha-dependent liver tumors. A gene signature dependent on PPARalpha activation was identified by comparing the transcript profiles after exposure to three PPARalpha activators (Wy-14,643, farnesol, and morin) to the wild-type and PAH-depleted liver. In independent experiments using transcript profiles from the livers of chemically-exposed male or female mice, the signature correctly predicted activation by 2 known PPARalpha activators but not 10 activators of other pathways. Individual genes in the signature (i.e., Cyp4a10, Pdk4) were used in RT-PCR experiments to show the specificity of the response to PPARalpha activators compared to chemical-induced activation of other xenobiotic-activated transcription factors. The signature was used with standard classification methods to identify perturbations in which PPARalpha was activated in an Affymetrix compendium of ~750 mouse liver transcript comparisons encompassing a broad range of chemical, dietary and genetic perturbations. We found that PPARalpha is activated by a number of novel chemicals, dietary regimens and genetic mutations. Specific findings include activation by 1) chemicals that cause steatosis (e.g., TCDD, BaP), 2) dietary regimens of triglycerides, "fast food" and "cafeteria" diets, and fish oil, and 3) nullizygous mutations in PPARalpha. The findings increase our understanding of the factors that impact PPARalpha activation and that could contribute to increases in PPARalpha-dependent liver tumors. (This abstract does not represent EPA policy.)

Nickel (Ni), cadmium (Cd) and chromium (Cr) are human lung carcinogens but the key events leading to their toxic effects are not fully elucidated. In addition, little is known about the molecular basis and the underlying toxic mechanisms of exposure to these carcinogenic metals which are frequently observed in environmental exposures. In this study, we investigated the biological responses and effects of the exposures of three metals, individually and in combinations, in BEAS-2B human lung epithelial cells. Utilizing two dimensional gel electrophoresis and mass spectrometry, we identified 455 differentially expressed proteins in BEAS-2B cells exposed to the metals and their mixtures at different doses. The identified protein changes were validated using Western blot and protein functional assays. These altered proteins were mapped to protein interaction networks, toxicity lists, and...
Decabromodiphenyl ether (BDE-209) is a fully brominated diphenyl ether compound used as a flame retardant in polystyrene applications such as casings for computers, upholstery textile and televisions. It is highly lipophilic and persistent and as such it is prone to bioaccumulation and biomagnifications in the food chain. Increasing concentrations of polybrominated diphenyl ethers in wildlife have been documented since the mid 1990s. BDE-209 is a very large molecule, and the gene expression changes that occur in exposed organisms provides evidence to support this. The pathway level and (2) determine the contribution of a metal in a metal mixture. This abstract does not necessarily reflect EPA policy.

559 Environmentally Relevant Concentrations of the Flame Retardant BDE-209 in Sediment Linked to Potential Developmental and Neurotoxic Effects on Zebrafish Embryos.

N. G. Revero Vinas1, L. Escalon1, E. Prats2, J. Stanley2, B. Thienpot1, N. Melby1, F. Balbin1, E. L. Perkins1 and D. Radlau1.

Mississippi State University, Vicksburg, MS; 1US Army, Vicksburg, MS; 2CSIIC, Barcelona, Spain; 3University of Bordeaux, Bordeaux, France.

The U.S. Air Force is pursuing development of alternative fuels to augment or replace JP-8 jet fuel. Hydroprocessed Esters and Fatty Acids-Mixed Fats (HEFA-F) jet fuel was administered as an aerosol and vapor mixture to 5 male and 5 female Fischer-344 rats per group. Inhalation exposures lasted 6 hours per day for 1 day (with and without an 11-day recovery period), 5 days or 10 days (5 days per week for 2 weeks). Concentrations for each exposure were 0, 200, 700 and 2000 mg/m³; mean aerosol percent were 0, 7, 22 and 28%, respectively. There were no significant changes in male or female body weights due to HEFA-F exposure at any time point. Food and water consumption, urinalysis, clinical pathology, lung histology and cytokine analysis of the lungs, bronchoalveolar lavage fluid, and serum were examined. Caudal lung tissue was analyzed for cytokines, chemokines and receptors using a PCR array for rat inflammatory cytokines and receptors kit; no significant changes were seen. Male kidney weight increases were likely related to hyaline droplet formation, relevant only to male rats. Nasal cavity changes included olfactory epithelial degeneration at 2000 mg/m³. Alveolar inflammation was seen in the 2 higher doses at 10 days. To examine sensory irritation, male Swiss-Webster mice were exposed nose-only to 2000 mg/m³ HEFA-F for 30 minutes, resulting in 23% respiratory depression.

560 The Induction of Oxidative Stress by Mixtures of Dichloroacetate and Trichloroacetate in the Livers of Mice after Subchronic Exposure.

F. Hassoun and J. Cearfoss. Pharmacology, University of Toledo, Toledo, OH.

Dichloroacetate (DCA) and trichloroacetate (TCA) are drinking water chlorination byproducts and were previously found to induce oxidative stress (OS) in the hepatic tissues of B6C3F1 male mice after subacute and subchronic exposures. In order to determine the effects of mixtures of DCA and TCA on OS induction in the hepatic tissues, groups of male B6C3F1 mice were treated daily, by gavage, with 3 different mixtures (Mix I, Mix II and Mix III) of the compounds for 13 weeks. The concentrations of the compounds in Mix I, II and III, respectively corresponded to those producing approximately 15%, 25% and 35% of maximal induction of OS by the individual compounds in the subchronic studies. The mice were euthanized at the end of the treatment period and livers were assayed for the biomarkers of OS that were expected to significantly increase the risk of exposure to the individual compounds. (Supported by NIH/NIEHS grant # R15ES013706-01A2).
Many adverse effects of the ambient air pollution have been linked to polycyclic aromatic hydrocarbons (PAHs) occurring in the complex mixture adsorbed onto airborne particles. Besides their genotoxic effect, some of them are known to act via aryl hydrocarbon receptor (AhR)-mediated nongenotoxic and tumor promoting mechanism. This study employed human lung adenocarcinoma cells (A549) to investigate the effect of complex mixture of the air pollutants on the global gene expression changes. We determined whole-genome gene expression profiles (illumina platform) of cells treated with organic extracts (EOMs) from particulate matter (<2.5 μm) collected in four localities in the Czech Republic differing in the level of the air pollution. Simultaneously, detailed chemical analysis of EOMs from each locality was performed. Despite various sources, EOMs exhibited equal qualitative composition although the absolute level of PAHs and other pollutants in the most polluted locality was much higher comparing to other localities. Gene expression profiles of cells treated with equal amounts of EOM from each locality showed similar patterns. No significant diversity among localities was found. Goeman’s global test and KEGG pathway database were applied to identify the most deregulated pathways and contributing genes. We observed significantly deregulated processes and genes common for all localities including metabolism of amino acids such as glycine, serine and threonine (SHMT2, PSAT1), xenobiotic metabolism (CYP1B1, ALDH3A1), vitamins B metabolism (PDCKX), TGF-beta signaling (SMAD3), immune system and infectious diseases (IL8, PTGS2) or cell cycle (E2F2, CCND3). It has been proposed that most of them are modulated by activated Ah-receptor. Our results suggest the prominent role of activated Ah-receptor and other events possibly leading to the metabolic reprogramming and tumor promotion in A549 cells. Support: Grant Agency of the Czech Republic (CZ-15913/11/0142).

Abstract

Chronic human health hazard evaluations of chemical mixtures are challenging and generally rely on similarities in toxicity mechanisms and dose-additivity of chemicals in the mixture. However, such assessments are inadequate for highly complex mixtures such as those present in groundwater at biodegrading petroleum sites where thousands of compounds representing many distinct structural classes of chemicals may be present. A hazard ranking system based on USEPA Reference Doses (RfDs) was developed to evaluate the potential chronic human health hazards presented by complex mixtures of polar petroleum biodegradation products in water. Equivalent risk-based drinking water concentrations for the range of identified RfDs were derived using the USEPA Regional Screening Level (RLS) equation for Tap Water Screening Levels (SWater-nc).

Based on the RfDs of representative chemicals for each structural class of potential biodegradation products, overall summary hazard rankings of “Low”, “Low to Moderate”, and “Moderate”, were assigned. Classes constituting chemicals with RfDs ≥ 0.1 mg/kg/day were defined as being of “Low” hazard; “Low to Moderate” if 0.1-RfD ≤ 0.01 mg/kg/day, and “Moderate” if 0.01-RfD ≥ 0.001 mg/kg/day. These three groups included essentially all of the potential polar biodegradation products for which RfDs were available. This RfD based system is consistent with similar systems developed by USEPA OPPTS and UN GHS programs and was validated by review of USEPA summary documents.

The ranking system was applied to groundwater samples collected from biodegrading petroleum sites and the results show that the vast majority of the polar biodegradation products are in structural classes that may present “Low” hazard to humans. Overall, the polar mixtures are unlikely to present a significant risk to human health if consumed as drinking water.

Evaluation of Additivity of Binary Mixtures of Perfluoroalkyl Acids (PFAAs) on Peroxisome Proliferator-Activated Receptor-Alpha (PPARα) Activation In Vitro

Perfluoralkyl acids (PFAAs) are found globally in the environment and in animal tissues, and are present as mixtures of PFAA congeners. Mechanistic studies have found that in vivo effects of PFAAs are mediated by PPARα. Our previous studies showed that individual PFAAs activate PPARα translocated into COS-1 cells. Here we evaluated whether binary combinations of perfluorooctanoic acid (PFOA, C8) and other PFAAs interact in an additive fashion to activate PPARα. COS-1 cells in 96 well plates were transiently transfected with mouse PPARα luciferase reporter plasmid. After 24 hours, cells were exposed to either vehicle control (0.1% DMSO or water), PPARα agonist (WY14643, 10 μM), C8 or perfluorononanoic acid (C9) at 1 - 128 μM, perfluoroheptanoic acid (C6) at 8 - 1024 μM, or perfluorooctane sulfonate (C8S) at 4 – 384 μM to generate sigmoidal dose-response curves. In addition, cells in the same plate were exposed to binary combinations of C8 + either C6, C9, or C8S, in an 8x8 factorial design. After 24 hours of exposure, cells were lysed and luciferase activity was measured. Data were transformed on a fold-induction and % maximal response basis. The dose-response data for individual chemicals were fit to sigmoidal curves and analyzed with nonlinear regression to generate EC50s and Hill slopes, which were used in response-addition and dose-addition models to calculate predicted responses for mixtures. All PFOA+PFAA combinations produced dose-response curves that were closely aligned with the predicted curves for both response addition and dose addition. However, at higher concentrations of all chemicals, the observed response curves deviated upward from the predicted models of additivity, although with more variability. We conclude that at the lower concentration ranges, binary combinations of PFAAs behave additively in activating PPARα in the COS-1 cell system. This abstract does not necessarily reflect USEPA policy.

H. Libalova, K. Uhiriova, J. Klement, M. Machalá, M. Ciganek, J. Topinka and R. Sram

Institute of Experimental Medicine AS CR, Prague, Czech Republic; Czech Technical University, Prague, Czech Republic; Veterinary Research Institute, Brno, Czech Republic.

Repeat-Dose and Developmental Toxicity Assessment of Crude Oil

R. H. Mckee1, J. M. Nicolich1, T. Roy1, R. White1 and W. Daughtrey1

1Toxicology and Environmental Sciences, ExxonMobil Biomedical Sciences, Inc., Annandale, NJ; 2COGIMET, Lambertville, NJ; 3Port Royal Research, Hilton Head, SC; 4University of South Carolina, Beaufort, SC; 5American Petroleum Institute, Washington DC.

Abstract

Petroleum (commonly called crude oil), CAS number 8002-05-9, is a complex substance of variable composition, primarily composed of hydrocarbon constituents. The principal acute toxicological hazards are those associated with exposure to volatile hydrocarbon constituents and hydrogen sulfide, and chronic hazards are associated with exposure to benzene and polycyclic aromatic compounds (PAC). To further characterize the potential for repeated dose and/or developmental effects from dermal contact, the PAC content of 46 crude oils was measured using a method based on DMSO extraction followed by GC separation and quantitation of the aromatic ring classes (ARC). Statistical models were then used to predict the potential for target organ and developmental toxicity of the 46 crude oils based on their ARC profiles. We compared model predictions to empirical data from previously tested crude oils, showing that one of the previously tested oils approximated a “worst case” situation. Thus, this modeling exercise demonstrated that data from previously tested crude oils could be used to form a reasonable basis for characterizing the repeated dose and developmental toxicological hazards of crude oils in general.

Insights from Initial Analysis for Harmful and Potentially Hazardous Constituents (HPHC) in Tobacco Products

M. Oldham, D. DeSoi, K. A. Wagner and M. J. Morton

Altria Client Services, Richmond, VA.

A total of 20 commercial cigarette and 16 commercial smokeless tobacco products were initially assayed for 96 HPHC (Draft HPHC list, Federal Register, August 12, 2011) prior to draft guidance by FDA (March 30, 2012). The FDA Draft Guidance specified a reduced list of HPHC with morereplicates than initially tested. Three contract laboratories were used to complete all testing. The same lots of commercial product were used for all testing. Cigarettes were tested using both the ISO and Canadian intense smoking regimens. In general, the levels of HPHC...
constituents in the commercial products tested were consistent with levels previ-ously reported in the literature. Approximately 12% of HPHC measured for ciga-rettes and smokeless tobacco products were not found or were below the limit of quantification. Comparison of initial HPHC results with results from additional replicates demonstrated statistically significant differences for most HPHC (i.e. temporal variability). Therefore, simple conventional comparisons, such as two-sample t-tests are inadequate for comparing results from different laboratories. Additionally, all of the HPHC in mainstream cigarette smoke were correlated to tar yield as previously reported in the literature.

Although each analytical assay was validated within a laboratory, some HPHC results were quite different between laboratories. These differences demonstrate the need for standardized methods between laboratories with defined repeatability and reproducibility determined by inter-laboratory collaborative testing for each HPHC using certified reference standards. Since no one-to-one relationship of tobacco constituent to human disease exists, the biological relevance of these HPHC results to human disease is unknown.

568 Different Toxicity Outcomes in Rats Correlated with EPR and NMR Spectra of Crude Oil from Various Sources.

S. A. Meyer1, S. Jaliagam1, K. A. El Sayed2 and T. R. Duggal1. 1Toxicology, University LA-Monroe, Monroe, LA; 2Basic Pharmaceutical Sciences, University LA-Monroe, Monroe, LA; 1Pharmacology, Toxicology & Neurosciences, LSU Health Sciences Center, Shreveport, LA.

Crude oil varies with source in its relative composition of alkanes, simple and poly-cyclic aromatics, nitrogen, sulfur, asphaltene and porphyrin nickel and vanadium. Here, we identify several toxicological effects upon acute exposure of rats to crude oil from different sources. We correlate these with peaks of select constituents from spectroscopy of the crude oils obtained with EPR and 1H- and 13C-NMR. Sources of oil were Louisiana sweet crude, Nigerian (Qua Iboe) sweet crude and Iraqi high sulfur (ONTA, Inc., Toronto, Canada). Female Sprague-Dawley rats were given 2 daily doses of 2.5 and 5 ml/kg of oil or vehicle (0.5% DMSO in corn oil) by oral gavage. Rats were euthanized after 48 h and blood was taken for hematology, clinical chemisty and immunoanalysis for cytokines and vasoactive agents. Femur bone marrow cells were assayed for CFU-GM myeloid progenitors. All oils elevated serum alkaline phosphatase (ALP) with LA oil being least active, in agreement with liver pathology. Liver weight increased 25-75% and CYPIA1 protein was elevated with all, Iraqi oil being most effective. Granulocytes increased ~2-fold by high dose of LA and Iraqi oil. Spleen weights decreased 30% with high dose of Iraqi and Nigerian oil. CFU-GM decreased only with high dose of LA oil (40%). Vasoconstrictor endothelin-1 increased 2-fold in serum from rats treated with Iraqi and Nigerian oils. ‘H- and 13C-NMR spectra gave qualitatively similar alkane peaks for all oils, but differing aromatic peaks, e.g., benzene (‘H-NMR 7.38 ppm) of Iraqi oil was least intense. EPR spectra of all oils exhibited asphaltene free radical peaks with intensity greatest for Iraqi oil. Vanadium porphyrin was detected in Iraqi oil only. Summarizing, LA sweet crude oil was uniquely myelosuppressive and with lesser effect on spleen and liver weights and ALP. Iraqi oil, richest in asphaltene free radical and vanadium porphyrin and lowest in benzene, most affected liver weight and CYPIA1 (LA Board of Regents).

569 Complex Mixtures of PAHs Are More Potent Than Benzo[a]pyrene at Inducing Cellular Inflammatory and DNA-Damage Response.

K. Dreij1, I. W. Jarvis1, C. Bergvall2, M. Bottai1, G. A. Umbezaude1, R. Westerholm1 and U. Stenius1. 1Institute Environmental Medicine, Karolinska Institute, Stockholm, Sweden; 2Department Analytical Chemistry, Stockholm University, Stockholm, Sweden; 3Faculty of Technology, State University of Campinas, Limeira, Brazil. Sponsor: G. Johanson.

Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse health effects including cancer and cardiovascular disease. We hypothesize that interactions between different PAHs stand for a major biological effect. We have previously showed that soil PAH extracts induce persistent DNA damage including prolonged activation of the DNA damage response (DDR) markers H2AX and Chk1. To further study the effects of mixtures of PAHs biological testing of air PM extracts were performed using human HepG2 and H1395 cells and sensitive cellular endpoints relevant for carcinogenesis (DNA damage response) and cardiovascular pathogenesis (inflammation signaling). The cellular response was compared to benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP). The results showed a more additive response for binary mixtures of BP and DBP on activation of Chk1. Persistent activation of DNA damage signaling was observed at significantly lower concentrations of air PM extracts than BP alone. Activation of DNA damage signaling was more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute to the genotoxicity of PAHs in air PM. Furthermore, we observed significant up-regulation of pro-inflammatory stress responsive genes including several cytokines in response to air PM extracts corresponding to 1 nM BP. Employing specific inhibitors showed that the activation of inflammatory signaling was mediated through the NF-kappaB and MAPK signaling. Taken together, our data indicate synergistic events due to PAH interactions. This suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs.

570 Individual and Cumulative Health Risk Assessment of 17 PFAs in the Swedish Population.

D. Borg1, B. Lund2, N. Lindquist2 and H. Hakanson1. 1Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden; 2Swedish Chemicals Agency (Kemla), Stockholm, Sweden.

Perfluoroalkylated and polyfluoroalkylated substances (PFASs) are a large class of chemicals that have emerged as global environmental contaminants. This study, carried out in accordance with the European chemicals legislation (REACH) guidelines for risk assessment, evaluated possible health risks of 17 PFAS congeners in the Swedish population. The exposure assessment was based on blood and serum levels from biomonitoring studies in the Swedish population. Population groups considered were the general population and occupationally exposed professional ski waxers. The hazard assessment primarily considered hepatotoxicity and reproductive toxicity which were endpoints shared by the selected congeners. Read-across was performed to the closest most potent congener for 12/17 congeners lacking toxicological data and/or internal dose levels. The result of the risk characterization showed no cause for concern for hepatotoxicity or reproductive toxicity in the general population, except for hepatotoxicity in a sub-population eating PFOS-contaminated fish. However, a cause for concern was identified for the non-conventional endpoints disrupted mammary gland development and immunotoxicity. For the occupationally exposed professional ski waxers safe use could not be shown based on concern for liver toxicity by PFOA and all congeners in combination, for repro-ductive toxicity by all congeners in combination as well as for disrupted mammary gland development and immunotoxicity. This is the first attempt to assess the health risks to a combination of a large number of PFASs.

571 Mixtures of Benzo(A)Pyrene with Direct or Indirect Acting Mutagens Have a Nonmonotonic Mutation Profile.

R. David and N. J. Gooderham. Imperial College, London, United Kingdom.

Genotoxic carcinogens are present in the human diet, and Benzo(a)pyrene (BaP), 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and acrylamide (AC) represent three important examples. BaP is a polycyclic aromatic hydrocarbon generated by incomplete combustion of organic substances such as lipids, thus contaminating numerous foodstuffs. PhIP is a heterocyclic amine formed when meat is cooked, and AC forms when foods, such as potatoes and cereals, are cooked at temperatures exceeding 100°C. Individually these have been shown to genotoxic but the biological consequences of exposure to mixtures of these chemicals have not been systematically examined.

The aim of the current study was to examine the biological response of MCL-5 cells (metabolically competent human lymphoblastoid cell line) to mixtures of these genotoxins at concentrations relevant to human exposure (μM to sub-nM). Cells were exposed to the chemicals individually or in mixtures for 24h and mutagenicity was assessed through resistance to triethylnitrosurea at the thymidine kinase (TK) locus and 6-thioguanine at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus. At the TK locus the mixtures produced non-monotonic mutation responses; 100nM BaP combined with some low, non-mutagenic concentrations of other mutagens showed synergism, while antagonism was observed for 10μM BaP in mixtures with higher concentrations of other genotoxins. Responses differed between the two loci, with a higher than anticipated mutation frequency (MF) observed for high concentration combinations at HPRT compared to TK. Combining 10μM BaP with 100μM PhIP reduced the number of cells in S phase with a corresponding increase in sub-G1 and G1. Moreover, ethoxyresorufin-O-deethylase (EROD; CYPIA1) activity and CYPIA1 mRNA levels significantly correlated with each other and with the MF at TK emphasising the involvement of the CYPIA1 family in this mutation response. This non-monotonous MF is of significance when considering risk assessment, especially at low concentration combinations where the individual chemicals are not measurably mutagenic.

K. Joshi and C. Gennings, Virginia Commonwealth University, Richmond, VA.

When assessing risks posed by environmental chemical mixtures, whole mixture approaches are preferred to component approaches. When toxicological data on whole mixtures as they occur in the environment are not available, EPA guidance states that toxicity data from one or more mixtures considered “similarly sufficient” to the environmental mixture(s) can serve as surrogates. However, the selection process of which mixtures to experimentally evaluate is an open line of inquiry. The objective of our study was to demonstrate a proof-of-concept strategy for the selection process using a mixture of 17 polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs) based on (i) human biomonitoring data from the National Health and Nutrition Examination Survey (NHANES); and (ii) single chemical dose response models from the literature. Principal component (PC) analysis was conducted to identify patterns of chemicals present in humans as measured in serum concentrations in the US population using NHANES data. Five different concentration patterns were found to represent 82% of the variation in the mixture concentrations for these 17 chemicals. Population-based median concentration estimates for the chemicals identified by large absolute values in the PCs were used to define mixing proportions for the five mixtures. Robust optimal designs, using a maximin optimization criterion which is robust to model misspecification, were determined for the mixtures using published dose-response models in Crofton et al (2005, EHP).

The approach provides design information for conducting mixtures studies in support of a whole mixtures risk assessment. Next steps include estimating the dose values required to approximate the blood concentrations in the mixtures. Determining how representative these mixtures are to the population concentrations while testing for sufficient similarity is a long-range research goal. (The authors gratefully acknowledge the support from #R01ES015276, #T32 ES007334, and #UL1TR000058.)

573 Coexpression to Low-Dose Model Testicular Toxins Induces Gene Alterations.

N. Catlin, S. M. Huse and K. Boekelheide, Brown University, Providence, RI.

Testicular effects of chemical mixtures may differ from those of the individual chemical constituents. This study assesses the co-exposure effects of the model germ cell- and Sertoli cell-specific toxins, X-radiation (x-ray) and 2,5-hexadienoic acid (HD), respectively. X-ray induces germ cell apoptosis and HD has been shown to attenuate the x-ray effect on germ cells. Adult rats were exposed to different levels of x-ray (0.5Gy, 1Gy, 2Gy), HD in the drinking water for 18 days (0.33%, 1%), alone or in combination. Custom PCR arrays were generated based on a panel of genes identified through microarray studies; hierarchical clustering of these PCR arrays identified dose-dependent treatment effects on the apoptosis-related genes Fas, Aen, and Casp3. The 2Gy + 1% HD co-exposure induced Aen and Casp3 expression, with a maximum fold induction of 3.1 and 2.6, respectively. Also, Fas was significantly induced 2.6-fold at this co-exposure dose, despite no induction of Casp3, Fas, or Aen expression by x-ray or HD alone. In order to assess cell type-specific attenuation of HD effects with x-ray co-exposure, we used laser microdissection (LCM) to examine a panel of apoptosis-related transcripts using PCR arrays. Several pro-apoptotic genes were identified, which increase with a fold change greater than 1.4 after 2Gy x-ray exposure, including Fas3, Tral, and Fas. We also identified an anti-apoptotic gene, Bcl2a1d, which increases in fold change across the different exposures (0.33% HD, 1.3 fold; 2Gy x-ray, 1.6 fold; 0.33% HD + 2Gy, 3.1 fold). Ingenuity Pathway Analysis of the gene expression data produced two over-represented pathways across all treatment groups examined with LCM: Induction of Apoptosis by HIV1 and Death Receptor Signaling. We amplified LCM RNA and examined the same apoptosis transcripts. When compared to our unamplified RNA, we found a Pearson correlation coefficient of 0.64, indicating that use of amplified LCM RNA may introduce significant bias. These results provide insight into environmentally relevant low-dose co-exposures of model testicular toxicants.

574 Development of a Portable In Vitro System for Lab. and Field Aerosol Exposure Studies.

J. Zava, K. Lichtveld, S. Ebersviller, G. W. Walters, H. E. Jeffries, K. G. Sexton, W. Vizziute, J. Rusyn and J. Jaspers, Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC.

There is a growing interest in studying the toxicity of multi-pollutant mixtures found in ambient air, and the U.S. Environmental Protection Agency (EPA) is moving towards setting standards for these types of mixtures. Conventional in vitro exposure methods do not properly emulate human exposures and are not adequate to demonstrate the entire FRK between a complex plan to demonstrate a direct link between quality and health effects. Exposure of cells at the air-liquid interface (ALI) is the most realistic approach to emulate in vivo exposures. A new portable in vitro system that uses electrostatics to deposit particles onto the cells has been developed and this study demonstrates the efficacy of this device. The portable system provides a viable environment within its microscopic fields ideal for human lung cultured on permeable membrane supports. This method provides an efficient and effective way to expose cells to particles without prior collection and subsequent resuspension in a liquid medium. Cell viability testing included maintaining normal cell culture conditions for exposures across the ALI for periods of up to 4 hours outside of a tissue culture incubator. Results from all cell viability testing with A549 human lung cells show that no parts, components, materials or operating characteristics of the portable sampler induce any cytotoxicity, as measured by lactate dehydrogenase (LDH), or inflammatory response, as measured by interleukin-8 (IL-8). A549 cells were then exposed to photochemically-aged diesel exhaust (DE) using the UNC rooftop smog chamber. An exposure dose of 3.6 μg of DE particles in air was delivered to the cells and a 3-fold increase in LDH and IL-8 was observed when compared to controls. This new device can serve as a stepping-stone for researchers and engineers to develop new and improved in vitro exposure technology suitable for field use.

575 Chemical Dispersants Used in the Gulf of Mexico Are Cytotoxic to Human Lung and Skin Fibroblasts.

J. Wise1,2, S. Wise1,2,3, H. Xie1,2,3, J. Griffin4 and J. Wise1,2,3, 1Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME; 2Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, ME; 3Department of Applied Medical Science, University of Southern Maine, Portland, ME; 4Department of Coastal Sciences, University of Southern Mississippi, Ocean Springs, MS.

Chemical dispersants are chemicals compounds that can be used to aid in the cleanup of crude oil spills. In 2010, they became a significant public health concern due to the BP Deepwater Horizon Oil Crisis; when millions of gallons of chemical dispersants specifically Corexit® 9527 and 9500 were applied via aerial spray and deepwater injection to break up the crude oil. Toxicity of Corexit® to humans is unknown, and the primary routes of exposure to these chemical dispersants are inhalation, direct dermal contact and ingestion. The objective of this study is to determine the cytotoxicity and genotoxicity of these two dispersants in human lung (WHTBF-6) and skin (BjHtERT) fibroblasts. Cells were treated with and without 59 fractions with cofactors, because fibroblast cells may not readily express cytochrome P450 enzymes necessary to metabolize chemicals. Corexit® 9500 was cytotoxic to lung and skin cells. Specifically in skin, 50, 250, 350 and 500 ppm, it induced 95, 89, 52, and 3 percent relative survival, respectively. 59-mediated metabolism increased toxicity inducing 78, 84, 39 and 2 percent relative survival, respectively. Corexit® 9527 induced 68 and 20 percent relative survival, respectively. Our genotoxicity data is less clear. Corexit® 9527 induced 68 alterations per 100 metaphases at 850 ppm, but caused cell cycle arrest at 875 ppm. Similarly Corexit® 9500 induced 14 aberrations per 100 metaphases at 350 ppm, but caused cell cycle arrest at 425 ppm. Ongoing and future work will consider the effects of dispersed oil.

576 Micronanoparticle Suspension Formulation Development for Medical Chemical Countermeasures.

L. Cabell1, J. McDonough1, A. Clark1, T. Belski2 and L. Mobley3, 1SWRI, San Antonio, TX; 2CBSM/MITTS, Frederick, MD. Sponsor: L. Johnson.

Current U.S. medical chemical countermeasures require battlefield stability and an effective shelf life. One example is bis-pyridinium oximes that are used for the treatment of Organophosphate (OP) intoxication to counter the effects of AChE inhibition. This class of oximes poses poor thermal stability in an aqueous formulation. In a hydrolytic cleavage, CBMS and SWRI have developed non-Newtonian suspension formulations of oximes in cotsomseed oil (CSO) vehicles that impart oxime solid stability characteristics to oxime/CSO liquid suspension formulations. MMb4 DMS and Ht-6 DMS have shown superior thermal stability in these liquid suspension formulations compared to aqueous formulations and equal thermal stability compared to solid formulations. These types of formulations have shown bioavailability comparable to parent active pharmaceutical ingredients (API) in aqueous formulations. Cmax and Tmax for these APIs are relatively the same with absorption and elimination not substantially affected. In principle, these types of formulation methods provide a strategy for the formation of solid oximes that could be transported as a dry powder in vehicles for battlefield stability and distribution.
Concentration addition is a standard toxicological method for analyzing mixtures of similarly acting compounds. A significant limitation of concentration addition is that it cannot be used to describe the effect of mixtures containing partial agonists at response levels above that for the compound with lowest efficacy. Unfortunately, partial agonism is a common phenomenon, limiting the application of concentration addition. We previously proposed generalized concentration addition (GCA) as a solution to this issue and successfully used this method to describe data from experiments involving mixtures of full and partial agonists of the AhR receptor. GCA requires the use of dose-response functions that are invertible over the relevant range. This posed no problem for the AhR-ligand systems described by a Hill function.

To enhance the health effects of residential radon and should be considered as part of any risk assessment. (The views expressed in this abstract are those of the authors and do not necessarily represent the views or policies of ATSDR.)

The Department of Defense is actively pursuing the development of alternative fuels to augment or replace petroleum-based jet fuels. Towards these efforts, numerous synthetic and biologically-based fuels are currently under consideration for military use. Given the widespread use of fuels within the military, the health effects associated with occupational exposure to fuels remains a concern. Toxicity studies are being performed with the fuels in order to assess any possible health effects related to fuel exposure. Hydroprocessed Esters and Fatty Acids jet fuel (HEFA) is a type of hydrotreated renewable jet fuel currently under consideration. One specific type of HEFA is generated from oils extracted from the camelina plant (Camelina sativa; HEFA-C). In order to evaluate potential toxicity of HEFA-C, an in vivo 90-day whole body inhalation study was performed with the fuel (concentrations of 0, 200, 700 and 2800 mg/m³ for 6h/day, 5 days/week) using male and female Fischer 344 rats. Following exposure, a series of toxicity endpoints was evaluated, including food consumption and body weight, genotoxicity by micronucleus (MN) test, neurotoxicity and histopathology. There was no change in food consumption attributed to fuel exposure and the average body weight was found to slightly decrease (not statistically significant) in animals exposed to the high concentration. MN test was negative for evidence of genotoxicity. No significant effects were observed on clinical chemistry or hematology evaluations and no significant neurobehavioral effects were observed based on functional observational battery and motor activity tests. Minimal effects attributable to exposure to HEFA-C were observed with histopathology. These effects included goblet cell hyperplasia and olfactory epithelium degeneration at the highest concentration of exposure. These data will help guide the establishment of an occupational exposure limit for this alternative jet fuel.
Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is one of the most commonly applied herbicides in the United States. It is a potent endocrine disruptor and affects a variety of reproductive traits in vertebrates, such as sperm number and motility, as well as, sperm capacitation. We are studying the effects of atrazine exposure on genome wide expression levels (RNA-seq) in the model genetic system, Drosophila melanogaster. Male flies were reared throughout their entire life cycle on either control food or food containing 20 ppm atrazine and flash frozen at 4 to 6 days old. Two biological replicates, each consisting of a pool of 40 flies, were prepared for each condition and were multiplexed in a single lane of an Illumina HiSeq2000, yielding at least 10 million reads per replicate. We used different combinations of read-counting procedures (HTseq, RSEM) and testing statistics (DEseq, baySeq) in all 4 possible combinations to determine differentially expressed genes. Twenty six genes that showed consistent expression differences (i.e. ranked in the top 50 significant genes of the different analyses) were analyzed using qRT-PCR (20 control and exposed replicates). Eleven of these 26 genes were significantly changed after 20 ppm atrazine exposure. Most of these genes are currently uncharacterized and have not been previously shown to be affected by environmental stressors. Future work will investigate how polymorphisms in these genes impact susceptibility.

581 Chemical Characterization of Complex Aromatic Flame Retardants for Toxicological Studies.
R. Harris1, M. Kroenke1, J. Van Scoy1, Q. Lawrence1, B. O’Brien1, A. Ammenhauser1, L. Siemann1, K. Aillon1, J. Algaier1, B. Collins2 and S. Waidyanatha2. MRIGlobal, Kansas City, MO; 2National Toxicology Program, NIEHS, Research Triangle Park, NC.

Aromatic phosphates (APs), which are replacing polybrominated diphenyl ethers as flame retardants, contain multiple isomeric forms and are formulated with other flame retardants in commercial products. Manufacturer and lot-to-lot variation add to the complexity of AP products, making toxicity data interpretation difficult with respect to individual product components.

Six APs [triphenyl phosphate (TPP), tert-butylphenyl diphenyl phosphate (BPDP), tricresyl phosphate (TCP), 2-ethylhexyl diphenyl phosphate (EHPD), isodecyl diphenyl phosphate (IDDP), and phenol, isopropylated phenol phosphate (3:1) (IPPP)] were nominated to the National Toxicology Program (NTP) for toxicity testing. MRIGlobal supported the NTP by performing chemical identity and purity studies on the selected chemicals.

GC/FID was used to separate components of each AP and GC/MS or NMR was used to identify components. TPP and EHPD were of low complexity. TPP contained a single component with chromatographic purity of 93.9% and no variation between 2 lots of a supplier. EHPD from 2 suppliers contained 3 components and had chromatographic purities of 98.5 and 97.4%. Both lots contained TPP at similar concentrations (1.5 vs. 2.5%). BPDP and TCP were considered to be moderately complex. A list of BPDP contained 6 major components, identified as BPDP isomers and TPP. A lot of TCP contained 10 major components identified as TCP isomers and TPP. IDDP and IPP were considered highly complex with over 20 major components. Seven lots of IPP from 5 vendors, contained TPP and 14 other major components identified as IPP isomers. Three IDDP lots from 3 vendors contained TPP and more than 30 components, identified as IDDP isomers or structurally similar analogs. Both IPP and IDDP demonstrated a high degree of lot-to-lot variability and large supplier differences.

582 Preparation of Toxicological Studies: Principal Component Analysis of Isopropylated Phenol Phosphate.
J. Algaier1, M. Kroenke1, L. Luca1, K. Bauer1, K. Aillon1, L. Siemann1, R. Harris1, B. Collins2 and S. Waidyanatha2. MRIGlobal, Kansas City, MO; 2National Toxicology Program, NIEHS, Research Triangle Park, NC.

Phenol, Isopropylated Phosphate (3:1, IPP) is one of many multi-component aryl phosphate flame retardants also used as plasticizers in products such as polyurethanes, textile coatings, and paints. Due to potential consumer exposure and the lack of adequate toxicity data, IPP has been selected for evaluation by the National Toxicology Program (NTP). MRIGlobal supported the NTP by procuring seven different IPP lots from five suppliers and chemically characterizing the material. IPP characterization will not only inform the NTP of the material’s complexity, but may allow for source identification of IPP used in product mixtures. Each IPP lot was analyzed and chromatographically fingerprinted following the development of a gas chromatographic/flame ionization detection method. Each lot contained 25 to 30 components pointing towards the existence of mono- bis- or tris-isopropylated phenyl groups and multiple positional isomers. With this many components, simple chromatographic overlays do not allow for complex data evaluation and understanding of the dynamic nature of these lots.

To achieve a better understanding of IPP component complexity Principal Component Analysis (PCA) was performed. PCA, a common multivariate statistical technique for finding patterns in data of high dimension, was used to find principal components, the first 2 explained 56% and the first 3 explained 75% of the total variance in the data. A 3-D plot of the data clearly demonstrated supplier grouping, enabling identification of specific suppliers. Commercial products may now be compared to these fingerprints for possible source identification.

583 The Effects of Atrazine Exposure on Genome Wide Expression Levels in Male Drosophila melanogaster.
M. Xie1, J. Walters2 and A. C. Fiumera1. 1Biological Sciences, Binghamton University, Binghamton, NY; 2Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS; Sponsor: A. Fiumera.

Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is one of the most commonly applied herbicides in the United States to control broad leaf and grassy weeds. Although beneficial in agriculture, atrazine can also be a potential environmental toxicant. It has been detected at low concentrations in surface water, ground water and precipitation. In addition, many studies demonstrate that atrazine is a potent endocrine disruptor and affects a variety of reproductive traits in vertebrates, such as sperm number and motility, as well as, sperm capacitation. We are studying the effects of atrazine exposure on genome wide expression levels (RNA-seq) in the model genetic system, Drosophila melanogaster. Male flies were reared throughout their entire life cycle on either control food or food containing 20 ppm atrazine and flash frozen at 4 to 6 days old. Two biological replicates, each consisting of a pool of 40 flies, were prepared for each condition and were multiplexed in a single lane of an Illumina HiSeq2000, yielding at least 10 million reads per replicate. We used different combinations of read-counting procedures (HTseq, RSEM) and testing statistics (DEseq, baySeq) in all 4 possible combinations to determine differentially expressed genes. Twenty six genes that showed consistent expression differences (i.e. ranked in the top 50 significant genes of the different analyses) were analyzed using qRT-PCR (20 control and exposed replicates). Eleven of these 26 genes were significantly changed after 20 ppm atrazine exposure. Most of these genes are currently uncharacterized and have not been previously shown to be affected by environmental stressors. Future work will investigate how polymorphisms in these genes impact susceptibility.

584 Effects of Atrazine Exposure on Male Reproductive Performance in Drosophila melanogaster.
A. R. Vogel and A. C. Fiumera. Biological Sciences, Binghamton University, Vestal, NY; Sponsor: A. Fiumera.

Atrazine is one of the most commonly applied herbicides in the United States. In a variety of vertebrate classes, atrazine can feminize males and reduce their reproductive performance, likely through its effects on aromatase. Much less is known, however, about the effects of atrazine on invertebrates. In this study, we investigate the effects of larval atrazine exposure (4 ecologically relevant concentrations and unexposed controls) on reproductive performance of adult male Drosophila melanogaster. We scored male mating rate when mating to virgins (matings) and previously mated females (remating rate), as well as, a male’s ability to prevent the female from remating (refractoriness). We also scored measures of male induced female fertility, including egg laying rate and total progeny production. Atrazine exposure significantly negatively affected male mating rate (p = 0.010), male induced egg laying rate (p = 0.0001) and total progeny production (p = 0.012). It had no effect on refractoriness. In general, we observed non-monotonic responses such that the intermediate exposure levels showed the largest reduction in male reproductive performance. For example, male remating rate was reduced between the unexposed controls and individuals reared on food with 2 ppm atrazine (p = 0.05) but not for flies reared on 20 ppm food. Ongoing work is investigating sperm sperm transfer, storage and utilization rates.

585 Effects of the Herbicide Trifluralin in HepG2 Cell Culture.
M. F. Franco1 and D. J. Dona2. 1Universidade de São Paulo (USP), Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Ribeirão Preto, Brazil; 2Department of Chemistry, Universidade de São Paulo (USP), Faculdades de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Ribeirão Preto, Brazil.

The emerging contaminants are a new category of xenobiotics widely distributed in the environment. These contaminants include pesticides, within them are the herbicides, a heterogeneous category of chemical products, designed to control weeds. Trifluralin ((α,α,α - trifluro - 2,6 - dimetro - N,N - dipropil - p - toluide) is a herbicide used on many agronomic crops. The present study aimed to evaluate the cytotoxic effects of the Trifluralin in HepG2 cell culture through the assays of cell proliferation, cell viability and mitochondrial membrane potential. It was used concentrations of 1, 5, 10, 20, 50 and 100μM of trifluralin, dissolved in dimethylsulfoxide. The time of exposure was 24, 48 and 72 hours. The assessment of cell proliferation was performed with the dye sulforhodamine B (SRB Assay), the test of cell viability was done using the dye bromide 3 - (4,5-dimethylthiazol-2-yl) -2,5 diphenyl tetrazolium (MTT Assay), and for the analysis of the mitochondrial membrane potential, cells were incubated with a solution terramethylrhodamine methyl ester. All experiments were performed in triplicate. The ANOVA test was applied followed by Dunnett. The results of SRB assay at 24, 48 and 72 hours of exposure showed a significant difference from the control at concentrations of 50 and 100μM of trifluralin. Effects on the MTT assay and mitochondrial membrane potential showed a similar pattern, being significant from 50 to 100μM of trifluralin. We can conclude that trifluralin affects the HepG2 cells by inhibiting cell proliferation and/or inducing cell death and disrupting mitochondrial membrane potential at concentrations of 50 μM and higher. Further studies will be performed to better understand the effects of trifluralin on HepG2 cells.
and J.

T. Lein 1, W. Dennis 1, J. Lewis 2, and A. Jackson 2. 1Oak Ridge Institute for Science and Education (ORISE), Frederick, MD; 2US Army Center for Environmental Health Research, Frederick, MD.

Toxicity of dichlorvos (DDVP), an organophosphate (OP) pesticide, classically results from modification of the seme in the active sites of cholinesterases. However, DDVP also forms adducts on unrelated targets such as transferrin and albumin, suggesting that DDVP causes cellular perturbation by modifying non-cholinergic targets. Here, we identify novel DDVP targets in the seme of a human hepatocyte-like cell line (HepaRG) in competitive pull-down experiments using DDVP and a biotin-linked organophosphorus compound (10-fluoro-2-[2-(2-nitro-4-triazolyl)ethoxy]phosphinyl-N-biotinamidopentyldecanamide; FP-biotin), which competes with DDVP for similar binding sites. Using the competition assay and mass spectrometry, we show that DDVP forms adducts to six new target proteins, including Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH). We validated the results using purified GAPDH incubated with DDVP and found that GAPDH Tyr-314, a residue in the known active site, is modified by DDVP. GAPDH activity is inhibited in a concentration dependent manner in DDVP-treated HepaRG cells, suggesting that DDVP directly inhibits the enzyme. These results may help explain the chronic metabolic effects of DDVP exposure.

Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the U.S. Army. Citations of commercial organizations or trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations. The research described herein was sponsored by the USAMRMC and Military Operational Medicine Research Program. This research was supported in part by an appointment to the Postgraduate Research Participation Program at the U.S. Army Center for Environmental Health Research (USACEHR) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and USACEHR.
fungicides. Studies indicated that CYP3A4 was a major metabolizing enzyme for a majority of the fungicides. In general, the stereoisomers of each fungicide (pure and in the fungicide mixture) exhibited significantly different clearance rates. With some compounds, one or more stereoisomers inhibited the clearance of the other stereoisomers. Results were consistent across genders. In an effort to explain the observed stereoisomer clearance rates, we utilized a directed ligand-based pharmacophore analysis to identify key ligand features. Triadimefon was the only fungicide that preferentially underwent stereoselective carbonyl reduction rather than P450-mediated oxidation. Reduction of the prochiral carbonyl produced four stereoisomers of triadimenol. Relative formation of the triadimenol stereoisomers varied among 16 vertebrate species; the individual triadimenol stereoisomers differentially inhibited CYP3A4 metabolism. These results suggest that treating a chiral pesticide as a single chemical rather than a mixture could introduce errors in risk assessment. Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

Pyrethroids are neurotoxic insecticides that exert their effects by prolonging the opening time of sodium channels and increase the duration of neuronal excitation. Alpha-cypermethrin (aCM) is derived from the 8-stereoisomer containing pyrethroid cypermethrin, and is one of the most common pyrethroids being used in agriculture throughout the world. Pyrethroids are extensively metabolized in the liver by both esterases and oxidative enzymes. In vitro metabolism assays with human liver microsomes and cytosol demonstrate that aCM undergoes metabolism to the detoxified metabolites, 3-phenoxbenzoic acid (3-PBA) and cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DCCA) in both liver fractions. Previous studies suggest that 3-PBA may be a general biomarker of human exposure to pyrethroids, while cis-DCCA is a specific biomarker of aCM. A sensitive GC-MS NCI method was developed and daily urinary cis-DCCA and 3-PBA concentrations were quantitated for Egyptian agriculture workers who were applying alpha-cypermethrin to cotton fields for up to 10 consecutive days. Both cis-DCCA and 3-PBA were detected in the urine of all workers and ranged from 0.07-17.7 μg/g creatinine and 0.5-19.7 μg/g creatinine, respectively. This study is the first to use these biomarkers to quantify occupational exposures to alpha-cypermethrin. The in vivo biomarker data and in vitro metabolism kinetic data will be useful in future efforts to model human exposures to alpha-cypermethrin. (This research was supported in part by U.S.EPA STAR grant R833454 and NIEHS R01 ES016308)

D. Gullick1, X. Wang1, J. V. Bruckner1, B. S. Cummings1, D. Mineha, M. Kroshke1 and M. G. Bartlett1, 1PBS, University of Georgia, Athens, GA; 2Syngenta Crop Protection, Greensboro, NC; 3Bayer Crop Science, Research Triangle Park, NC.

Pyrethroids are the more stable synthetic structural analogues of naturally occurring pyrethrin, which are potent insecticides that exhibit low mammalian toxicity. A reproducible and sensitive bioanalytical method was developed to monitor the uptake and elimination of pyrethroids in plasma and tissues following oral dosing of rats as part of an approach to assess their risk to human health by physiologically based pharmacokinetic (PBPTK) models. Blood and tissue homogenates (100 μL) were spiked with Deltamethrin, cis-or trans-permethyl. 1% phosphoric acid (100 μL) was added (to reduce binding of pyrethroids to proteins) and mixed. Internal standard (another pyrethroid) and 400 μL acetonitrile were added and mixed (to precipitate the proteins and extract the pyrethroids) and centrifuged. Supernatant (500 μL) was evaporated to dryness, reconstituted with toluene (300 μL), filtered (0.2 μm PTFE syringe filter), evaporated, and reconstituted with toluene (50 μL) for analysis. Samples were injected into an Agilent 6890 gas chromatograph using pulsed splitless injection onto a Zebron® ZB5-MS capillary column eluting into a 5973 quadrupole mass analyzer in negative chemical ionization mode. Fragment ions were monitored using selected-ion monitoring for quantitation and verification of the analyte. The method was linear from 1 ng/mL to 1 μg/mL from tissues and blood. The limit of detection was 0.5 ng/mL, the limit of quantitation was 1 ng/mL, and the intraday precision and accuracy of the method were better than 15% across the linear range. Absolute recovery from blood and tissues was greater than 50%. The method was successfully used to monitor the uptake and elimination of pyrethroids in blood and tissues following oral dosing of rats. (Supported by the Council for the Advancement of Pyrethroid Human Risk Assessment).

597 Dislodgable Foliar Metabolites of Malathion and Fenpropophrin May Contribute to Aggregate Harvester Exposure Estimates Using Urine Biomonitoring.

Y. Liu2, G. Sankaran1,2, L. T. Tang2, L. Chen2, A. Krieger1, J. H. Rou2, H. Vega3 and R. Krieger1, 2. 1University of California Riverside, Riverside, CA; 2University of California Riverside, Riverside, CA; 3Gem Quality Risk, Inc., Carmichael, CA.

Parent insecticide residues dissipate on sprayed leaf surfaces and may yield deriva-
tives used as biomarkers of exposure to the pesticide on foliar surfaces. It is impera-
tive to determine if surface derivatives actually contribute to the apparent aggregate exposure of harvesters based upon urine biomonitoring. If pesticide derivatives that are potential urine biomarkers persist longer than the parent insecticide on treated plants and they are bioavailable, their absorption and excretion may confound har-
vester exposure reconstruction for risk assessment. Strawberry harvester exposures to malathion and fenpropophrin use were studied during July 2012 at Santa Maria, CA. Quantitative measurements of parent residues and corresponding biomarker residues on leaf surfaces determined using nitrile gloves worn by workers and 24 hr urine samples from harvesters (and matched controls with no occupational exposure) were conducted at specified intervals post-malathion and fenpropophrin appli-
cation on strawberry fields. Urine biomonitoring allows reconstruction of absorbed dose/day from all possible routes of pesticide and biomarker exposure using rapidly excreted urine biomarkers. Preliminary data show that when foliar malathion residue transferred to cotton cloths (μg/cm2; 0.238 to 0.027) and harvester gloves (μg/Pair; 1394 to 3435) declined by 90% and 75% respectively in the 3d between the first picking and the second picking; corresponding malathion transferred foliar biomarkers dropped only by 16% and 11%, respectively. These data suggest surface derivatives last longer than parent residues on foliar surfaces. Structurally similar derivatives are dermally absorbed and this may explain why biomonitoring histori-
598 Soil Concentrations and Human Exposures to Contaminated Soil in the Remote First Nation Community of Fort Albany, Ontario, Canada.

E. N. Liberda1, E. S. Reyes1 and L. J. Tsuji2. 1School of Occupational and Public Health, Ryerson University, Toronto, ON, Canada; 2Department of Environment and Resource Studies, University of Waterloo, Waterloo, ON, Canada.

A study was conducted in the James Bay Region of Ontario, Canada to examine the concentration of dichlorodiphenyltrichloroethane and metabolites (o,p’-DDE, p,p’-DDT, p,p’-DDD, o,p’-DDD, p,p’-DDT, and ΣDDT) in potentially contaminated soil sites, and to assess the exposure pathways to ΣDDT by comparing the estimated daily intake (EDI) to acceptable daily intake (ADI) values. The contaminated soil plots were analyzed by a gas chromatograph equipped with a 63Ni electron capture detector (GC/ECD) or by gas chromatography with a mass spectrometer as a detector (GC/MS). The samples were first extracted using a Soxhlet apparatus with dichloromethane as the solvent and sample cleanup was ap-
plicated using a Florisil column. The mean ΣDDT found in the soil plots were distributed irregularly with values ranging from not detected to 4.19 mg/kg. From the soil plots analyzed, Plot A had the highest ΣDDT concentration of 1.12 mg/kg, followed by Plot B and Plot C which were 0.09 mg/kg and 0.01 mg/kg, respec-
tively. The exposure analysis showed that the risks to humans was below govern-
mental guidelines, even though the DDT concentration in the soil was above Canada’s soil guidelines of 0.7mg/kg as set by the Canadian Council of Ministers of the Environment. The DDT concentration in Plot A breached maximum levels, therefore this land cannot not be used for agricultural as planned nor for recre-
tional purposes. However, both Plots B and C were below maximum threshold limits, and this land may be used to grow safe food resources.

599 Effect of Soil Fumigation with Methyl Bromide against Earthworm, Aporrectodea caliginosa.

Methyl bromide, MBri, is a soil and food commodity fumigant that is used to con-
trol most kind of pests that born from or affect them, respectively. Earthworms, Aporrectodea caliginosa, are very important for healthy and productive soil. Although, MBri has been added to the list of chemicals that deplete the ozone layer (Montreal Protocol), its use still allowed under several condition worldwide. Effect of MBri against earthworm was investigated in this study. Worms were exposed to one fumigation level of 30 gm/m2 where worms were distributed in several depths
of the used soil. Mortality and some biochemical effects in the exposed worms compared to controls were measured at 24, 48, 72 hours after exposure. Mortality at the tested level caused 100% mortality in worms crawling at 10 and 30 cm depth in all tested intervals. At the 50 cm depth, mortality rates were 80, 90, and 90 percent at the 24, 48, and 72 hours after exposure, respectively. The effect of MBr against protein content of earthworm crawling at the 50 cm depth was assayed. Results showed that the MBr at 24, 48 hours increased significantly. There was no significant difference after 72 h of exposure in protein content between exposed worms and the control. Effect of MBr at the tested level on the activities of earthworms glutathione-S-transferases, GS-T); acetylcholinesterase, AChE; and cellulase were also determined in worms crawling at the 50 cm depth. Results showed only slight significant increase in AChE activity at 24 and 48 hours after exposure relative to control. MBr at the tested level caused significant increase in GS-T activity of the exposed earthworm at all tested exposure intervals. On the other hand, there was a significant increase in cellulase activity after 24 h as compared to control. However, this difference disappeared at 48 and 72 hours following exposure. These results indicate that MBr is a very potent soil fumigants that also kill the beneficiary earthworms in soil and protection of earthworms must be taken into consideration while searching for alternative to MBr.

Mechanism of Paraoat-Induced Pulmonary Fibrosis and Intervention of Pyrroldine Dithiocarbamate.

The mechanism of Paraoat-induced pulmonary fibrosis and potential therapeutic effect of pyrrolidine dithiocarbamate (PDTC) were studied. Male SD rats were divided into control group (0.9% NaCl gavage), PDTC group (100mg/kg, ip), PQ (80mg/kg, gavage) group and PQ+PDTC (100mg/kg, ip) group. On the 1st, 3rd, 7th, 14th, 28th and 56th day after treatment, The expressions of connective tissue growth factor (CTGF) and its smooth muscle actin (α-SMA) in lung tissues were measured. The mRNA levels of CTGF, Fn, Coll I and integrin α5 were analyzed with quantitative RT-PCR. Meanwhile, the lung pathological changes were observed and the content of Hydroxyproline (HyP) was measured. The expression of CTGF in PQ group increased gradually compared with control group (P<0.05). CTGF mRNA level significantly increased from the 1st to the 14th day compared with control group (P<0.05). σ significantly increased Fn mRNA level on all time points and integrin α5 mRNA level from the 3rd to 56th day compared with control group (P<0.05). Coll I mRNA level significantly increased from the 7th to the 56th day and Col III mRNA level appears to be decreased from the 14th to the 56th day. PDTC treatment significantly decreased the levels of those factors compared with PQ group in corresponding time points (P<0.05). Noteworthy, PDTC strongly attenuated histopathological changes and decreased the content of HyP. These results suggested that CTGF plays a key role in paraquat-induced pulmonary fibrosis, which is characterized by increased Fn, integrin α5, Coll I and Coll III mRNA levels. PDTC may inhibit NF-kB activity and further significantly decrease expressions of CTGF leading to drastically attenuated pulmonary fibrosis. However, the mechanisms of PDTC intervention still remain to be explored.

Testicular Toxicity of Fluorochloride in Adult Sprague-Dawley Rats.

Fluorochloride (FC) a widely used herbicide in Europe and the US, has been recognized as a potential reproductive and developmental toxicant. However, there is little data available concerning its male reproductive toxicity. In this study, we examined the testicular toxicity of FC in Sprague-Dawley rats. Adult rats were treated with FC gavage with FC at doses of 0, 30, 150, 750 mg/kg/d for four weeks. FC exposure resulted in a decrease in the absolute and relative weight of testes and a decrease in the absolute weight of epididymides as compared with the control. Cauda epididymal sperm count decreased dramatically in a dose-dependent manner. In addition, histological lesions were also found in the testes of the treated animals. A dose-effect (response) relationship analysis suggested that changes in cauda epididymal sperm count and testicular histological structure could be the most sensitive indicators for FC induced testicular toxicity.

Carbofuran is Not an Endocrine Disruptor—Weight-of-Evidence of US EPA’s Tier 1 Endocrine Disruption Screening Program Assays and Higher Tier Studies.

Carbofuran, the active ingredient in FMC Corporation’s FURADAN® Insecticide/ Nematicide products, underwent testing in EPA’s Tier 1 endocrine disruption screening program (EDSP), as required for all US registered pesticide active ingredients, to assess whether carbofuran had the potential to interact with endocrine systems. Nine of the eleven carbofuran Tier 1 EDSP assays showed no potential to interact with endocrine systems. The slight increase in estradiol in the in vitro steroidogenesis assay, and the mild to moderate thyroid hypothyroidism and mild thyroid hyperplasia in the amphibian metamorphosis assay observed with relatively high carbofuran concentrations were not corroborated by any of the other assays. Only the highest concentration (100 μM) was positive in the steroidogenesis assay, several orders higher than the concentration required for AChE inhibition. Previously conducted higher tier in vivo carbofuran developmental, reproductive and chronic toxicity studies showed no endocrine-mediated effects. The overall lack of effects in the carbofuran Tier 1 EDSP assays is consistent with the lack of endocrine-mediated effects in the previously conducted carbofuran higher tier in vivo studies. The collective results of the carbofuran Tier 1 EDSP assays and previously conducted higher tier in vivo studies indicate carbofuran is not an endocrine disruptor, and that there is no concern for endocrine effects resulting from the use of FURADAN® products according to label instructions.

Testicular toxicity of paraquat induced pulmonary fibrosis and intervention of pyrrolidine dithiocarbamate.
pharmacokinetic (PBPK) models have been used which result from computational modeling to specify regional airflow and air-phase transport resistance in the nose. Most recently, Teguarden et al. (Inhal. Toxicol., 26:375-390, 2008) developed a version which included polymorphisms in human high-affinity acetaldehyde dehydrogenase (ALDH2). However, Stanek et al. (Inhal. Toxicol., 13:807-822, 2001) showed that ALDH causes vasodilatation, increasing uptake of acetone with co-exposure of the two. Vasodilatation will also increase uptake of AAld. If this is not included in the model, the extent of metabolism estimated by fitting a PBPK model to nasal AAld uptake data could be over-predicted at concentrations where dilatation is significant. Therefore we revised the PBPK model of Teguarden et al. to include vasodilatation (increases in nasal blood flow), with the amount of dilatation estimated from the data of Stanek et al. using a parallel acetone PBPK model. An error in model code calculation of tissue phase mass transfer resistance was also corrected. The net result is an increase in the estimated Vmax for ALDH2 and a dose-dependent change in total metabolism in rats: increased at lower concentrations where ALDH2 is not saturated, but decreased at 1500 ppm where vasodilatation is significant. Quantifying the impact of this revision requires integration of model results with dose-response (i.e., benchmark dose) modeling. (Views expressed here are those of the authors and do not necessarily reflect the views or polices of the U.S. EPA.)

605 An In Silico Model of Spermatogenesis for Use in Predictive Toxicology.

EPA's toxicity reference database (ToxRefDB), covering 963 compounds tested in 4209 animal studies, indicated testicular atrophy as an adverse outcome for 278 (28.9 %) chemicals and sperm parameters for 26 (2.9 %). However, these chemicals tested in chronic and subchronic rodent toxicity studies. The sensitivity of the male reproductive system, coupled with the biological complexity of testicular function and the large number of untested chemicals, motivates the need for predictive computational models of male reproductive function based on high-throughput screening (HTS) and in vitro data. Toward this end, we are building a virtual tissue model of the seminiferous tubule using CompuCell3D. The model integrates cell signaling networks for hormonal effects (FSH, testosterone), growth factor and cytokine stimulation (GDNF, TGFβ, IL1τ) and transcription factors (e.g. ERM, RhoS5, SOX8, WTI) responsible for regulating key events in the spermatogenic cycle. It also enables Sertoli cell interactions including cytoskeletal restructuring and protein secretion. To test our model, over 1900 chemicals associated with toxic effects on sperm were characterized for effects on spermatogenesis and mechanisms of action. We then identified chemicals targeting specific key aspects of spermatogenic cellular division (bleomycin, cisplatin, doxorubicin), cell/cell adhesion (adjudin, indenopyradines, indazole-3-carboxylic acid), and Sertoli cell death (β-benzene hexachloride), as well as putative endocrine disruptors (e.g. atrazine, bisphenol A, ketoconazole). Preliminary results indicate that the model responds appropriately, in terms of sperm production, to the disruption of key signaling events. This abstract does not necessarily reflect Agency policy.

606 Development of PBPK Models for Gasoline in Adult and Pregnant Rats and Their Fetuses.

Concern for potential developmental effects of exposure to gasoline-ethanol blends has grown along with their increased use in the US fuel supply. Physiologically-based pharmacokinetic (PBPK) models for these complex mixtures were developed to address dosimetric issues related to selection of exposure concentrations for in vivo toxicity studies. Sub-models for individual hydrocarbon (HC) constituents were first developed and validated with published PBPK data where available. Successfully calibrated sub-models for individual HCs were combined, assuming competitive metabolic inhibition in the liver, and a priori simulations of mixture interactions were performed. Blood HC concentration data were collected from exposed adult non-pregnant (NP) rats (9K ppm total HC vapor, 6h/day) to evaluate performance of the NP mixture model. This model was then converted to a pregnant (PG) rat mixture model using gestational growth equations that enabled a priori estimation of life-stage specific kinetic differences. To address the impact of changing relevant physiological parameters from NP to PG, the PG mixture model was first calibrated using the NP data. The PG mixture model was then evaluated using data from RDX that was subsequently exposed (9K ppm/6.33h gestation days) (GD) 9-20). Overall, the mixture models adequately simulated concentrations of HCs in blood from single (NP) or repeated (PG) exposures (within ±2.3 fold of measured values of most HCs), indicating that the blood data from PG rats were not highly sensitive to PG-specific physiological parameters. This PG model was then evaluated using exposure data from pregnant rats that were not subsequently exposed to RDX.

607 Strategy to Support Clearance Model of Inhaled Libby Amphibole Asbestos Fibers in Rat and Human Respiratory Tract.

B. Asgharian1, O. T. Price2, S. H. Gavett1 and A. M. Jarabek1 1US EPA, Research Triangle Park, NC; 2ARA, Inc., Raleigh, NC.

To characterize inhaled Libby amphibole (MA) asbestos fibers as retained dose (RD), we developed a strategy to integrate experimental data with compartmental modeling. Compartments extend our model structure for inhalability and deposition (Asgharian, 2012) to estimate RD in major respiratory tract (RT) regions (upper respiratory tract, URT; tracheobronchial, TB; and pulmonary, PU), pleural lining (PL), and lymph nodes (LN). The strategy provides data to derive 3 clearance models for the respiratory tract (RT): mucociliary (MC), transcytosis (TR), and dissolution (DS). Initial mass in each region is estimated using the deposition model verified with fiber burden data in the URT, trachea/larynx, 5 lung lobes and pleural casts in F344 rats from a 6-h exposure of LA at 0, 3, 5, or 25 mg/m3. MC rates of the URT and TB regions are estimated by refining published rate constants with fitting mass burdens measured in URT, TB, LN and PL compartments of a 5-d study in rats at those 3 concentrations with post-exposure time course (0-, 6-, 12-, and 24-hr). Burden data in rats from a 13-wk study at 0, 3, 3, 1, and 10 mg/m3 with post-exposure time course (1-d and 1-, 3- and 18-mo) refine TR rates from PU to TB, PL and LN compartments and evaluate overload. The initial DS rate is based on burden data from the URT compared with in vitro data on DS of LA incubated with synthetic mucin. Data from in vitro incubation of LA with acid refine DS rate for TB and PU regions. This integrated strategy is the first to derive characterization of MC, TR and DS rates in the rat RT. For humans, DS rates were not scaled, published human MC rates are adjusted based on mass conservations (Asgharian et al., 2001). TR rates to PL and LN compartments are scaled on MC, and PU TR is scaled from the rat by an approach described for particles (Jarabek et al., 2005) based on regional surface area. (The views expressed in this abstract are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.)

608 A Modified PBPK Model for RDX (hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine) to Improve Rat to Human Toxicokinetic Extrapolation.

RDX is a military explosive that has been detected in air, soil, and ground water at or near military bases and munitions plants and storage facilities. Studies in rats provide evidence of mortality, reproductive toxicity, and neurotoxicity associated with RDX exposure. Physiologically-based pharmacokinetic (PBPK) models can aid in interpreting toxicological data and extrapolations across dose, species and exposure routes. Presented here is the further development and application of an RDX PBPK model for rats and humans originally published by Sweeney et al. (Regul. Toxicol. Pharmacol., 2012 v. 72, p. 107-114). The differences in the GI absorption rate constants for TB and PU regions. This integrated strategy is the first to define characterization of MC, TR and DS rates in the rat RT. For humans, DS rates were not scaled, published human MC rates are adjusted based on mass conservations (Asgharian et al., 2001). TR rates to PL and LN compartments are scaled on MC, and PU TR is scaled from the rat by an approach described for particles (Jarabek et al., 2005) based on regional surface area. (The views expressed in this abstract are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.)
from repeated doses, and the utility of the modified RDX model for use in estimating and extrapolating blood levels following repeated exposure. [The views expressed are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.]

PS 609 Developing New Methods to Measure Reactive Oxygen Species Related to Aerosol Components.

W. Huynh1, E. Brown2 and R. E. Peloquin1. 1Public Health - Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA; 2Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, MA.

Reactive oxygen species (ROS) have been shown to be an important indicator of adverse toxicological effects and has been widely studied in the context of ambient air pollution exposure research. ROS is formed in vivo as a result of exposure to ambient air pollutants and is thought to be a convenient approach to understanding responses arising from air pollution exposures. Current methods of measurement for ROS typically follow a labor-intensive and time-consuming method of collection and extraction of particles from the field, which are then introduced (often at very high concentrations) in vitro. The objectives of this research are to streamline these approaches by developing and characterizing a new instrument capable of automated, semi continuous quantification of ROS. The work presented here attempts to fill this gap by repeatedly inducing reactive oxygen on plated immortalized pulmonary epithelial cells (BEAS-2B) which have been loaded with 2′,7′-dichlorofluorescein diacetate (DCFH-DA). The data presented here are based on a method using 96-well plates and standard fluorescent spectrometry methods. These results are compared with similar approaches using a system of horseradish peroxidase and DCFH-DA. Tested elements include micromolar concentrations of hydrogen peroxide, solutions of ammonium sulfate and nitric acid, and quinones.

PS 610 Designing Quantitative Structure Activity Relationships (QSAR) to Predict Specific Toxic Endpoints for Polybrominated Diphenyl Ethers (PBDE) in Mammalian Cell Culture Systems.

S. Rawat1, 2 and E. D. Bruce3. 1US EPA, Athens, GA; 2Department of Environmental Science, Baylor University, WACO, TX; 3Department of Civil Engineering, Texas A&EM University, College Station, TX.

Polybrominated diphenyl ethers (PBDEs) are flame retardants that have had vast industrial application in consumer products, such as plastics, building materials, electronics and textiles. They are structurally similar to thyroid hormones that are responsible for regulating metabolism in the body. Therefore, PBDEs compete for the thyroid hormone binding receptors and this can adversely affect thyroid hormone transport and metabolism. Due to their potential threat to human health, this study aimed to design Quantitative Structure Activity Relationship (QSAR) models for predicting specific toxic endpoints, namely, cell viability and apoptosis. Human hepatocarcinoma (Hep G2) cells were exposed to PBDEs and were used as a model system to evaluate cell viability using Janus Green dye and apoptosis using a caspase assay. Data collected from the experiments were used to create QSAR models using the Genetic Function Approximation (GFA) method of generating predictive models. Cell viability and apoptosis responses elicited by the PBDEs were successfully modeled with an r2 of 0.97 and 0.94 respectively. Van der Waals surface area and Gasteiger charges were found to be the important properties that characterize cell viability, Molar refractivity, Kappa-3, and VSA, Partial_Charge figured as the most appropriate descriptors to characterize apoptosis.

PS 611 A Preliminary Physiologically-Based Pharmacokinetic (PBPK) Model of Squalene in Vaccines.

M. A. Tegenge and R. J. Mitkus. CBER, US FDA, Rockville, MD.

Squalene is a natural component of the diet and an endogenous precursor of cholesteryl, its fate following intramuscular (IM) injection as a vaccine adjuvant constituent is not fully understood. In the absence of experimental pharmacokinetic data in humans, we constructed a whole body physiologically based pharmacokinetic (PBPK) model for intramuscularly injected squalene-in-water emulsion in adults. Based on published information, we assumed a mean diameter of 160 nm for the emulsion droplet and stabilization by nonionic surfactants. Here, we evaluated the potential uptake into the lymphatics, rather than the blood, would be expected following IM injection. Tissue-blood partition coefficients for squalene were estimated by an algorithm approach that considered its binding potential to neutral lipids and lipoproteins. Physiological and biochemical parameters were obtained from standard sources in the published literature. The results of our modeling indicate that intramuscular squalene emulsion will transfer from the site of injection into the lymphatics rapidly and will be essentially cleared from the deltoid muscle in two days. The major proportion of the injected squalene was predicted to distribute to the draining lymph nodes and accumulate in distal adipose tissues. Our model indicated differences in the parameters of partitioning into neutral lipids and a low rate of squalene biotransformation there. However, the predicted contribution of administered squalene was still only –0.1% of the endogenous pool of squalene in adipose tissue. In conclusion, our results provide important pharmacokinetic information that may help to explain the pharmacodynamic activity of a new class of vaccine adjuvants that contain squalene.

PS 612 A Model for Elucidating the Role of the Aryl Hydrocarbon Receptor in TCDD-Mediated IgM Suppression in Human B Cells.

N. Kovalova1, 2, M. Manzana1, R. B. Crawford1 and N. E. Kaminski1, 2. 1PharmacologyToxicology, Michigan State University, East Lansing, MI; 2Center for Integrative Toxicology, Michigan State University, East Lansing, MI.

The aryl hydrocarbon receptor (AHR) is a transcription factor mediating toxic effects of 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD). The objective of the present study was to establish a human B cell model for elucidating the role of the AHR in TCDD-induced suppression of the IgM production by B cells. The SKW6.4 cell line used here is an Epstein–Barr virus-transformed, IgM-secreting human B cell line. Wild-type SKW 6.4 cells are AHR null. We have used a lentiviral transduction system to establish a SKW 6.4 cell line that stably expresses the human AHR cloned from hepatoma HepG2 (SKW E8). An expression vector was designed to produce an AHR-GFP fusion protein under the control of a doxycycline-inducible promoter. SKW E8 and HepG2 cells express similar levels of AHR mRNA, as determined by qRT-PCR. TCDD treatment significantly induced Cyp1B1 mRNA expression in SKW E8 but not in SKW 6.4 cells, indicating that the transduced AHR retained its transactivational activity. To assess the effects of TCDD on IgM secretion, increasing concentrations of TCDD were added to pokeweed mitogen (PWM) or lipopolysaccharide (LPS) activated SKW cell lines. Induced IgM was measured by ELISA. IgM secretion by PWM- or LPS-stimulated SKW E8 but not SKW6.4 cells was suppressed by TCDD in a concentration-dependent manner. Further analysis of the TCDD-induced suppression of the IgM response in SKW E8 cells revealed that to suppress IgM production, TCDD must be added within the first 12 h post-LPS activation. A similar window of sensitivity for the TCDD-induced suppression of the IgM response was previously described in primary mouse B lymphocytes. We demonstrate that the introduced AHR is functional and induction of IgM production is suppressed by TCDD-treatment as shown in primary B cells. These results suggest that human SKW6.4 E8 cells represent a model for elucidation of the molecular mechanisms involving AHR signaling in IgM suppression.

PS 613 The Impact of Variation in Scaling Factors on the Estimation of Internal Dose Metrics: A Case Study Using Bromodichloromethane.

E. M. Kenyon1, 2, R. A. Pegrain1, C. R. Eklund1 and J. C. Lipscomb2. 1ORD/NHEERL, US EPA, Durham, NC; 2ORD/NCEA, US EPA, Cincinnati, OH.

Physiologically based pharmacokinetic (PBPK) models can include values for metabolic parameters extrapolated from in vitro metabolism studies using scaling factors such as mg of microsomal protein per gram of liver (MMGPL) and liver weight (LW). Variation in scaling factor values impacts metabolic rate parameter estimates (Vmax) and hence estimates of internal dose used in dose response analysis. The impact of variation in MMGPL and LW on estimates of internal dose was assessed using a human PBPK model for bromodichloromethane (BDCM). Internal dose metrics evaluated were area under the curve for blood BDCM (AUC), maximum concentration of BDCM in blood (Cmax) and amount metabolized in liver per
hour (AML) - for two exposure scenarios (single 0.25 liter drink of water or 10 minute shower) under typical (10 ppb) and plausible high level (50 ppb) water concentrations. MMPGL and LW (as a fraction of body weight) values used in the analysis reflect the range of values reported for adult humans. For each concentration, each dose metric was changed less than 5% for the showering scenario (inhala-
tion and dermal exposure) because Vmax for hepatic metabolism is not a very in-
fluential parameter for dose metrics related to blood concentration following low-
leveled exposures. In contrast, an 8-fold difference in Cmax and AUC was observed for each oral exposure concentration, but AML was relatively unchanged. Sensitivity analysis for AUC for the oral exposure scenario revealed that MMPGL was the most influential parameter, followed closely by LW, with blood flow to the liver being moderately influential. This analysis demonstrates that variability in the scaling factors used for in vitro to in vivo extrapolation (IVIVE) of metabolic rate parameters can have a significant impact on estimates of internal dose metrics under environmentally relevant exposure scenarios. This indicates the need to evaluate both uncertainty and variability for scaling factors used for IVIVE. (This abstract does not necessarily reflect USEPA policy).

614 Kinetic Modeling Reveals the Roles of ROS Scavenging and DNA-Repair Processes in Shaping the Dose-Response Curve of BrO3-Induced DNA Damage.

We have used kinetic modeling to investigate how DNA repair processes and scav-
engers of reactive oxygen species (ROS) can affect the dose-response shape of pro-
oxidant induced DNA damage. We used as an example chemical BrO3-, a water
ozonation by-product and environmentally present pro-oxidant with genotoxic and
carcinogenic effects. In our model, BrO3- is activated via interaction with gluth-
athione and forms reactive intermediates that directly interact with DNA to form
8-hydroxy-2-deoxyguanosine DNA adducts (8-Oh-dG) – an effect convincingly
established in literature. The single strand breaks (SSB) that can result from failed
base-excision repair of these adducts were considered in the model as an effect
downstream from 8-Oh-dG. We previously demonstrated that in the presence of effective
base-excision repair, 8-Oh-dG can exhibit threshold-like dose-response depen-
dence, while the downstream SSB can exhibit a linear dose-response. We
now further demonstrate that this result holds for a variety of model variants. In
particular, we investigated how the presence of a scavenger of the bromate reactive
intermediates affects the dose-response shape of 8-Oh-dG and SSB. It has been
shown that melatonin, a terminal antioxidant, inhibits BrO3- caused oxidative
damage. Our modeling revealed that a single pulse exposure to BrO3- in the pres-
ence of such a terminal scavenger can lead to a sublinear/threshold-like dependence
of the response for both 8-Oh-dG and SSB. However, sustained exposure to
BrO3- can lead to fast scavenger exhaustion, in which case the dose-response
shapes for both endpoints are not substantially affected. The results are important
to consider when forming conclusions on a chemical’s toxicity based on the dose-
response of early genotoxic events.

615 A Compartamental Pharmacokinetic (PK) Model for Bromate in F344 Rats.

Bromate (BrO3-) is a toxic water disinfection by-product formed during ozonation
of source water containing bromide (Br-). It is a proven animal and probable
human carcinogen (group 2B). However, BrO3- pharmacokinetics (ADME) at low
doses is not fully understood. To better understand BrO3- ADME, we developed a
pharmacokinetic (PK) model based on the raw data from our recent publication
(Bull et al. 2012). Based on goodness of fit, and the model diagnostics, a pharma-
cokinetic model fitted with individual animal data and weight-2 (1/12) weight
scheme was chosen as a model of choice to describe BrO3- disposition in female
F344 rats. BrO3- disposition after IV bolus was best described using a 1-compart-
mental pharmacokinetic model for doses up to 0.5 mg/kg; and by using a 2-com-
partamental pharmacokinetic model for doses of 1-2.5 mg/kg potassium bromate
(KBrO3). BrO3- disposition was best described using a 1-compartamental model fol-
lowing its oral administration (0.5 to 20 mg/kg KBrO3) in female F344 rats.
Analysis of BrO3- PK parameters following oral administration, suggested that
BrO3- absorption occurs in a first order manner with a rate constant (Ka) of ~0.16
min-1. BrO3- appears to undergo extensive first pass reduction, resulting in
bioavailability of ~19-25%. Approximately 90% of orally administered BrO3- is re-
duced to Br- in the body, and BrO3- and the Br- are excreted from the
body as BrO3- in the urine at 0.002 L/min/kg. In conclusion, BrO3- undergoes en-
tensive reduction to Br- in liver and blood following its oral administration in fe-
male F344 rats, which limits BrO3- distribution to the peripheral tissues to exert its
toxic effects.

616 A Strategy for Developing a PBPK Model to Describe the Kinetics of Silver Nanoparticles.

M. Yoon1, S. Sumner2, R. Snyder2, T. Fennell2 and H. L. Clewell1. 1. The Hammer Institutes for Health Sciences, Research Triangle Park, NC; 2. RTI International, Research Triangle Park, NC.

Our previous model for C60 was proposed as a general platform for PBPK model-
ing of engineered nanoparticles (NPs). Since the structure was based on biological
mechanisms that govern NP disposition, the platform can be applied to other NPs
by changing parameters to account for particle-to-particle variance in biological
processes. In this study, the model was parameterized for silver (Ag) NPs using tis-
sue concentration data collected in adult female SD rats after a single intravenous
(IV) dose (1 mg/kg) of Ag NPs (20 or 110 nm) in water stabilized with polyvinyl
pyrrolidone (PVP) or Ag acetate in PVP. Parameterization was based on size-de-
dependent dissolution potential of Ag NPs under physiological conditions as well
as generally applicable size-dependent endocytosis efficiency for particles. Due to
the dissolution potential, a combination of two kinetic models, one for Ag NPs and
the other for ionic forms of Ag was used. The model successfully simulated observed
centrations of total Ag in various tissues as well as in urine and feces after a single
IV dose of Ag NPs. The model was then extrapolated to Ag NPs with other
coating agents. The published data for tissue concentrations of total Ag in adult
male Wistar rats after single or multiple (~ 0.1 mg/kg/day) IV administration of Ag
NPs in phosphate buffer (20 or 110 nm) was simulated. For this evaluation, the im-
 pact of different coatings on Ag NPs stability in size, shape and surface properties
was also considered in the parameterization. The current model captured the time
courses of total Ag concentration in blood, liver, lung, spleen, and heart both for
single and multiple exposures from this study. The overall success in extending the
C60 model to Ag NPs demonstrated the applicability of our model structure, as a
general platform, to other NPs when combined with nanoparticle-specific proper-
ties for the given material (This work was supported by NIEHS Award
#U19ES019525, but solely expresses the view of the authors).

617 A Physiologically-Based Pharmacokinetic Model to Describe the Pharmacokinetic Disposition for Hexamethyldisiloxane, a Linear Volatile Methyl Siloxane, following Inhalation Exposures in the Rat.

The purpose of this work was to expand a previously developed physiologically
based pharmacokinetic (PBPK) model for hexamethyldisiloxane (HMDS) (Dobrev et
al., 2003) with additional kinetic data to further examine the processes
regulating the pharmacokinetic disposition of HMDS. Time-course concentrations
of parent HMDS and total metabolites in multiple tissues, blood and exhaled
breath in male and female F344 rats during and following nose only vapor inhala-
tion exposure to 5000ppm 14C-HMDS were used to extend the model. A 15 day
inhalation study was also conducted to understand impacts, if any, following re-
peated exposures. Based on similarities in physicochemical properties, the HMDS
model structure was adapted from another volatile methylsiloxane (VMS) oc-
tamethylcyclotetrasiloxane (D4) model structure (Andersen et al., 2001). This
up-dated model now includes saturable metabolism in the liver, a diffusion-limited up-
take of HMDS in the fat compartment and a blood lipid pool where a fraction of
HMDS is sequestered and unavailable for exchange into blood and exhalation from
the lung. HMDS and its metabolites in blood, liver, lung, fat and exhaled breath
following both single and multiple exposures are well described with this model
using a single set of parameters. Consistent with D4 kinetic behavior, low blood/air
partitioning and extensive metabolism lead to rapid clearance of free HMDS from
the body following both single and repeated exposures. Despite retention of bound
HMDS in tissues at the extended time points following exposure, the extensive and
rapid clearance mechanisms of HMDS lead to tissue and exhaled breath concentra-
tions of HMDS that are similar following both multiple day exposures and single
exposures. This PBPK model is a starting point from which the pharmacokinetic
disposition of HMDS and, upon extension, other linear VMSs, can be evaluated
for risk assessment.
618 Use of a Physiologically-Based Pharmacokinetic Model to Simulate the Time Course of 3-Hydroxybenzo(a)Pyrene Metabolites in Workers Exposed to Polycyclic Aromatic Hydrocarbons and Predict Most Plausible Exposure Scenarios.

R. Heredia-Oritz1, A. Maitre2 and M. Bouchard1. 1Department Environmental and Occupational Health, University of Montréal, Montréal, QC, Canada; 2CHU de Grenoble, Université Joseph Fourier, Grenoble, France.

Mathematical modeling has become an important tool to assess xenobiotic exposure in humans. In the present study, we have used a human physiologically-based pharmacokinetic (PBPK) model to reproduce the time-course of 3-hydroxybenzo(a)pyrene (3-OHBaP) in the urine of industrially exposed workers and in turn predict most plausible exposure scenarios. Urinary voids from a dozen workers highly exposed to polycyclic aromatic hydrocarbons (PAHs) in the Rhone-Alpes region in France have been collected during a typical workweek (beginning and end-of-shift) and subsequent days off; urinary concentrations of 3-OHBaP were then determined. Based on the information obtained for each worker (airborne BaP concentration, daily shift hours, tasks, protective equipment), the time courses of 3-OHBaP in the urine of the different workers have been simulated using the PBPK model, considering the various possible exposure routes, oral, dermal and inhalation, as well as combined exposure. The model was constructed from in vivo experimental data in rats and then extrapolated from animals to humans after assessing and adjusting most sensitive model parameters as well as species specific physiological parameters. The model was able to closely reproduce the observed time course of 3-OHBaP and establish most plausible exposure route depending on the worker. It appears as a useful tool to better interpret biomonitoring data of PAH exposure on the basis of 3-OHBaP biomarker levels.

619 Computational Modeling of the Pathway Linking Oxidant Exposure with a Fluorescent Reporter Protein in Human Airway Epithelial Cells.

W. Cheng1, J. M. Sama1 and R. B. Connolly1. 1Environmental Science and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC; 2EPHD, US EPA, Chapel Hill, NC; 3ISTD, US EPA, Chapel Hill, NC.

Air pollution is one of the most common environmental exposures imposed on humans in urban areas on a daily basis. Mixtures of gaseous and particle pollutants contain hundreds of thousands of compounds with the potential for numerous interactions. Many pollutants operate through modes of action involving oxidative stress. We use the genetically engineered fluorescent reporter roGFP to assess oxidative stress in transformed human airway epithelial cells. The specific goal of current study was to develop a computational model of the biochemical pathway linking oxidant exposure with oxidation of roGFP. Models of this type can provide insights into the structure and kinetics of these pathways that complement the information obtained from laboratory studies. As our initial effort at model development, we used live cell imaging to monitor roGFP oxidation by micromolar H2O2. roGFP was fully oxidized within 20 min and recovery to its reduced state took several hours. These kinetics were well described by the model. Furthermore, the model-based quantitative analysis has shown that the observed response for oxidation of roGFP is nonlinear with dose and consistent with Michaelis-Menten kinetics. These latter results reflect the underlying sequence of enzymatic reactions, e.g., glutathione peroxidase, glutaredoxin and glutathione reductase, through which the oxidizing effect of H2O2 is transmitted to roGFP. These results illustrate how computational modeling of modes of action of oxidants can provide insights that complement laboratory observations and that will be needed as we seek to understand the health risks associated with air pollution exposures. This presentation reflects the views of the authors and does not necessarily reflect EPA policy.

620 Comparative Toxicokinetic and Toxicodynamic Study of Trichloroethylene and Tetrachloroethylene in the Mouse.

V. Soldatow1, H. Yoo1, B. Wanda1, L. B. Collins1, S. Kim1, K. Xia1, W. Sun1, E. Wright1, W. A. Chiu1, K. Gwyron1 and J. Bavast1. 1University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Nova National University, Seoul, Republic of Korea; 3NECA, US EPA, Washington DC.

Trichloroethylene (TCE) and tetrachloroethylene (PCE) are ubiquitous environmental and occupational agents hazardous to human health. Several important gaps in our understanding of their potential toxicity have been identified: 1) extent of inter-individual variability in toxicity, 2) complexities associated with linking metabolites to specific organ toxicity, and 3) comparative analysis of toxicokinetics (TK) and toxicodynamics (TD) of these closely related agents. This project aimed to fill these gaps by providing TK and TD data using a panel of mouse strains as a model for inter-individual variability. We focus on key metabolites of TCE and PCE: trichloroacetic acid (TCA), dichloroacetic acid (DCA), trichloroethanol (TOCOH), S-(1,2,2-trichlorovinyl)-L-cysteine (TVCV), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and S-(1,2,2-trichlorovinyl)glutathione (TVCG), and S-(1,2-dichlorovinyl)glutathione (DCVG). In the TK and TD studies, a single oral dose of TCE or PCE (24-800 mg/kg or 30-1,000 mg/kg, respectively, in 5% Alkamuls EL 620 in saline) was administered to male mice from three strains (C57BL/6J, NZW/Lac and B6C3F1/J). Quantification of metabolites (up to 36 hours post dosing) was performed in serum, liver, kidneys, spleen, brain, lung, and bone marrow. In addition, RNA Sequencing was used to identify dose-response changes in gene expression in liver. These data are relevant for human health assessments of TCE and PCE as they provide data for kinetic modeling, dose-response analysis of the toxicity mechanisms, and evaluation of inter-individual differences in susceptibility to these chemicals. Funded by P42 ES059548. Disclaimer: The views expressed here are the authors’ and not necessarily those of the US EPA.

621 A Mechanistic Model of GABAA-Receptor Trafficking during Status Epilepticus.

E. Merrill1, J. Gearhart1, C. Ruark1, D. A. Mahle2 and P. Robinson1. 1AFRL/RHJD, Henry M. Jackson Foundation, Wright Patterson Air Force Base, OH; 2Human Performance, AFRL/RHDJ, Wright Patterson Air Force Base, OH.

The efficacy of benzodiazepines (BZ) to abolish seizures diminishes rapidly with time after onset of status epilepticus (SE). This progressive loss of efficacy is associated with the rapid internalization of BZ-sensitive GABAA receptors, together with a slight increase in localization of BZ-insensitive GABAA receptors on the synaptic membrane. We developed a compartmental model of receptor localization and movement in the dendritic spine that includes surface receptors within the postsynaptic density (PSD), including those bound to gephyrin scaffold proteins, and the extrasynaptic membrane (ESM), as well as internalized receptors. The model includes movement of receptors between these compartments as well as receptor synthesis and degradation. The model was used to simulate receptor trafficking under normal (non-seizure) and status epilepticus conditions. Data from in vitro studies using various neuronal cell cultures as well as HEK cells modified to express GABAA receptors were used to parameterize and validate the model. Increases in receptor endocytosis rate and lateral movement from PSD to ESM (or a decrease in gephyrin binding) were found to be sufficient to simulate SE conditions. By integrating the current GABAA receptor trafficking model with a physiologically-based pharmacokinetic (PBPK) model for diazepam, a time-dependent therapeutic dose can be predicted. The model suggests that approximately 55% occupancy of the original receptor number is required to reverse ongoing seizures. This is up from a reported 37% occupancy required to prevent the initiation of seizures in the rat, when diazepam is administered as a prophylaxis.

622 Multichemical Bayesian Calibration of a Generic Physiologically-Based Pharmacokinetic (PBPK) Model to Calculate Biological Limit Values for Lipophilic Volatile Organic Compounds.

R. McDougall1, M. Verner1,2, G. Chatenet-Tardif1, R. Tardif1 and G. Johanson1. 1Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada; 2Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; 3Chairing laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA; 4Département de santé environnementale et santé au travail, Université de Montréal, Montréal, QC, Canada.

Biomonitoring provides an integrative measure of internal exposures in workers exposed to contaminants in the occupational setting. PBPK models validated against empirical data can be used to estimate the variability in biological levels following specific exposure conditions. Given the large array of contaminants in the workplace, the calibration of a generic PBPK model could be useful to generate biologically meaningful limit values for chemical with little or no available human data. We aimed to develop a generic PBPK model for lipophilic volatile organic compounds (VOCs) in end-exhaled air, which can be obtained non-invasively, and to calibrate it using Markov Chain Monte Carlo (MCMC) techniques and human data from controlled exposures. We built a simple 3-compartment PBPK model (liver, adipose tissue, the body) that runs on three chemical-specific parameter intrinsic clearance and octanol:water and blood:air partition coefficients. Global sensitivity analysis was used to identify the most influential parameters on end-exhaled air.
levels. MCMC analysis was employed to infer population and individual parameters for these significant parameters based on levels measured in 12 individuals exposed to styrene, n-hexane or toluene. The generic VOC PBPK model calibrated by MCMC analysis was able to predict end-exhaled air levels for the 12 individuals and 3 compounds. The chains from the converged MCMC runs will be used to derive distributions of end-exhaled air for given exposure scenarios. Our next steps will be to include more individuals, compounds and exposures scenarios with variable workloads to better describe variability in the population.

623 Development of a New 3D Human Small Intestinal Tissue Model.

S. Ayehunie, Z. Stevens, T. Landry, P. Hayden and M. Klausner. MatTek Corporation, Ashland, MA.

The epithelial lining of the gastrointestinal (GI) tract is a gatekeeper for entry of orally ingested nutrients and xenobiotics including medications. The intestinal lining has a well organized structure containing proliferative cells which migrate along the crypt-villi axis and differentiate into functional epithelial cells. Currently, the most common in vitro model utilized for study of drug absorption at the intestinal mucosa is based on a 2-D cell culture model of the colon carcinoma cell line, Caco-2. These cells differentiate into monolayers of polarized enterocytes that are connected by tight junctions, but lack mucus-secreting goblet cells and show inter-passage inconsistency. Others have developed small intestinal organoids which are not suitable for apical application of test articles. Here, we report the reconstruction of a human organotypic small intestinal tissue (SI) generated from primary human SI epithelial cells that grow in tissue culture inserts using serum free medium. Human SI epithelial cells and myofibroblasts were expanded in monolayer culture and seeded on a microporous membrane containing a fibroblast-collagen-gel substrate to reconstruct three-dimensional organotypic SI tissues. Tissue morphology and biomarker expression of the SI model were characterized by H&E staining and immunohistochemistry, respectively. Basal cell proliferation markers, cytokeratins (CK) and mucin were monitored over an 11-day culture period. Analysis of the SI tissue model revealed: 1) wall-to-wall growth of the epithelial layer, 2) columnar epithelial cell morphology similar to that of native SI tissue, 3) expression of muc-2, CK19, and villin at the surface of the epithelium, and 4) Lgr5+ (crypt stem cell marker) positive cells. In conclusion, the new human cell based 3D SI tissue model will likely serve as a valuable tool to evaluate pre-clinical therapeutic drug candidates intended for oral administration and study microbiota and microbial infection of the GI tract.

624 Evaluating Dose-Response Parameters of an In Vitro DNA-Chemical Interaction Using a Mechanistic Biological Model.

A. Nong, K. Lyon, J. M. Gavina and Y. Feng. Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.

Benchmark dose modeling of genomic data is a trending approach in toxicity testing, and system biology modeling attempts to understand quantitative data in light of what we expect from more complex biological systems. Biological modeling approaches can incorporate different forms of kinetic and dynamic data of a chemical interaction in vitro. The objective of this effort was to interpret a biological model mechanism and parameters describing a chemical double-stranded oligonucleotide interaction assay for a series of chemicals (tetrachlorohydroquinone, styrene-7,8-oxide, methyl methane sulfonate, phenyl glycidyl ether, and benzo(a)pyrene diol epoxide), with both time series and dose-ranged measurements. The chemicals have been analyzed with time series, dose-response and inhibition mixture response analysis. A model using mixed Michaelis-Menten kinetic and multiple binding was determined to be best suited with the data coherency between coefficients and various chemicals, as well as sensitivity analysis, gave evidence of a deeper mechanism underlying nucleotide perturbations (e.g. relations amongst the half-life, dose and the curvature of the reactions). Two model parameters, molecular binding coefficient (range from 0.1 to 2.6) and nonlinear affinity rate constant (ranging from 30 to 5300 μM), were dose dependant and specific to each chemical. These kinetic parameters are suitable candidates for a quantitative structure-activity analysis with chemical descriptors for nucleotide binding sites and interaction efficacy as indicators of adduct formation. These biological models fit the biological expectations for the governing mechanisms, giving further evidence of the effectiveness of statistical and benchmark dose modeling in toxicity testing.

625 Developing Predictive Approaches to Characterize Adaptive Responses of the Reproductive Endocrine Axis to Aromatase Inhibition: Computational Modeling.

Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We developed a mechanistic mathematical model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course (DRTC) behaviors for endocrine effects of a well-defined aromatase inhibitor, fadrozole (FAD). The model includes a regulatory feedback that mediates adaptive responses to endocrine stress by controlling the secretion of a generic gonadotropin (LH/FSH) from the hypothalamic-pituitary-typical complex. Plasma 17β-estradiol (E2) and ovarian cytochrome P450 (CYP) 19A aromatase mRNA data from two time-course experiments, each of which included both an exposure and a depuration phase, and plasma E2 data from 4 days exposure experiment were used to develop and evaluate the model. Model parameters were estimated using E2 concentrations for 0, 0.5, and 3 μg/L FAD concentrations, and good fits to these data were obtained. The model accurately predicted CYP19A mRNA fold changes for controls and three FAD doses (0, 0.5, or 3 μg/L), and venous E2 dose-response during FAD exposure on day 4. Comparing the model-predicted DRTC with experimental data provided insight into how the feedback control mechanisms embedded in the HPG axis mediate these changes: adaptive changes in plasma E2 levels occurring during exposure and “overshoot” occurring post-exposure. This study demonstrates the value of mechanistic computational modeling to examine and predict the possible dynamic behaviors. This abstract does not necessarily reflect US Environmental Protection Agency policy.

626 Mitochondrial Dysfunction-Induced by Sertraline, an Antidepressant Agent.

L. Couch1, Y. Li2, J. Fang1, M. Higuchi1 and L. Guo1. 1NCTR, US FDA, Jefferson, AR; 2Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR.

Sertraline, a selective serotonin reuptake inhibitor (SSRI), has been used for the treatment of depression. Although it is generally considered safe, cases of sertraline-associated liver injury have been documented; however, the possible mechanism of sertraline-associated hepatotoxicity is entirely unknown. Here we report that mitochondrial impairment may play an important role in liver injury induced by sertraline. In mitochondria isolated from rat liver, sertraline uncoupled mitochondrial oxidative phosphorylation and inhibited the activities of oxidative phosphorylation Complexes I and V. Additionally, sertraline induced Ca2+-mediated mitochondrial permeability transition (MPT), and the induction was prevented by bongkrekic acid, a specific MPT inhibitor targeting adenine nucleotide translocator (ANT), implying that the MPT induction is mediated by ANT. In freshly isolated rat primary hepatocytes, sertraline rapidly depleted cellular ATP and subsequently induced lactate dehydrogenase (LDH) leakage; both were attenuated by bongkrekic acid. Our results, including ATP depletion, induction of MPT, inhibition of mitochondrial respiration complexes, and uncoupling oxidative phosphorylation, indicate that sertraline-associated liver toxicity is possibly via mitochondrial dysfunction.

627 Mouse Liver Protein Sulphydryl Depletion Induced by Acetaminophen Exposure.

X. Yang1, J. Greenhaw1, Q. Shi2 and W. F. Salminen1. 1Division of Systems Biology, US FDA, National Center for Toxilogical Research, Jefferson, AR; 2PAREXEL, Benton, AR.

Since Acetaminophen (APAP) remains the leading cause of acute liver failure in the western world, a large body of research has been conducted to understand the mechanisms behind the pathogenesis. The role of protein sulphydryl depletion in APAP-induced liver injury was investigated in this study and compared to protein adducts and classical measures of toxicity. A single oral gavage dose of 150 or 300 mg/kg APAP in B6C3F1 mice induced increased serum alanine aminotransferase and aspartate aminotransferase levels, liver necrosis, and glutathione depletion in a dose-dependent manner. The levels of global free protein sulphydryls, were significantly decreased at 1 hour and...
remained as such through 24 hours postdose. Histochemical detection of free protein sulfhydryls showed a zonal pattern of sulfhydryl depletion of sodium metaperiodate. The centrilobular areas exhibited dramatic decreases in protein free sulfhydryls while the perinuclear regions were essentially spared. Oxidation of the free protein sulfhydryls occurred in the same regions of cells that contained APAP-protein adducts and developed necrotic changes. Interestingly, the majority of free protein sulfhydryl depletion was due to reversible oxidation since the global and lobule-specific effects were essentially reversed with TCEP, a sulfhydryl reducing agent, prior to maleimide labeling. The changes in protein sulfhydryl oxidation may act as the sensor for oxidants, such as ROS and RNS. Therefore, investigating the protein sulfhydryl depletion may have important clinical ramifications in understanding the pathogenesis of APAP-induced hepatocellular injury.

628 Purinergic Receptor Antagonist A438079 Protects against Acetaminophen-Induced Liver Injury by Inhibiting P450 Isoenzymes Not Inflammasome Activation.

Y. Xie, C. Williams, M. R. McGill, M. Leborsky, A. Ramachandran and H. Jeesche, Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS.

Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in the western world. Controversy exists regarding the hypothesis that the hepatocyte injury is amplified by a sterile inflammatory response, rather than being the result of intracellular mechanisms alone. A recent study suggested that the purinergic receptor antagonist A438079 protects against APAP-induced liver injury by preventing the activation of the Nalp3 inflammasome in Kupfer cells and thereby preventing inflammatory injury. To test the hypothesis that A438079 actually affects the intracellular signaling in hepatocytes, mice were treated with APAP (300 mg/kg) and A438079 (80 mg/kg) or saline and GSH depletion, protein adduct formation, c-Jun-N-terminal kinase (JNK) activation, oxidant stress and liver cell necrosis was determined between 0-6h after APAP administration. APAP caused rapid GSH depletion, extensive protein adduct formation in liver homogenates and in mitochondria, JNK phosphorylation and mitochondrial translocation of phosphory-JNK within 2h, oxidant stress, and extensive centrifugal necrosis at 6h. A438079 significantly attenuated GSH depletion, which resulted in a 50% reduction of total liver and mitochondrial protein adducts and substantial reduction of JNK activation, mitochondrial P-JNK translocation, oxidant stress and liver injury. The same results were obtained using primary mouse hepatocytes. A438079 did not directly affect JNK activation induced by tert-butyl hydroperoxide and GSH depletion. However, A438079 dose-dependently inhibited hepatic P450 enzyme activity. Thus, the protective effect of A438079 against APAP hepatotoxicity in vivo can be explained by its effect on metabolic activation and cell death pathways in hepatocytes without involvement of the Nalp3 inflammasome.

629 The Role of Choline Depletion in Perfluorooctanesulfonate-Induced Hepatic Steatosis.

P. Krishnan1, A. D. Patterson1, D. L. Ehrenshaft1, P. B. Smith1, M. K. Scavello1, S. Chang1, J. L. Butenhoff2 and T. M. Peters1, 1Pennsylvania State University, University Park, PA; 23M Company, St. Paul, MN.

In toxicological studies, perfluorooctanesulfonate (PFOS) exposure has resulted in hepatic steatosis and hypolipidemia, believed to be the result of decreased production and secretion of VLDL and HDL and increased uptake of VLDL-triglyceride. The hypothesis that PFOS produces hepatic steatosis via ionic sequestration of available choline necessary for the production of VLDL was plausible. Proliferation was supported by identification of an ion-triad between two molecules of choline and one molecule of PFOS in vitro. We fed male C57BL/6 mice either a control diet or a marginal methionine/choline-deficient (mMCD) diet, both with and without PFOS. After a two-week run-in period on diets without PFOS, control or mMCD diets containing 0, 30, 60, or 120 mg K+PFOS/kg diet were fed for three weeks. There was a dose-dependent increase in the relative liver weight in both control and mMCD fed mice. Dietary PFOS was also associated with dose-dependent decreases in body weight, increases in hepatic triglyceride concentration, and increases in serum ALT, ALP, and bile acids, all with larger effects observed in mice fed mMCD compared to those fed the control diet. Serum and liver concentrations of PFOS were increased in a dose-dependent manner on both diets; however, serum PFOS concentrations were higher and liver concentrations lower in mMCD-fed mice compared to control-fed-fed mice. This is surprising because the evidence suggested that PFOS-induced hepatotoxicity was exacerbated in the mMCD diet fed mice. Metabolomic analysis demonstrated that PFOS caused a significant decrease in the hepatic concentration of many phosphatidylcholines in the PFOS-fed mice compared to controls. Further, the average serum concentration of choline was reduced by dietary PFOS. These studies are the first to provide evidence that PFOS may cause hepatic steatosis through depletion of choline required for hepatic VLDL production and export.

630 Platelet Depletion Reduces Acetaminophen Hepatotoxicity in Mice.

K. Miyakawa1, 2, R. Albear1, M. Scott1, P. E. Ganey3, J. Luyendyk2, 1 and R. Roth1, 1Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI; 2Center for Integrative Toxicology, Michigan State University, East Lansing, MI; 3Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI.

Acetaminophen (APAP) overdose is the major cause of acute liver failure in the U.S. Previous studies identified decreases in blood platelet concentration in patients with APAP toxicity, but the role of platelets in APAP-induced liver injury is unclear. We tested the hypothesis that platelets contribute to liver injury in a mouse model of APAP hepatotoxicity. Blood platelet concentration was reduced 6-36 h after administration of APAP (300 mg/kg, ip) to mice, and immunofluorescent labeling showed increased platelets within livers at 2-6 h. Pretreatment of mice with anti-CD41 IgG to reduce circulating platelet concentrations to 1/10th of control reduced liver injury at 6, 12 and 24 h after APAP administration, as evaluated by plasma alanine aminotransferase activity and the area of hepatic necrosis. The erythrocyte-to-hepatocyte volume ratio in the livers of APAP-treated mice was also reduced by anti-CD41 IgG pretreatment, suggesting a reduction in congestion or hemorrhage. The early (30 min) APAP-mediated consumption of reduced glutathione (GSH) was unaffected by platelet depletion, suggesting that the reduction in injury was not a consequence of diminished APAP bioactivation. Activated platelets provide a thrombogenic surface for amplification of thrombin generation; indeed, platelet depletion significantly reduced the increase in plasma concentration of thrombin-antithrombin complexes, a biomarker of thrombin generation, at 3h. Addition of thrombin to cultures of primary hepatocytes in vitro did not affect APAP-induced cytotoxicity, suggesting that thrombin does not contribute to toxicity through a direct action on hepatocytes. Taken together, the results suggest that platelets support thrombin generation and contribute to congestion or hemorrhage and hepatocellular injury after APAP overdose. (Supported by NIH grant R01 DK087886.)

631 Acute Biliary Hyperplasia in F344 Rats Administered the Indole-3-Carbinol Analog, NSC 743380.

M. Davis1, S. Eldridge1, K. Elsasser1, T. Horn1 and J. Morris1, 1DCTD, NCI, Bethesda, MD; 2Battelle, Columbus, OH; 3NITRI, Chicago, IL.

Biliary hyperplasia discovered in preclinical safety assessment represents a severe finding due to being unmanageable and non-monitorable in the clinical setting. NSC-743380 (1-(5-chlorophenyl) methyl)-1H-indole-3-methanol) is in early stages of development as an antiancier agent at the NCI. In an exploratory toxicity study in rats, acute hepatotoxicity, characterized by biliary hyperplasia and inflammatory hepatic necrosis, was observed 5 days after dosing orally at 100 mg/kg/day. The hepatotoxicity noted was also apparent from the clinical chemistry results that showed marked increases in alkaline phosphate, alanine aminotransferase, and paraprotein aminotransferase levels by day 2 dosing relative to controls. In contrast, IV dosing with NSC-743380 (6.25 – 25 mg/kg/day,) produced no microscopic lesions or clinical chemistry changes relative to controls either on day 2 or after day 5 of dosing. Plasma levels of NSC-743380 and its alkaloid and acid metabolites obtained for IV administration was less than day 2 dosing from formulations; however, liver toxicity, as determined by clinical chemistry and histopathology, was observed only after administration of the parent compound and not the alkaloid or acid metabolite. In addition, the toxicity profiles of a structurally similar inactive molecule and a structurally diverse molecule (with the same efficacy profile) were compared to NSC-743380 to explore scaffold versus target-mediated toxicity. Following 2 days of oral dosing at 100 mg/kg/day, the structurally different compound produced a similar toxicity profile, although less severe, than NSC-743380. Taken together, the hepatotoxicity associated with NSC-743380 appears to be related to the parent molecule rather than its major metabolites and related to target-modulation representing on-target toxicity. Furthermore, this molecule offers the opportunity to decrease hepatotoxicity by using a short-duration toxicology study design. N01CM20110019/N01CM201100027

632 Identifying Preregenerative Signaling after Acetaminophen-Induced Acute Liver Failure in Mice Using Incremental Dose Model.

B. Bhushan, C. Waleisky, P. Borude, G. Edwards and U. Apte, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS.

Overdose of acetaminophen (APAP) is the major cause of acute liver failure (ALF) in the US with very limited treatment options. Recent studies suggest that liver regeneration is a critical determinant of overall survival following APAP overdose and
Lack of Human Health Relevance of Increased Hepatocellular Adenoma in Male Cd1 Mouse Treated with Cyproconazole or Propiconazole.

D. Cowie1, R. Green1, E. Barnes1, R. Currie1 and R. Pfeffer2, 1Syngenta, 2Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt.

In 18- to 24-month carcinogenicity studies, treatment with cyproconazole (CCZ) or propiconazole (PPZ) with high levels (100 to 200ppm and 2500ppm, respectively) in the diet resulted in increased incidences of hepatocellular adenoma in male CD1 mice. The proposed non-genotoxic mode of action (MOA) for induction of these tumours involves a number of common key events that define a common toxicity pathway. The first key event is activation of the constitutive androstane receptor (CAR). This stimulates increased DNA replication and hepatocellular proliferation along with differential expression of genes that result in a suppression of apoptosis. Following prolonged exposure, this pro-proliferative milieu along with suppression of apoptosis promotes the growth and progression of spontaneously transformed cells eventually producing hepatocellular adenoma. The ability of CCZ and PPZ to elicit these key events in vivo was confirmed by measuring Cyp2b and Cyp3a induction as a surrogate for CAR activation and replicative DNA synthesis to assess hepatocellular proliferation. In addition, the requirement for CAR activation for increased hepatocellular proliferation was demonstrated for CCZ using CAR knock-out mice. Furthermore, reporter gene assays demonstrated that PPZ is a direct activator of both mouse (potent) and human (weak) CAR. Following experimental demonstration of the proposed MOA for mice, the lack of human relevance was assessed by comparing the effects of PPZ or CCZ on primary cultures of mouse and human hepatocytes. Consistent with the in vivo observations, treatment of mouse hepatocytes with CCZ or PPZ resulted in increases in Cyp2b, Cyp3a and replicative DNA synthesis. In contrast, treatment of human hepatocytes with these compounds resulted in increased Cyp2b and Cyp3a, but not replicative DNA synthesis. These data demonstrate a qualitative species difference in response to CAR activation. The lack of proliferative response in human hepatocytes means it is reasonable to conclude that neither CCZ nor PPZ are hepatotumorigenic in humans.

Potential Hepatoprotective Effects of Licorice Root (Radix glycyrrhiza) Extract against Carbon Tetrachloride-Induced Hepatotoxicity in Isolated Rat Hepatocytes.

O. S. El-Tawil1, A. A. Shalaby2 and E. A. Mohamed3. 1Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt; 2Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt; 3Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University Cairo, Egypt.

Licorice root is a popular soft drink in Egypt. Literature cited therapeutic effects of licorice. The present work is to evaluate the potential hepatoprotective effects of aqueous licorice root extract against the cytotoxic effects and the oxidative stress induced by carbon tetrachloride (CCL4) in isolated primary rat hepatocytes. Hepatocytes were isolated by collagenase perfusion technique. Cytotoxicity was determined by assessing cell viability and leakage of cytosolic enzymes, such as lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Oxidative stress was assessed by determining reduced glutathione (GSH) level and lipid peroxidation as indicated by thiobarbituric acid reactive substances (TBARS) production. Exposure of isolated rat hepatocytes to CCL4 (5μM) caused cytotoxicity and oxidative injury, manifested by loss of cell viability and significant increase in LDH, ALT and AST leakages. As CCL4 caused progressive depletion of intracellular GSH content and significant enhancement of TBARS accumulation, preincubation of hepatocytes with either licorice (25 μM/mL) or silymarin (0.5μM) which is a known hepatoprotective agent, ameliorated the hepatotoxicity and oxidative stress induced by CCL4, as indicated by significant improvement in cell viability, significant decrease in LDH, ALT and AST leakages, significant prevention of GSH depletion and significant decrease in TBARS formation as compared to CCL4 alone-treated cells. The present results indicate that CCL4 has a potential cytotoxic effect in isolated rat hepatocytes; and licorice extract possess a highly promising hepatoprotective effects against CCL4 - induced hepatotoxicity by triggering the survival pathway and inducing several anti-oxidant genes in lead treated mice.
number of hepatic neutrophils remained unchanged. Conversely, selective depletion of neutrophils by pretreatment with low concentrations of Gr-1 antiserum failed to reduce the extent of HILI when levels of eosinophils remained unchanged. The pathologic role of eosinophils was confirmed when halothane induced hepatotoxicity was significantly reduced in the eosinophil lineage ablated Adrb3Gata2+ mice, which are neutrophil competent. Our findings indicate that eosinophils, not neutrophils, have a pathologic role in HILI in mice and suggest that they may contribute similarly in many clinical cases of DILI.

637 Effect of Ligand Activation of PPARβ/δ in Kupffer Cells.
G. Balandram, 1 I. M. Petrig, 2 and E. L. Gonzalez. 1, 2Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA; 2Laboratory of Metabolism, NCI, Bethesda, MD.

Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) can inhibit pro-inflammatory activities in the liver. When activated Kupffer cells can modulate hepatic inflammation, the role of PPARβ/δ in modulating Kupffer cell activity was examined. Kupffer cells were isolated from wild-type, Pparβ/δ-null or Pparβ/δ-null mice expressing a DNA binding mutant form of PPARβ/δ in the Kupffer cells (PPARβ/δ DBM). Cultured Kupffer cells from the three genotypes phagocytized latex beads demonstrating relative purity. Ligand activation of PPARβ/δ in Kupffer cells increased expression of the PPARβ/δ target gene, adipocyte differentiation-related protein (Adipr) in wild-type but not in Pparβ/δ-null or Pparβ/δ DBM Kupffer cells. Ligand activation of PPARβ/δ attenuated lipopolysaccharide (LPS)-induced expression of the pro-inflammatory gene, tumor necrosis factor-alpha (Tnfa) mRNA in Kupffer cell cultures from wild-type and Pparβ/δ DBM mice but not from Pparβ/δ-null mice. Wild-type Kupffer cells treated with LPS to induce an M1 phenotype exhibited increased expression of the pro-inflammatory macrophage markers Tnft, interleukin-6 (Il-6), interleukin-1β (Il-1β) and chemokine ligand-4 (Ccl4) and ligand activation of PPARβ/δ attenuated these responses. Wild-type Kupffer cells treated with IL-4 to induce an M2 phenotype exhibited increased expression of the anti-inflammatory markers arginase type-1 (Arg-1), macrophage galactose N-acetyl-galactosaminic specific lectin-1 (Magl), c-type lectin domain family 7, member A (Clec7A) and interleukin-10 (Il-10), but ligand activation of PPARβ/δ did not influence these responses. Combined, results from these studies suggest that PPARβ/δ inhibits hepatic inflammation, at least in part, via transrepression of pro-inflammatory signaling in Kupffer cells. Since this effect can be found with a DNA binding mutant form of PPARβ/δ, this suggests that the attenuation of pro-inflammatory signaling could be due to direct protein-protein interaction of PPARβ/δ with other inflammatory signaling molecules such as NF-kB.

638 Hepatocyte Tissue Factor Triggers the Procoagulant Response Associated with Acetaminophen-Induced Liver Injury and Hepatocyte Transplantation.

J. Luyendyk, A. K. Kopeč, N. Joshi, H. Cline, S. Bishop, K. M. Kassel, C. E. Rockwell, N. Mackman and B. P Sullivan. 1Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI; 2Pharmacology and Toxicology, Michigan State University, East Lansing, MI; 3Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.

The localization and regulation of tissue factor (TF) activity in hepatocytes (HPCs) is poorly understood and a role for HPC TF in vivo has not been established. We characterized the expression of TF by mouse HPCs and evaluated the role of HPC TF in mouse models of HPC transplantation and acetaminophen (APAP)-overdose injury. TF mRNA, protein, and total procoagulant activity (PCA) were significantly reduced in isolated HPCs and in liver homogenates from TFαflox/flox albumin-Cre mice (HPCαflox mice) compared to Tflox/flox mice (control mice). TF protein on the surface of intact HPCs had a Ca+2 that was reduced by cell-impermeable lysine conjugating reagents, but was unlabeled by an inhibitory TF antibody that competes for factor VII binding. Intact mouse HPCs clotted factor VII-deficient human plasma and TF-dependent factor Xa generation by HPCs occurred without exogenous factor VIIa. Thrombin generation in a model of HPC transplantation was dependent on donor HPC TF expression. Thrombin generation was also dramatically reduced in APAP-treated HPCαflox mice compared to APAP-treated control mice. The results indicate that TF expressed on the surface of mouse HPCs is preloaded with VII/VIIa, and that HPC TF is essential for coagulation induced by hepatocellular injury in vivo. Moreover, the expression of TF by HPCs implies that most hepatotoxic responses are likely accompanied by activation of the extrinsic pathway of blood coagulation.

639 Hepatoprotective Effects of Fibrinogen in Chronic Xenobiotic-Induced Cholestatic Liver Injury: Potential Involvement of Platelets.

N. Joshi, K. M. O’Brien, B. L. Copple, K. J. Williams and J. Luyendyk. 1Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI; 2Pharmacology & Toxicology, Michigan State University, East Lansing, MI.

Coagulation cascade activation and hepatic fibrinogen deposition are evident in a model of chronic alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury. We have shown previously that complete fibrinogen deficiency decreases liver necrosis in mice fed a diet containing ANIT. The mechanism whereby fibrinogen deficiency worsens injury in this model is not known, nor is it clear whether stabilizing hepatic fibrin would be hepatoprotective. One possibility is that fibrinogen-dependent platelet activation protects the liver from chronic ANIT diet-induced injury. We tested the hypothesis that stabilizing hepatic fibrinogen inhibits ANIT-induced chronic cholestatic liver injury by supporting hepatic platelet accumulation/activation. Mice fed a diet containing 0.025% ANIT for 2 weeks developed liver injury consisting of multifocal acute hepatocellular necrosis and inflammation, peribiliary fibrosis, lymphocytic inflammation and bile duct epithelial hyperplasia. Immunofluorescent CD41 (alphaIIb integrin) staining revealed a marked increase in platelets in livers of mice fed the ANIT diet compared to mice fed control diet. Administration of the anti-fibrinolytic drug tranexamic acid (1200 mg/kg, ip, bid) significantly reduced liver injury in mice fed the ANIT diet, but did not affect platelet accumulation. Administration of the platelet inhibitor clopidogrel significantly increased serum alanine aminotransferase (ALT) levels and liver necrosis in mice fed the ANIT diet. Moreover, serum ALT activity was increased in mice deficient in protease activated receptor-4 (PAR-4), a primary thrombin receptor on mouse platelets. The results indicate that stabilization of hepatic fibrin with antifibrinolytic therapy significantly reduces liver injury in mice fed ANIT diet. Moreover, the results suggest that platelets are also hepatoprotective in mice fed the ANIT diet.

640 Effects of Acetaminophen and Oxidative Stress on Primary Human Hepatocytes Derived from a Steatotic Liver.

M. J. Liguori, D. J. Cugier, R. Ciurlionis, A. C. Dietweg, J. Lai-Zhang, G. D. Gagne and E. A. Blomme. Department of Cellular and Molecular Toxicology, Abbott Park, IL.

Primary human hepatocytes are a favored in vitro system for characterization of some types of hepatotoxicity. Donor demographics, disease states, and lifestyles result in significant donor to donor variability and can have a strong influence on the sensitivity of primary hepatocytes to hepatotoxins. Here, we describe a unique primary human hepatocyte system originating from the liver of a female donor (SMK) with severe metabolic syndrome and pre-conditioned steatosis. The cells had a lipid-rich phenotype that was clearly visible both using standard light microscopy and lipid fluorescent stain, which showed a 400% increase in lipid intensity compared to a standard lot of hepatocytes. In general, steatotic cells have enhanced sensitivity to the presence of reactive oxidative stress (ROS). To test whether SMK cells were more susceptible to ROS, SMK cells and cells from a normal donor were exposed to acetaminophen, a drug with a well characterized ROS-mediated mechanism of toxicity, at a dose range of 0.5 to 20 mM for 72h using standard culture conditions. SMK hepatocytes were 2.7-fold more susceptible to APAP-induced cytotoxicity compared to their normal counterparts. The lipid signal was slightly reduced upon high levels of APAP. Total RNA was isolated from SMK both from naïve and APAP treated cells and subjected to whole genome transcriptomic profiling. When compared to a pool of non-diseased hepatocyte donors, naïve SMK cells showed extensive gene expression changes that were largely associated with bioenergetic pathways with marked downregulation of lipid processing control and synthetic genes (e.g. SREBP). Agglomerative hierarchical cluster analysis revealed a clear distinction between SMK and its normal counterparts of the global expression profiles induced after treatment with APAP. In summary, this study demonstrates that hepatocytes with marked steatosis can serve as interesting molecular models for ROS-mediated hepatotoxic injury.
641 Mesodihydroguaiaretic Acid Inhibits Alcoholic and Nonalcoholic Fatty Liver by Antagonizing LXRα Activity.

W. Sim1, S. Park1, K. Lee1, Y. Jye1, H. Yini1, Y. Choi1, S. Sung1, S. Park2, H. Park2, K. Shin3 and B. Lee1, 1College of Pharmacy, Seoul National University, Seoul, Republic of Korea; 2School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea; 3College of Pharmacy, The Catholic University, Bucheon, Republic of Korea; 4Molecular Pharmacology and Physiology, University of South Florida, Health Sciences Center, Tampa, FL.

Collaborative regulation of liver X receptor (LXR) and sterol regulatory element binding protein (SREBP)-1 are main determinants in hepatic steatosis. Recent studies indicate that selective intervention of overly functional LXRα in the liver shows promise in treatment of fatty liver. In the present study, we evaluated the effects of mesodihydroguaiaretic acid (MDGA) on LXRα activation and its ability to reverse fatty liver in mice. An LXRα co-activator recruitment assay and molecular docking analysis were performed to evaluate the binding of MDGA to the ligand-binding domain (LBD) of LXRα. The ability of MDGA to inhibit LXRα-dependent steatosis was investigated in an ethanol- or high-fat-diet (HFD)-induced steatosis model. MDGA inhibited activation of the LXRα-LBD by competitively binding to the pocket for agonist T0901317 and decreased the luciferase activity in LXRE-tk-Luc-transfected cells. MDGA attenuated expression of LXRα-dependent neutral lipid accumulation in ethanol- and HFD-induced fatty liver. MDGA reduced the expression of LXRα co-activator protein RIP140 in HFD-fed mice. While MDGA decreased the expression of LXRα, SREBP-1, SCD-1, and FAS proteins, genes associated with reverse cholesterol transport such as ABCA1 and ABCG1 were not affected. These results demonstrate that MDGA has the potential to reverse alcoholic and nonalcoholic steatosis mediated by selective inhibition of LXRα in the liver.

642 Toxicity of Diethyl Nitrosamine (DEN) in the Liver of Constitutive Androstane Receptor (CAR)-Knockout (KO) Mice.

K. Inoue1, M. Takahashi1, Y. Sakamoto1, K. Tamura2, S. Matsuo1, Y. Kodama1 and M. Yoshida1, 1Division of Pathology, National Institute of Health Sciences, Tokyo, Japan; 2Division of Toxicology, National Institute of Health Sciences, Tokyo, Japan.

CARKO mice showed high mortality after injection of DEN. To clarify the cause of high susceptibility in CARKO mice to the toxicity of DEN, 6-week old male CARKO and C3H mice were intraperitoneally injected 90 mg/kg body weight of DEN, and their livers were collected at days 1, 3, 7 and 14 after DEN treatment. Relative weight, pathological changes, mRNA expression and enzyme activity levels of CYP2B10 and CYP2E1 in the liver of CARKO mice were compared with controls injected saline or with wild mice. DEN significantly reduced relative liver weights in both genotypes and the decreased liver weights in CARKO mice were significantly lower than wild mice at days 7 and 14. Microscopically, pale cytoplasmic vacuoles were observed in the hepatocytes of CARKO mice. While the expression level of Cyp2b10 in the liver of wild mice increased by DEN with or without significance, compared with their controls, the level in CARKO mice remarkably diminished in both control and DEN groups at all time points. As for testostererone hydroxylase activity (CYP2B10), there were no difference between controls and DEN groups or both genotypes at days 1 and 7. DEN treatment significantly decreased Cyp2e1 and aniline hydroxylase activity (CYP2E1) level in both genotypes at day 1, compared with each control, and the decreased level of aniline hydroxylase activity was significantly lower in CARKO than in wild mice. Judging from these results, high susceptibility in CARKO mice to the toxicity of DEN might be caused by immediate decrease of CYP2E1 activity after DEN treatment.

643 Leptin Modulates Toxicity Associated Steatohepatitis through Peroxisyntide in Kupffer Cells.

S. Das1, A. Kumar1, D. Ganini1, E. I. Tokai1, J. Corbet1, M. Kadiiska1, M. E. Wieszka1, A. Dielt1, R. P. Mason2 and S. Chatterjee1, 1Environmental Health Sciences, University of South Carolina, Columbia, SC; 2Laboratory of Toxicology and Pharmacology, NIEHS, Research Triangle Park, NC.

Progression from steatois to toxin-mediated steatohepatitis (TASH) lesions is hypothesized to require a second hit. These lesions have been associated with increased oxidative stress, often ascribed to high levels of leptin and other proinflammatory mediators. Here we have examined the role of leptin in inducing oxidative stress and Kupffer cell activation in toxin-mediated steatohepatitic lesions of obese mice. Male C57BL/6 mice fed with a high fat diet (60% kcal) at 16 weeks were administered CCl4 to induce steatohepatitic lesions. Approaches included use of immuno-spin trapping for measuring free radical stress, gene-deficient mice for leptin, p47 phox, iNOS and adoptive transfer of leptin primed macrophages in vivo. Diet-induced obesity (DIO) mice were treated with CCl4, iNOS inhibitors and leptin receptor expression. Oxidative stress was significantly elevated in DIO mice liver but not in OB/OB mice, or in DIO mice treated with leptin antibody. In OB/OB mice, leptin supplementation restored markers of free radical generation. Markers of free radical formation were significantly decreased by the pereoxisome decomposition catalyser FeTPPS, the iNOS inhibitor 1400W, the NADPH oxidase inhibitor apocynin, or in iNOS or p47 phox-deficient mice. These results correlate with the decreased expression of TNF-alpha and MCP-1and decreased leptin receptor expression. Kupffer cell depletion eliminated oxidative stress and inflammation, whereas in macrophage-depleted mice, the adoptive transfer of leptin primed macrophages significantly restored inflammation. These results, for the first time, suggest that leptin action in macrophages of steatotic liver through induction of iNOS and NADPH oxidase caused peroxisynthyte-mediated oxidative stress thus activating Kupffer cells and modulating leptin receptor expression in the liver.

644 Occupational Vinyl Chloride Exposures Are Associated with Significant Changes to the Plasma Metabolome: Implications for Toxicant Associated Steatohepatitis.

B. Wheeler1, M. Cavy2, K. Falkner2 and C. McClain1, 2, 1Department of Medicine/GI, University of Louisville, Louisville, KY; 2Louisville VAMC, Louisville, KY.

Occupational vinyl chloride (VC) exposure has been associated with steatohepatitis (TASH) and liver cancer, although the modes of action are unknown. Metabolomics has recently been utilized for the evaluation of drug-induced liver injury, but has not previously been performed for occupational VC exposures. Plasma samples from 17 highly-exposed VC workers without liver cancer and 27 unexposed healthy volunteers were obtained from a specimen bank. GC/MS (Thermo-Finnigan Trace DSQ, fast-scanning single-quadrupole mass spectrometer) and LC/MS2 (Waters ACQUITY UPLC, Thermo-Finnigan LTQ mass spectrometer) were performed. Software was used to match ions to a library of standards for metabolite identification and quantitation by peak area integration. Statistical significance was determined using Welch's t-tests. 613 unique named metabolites were identified. Of these, 189 metabolites were significantly increased in the VC exposure group while 94 metabolites were significantly decreased. The most striking differences occurred in lipid metabolites. Essential (7 of 7) and long chain free fatty acids (19 of 19, including arachidonic acid, 6 fold) were significantly increased with VC exposure. Lipid peroxidation products were likewise increased by VC exposure: monohydroxy fatty acids (8 of 9, including 13-HODE, 211 fold); fatty acid dicarboxylic acids (8 of 13); oxidized arachidonic acid products (7 of 7, including 5-HETE, 9-HETE, and 15-HETE, up to 616 fold). Other arachidonic acid products including leukotriene B4 (52 fold) were also up-regulated with VC exposure. Abnormalities were also noted in amino acid metabolism, and particularly the transmethylation and transsulfuration pathways. VC exposure was associated with increased plasma free fatty acids and lipid peroxidation products. Lipotoxicity, pro-inflammatory lipid peroxidation products, and impaired transmethylation/transsulfuration pathways represent novel modes of action for VC hepatotoxicity.

645 Pregnancy-Related Lactogenic Hormones Alter the Expression of Uptake and Efflux Transporters in Primary Human Hepatocytes.

L. E. Moscovitz1, C. J. Gibson1, H. J. Chung1, H. Y. Joong1 and L. M. Aleksuna1, 1Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ; 2College of Pharmacy, Geonang National University, Jinju, Republic of Korea; 3Department of Pharmacy Practice, University of Illinois, Chicago, IL; 4Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ.

The secretion of lactogenic hormones prolactin (PRL) and placental lactogen (PL) increases steadily throughout pregnancy and reaches the highest levels just prior to parturition. The effects of lactogenic hormones on the expression of hepatic transporters critical for the excretion of endogenous chemicals, drugs, and toxiciants have not been characterized. To investigate the regulation of transporters by lactogenic hormones, sandwich-cultured, freshly isolated human hepatocytes from three adult female donors were treated for 72 hours with vehicle (carbonate-buffered saline),
human PRL (150 ng/ml) or human PL (6 μg/ml), and total RNA was isolated. Gene expression was quantified by microarray analysis and validated with quantitative real-time PCR (qPCR). qPCR analysis shows PRL and PL have differential effects on the gene expression of hepatic transporters. PRL caused the up-regulation of mRNA for the uptake transporter OAT2 by 60%, and down-regulation of the efflux transporters MRPs, MRP6, and BCRP between 15 and 20%. PL decreased mRNA expression for all uptake transporters tested, significantly for NTCP, OCT1, OATP1B1, and OATP1B3. In addition, PL increased efflux transporter gene expression for ABCA1 and BSEP by 100%, but reduced MDR1, MRPs, MRP3, MRP6, and BCRP mRNAs. Taken together, these data suggest hormones secreted during pregnancy may globally suppress the maternal gene expression of many uptake and efflux transporters crucial for chemical excretion by the liver.

Supported by ES020522, DK080774, ES007148, ES005022, HD065532.

646 Acrolein Cytotoxicity in Hepatocytes Involves Endoplasmic Reticulum Stress, Mitochondrial Dysfunction, and Oxidative Stress.

M. Mohammadi1, D. Avila1, J. Zhang1, S. Barry1, G. Areed1, C. McClain1,2 and S. Ioshi-Barve1
1Department of Medicine/GI, University of Louisville, Louisville, KY; 2Louisville VAMC, Louisville, KY; 1Pharmacology and Toxicology, University of Louisville, Louisville, KY.

Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. Also, it is produced endogenously via lipid peroxidation and cellular metabolism of certain amino acids and drugs. Acrolein is cytotoxic to many cell types including hepatocytes; however the mechanisms are not fully understood. We examined the molecular mechanisms underlying the cytotoxicity in primary human hepatocytes and hepatoma cells. Acrolein, at pathophysiologic concentrations, caused a dose-dependent loss of viability of hepatocytes. The death was apoptotic at moderate and necrotic at high concentrations of acrolein. Acrolein exposure rapidly and dramatically decreased intracellular glutathione and overall antioxidant capacity, and activated the stress-signaling MAP-kinases JNK, p38, and p42/44. Additionally, exposure induced the expression of many uptake and efflux transporters crucial for chemical excretion by the liver.

647 Intersstrain Differences in Progression from Simple Liver Steatosis to Fibrosis Are Associated with Altered Hepatic Iron Metabolism in Mice.

S. Shypleva1, L. Muskheilidvili1, M. Pogribrina1, C. Cozart1, M. Bryant1, F. A. Beland3 and J. P. Pogribrin3
1Division of Biochemical Toxicology, NCTR, US FDA, Jefferson, AR; 2Toxicologic Pathology Associates, NCTR, US FDA, Jefferson, AR.

Nonalcoholic fatty liver disease (NAFLD) is a major health problem and a leading cause of chronic liver disease in the United States and other developed countries. The pathogenesis of NAFLD is often conceptualized as a two-step process that consists of hepatic triglyceride accumulation leading to steatosis as a first step, followed by a second step that includes oxidative stress, inflammation, and fibrogenesis. However, there is a lack of consensus on the significance of these events and the underlying mechanisms responsible for the disease progression and, more importantly, for differences in inter-individual disease severity and sensitivity. In a previous study we demonstrated that the inter-strain variability in severity of NAFLD was associated with dysregulation of lipid metabolism (first step), however, these studies did not indicate the importance of altered iron metabolism in the mechanism of the second step leading to progression from simple hepatic steatosis to fibrosis. The goal of this study was to investigate whether or not inter-individual differences in the intracellular iron metabolism are associated with development and severity of fibrosis induced by methyl-donor-deficiency among individual inbred strains of mice. Feeding male A/J, 129S1/SvImJ, and WSB/Eij mice a choline- and folate-deficient (CFD) diet for 12 weeks caused liver injury similar to NAFLD, with the magnitude being A/J < 129S1/SvImJ < WSB/Eij. The inter-strain variability in severity of NAFLD and its further progression to fibrosis, which was characterized by hepatic stellate cell activation and the detection of fibrosis markers, was associated with the extent of hepatic iron metabolism deregulation. This was evidenced by strain-dependent alterations in the expression of iron- regulatory genes (Tfrc, Fth1, Skl40a1, and Hc2), which was correlated tightly with the degree of hepatic fibrotic changes in the livers of the mice fed the CFD diet.

648 Dose-Dependent Hepatic Physiological, Histopathological, and Gene Expression Responses in C57BL/6 Mice following Repeated TCDD Exposure.

T. B. Zacharewicz1,2, K. A. Fader3, J. Harkema1,3 and R. Nau1,3
1Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI; 2Pathobiology and Diagnostic Investigations, Michigan State University, East Lansing, MI; 3Center for Integrative Toxicology, Michigan State University, East Lansing, MI.

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent aryl hydrocarbon receptor (AhR) agonist. We have previously reported that exposure to a single oral dose of 1 μg/kg TCDD induces hepatic steatosis in mice. A complementary 28 day repeated-dose dose-response study was performed to further investigate the effects of TCDD on steatosis and its progression to steatohepatitis and cirrhosis. C57BL/6 mice were gavaged every 4 days with sesame oil vehicle control or 0.001 - 30 μg/kg TCDD. Although repeated dosing did not significantly affect body weight gain, gonadal white adipose tissue (gWAT) weight was 50% lower at 30 μg/kg while relative liver weight was increased at 3, 10, and 30 μg/kg TCDD. Histopathology revealed dose-dependent alterations with minimal centrilobular microvesicular lipid accumulation (hepatic steatosis) at 3 μg/kg, mild to moderate hepatic lipid accumulation with mild inflammation at 10 μg/kg (steatohepatitis), and widespread micro- and macro-vesicular lipid accumulation in the centralis, mid-zonal, and periradial regions of the liver, inflammation, and perivenular fibrosis suggesting early cirrhosis at 30 μg/kg. QRTPCR revealed dose-dependent induction of Cyp1a1, Cyp1a2, Cyp1b1, Dnaj, Gadd153, and Nq1, resulting in cell death. Notably, the protective adaptive component of ER stress was not activated, and acrolein failed to up-regulate the protective ER-chaperones, GRP78 and GRP94. Additionally, exposure to acrolein disrupted mitochondrial integrity/function, and led to the release of pro-apoptotic proteins and ATP depletion. Acrolein-induced cell death was attenuated by N-acetyl cysteine, phenyl-butyric acid, and caspase and JNK inhibitors. Our data demonstrate that exposure to acrolein induces a variety of stress responses in hepatocytes, including GSH depletion, oxidative stress, mitochondrial dysfunction and ER stress (without ER- protective responses) which together contribute to acrolein toxicity. Our study defines basic mechanisms underlying liver injury caused by reactive aldehyde pollutants such as acrolein.

649 Impaired Glycosylation and Membrane Localization of Uptake and Efflux Transporters in Human Nonalcoholic Fatty Liver Disease.

J. Clarke1, P. Novak1, A. D. Lake1, B. N. Hardwick1 and N. J. Cherrington1
1Pharmacology and Toxicology, University of Arizona, Tucson, AZ; 2Biology Centre ASCR, Institute of Plant Molecular Biology, Czech Republic.

The prevalence of non-alcoholic fatty liver disease (NAFLD) and the more severe non-alcoholic steatohepatitis (NASH) is estimated to be 20-40% and 5-17%, respectively. We have previously demonstrated a loss of N-linked glycosylation and decreased membrane localization of the efflux transporter ABC2C2 in rodent and human NASH resulting in the altered disposition of drugs. N-linked glycosylation of proteins has been shown to be critical for proper protein folding and trafficking to the plasma membrane. The purpose of this study was to assess the transcriptomic expression of genes involved in protein glycosylation and processing through the endoplasmic reticulum (ER), and to determine the effect of altered glycosylation on key drug transporters during the progression of human NAFLD. For this study, human liver samples diagnosed as healthy, steatosis, NASH with fat, and NASH without fat were analyzed. Using bioinformatic methods we discovered that genes involved in protein processing in the ER and biosynthesis of N-glycans were significantly enriched for downregulation in NAFLD progression. Included in the N-glycan biosynthesis category were genes involved in the oligosaccharyltransferase complex, N-glycan quality control, N-glycan precursor biosynthesis, N-glycan trimming to the core, and N-glycan extension from the core. In contrast to down-regulation of these genes, N-glycan degradation genes were upregulated in the progression to NASH. Immunoblot analysis of the uptake transporters OATP1B1 and OATP1B3 and the efflux transporters ABC2C2 and BCRP demonstrated a significant loss of glycosylation, while immunohistochemical analysis revealed impaired membrane localization of ABC2C2. We propose that the loss of glycosylation and impaired membrane localization of key uptake and efflux transporters in human NASH is a potential mechanism for the occurrence of altered drug disposition in NASH.
High Dietary Fructose Induced Copper Deficiency Contributes to Alcoholic Liver Disease Progression.

M. Song1, T. Chen2, and G. McClain1,2,3. 1Department of Medicine/NIH, University of Louisville, Louisville, KY; 2Louisville VAMC, Louisville, KY; 3Pharmacology and Toxicology, University of Louisville, Louisville, KY.

Background/Aims: The increased consumption of fructose parallels the increased prevalence of obesity and the metabolic syndrome in the United States and worldwide. Noteworthy is that obesity potentiates the severity of alcohol-induced liver injury. High fructose feeding impairs intestinal copper absorption and leads to copper deficiency in rodents. Moreover, copper deficiency is associated with the decreased antioxidant defenses and mitochondrial dysfunction. In this study, we investigated whether high fructose diet-induced obesity potentiates chronic alcohol drinking induced liver injury.

Methods: Six-week-old male C57Bl/6 mice were fed either control diet or high fructose diet (45% fructose by weight, 18 weeks). 20% (v/v) ethanol was given ad libitum after 8-weeks high fructose feeding until the end of the experiment. Copper status, hepatic injury and steatosis were assessed.

Results: High fructose diet feeding led to copper deficiency as indicated by decreased plasma ceruloplasmin, Cu, Zinc superoxide dismutase (SOD1) and increased copper chaperone for SOD1 (CCS). Liver injury was significantly induced in mice fed with high fructose diet followed by chronic alcohol drinking as evidenced by robust increased plasma ALT, AST, chemokine (mouse KC) and liver histology. Both liver triglyceride and plasma triglyceride were significantly increased with chronic alcohol drinking, however, neither additive nor synergistic effects was observed in mice fed with high fructose diet followed by chronic alcohol drinking.

Conclusion: Our data suggest that high fructose diet-induced obesity may potenti- ate chronic alcohol drinking induced liver injury. High fructose feeding induced copper deficiency might be a priming factor to chronic alcohol drinking induced liver injury. The potential mechanism might relate to the decreased antioxidant defense caused by copper deficiency.

Steroid Sulfatase Enhances Hepatic Estrogen Activity and Protects Mice from Obesity and Type 2 Diabetes.

W. Xie and M. Jiang. 1University of Pittsburgh, Pittsburgh, PA.

The enzyme steroid sulfatase (STS) is responsible for the formation of biologically active estrogens by the hydrolysis of estrogen sulfates and regulates estrogen homeostasis. In this report, we showed that hepatic over-expression of STS in female STS transgenic mice elicited metabolic benefits that protected mice from high fat diet (HFD) induced obesity and type 2 diabetes. STS transgenic mice subjected to HFD challenge displayed significant decrease in fat mass and body weight, and increased energy expenditure without alterations in food intake compared with their wild-type counterparts. Moreover, STS transgenic mice had improved glucose tolerance. The metabolic benefit was associated with inhibition of hepatic glucogen- eogenes and inflammation related genes. Silencing the tran- sgene expression through tet-off regulatory system abolished the metabolic benefit, indicating that the protection is caused by transgene itself rather than non-specific effects from random transgene insertion sites. The hepatic estrogen signaling was enhanced in STS transgenic mice, whereas elimination of the primary source of estrogens by ovariectomy abolished the protective metabolic phenotype, suggesting the metabolic action is mediated by increased estrogenic activity in STS transgenic mice liver. In summary, our results have revealed an important metabolic function of STS and may establish it as a novel therapeutic target for the prevention and treatment of obesity and type 2 diabetes.

Effect of Diallyl Disulfide on the Cytokines Expression in Cadmium Chloride-Treated Liver Cells.

S. Smith, C. Odewumi, V. Badia, A. Abdulla and L. M. Latinwo. 1Department of Medicine, University of Florida, Tallahassee, FL. Sponsor: A. Becker.

Cadmium is one of the most hazardous metals in the environment. Studies have shown that exposure to cadmium causes damage to many organs that may alter bi- ological activities of the cells and may lead to cancer in mammalian systems. In the presence of toxicants, cells produce various cytokines in the body to reduce the toxic effect of the toxicants. Diallyl disulfide (DADS), an organosulfur compound in the garlic extract has been used in many countries as a preventive compound for various diseases. DADS can acts as chelator and/or as an antioxidant. This project was designed to study the preventive effect of DADS on the cytokines expression in cadmium chloride (CdCl2) treated normal rat liver CRL1439 cells. For the viability assay, the cells were treated with CdCl2 alone (0, 50 and 150 μM), DADS alone (150 and 300 μM) or co-treated with 2 h pre-treatment of DADS (150 and 300 μM) prior to CdCl2, (150 μM) for 24 h and the cells viability was measured by the crystal violet assay. For the cytokine array analysis, the cells were treated with CdCl2 alone, DADS (150 μM), DADS (300 μM), DADS co-treated with CdCl2 (150 μM) or CdCl2 toxicity. In the cells treated with CdCl2 alone, 22 cytokines were down-regulated (150 μM) or co-treated with 2 h pre-treatment of DADS (150 μM) prior to CdCl2, (150 μM) for 6 h and the cytokines expression was measured using the Ray Biotech human cytokine array 7 kit. Viability results revealed that 150 μM of DADS showed the greatest protection against CdCl2 toxicity. In the cells treated with CdCl2 alone, 22 cytokines were up- regulated (150 μM) or DADS co-treated with CdCl2 (150 μM) for 6 h. However, the cells pattern of cytokine expression observed was reversed, indicating the protective effect of DADS against CdCl2 toxicity. Cytokines that were up-regulated in CdCl2 alone are involved in the alterations of cell cycle control system and cell mediated immunity. The present study clearly shows the preventive effect of DADS on the cytokines expression in the CdCl2 treated liver cells and suggests that DADS can be used as preventative agent for cadmium toxicity.

The Effect of Fenugreek Leaf Extract on Gene Expression Profile of Cadmium Chloride Treated Normal Rat Liver Cells.

Rationale and Scope of the Study: Cadmium is a toxic and carcinogenic metal pollutant that has been known to cause DNA damage. It targets many human organs, mainly lungs, liver, and kidneys. Many chemo-preventive agents have been used against the toxic effect of many heavy metals. Fenugreek belongs to the family Leguminosae and well known for its medicinal value. In our study, the effect of Fenugreek Leaf Extract (FLE) on the viability and toxicity of cell line in cadmium treated rat liver cells was evaluated. Experimental Procedure: The cells were treated with CdCl2 (0, 25 μM) alone or pretreated with FLE (0.005mg/μl) for 4 h followed by CdCl2 (25 μM) for 36 h or 48 h at 37°C in a 5% CO2 incubator. The viability was measured by crystal violet dye staining method. The total gene profiles were determined using RG230 PM whole genome microarray which was processed by Affymetrix Gene Atlas system. The Partek Express software analyzes the genes up or down regulated in the treated samples. The Partek pathway software identifies the pathways affected by the treatment. Results: In CdCl2 alone treated cells, the viability was reduced to 37.1%, while in the cells pretreated (4 h) with FLE followed by CdCl2, the viability was increased to 102% respectively, in comparison to the control cells (100%). In CdCl2 alone treated cells, out of 31,139 genes on the array 61 were up regulated (≥ 2 fold) and 124 were down regulated (≤ 2 fold) respectively in comparison to control cells. In the cells pretreated with FLE followed by CdCl2, 181 genes were up regulated (≥ 2 fold) and 161 genes were down regulated (≤ 2 fold). The main pathways affected in above treatment groups were ribosome, TCA cycle and DNA replication. Conclusion: Our results indicate that pretreatment with FLE for 4 h affects gene expression profile in the cadmium treated cells. The alteration in the genes expression in the FLE pretreated cells may be responsible for the protective effect against cadmium toxicity. Therefore, our study suggests that fenugreek leaves can be used to reduce cadmium toxicity.

Evidence for a Functional Keap1-Nrf2 Cell Defence Pathway in Human Liver.

I. M. Copple1, C. Rowe1, R. P. Jones1, S. W. Fenwick2, H. Z. Malik2, C. Goldring1, N. R. Kitteringham1 and B. Park1. 1MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, United Kingdom; 2Department of Hepatobiliary Surgery, Aintree University Hospital NHS Foundation Trust, Liverpool, United Kingdom. Sponsor: D. Mendrick.

The transcription factor Nrf2 regulates a battery of cell defence processes that protect against drug-induced liver injury in rodents, yet very little is known regarding the role of Nrf2 in regulating resistance to drug-induced stress in man. Utilizing hepatocytes isolated from surgically resected healthy liver tissue (n=6), we provide the first comprehensive delineation of the Nrf2 pathway in human liver. Hepatocytes were isolated using a standard collagenase perfusion protocol, seeded onto Type I collagen-coated culture plates and reverse-transfected with 20 nM of an siRNA duplex targeted against Nrf2, Keap1 or a scrambled non-targeting control siRNA duplex. siRNA depletion of Nrf2 was associated with a decrease in the mRNA and protein levels of the established Nrf2 target genes GCLC, NQO1 and SRXN1. Furthermore, following siRNA depletion of Keap1, the cytosolic repressor of Nrf2, the total cellular abundance of Nrf2 protein was increased, as was the mRNA and protein levels of GCLC, NQO1 and SRXN1. The potent Nrf2 activator CDDO-Me induced a robust stabilisation of Nrf2 in human hepatocytes, and this was associ- ated with a time and Nrf2-dependent increase in the mRNA and protein levels of GCLC, NQO1 and SRXN1. Under the same conditions, CDDO-Me provoked a...
time and Nrfl2-dependent increase in total glutathione levels. Therefore, the Keap1-Nrf2 pathway regulates the basal and inducible activity of key cell defense processes in human hepatocytes, and may therefore be a novel marker of chemical stress and/or a promising therapeutic target in man. Notably, there was marked (up to 5-fold) inter-individual variation in the basal and inducible level of Nrf2 protein across hepatocytes isolated from patients. Such inter-individual variation in the activity of Nrf2 may have important consequences for susceptibility to disease and drug-induced toxicity in man.

655 Dibenzoferan and Mitochondrial Function: Interaction with Adenine Nucleotide Translocator.

C. M. Palmeira1, 2, F. V. Duarte1, 2, A. P. Gomes1, 2, J. S. Teodoro1, 2, A. T. Varela1, 2, A. J. Moreno1 and A. P. Rolo1, 3. 1Department of Life Sciences, University of Coimbra, Coimbra, Portugal; 2Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal; 3Department of Biology, University of Aveiro, Aveiro, Portugal.

Dioxins and furans are very toxic and exposure to these environmental pollutants, such as fuel constituents, is linked to several diseases. Dibenzoferan is listed as a pollutant of concern due to its persistence in the environment, bioaccumulation and toxicity to humans and the environment. Mitochondrial function is very important in cellular homeostasis and keeping a proper energy supply for eukaryotic cells is essential in the fulfillment of the tissues energy-demand. The main objectives of this work concerned Dibenzoferan effects on mitochondrial function. We isolated mitochondria from rat liver and incubated them with Dibenzoferan to analyze the effects of this pollutant at the level of mitochondrial function.

The effects of Dibenzoferan exposure include a markedly increase in the lag phase that follows depolarization induced by ADP, indicating an effect in the phospho-rylative system. Experiments performed using carboxyatractyloside (CAT) suggested an interaction of Dibenzoferan with the ANT carrier. Dibenzoferan exposure also produces an inhibition of mitochondrial permeability transition and an increase in calcium retention capacity, which may also be explained by a putative interaction of Dibenzoferan with ANT.

Clarifying the role of pollutants in some mechanisms of toxicity, such as unbalance of bioenergetics status and mitochondrial function, may help to explain the progressive and chronic evolution of diseases derived from exposure to environmental pollutants.

656 Trofalovaxin-Induced TNF Expression in Raw Cells Is ATR-Dependent.

K. L. Poulsen1, 2, E. G. Ganey1, 2 and R. A. Roth1, 2. 1Pharmacology and Toxicology, Michigan State University, East Lansing, MI; 2Center for Integrative Toxicology, Michigan State University, East Lansing, MI.

Trofalovaxin (TVX) is a fluoroquinolone antibiotic associated with idiosyncratic drug-induced liver injury (IDILI) in humans. The mechanism underlying this toxicity is unknown. An animal model of IDILI in mice revealed that TVX synergizes with a concurrent inflammatory stress from bacterial lipopolysaccharide (LPS) to result in liver injury. This hepatotoxic interaction depended upon prolongation of the LPS-induced appearance of tumor necrosis factor-alpha (TNF) in the plasma of animals coexposed to TVX. We established a model in vitro in RAW 264.7 murine macrophages (RAW cells) in which exposure to TVX alone or in combination with LPS increases both cellular TNF mRNA and TNF protein release into the culture medium. TVX is a bacterial topoisomerase inhibitor, and in a cell-free assay it inhibited mammalian topoisomerase II-alpha as well. Interestingly, TVX also caused a concentration-dependent increase in DNA double-strand breaks (DSBs) in RAW cells. Inasmuch as DSBS can activate kinases such as ataxia telangiectasia mutated (ATM) and Rad3-related (ATR), kinase inhibitors were tested for their ability to diminish TVX-induced synthesis and release of TNF from RAW cells. A selective ATM inhibitor (KU55933) had no effect on TNF mRNA or TNF release from TVX-exposed RAW cells. In contrast, a novel ATR inhibitor (NU6027) significantly attenuated the TVX-induced increase in TNF mRNA. NU6027 also eliminated the interaction between TVX and LPS, significantly decreasing TNF release in cells treated with TVX-LPS to the level induced by LPS alone. These findings suggest that ATR plays an important role in TNF expression in response to TVX exposure. (Supported by NIH grant R01 DK061315 and T32 ES007255)

657 3,3'-Diindolylmethane Attenuates Lipopolysaccharide/D-Galactosamine-Induced Fulminant Hepatic Failure by Inducing Changes in microRNA Expression in the Liver-Infiltrating Mononuclear Cells.

S. Tomar, P. Nagarjau and M. Nagarjau. Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC.

Lipopolysaccharide/D-Galactosamine (LPS/D-GaNL) induced acute liver injury is a widely used animal model of human fulminant hepatic failure. Our studies demonstrate that pretreatment with 3,3'-Diindolylmethane (DIM), a plant derived compound and a ligand for Ah receptor (AhR) reduces LPS/D-GaNL induced acute liver injury in BALB/c mice. This was demonstrated by decreased morbidity, serum levels of pro-inflammatory cytokines such as TNFα and IL-6, serum Alanine Transaminase (ALT) enzyme, liver damage by histology, liver infiltration of mononuclear cells and the myeloperoxidase (MPO) activity in the liver tissues of mice treated with DIM prior to induction of liver injury. DIM treatment also suppressed Caspase 3 activity, nuclear NF-kB translocation and activation of ERK/MAP kinase in the liver tissues. DIM treatment also causes a reduction in absolute numbers of activated macrophages that infiltrate the liver. In vitro studies showed that DIM causes suppression in the expression of activation markers, CD69, CD86 and MHCII, and increased apoptosis of B cells after LPS treatment. Interestingly, AhR antagonist CH223191 was able to cause a reversal of these DIM-mediated in vitro effects, indicating that the effects of DIM were mediated through the AhR. miRNA expression microarray revealed that DIM causes a differential change in the expression of several miRNAs that regulate multiple pathways of immune cell responses including MAP kinases, STAT proteins, TNFα, IL-6 and NF-kB signaling within the liver infiltrating mononuclear cells. Our results indicate that DIM suppresses acute liver injury by regulating miRNA expression within the liver infiltrating mononuclear cells and that DIM could be a potential therapeutic strategy for acute liver injury. (Supported in part by NIH grants P01AT003961, R01AT006888, R01ES019315, R01MH09475, P20RR032684 and VA Merit Award BX001357).

658 Multiple Mechanisms for the Appearance of Acetaminophen-Protein Adducts in Plasma: Basic Science and Clinical Implications.

M. R. McGill, Y. Xie, M. Bajt, M. Yang, C. Williams and H. Jaeschke. Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS.

Acetaminophen (APAP) overdose is a major cause of acute liver failure. The drug is metabolized to an intermediate (NAPQI) which binds to proteins. Protein binding in the liver initiates a cascade of intracellular signaling events leading to necrosis. Interestingly, APAP-protein adducts can also be detected in plasma. Initially, this was thought to be due to release of hepatocyte contents during cell death. However, it has been shown that plasma adducts appear without injury. Here, we have confirmed this by showing that plasma adducts increase before ALT at toxic doses, are detectable after non-toxic doses, and are detectable in APAP-resistant rats. How this occurs is not yet known. To explore this further, primary mouse hepatocytes were treated with APAP in medium with or without serum. In serum-free medium we could measure extracellular proteins within 3 h (Coomassie), demonstrating active protein secretion. Adducts were detected in both regular and serum-free medium at this time point (0.77±0.08 vs. 0.24±0.02 nmol/mg protein), indicating that serum absence did not reduce metabolism. To test if necrosis can increase serum adducts, we treated mice with doses of APAP that did not cause injury and induced necrosis with ischemia-reperfusion. A significant increase in serum APAP-protein was observed. This could have implications for the clinical use of this parameter in patients with non-APAP liver injury and incidental APAP ingestion. Conclusions: Multiple mechanisms are involved in appearance of serum APAP-protein adducts, including secretion and passive release during necrosis. Caution should be used in the clinical interpretation of APAP-protein adducts.

659 Insulin-Mimetic Effects of Arsenic: Modulation of FoxO Signaling to Affect Selenoprotein P Expression.

I. Hamann and L. Klotz. Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.

Epidemiological studies have indicated a dose-response relationship between the prevalence of diabetes mellitus and arsenic exposure from drinking water. Mechanisms by which arsenic may cause this diabetogenic effect are largely unknown. Recent studies indicate that arsenic may impair insulin-stimulated glucose

SOT 2013 Annual Meeting 141
uptake. The phosphoinositide 3'-kinase (PI3K)/Akt signaling pathway plays an important role in glucose metabolism, in part by regulating the activity of forkhead box class O (FoxO) transcription factors. The present study aimed at investigating the effect of As³⁺ (arsenate) on FoxO activity in human hepatoma cells, the role of PI3K/Akt signaling therein and the modulation of the expression of FoxO target genes, such as that of selenoprotein P (SelP), a hepatokine causing insulin resistance. We analyzed changes in phosphorylation of Akt and FoxOα/β in HepG2 human hepatoma cells in response to As³⁺ by Western blotting and found a concentration-dependent increase in phosphorylation of Akt at S473, with arsenite being effective already at low micromolar concentrations. Arsinite exposure caused phosphorylation of FoxOα and FoxOα at sites known to be phosphorylated by Akt, T32 and S24, respectively. Phosphorylation of FoxOα was prevented by wortmannin, pointing to the involvement of PI3K. The functional inactivation of FoxOα by As³⁺ was observed in an ELISA-based DNA binding assay and at the level of FoxO target gene expression: SelP and glucose-6-phosphatase mRNA levels were clearly downregulated after 24 h exposure to nanomolar As³⁺ concentrations, as demonstrated by real-time RT-PCR. Curiously, As³⁺ showed a biphasic effect on SelP protein levels, inducing a small increase in the nanomolar and a distinct decrease in the micromolar concentration range. In conclusion, As³⁺ may perturb cellular signaling pathways involved in fuel metabolism: it stimulates insulin-like signaling in HepG2 cells and affects the expression of FoxO target genes and the release of the hepatokine SelP, which is known to modulate insulin sensitivity.

660 The Role of Multidrug Resistance Protein 4 (Mrp4, Abcc4) in Protecting against Acetaminophen (APAP)-Induced Hepatotoxicity.

A. M. Bataille and I. E. Manautou, Pharmacological Sciences University of Connecticut, Storrs, CT.

Mrp4 is a member of the ABC family of membrane transport proteins that functions as an efflux transporter for a wide variety of substrates. Previous studies in our laboratory have shown that Mrp4 is the most significantly induced hepatic transporter by toxic acetaminophen (APAP) treatment. The basal expression of Mrp4 in normal human and naive C57BL/6 mouse liver is very low. However, Mrp4 expression is greatly induced by exposure to hepatotoxics that cause oxidative stress, suggesting that this transporter is up-regulated to assist in defending against cellular stress. Additionally, in our laboratory we demonstrated that a low hepatotoxic dose of APAP protects against subsequent administration of a higher dose of APAP. This phenomenon is referred to as APAP autoprotection and liver Mrp4 induction is even more pronounced in this mouse model. Despite these findings, the precise role that enhanced Mrp4 expression plays in protecting against APAP hepatotoxicity remains unclear. To study this, we analyzed the responsiveness of Mrp4 heterozygous mice (Mrp4+/−) to APAP hepatotoxicity and the ability of these mice to exhibit resistance to APAP upon toxicant re-exposure. The results showed that APAP hepatotoxicity in Mrp4+/− mice is significantly higher than in wild-type mice. However, the ability of these mice to develop tolerance to APAP liver injury is unchanged. Analysis of potential differences in gene expression of other hepatic membrane transporters, oxidative stress-related genes and drug detoxification enzymes revealed that there are no significant changes that could account for the differential susceptibility of Mrp4+/− mice to APAP toxicity. Based on these results, we conclude that Mrp4 plays a critical role in preventing APAP-induced hepatotoxicity but that its role in APAP autoprotection may be less substantial.

661 Dual Role of Macrophages in Injury and Repair in Acetaminophen-Induced Hepatotoxicity.

C. R. Gardner 1, H. M. Choi 1, J. D. Laskin 1 and D. L. Laskin 1, Rutgers University, Piscataway, NJ; 2UMDNJ-RWJ Medical School, Piscataway, NJ.

Activated macrophages and the mediators that they release play a key role in acetaminophen (APAP)-induced hepatotoxicity; however, their role is dependent on their phenotype and timing of appearance in the liver. Whereas classically activated M1 macrophages contribute to tissue injury, alternatively activated M2 macrophages are involved in tissue repair. To assess the role of these macrophage subpopulations in APAP hepatotoxicity, we used gadolinium chloride (GdCl₃) and clodronate liposomes (CL), which block M1 and M2 macrophages, respectively. Male Long Evans hooded rats were treated with GdCl₃ (7 mg/kg, iv) or CL (0.4 mL/100 g body weight), 24 and 48 h prior to APAP (600 mg/kg, ip). Cells were isolated 24 h later. Treatment of rats with APAP resulted in a decrease in CD163+ resident repair macrophages in the liver after 24 h, with no significant effect on infiltrating CD11b+/CD68+ M2 repair macrophages. Pretreatment of rats with GdCl₃, which protects against APAP hepatotoxicity, resulted in a decrease in macrophage expression of inducible nitric oxide synthase, a prototypical marker of classical activation. This was associated with an increase in CD163+ resident and CD11b+/CD68+ infiltrating repair macrophages in the liver. Conversely, CL pretreatment, which exacerbates APAP hepatotoxicity, markedly decreased both of these repair macrophage populations. Expression of markers of alternative M2 macrophage activation including STK, macrophage stimulating protein, and arginase-1, as well as the anti-inflammatory cytokine IL-10 were also reduced in CL treated rats. Taken together these data support the concept that macrophages play distinct role in APAP hepatotoxicity depending on their functional capacity. Supported by NIH GM034310, ES004738, CA132624, AR055073 and ES05022.

662 Induction of Hepatic Bcrp Transporter Expression in Mice Treated with Perfluorooctanoic Acid.

M. Little 1, 2, L. Eldasher 1, W. Xen 1, K. M. Bircsak 2, L. L. Yakovich 2 and L. M. Aleksunes 1, 2, 3.

1Department of Chemistry and Biochemistry, Montclair University, Montclair, NJ; 2Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ; 3Toxicology Division, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ.

Perfluorooctanoic acid (PFOA) is an industrial chemical that has been associated with negative health outcomes. The purpose of this study was to determine whether PFOA alters the expression of the breast cancer resistance protein (BCRP/ABCG2), an efflux transporter found in hepatocytes and renal proximal tubule cells, in mice and to determine whether PFOA interferes with BCRP transport in vitro. To test this, Bcrp mRNA and protein expression were measured in the kidneys and livers of male C57BL/6 mice treated with PFOA (1 or 3 mg/kg/d po) for 7 days. In addition, ATPase and membrane vesicle experiments were used to assess whether PFOA alters human Bcrp expression. As expected, PFOA treatment increased liver weights as well as the mRNA and protein expression of the known target, cytochrome P450 4a14, in the liver and kidneys of mice. Compared to vehicle-treated control mice, PFOA treatment increased hepatic, but not kidney, Bcrp mRNA and protein between 2- and 3-fold. Immunofluorescent staining revealed enhanced canicular Bcrp staining in liver sections from PFOA-treated mice. In the ATPase assay, PFOA decreased transporter activity in sulfasalazine-activated BCRP membranes. In addition, PFOA inhibited BCRP-mediated transport in membrane vesicles between 47 and 69% at high concentrations (>25 μM). In conclusion, PFOA increases hepatic Bcrp expression in mice and may inhibit human BCRP function at high concentrations. Supported by DK080774, ES020522, ES020721, ES05022 and ASPET SURF.

663 Xenosensors Mediated Regulation of ATP Binding Cassette Transporter B6 (ABCB6).

H. D. Chavan and P. Krishnamurthy, Pharmacology, Toxicology & Therapeutics, Kansas University Medical Center, Kansas City, KS.

Cytochromes P450 (P450s) are induced in response to therapeutic drugs and environmental contaminants, leading to increased detoxification and elimination of the xenobiotics. Xenosensors like PXR, CAR and AhR play a major role in drug and environmental contaminant induced expression of P450s. Each P450 is composed of an apoprotein moiety and a heme prosthetic group, which is required for P450 activity. Thus, under conditions of P450 induction, there is a coordinate increase in heme biosynthesis to compensate for the increased expression of P450s. ABCB6, a mitochondrial ABC transporter, is shown to regulate heme biosynthesis by modulating coproporphyrinogen transport from the cytoplasm into the mitochondria. However, it is not known if exposure to xenobiotics induces ABCB6 expression, to assure an adequate and apparently coordinated supply of heme for the functional P450. In the present study, we evaluated the role of xenosensors PXR, CAR and AhR in the regulation of ABCB6. Our results demonstrate that AhR and CAR but not PXR regulate ABCB6 expression. AhR mediated regulation of Abcb6 expression was observed both in mice and in human cell lines, while CAR mediated regulation of Abcb6 expression was seen only in mice and not in human cell lines. Further, promoter activation studies demonstrate that both AhR and CAR induce Abcb6 expression by interacting with their respective response elements in the 5' flanking region of the Abcb6. These studies are the first to describe direct transcriptional activation of both mouse and human ABCB6 by xenobiotics similar to those found in inductive P450s. The results presented in this work have both pharmacological and toxicological significance. AhR ligands have the ability to precipitate porphyria and both AhR and CAR ligands have been shown to promote cell growth and proliferation during carcinogenesis. Thus, ABCB6 induction by xenosensors AhR and CAR could be a potential contributing factor in drug induced porphyria and carcinogenesis.
Flavin-containing monoxygenase (FMO3) is a drug-metabolizing enzyme with functions similar to CYP450. Hepatic expression of human FMO3 gene is highly variable and is important in the detoxification of xenobiotics. Fmo3 was thought to be non-inducible but recent data showed that activation of the Ah receptor induces Fmo3 mRNA in mice. Recent microarray work by our group also showed a drastic induction of liver Fmo3 mRNA expression in a mouse model of resistance to acetaminophen (APAP) hepatotoxicity (autoresistance). In addition to APAP, alpha-naphthyl isothiocyanate treatment and bile duct ligation in mice markedly increase Fmo3 gene expression. The purpose of this study was to evaluate the Fmo3 gene regulation and protein expression during APAP hepatotoxicity. Among all Fmo isoforms analyzed for mRNA expression, Fmo3 was most significantly induced following a single dose of APAP (400mg/kg). Although Fmo3 mRNA levels increased significantly by APAP, its protein expression was marginally changed. Consistent with this, the catalytic activity of Fmo3 measured by oxygenation of methimazole did not change significantly either. By contrast, both Fmo3 mRNA and protein expression are significantly higher in mice pretreated and re-exposed to APAP (autoresistance model). In agreement with greater Fmo3 protein expression in livers of autoresistant mice, its catalytic activity was also significantly higher. In summary, the dramatic changes in Fmo3 gene expression produced by a single dose APAP are not accompanied by concomitant changes in protein and enzyme function, whereas liver from mice pretreated and re-exposed to APAP exhibit induction of both Fmo3 protein expression and catalytic function. Additional work is currently underway to determine the functional significance of enhanced Fmo3 protein function and which factors and signaling pathways mediate Fmo3 gene and protein expression during APAP toxicity. Taken together, these findings establish for the first time induction of not only Fmo3 gene expression, but also significant protein levels and function. Supported by NIH DK089557.

Previously we have shown that Vanin-1 (Vnn1) knockout mice are more susceptible to APAP hepatotoxicity (400mg/kg, i.p.) despite no differences in hepatic glutathione (GSH) content or gene expression of APAP metabolizing enzymes or transporters. Here we show that in vitro, livers from both genotypes showed similar capacities to bioactivate APAP to its reactive metabolite (~1.8 nmol APAP-Gluc/min/mg protein) and sulfation (~15.6 pmol APAP-NAC/min/mg protein) and to detoxify the parent compound by glucuronidation (~1.7 nmol APAP-Gluc/min/mg protein) and sulfation (~15.6 pmol APAP-Sulf/min/mg protein). Together, these data strongly suggest that the enhanced susceptibility of Vnn1 knockout mice to APAP toxicity is not due to differences in APAP metabolism. Immunohistochemistry of formalin-fixed liver sections following APAP treatment revealed a lack of FCNA positive hepatocytes and F4/80 positive macrophages in and around areas of centrilobular necrosis in Vnn1 knockout at 48 hours after APAP qRT-PCR from total RNA isolated from whole livers indicated that inducible nitric oxide synthase (iNos) and interleukin-4 were reduced by 2.9 and 4.3 fold, respectively, in control treated Vnn1 knockout mice relative to wild-types. Additionally, interferon γ was 2.7 fold lower in Vnn1 knockout mice at 48 hours after APAP treatment in comparison to wild-types. Myeloperoxidase and iNos exhibited a trend of decreased expression in Vnn1 knockout at 48 hours, but these differences were not statistically significant. Together, these results indicate that a lack of Vnn1 expression may alter the normal compensatory repair and immune responses following toxic APAP exposure although it is unknown to what extent these mechanisms contribute to the enhanced susceptibility of Vnn1 knockout mice to APAP hepatotoxicity.

Hepatic Flavin-Containing Monoxygenase-3 (FMO3) Protein Is Inducible by Acetaminophen Treatment.

S. Rudeziah and J. F. Manautou, University of Connecticut, Storrs, CT.

Vanin-1 Knockout Mice Exhibit Alterations in Compensatory Immune Infiltration and Hepatocyte Proliferation following Acetaminophen Toxicity.

D. Ferriere, F. Galland, P. Naquet and J. F. Manautou, 1Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT; 2Centre d’Immunologie de Marseille-Luminy CNRS-INSERM, Université de la Méditerranée, Marseille, France.

Methylmercury (MeHg) toxicity is a continuous environmental problem to human health. Failure to protect cells against MeHg-induced early oxidative stress triggers subsequent endoplasmic reticulium (ER) stress and apoptosis. Here, we demonstrate the protective effects of mild ER stress preconditioning against MeHg toxicity on a MeHg-susceptible cell line. Cells preconditioned with low concentrations (0.1–0.3 μg/ml) of an inhibitor of ER Ca2+-ATPase, thapsigargin (TPG), showed resistance to MeHg cytotoxicity through several favorable stress responses, which included phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α), and upregulation of stress-related proteins (glucose regulated protein of 78 kDa (Gp78) and metallothionein 1 (Mt1)). Afp4 accumulation was mediated by translation inhibition of its upstream open reading frame (uORF) and translation facilitation of its protein-coding ORF by the phospho-eIF2α, non-nonsense-mediated mRNA decay (NMD) activity was suppressed by the combined effects of decreased expression of several NMD components besides the phospho-eIF2α-mediated general suppression of translation initiation, resulting in accumulated Afp4 mRNA but not protein. Integrated stress responses led to a delay of MeHg-induced oxidative stress and the activation of extracellular signal-regulated kinase pathways to promote cell survival in preconditioned cells exposed to MeHg. Finally, knockdown experiments demonstrated that Gp78 plays a crucial role in protecting preconditioned cells against MeHg cytotoxicity. These results suggested that mild ER stress preconditioning is a useful therapeutic intervention against MeHg toxicity, the underlying mechanism being the induction of integrated stress responses.

Vanin-1 Knockout Mice Exhibit Alterations in Compensatory Immune Infiltration and Hepatocyte Proliferation following Acetaminophen Toxicity.

D. Ferriere, F. Galland, P. Naquet and J. F. Manautou, 1Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT; 2Centre d’Immunologie de Marseille-Luminy CNRS-INSERM, Université de la Méditerranée, Marseille, France.

Methylmercury (MeHg) toxicity is a continuous environmental problem to human health. Failure to protect cells against MeHg-induced early oxidative stress triggers subsequent endoplasmic reticulium (ER) stress and apoptosis. Here, we demonstrate the protective effects of mild ER stress preconditioning against MeHg toxicity on a MeHg-susceptible cell line. Cells preconditioned with low concentrations (0.1–0.3 μg/ml) of an inhibitor of ER Ca2+-ATPase, thapsigargin (TPG), showed resistance to MeHg cytotoxicity through several favorable stress responses, which included phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α), and upregulation of stress-related proteins (glucose regulated protein of 78 kDa (Gp78) and metallothionein 1 (Mt1)). Afp4 accumulation was mediated by translation inhibition of its upstream open reading frame (uORF) and translation facilitation of its protein-coding ORF by the phospho-eIF2α, non-nonsense-mediated mRNA decay (NMD) activity was suppressed by the combined effects of decreased expression of several NMD components besides the phospho-eIF2α-mediated general suppression of translation initiation, resulting in accumulated Afp4 mRNA but not protein. Integrated stress responses led to a delay of MeHg-induced oxidative stress and the activation of extracellular signal-regulated kinase pathways to promote cell survival in preconditioned cells exposed to MeHg. Finally, knockdown experiments demonstrated that Gp78 plays a crucial role in protecting preconditioned cells against MeHg cytotoxicity. These results suggested that mild ER stress preconditioning is a useful therapeutic intervention against MeHg toxicity, the underlying mechanism being the induction of integrated stress responses.

Differences in Regulation of Gene Expression Profiles of the Bone Marrow between C57BL/6 and C3H/He Mice after Benzene Treatment.

Y. Hirabayashi, B. Yoon, K. Igashashi, L. Kanno and T. Inoue, 1Cell & Molecular Toxicology Division, Biology Safety & Research Center, National Institute of Health Sciences, Tokyo, Japan; 2Histology & Molecular Pathogenesis Laboratory, School of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea; Function & Structural Medicine Department, Nihon University School of Medicine, Tokyo, Japan; 3National Institute of Health Sciences, Tokyo, Japan.

We focused on the differences in the regulation in gene expression profiles of the bone marrow, which predict benzene-specific early responses related to plausible leukemogenic changes, between C57BL/6 (B6), a lymphoid-neoplastic-prone mouse strain, and C3H/He (C3H), a myelogenous-leukemia-prone mouse strain. Previously, we showed a latent potential of induction of myelogenous leukemias by benzene in both strains, but with different mechanistic propensities. Consequently, reciprocal differences between B6 and C3H mice in gene expression profiles related
to leukemogenesis were found by gene chip analyses 28 days after benzene treat-
ment. Because leukemia did not develop in all mice even under the optimal condi-
tion, we further analyzed the data, focusing on not only strain differences but also
individual differences. Two types of gene expression profile were recognized: one,
corresponding to common gene profiles obtained by one-way analysis of variance or
Welch’s t-test, which were commonly shared by all mice in the same group each;
and the other, corresponding to stochastic gene-expression profiles obtained by
principal component analysis, which were unique genes in each individual mouse.
The results clearly elucidated that the predicted gene expression profiles in the reg-
ulation of transcription factors (TFs) for proliferation were essentially different in
each strain. The selected TFs, i.e., 20 for B6 and 11 for C3H, were less overlapped
among each mouse in the same strain, and their regulation showed the coexistence
of both suppression and activation signals in B6, whereas suppressive signals were
generally predominant in C3H. These differences in regulatory gene-expression
profiles may be essentially related to the strain differences in the incidence and spec-
trum of the leukemogenesis after benzene treatment.

669 Biphasic Influence of Arsenic, Cadmium, Mercury, and
Nickel on Aroyl Hydrocarbon Receptor (Ahr) Signaling.

A. Rannug¹, A. Mohammadi-Bardbori², L. Vikström Bergander¹ and
U. Rannug². ¹Institute of Environmental Medicine, Karolinska Institute, Stockholm,
Sweden; ²Department of Genetics, Microbiology and Toxicology, Stockholm University,
Stockholm, Sweden.

Interaction of oxidants with the metabolic turnover of the endogenous AHR ligand
6-s-formylindole[3,2-b]carbazole (FICZ) seems to play critical roles in downstream
AHR-mediated signaling. Production of superoxide leading to increased prolifera-
ton was observed after exposure of immortalized human keratinocytes (HaCaT) to
low levels of As³⁺, Cd²⁺, Hg²⁺ and Ni²⁺. Higher concentrations lowered the in-
tracellular GSH levels and led to temporal inhibition of FICZ-stimulated cy-
tochrome P450(CYP1A1) activity and increased adaptive antioxidant re-
sponses as measured by expression of antioxidant genes. After addition of FICZ
(150 pM) together with the metals a temporal inhibition of the metabolic degrada-
tion of FICZ occurred, as determined by HPLC analyses. At these inhibitory con-
centrations, the metals themselves activated CYP1A1 at late time points.

Transcriptional activation of CYP1A1 was estimated with a luciferase reporter assay
in human hepatoma HepG2-XRE-Luc cells and the ability of the metals to activate
the AHR only in the presence of the natural ligand FICZ was established by com-
paring AHR activation in commercial DMEM medium and in DMEM medium
free from background levels of FICZ. NADPH oxidase (NOX) activity was critical for
the stimulation of proliferation by the metals as determined by lack of proliferative
responses in human X-CGD myeloid cells carrying a mutated gp91phox gene.

In addition, influence of NOX on CYP1A1 gene expression was induced by lower
metal-stimulated lucerase activity in HepG2 cells treated with the NOX inhibitor
diphenyliodonium. Pretreatment with the metals led 24 h later to elevated GSH
levels and increased sensitivity of the AHR to low levels of FICZ (superinduction).
We propose that the AHR/NOX-dependent auto-regulatory feedback mechanism,
which ensures low steady-state levels of FICZ, works in close concert with the
NADPH oxidase system.

670 Differential Gene Expression Responses by Hepatic Lobe in
Fischer Rats Treated with Carcinogens Phenobarbital and
Diethylnitrosamine.

B. Li¹, M. W. Trimble¹, D. Henderson¹, S. Stepaniants¹, M. L. Parrish¹,
B. Kevin¹, A. Sharma¹, G. A. Boorman¹ and S. Williams¹. ¹Couvar Genomics
Laboratories Inc., Seattle, WA; ²Couvar Genomics Laboratories, Inc., Madison, WI; ³Couvar
Laboratories Inc., Chantilly, VA.

Rodent liver is a primary organ for assessing compound toxicity. Non-genotoxic
carcinogens such as phenobarbital (PB) and genotoxic carcinogens such as diethyl-
nitrosamine (DEN) induce morphological and physiological changes in the liver
that may vary by lobe. For example, DEN induces more tumors in the right liver
lobe than in the left and median lobes. To elucidate the molecular mechanisms un-
derlying the differential compound responses, as well as the differences among the
three liver lobes, groups of male Fischer rats were treated with 0 or 7.5 mg/kg/day of
DEN, or 0 or 65 mg/kg/day of PB, by daily oral gavage for two and four weeks.
Samples of the right lateral (RL), right median (RM), and left lateral (LL) hepatic
lobes were obtained for gene expression analysis and pathological assessment.
DEN induced slight apoptosis/necrosis of individual hepatocytes in all lobes, while
administration of PB was associated with centrilobular hypertrophy that was much
less prominent in the left lateral lobe compared with the other lobes. Gene expres-
sion profiles were assessed for three animals/group/interval using whole genome
microarrays. The data showed that PB and DEN both induced robust, yet quite
distinct, transcriptional changes in the animals, which could partially explain the
differential morphological/physiological outcomes. In both groups of vehicle-
treated rats, the transcriptional profile of the LL lobe was much different from
those of the RL and RM lobes, whereas the latter two were quite similar to each
other. In animals given DEN or PB, such lobe difference was much reduced,
slightly more so in the rats given DEN than in those given PB. Overall, the gene ex-
pression profile may provide clues to the mechanism of PB- and DEN-induced
liver tumors, and possible molecular biomarkers for predicting liver toxicity.

671 In Vitro Effects of Aldehydes Present in Tobacco Smoke on
Gene Expression in Human Lung Alveolar Epithelial Cells.

N. Cheah¹, ², J. Penning⁴, J. Vermeulen⁴, F. J. van Schooten¹ and
A. Oppermann¹. ¹Toxicology, Maastricht University, Maastricht, Netherlands;
²Laboratory for Health Protection Research, National Institute for Public Health
and the Environment, Bilthoven, Netherlands; ³Risk Assessment, Netherlands
Food and Consumer Product Safety Authority, Utrecht, Netherlands; ⁴Cigarette Te sting
Laboratory, Health Sciences Authority, Singapore, Singapore. Sponsor: H. van
Loveren.

Tobacco smoke consists of thousands of harmful components. A major class of
chemicals found in tobacco smoke is formed by aldehydes, in particular formalde-
yde, acetaldehyde and acrolein. The present study investigates the gene expression
changes in human lung alveolar epithelial cells upon exposure to formaldehyde,
acrolein and acetaldehyde at sub-cytotoxic levels. We exposed A549 cells in vitro to
aldehydes and non-aldehyde chemicals (nicotine, hydroquinone and 2,5-dimethyl-
furaran) present in tobacco smoke and used microarrays to obtain a global view of the
transcriptomic responses. We compared responses of aldehydes with that of the
non-aldehydes. Formaldehyde gave the strongest response; a total of 66 genes was
greater than 1.5-fold differentially expressed mostly involved in apoptosis and
DNA damage-related processes, followed by acetaldehyde (57 genes), hydro-
quinone (59 genes) and nicotine (8 genes). Acrolein and mixture gave effects to
oxidative stress genes, no gene expression effect found on the exposure to 2,5-di-
methylfuran. Overall, aldehyde responses are primarily indicative for genotoxicity
and oxidative stress. These two toxicity mechanisms are linked to respiratory dis-
eses such as cancer and COPD, respectively. The present findings could be
important in providing further understanding of the role of aldehydes emitted from cig-
arette smoke in the onset of pulmonary diseases.

672 Regulation of the Metabolic Switch between Ductal
Carcinoma In Situ (DCIS) and Invasive Breast Cancer (IBC).

K. C. Schrijver¹, Y. Fan², M. Ragavan³, R. Chapkin³, C. Hilty³, H. Payne³,
R. Moumenet³, F. Behboodi³ and W. Potts¹. ¹Integration Biosciences, Texas A&M
University, College Station, TX; ²Integrative Nutrition and Complex Diseases,
Texas A&M University, College Station, TX; ³Chemistry, Texas A&M University, College
Station, TX; ⁴Image Analysis Laboratory, Texas A&M University, College Station, TX;
⁵Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas
City, KS.

Ductal carcinoma in situ (DCIS) accounts for 15–25% of breast cancers. However,
there is a gap in our understanding of the factors that regulate the progression of
DCIS to invasive breast cancer (IBC). Deregulation of cell metabolism is a defining
feature of tumor cells, which utilize glycolysis instead of oxidative phosphorylation.
Since altered metabolism promotes invasion and metastasis, the mechanisms regu-
lating this switch could be critical in mediating the transition from DCIS to IBC.

Singleminded-2s (Sim2s) is present in early stage DCIS lesions and lost in IBC.
Re-establishment of Sim2s in the MCF10DCIS model mimics inhibits tumor
growth, invasion, and metastasis. We hypothesize that Sim2s plays a key role in
mediating the switch between DCIS and IBC.

To determine the effect of Sim2s on metabolism in DCIS progression, we ana-
lyzed Sim2s over and under-expressing MCF10DCIS.com cells for energy depend-
ent differences in growth, autophagy, and metabolism. We determined that Sim2s
plays a key role in regulating the switch between DCIS and IBC.

Re-establishment of Sim2s induced oxidative phosphorylation and adaptation to
metabolic stress through increased oxygen consumption, whereas loss of Sim2s
promoted glycolysis by elevating glucose uptake and lactate production.

These results suggest that Sim2s plays a critical role in DCIS progression and loss of
Sim2s is required for the switch from oxidative phosphorylation to glycolysis.
673 Hypoxia Perturbs PCB-Induced Aryl Hydrocarbon Receptor Signaling and CYP1A1 Induction in Human Cells.
S. U. Vorink and F. E. Domann. Human Toxicology, The University of Iowa, Iowa City, IA.

The aryl hydrocarbon receptor (AhR) pathway controls cellular responses to exposure of foreign substances by activating genes that aid in xenobiotic metabolism. The ligand-activated AhR forms a heterodimer with its binding partner aryl hydrocarbon receptor nuclear translocator (ARNT) and subsequently induces the transcription of genes such as CYP1A1, a member of the cytochrome P450 family and a phase I detoxifying enzyme. Notably, ARNT proteins also dimerize with hypoxia-inducible factors (HIFs) which mediate the cellular response to low oxygen (hypoxia). During hypoxia, HIF\textsubscript{\alpha}ARNT heterodimers form and activate the transcription of genes that promote cell survival in low oxygen environments. Since HIF\textsubscript{\alpha} and AhR share a common subunit, ARNT, the possibility for signaling crosstalk exists at this axis. We hypothesized that hypoxic conditions cause HIF\textsubscript{\alpha} to sequester ARNT and thus inhibit the activation of a robust AhR transcriptional response in response to a polychlorinated biphenyl (PCB) AhR ligand. To test this hypothesis we queried several human cell lines for their responses to PCBs. Our results indicate that CYP1A1 mRNA expression was induced by 3.3, 4.4. 5-pentachlorobiphenyl (PCB 126) in an AhR-specific manner. Exposure of the cells to hypoxia (1% oxygen for 8 hours) significantly inhibited the induction of CYP1A1 mRNA by up to 74%. EMSA and CYP1A1 promoter: luciferase reporter assays to measure DNA binding and transcriptional activities of AhR complexes further showed an inhibitory effect of hypoxia treatment on PCB-induced AhR signaling. Growth curve and MTT assays demonstrated significant growth inhibition following PCB 126 treatment. Taken together, these findings indicate that hypoxia significantly interferes with AhR-mediated responses to PCBs. Our future studies will investigate whether the observed effects also occur at the protein level and whether hypoxia can prevent the growth inhibitory effect of PCB treatment. (Supported by grant NIEHS P42 ES 013661.)

674 Characterizing Chronic Nicotine Exposure-Induced Behaviors and Gene Regulations in Caenorhabditis elegans.

Nicotine is one of the most abused substances. Nicotine binds nicotinic acetylcholine receptors (nAChRs), stimulates the mesolimbic dopamine system, and leads to addiction. With chronic exposures to low concentrations of nicotine are a common scenario, this study aims to characterize chronic nicotine exposure-induced behaviors and explore affected gene pathways in the model organism, Caenorhabditis elegans (C. elegans). C. elegans were treated with control, 6.17\textmu M, and 6.17\textmu M of nicotine for 24-hour and locomotion behaviors were characterized using a worm tracking system. Our preliminary data has determined several addictive behavioral patterns following chronic low range micromolar nicotine exposures, including stimulus, withdrawal, and tolerance. locomotor behaviors were stimulated in control worms that were exposed to nicotine. Withdrawal behaviors were observed as increased locomotion speeds when nicotine dosages were disrupted in nicotine-dependent worms. We also detected the expressions of 39 functional genes implicated in cholinergic signaling, locomotion, egg-laying, and stress-response. Our findings showed that gene expressions are most active in low but not high concentrations of doses. The expression profiles of all the tested protein-coding genes were affected with a range from 12.5 fold down-regulation (old-1) to 138.1 fold up regulation (ihl-14). Nicotine exposure also affected the expression of microRNAs, an extensive class of a small regulatory RNAs.

675 TNIP1 Regulates the Cell Stress Response through Repression of Heat Shock Proteins A6 and A1A.
V. P. Ramirez1, M. Stamatis2, A. Shmuldr2, C. Zhang3 and B. J. Anekeivich3.
1Pharmacology & Toxicology Program, University of Connecticut, Storrs, CT; 2PharmD Program, University of Connecticut, Storrs, CT; 3Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT.

TNIP1 protein represses gene expression otherwise activated by NF-\kappa B, RAR, and PPAR. Additionally, TNIP1 expression is increased in several cutaneous inflammatory diseases and wound healing. Thus, while some transcription factor targets and pathologies have been recognized, the spectrum of genes possibly affected by TNIP1 is unknown. To identify additional gene expression changes due to increased TNIP1 levels, we conducted a microarray analysis from keratinocytes transiently overexpressing TNIP1.

In addition to repressing genes known to be activated by NF-\kappa B, RAR, and PPAR, a surprising result of decreased HSP gene family expression was observed (e.g. 20x and 3.2x for HSPA6 and A1A, resp.). This reduction was confirmed by qPCR and western blot. Both HSPA6 and A1A have similar functions in cell protection, likely providing a robust mechanism of either HSP reduced cell viability post-cell stress. Since HSPA6 basal and induced expression was decreased by TNIP1, it was chosen for further studies.

To guide analysis of how HSPA6 may be regulated by TNIP1, we isolated and performed in silico analyses on the HSPA6 3-kb promoter. Putative PPAR, RAR and NF-\kappa B sites were found. PPAR\textalpha and RAR ligands had no effect, but PPAR \textgamma and \gamma ligands increased HSPA6 expression \textsim 4x. To search for TNIP1-responsive region(s), we cloned 5'-HSPA6 promoter deletions into a reporter construct. Intriguingly, the most repressed region lacks PPREs, RAREs, and NF-\kappa B sites. These results suggest that although PPAR can regulate HSPA6 and TNIP1 may be repressing HSPA6 through this transcription factor, there is an additional TNIP1-sensitive region independent of its previously identified PPAR, RAR and NF-\kappa B targets. Moreover, our data suggests TNIP1-mediated HSPA6 repression is independent of PPAR, RAR or NF-\kappa B, suggesting there may be additional, as yet unrecognized, targets where interaction with TNIP1 results in reduced transcriptional activity.

676 Erk1/2 Pathway Inhibition Attenuates BoNT/A-Induced Neurite Outgrowth in Motor Neurons.
L. Liu and J. A. Coffield. University of Georgia, Athens, GA.

Botulinum neurotoxin A (BoNT/A) is known to be neurotoxic due to its paralytic effect at cholinergic synapses with extremely high potency. Independent of that, BoNT/A has been found to stimulate neurite outgrowth of motor neurons both in vitro and in vivo, which may account for the initiation of recovery from botulism. The signaling pathways regulating the BoNT/A-induced neurite outgrowth process have not been identified. In the current study, we used pharmacologic kinase inhibition to investigate the more relevant outgrowth pathways. GFP positive motor neurons were directly differentiated from HBG3 mouse embryonic stem cells, and treated with a MEK1/2 inhibitor in the presence of 1\textmu M BoNT/A. Following 6 and 24h post BoNT/A exposures, single motor neurons were imaged. The total neurite length and number of branches of primary and secondary neurites were measured and counted. Significant differences were determined using one-way or two-way ANOVA with post hoc tests. Preliminary results showed that treatment with 1\textmu M of the MEK1/2 inhibitor specifically blocked BoNT/A-induced outgrowth effect on secondary branching at 6h compared to toxin only treated controls, suggesting an early, transient role in BoNT/A-induced signal transduction. In addition, there was no effect of MEK1/2 inhibition on the toxin’s enzymatic action to cleave SNAP-25. Collectively, these data suggest that ERK1/2 pathway may play an important role in the early phases of BoNT/A-induced neurotropicity.

677 Inhibition of TGF\beta-Induced Integrin- Growth Receptor Cooperative Signaling by Curcubatin B, Causes Breast Cancer Growth Suppression.
P. Gupta and S. K. Srivastava. TTUHSC, Amarillo, TX.

Integrins have recently been shown to play an important role in promotion of cell motility and survival in various cancers through cooperative signaling with EGFRs. Integrins transmit cell survival signals through ILK-Paxillin complex and further play role in activating AKT signaling. Curcubatin B (CuB) is a steroidal class of chemical present in the plants belonging to curcubaticeae family. CuB has shown cytotoxic potential in several cancers by causing G2/M cell cycle arrest and inhibition of JAK/STAT3 pathway. However, the exact mechanism of CuB and its role in metastasis and cell survival is not known. Our results show that CuB significantly suppressed the growth of MDA-MB-231, SKBR3, MCF-7, MDA-MB-231 (HER2) and MCF-7 (HER2), five different breast cancer cells in a concentration and time-dependent manner. CuB also induced apoptosis and down-regulated ILK1 expression. In addition, CuB down-regulated ITGB4 and ITGA6 protein expression and suppressed the phosphorylation of AKT at Ser73, paxillin at Tyr118. Previous studies have shown that TGF\beta mediates physical association of ITGB4 and HER2, through Src kinase to enhance cell survival and motility. Interestingly we observed significant downregulation of Src, EGF and HER2 in different breast cancer cells, suggesting that CuB suppresses cooperative signaling of Integrins and HER2. We also observed that TGF\beta pretreatment imparted protection from CuB's cytotoxic effects, indicating that CuB modulates TGF\beta mediated Integrin signaling. Taken together these results indicate the anti-cancer effects of CuB in breast cancer cells by targeting ITGB4/ITGA6, Src, ILK and TGF\beta. Further detailed mechanistic work is in progress. [Supported in part by R01 grants CA106953 and CA210038 (to S.K.S) awarded by the National Cancer Institute].

Key: ITGB4 – Integrin \beta 4, ITGA6 – Integrin \alpha 6, TGF\beta – Transforming growth factor \beta, ILK – Integrin linked kinase, EGF\beta – Epidermal growth factor receptor, CuB – Curcubatin B
High Content Live-Cell Imaging of Nrf2 and NF-κB Signaling Reporters As Predictive Tools to Classify Drug-Induced Liver Injury Responses.

Drug-induced liver injury (DILI) is an important clinical problem and predicting human DILI for novel candidate drugs is difficult. Current models indicate that in many cases DILI is linked to reactive metabolism and involvement of innate immune systems. Here we systematically evaluated the combined application of high content live cell imaging-based analysis of 1) NRF2 activation as a measure for reactive metabolite stress; 2) perturbations of the normal NF-κB activation mediated by TNFα; and 3) synergistic induction of apoptosis by DILI compounds and TNFα. Fifteen drugs associated with DILI were evaluated. Most DILI compounds induced Nrf2 stabilization-dependent activation of the downstream target SRXN1 (11 out of 15). Various DILI compounds affected the TNFα-induced activation of NF-κB (6 out of 15), which strongly correlated to the strength of NRF2 activation. In particular for those compounds that show strong NF-κB activation and perturbation of NF-κB signaling, a significant drug-cytokine synergy for apoptosis was observed, which included carbamazepine, diclofenac, ketoconazole, clozapine, nefazodone and amiodarone. Together, our data support that mechanistic-based high content imaging strategies involving combined analyses of cellular stress responses contribute to DILI hazard identification.

Translation Initiation Factor EIF4A1 Determines TNFα-Mediated Apoptosis in Drug-Induced Liver Injury through the Stress Protein Chop.

L. Fredriksson, B. Herpers, S. Wink, J. Meerman and B. van de Water. Toxicology, Leiden University, Leiden, Netherlands.

Drug-induced liver injury (DILI) is an important clinical problem and to minimize it a more detailed knowledge about the mechanism is essential. Here we used a functional genomics approach to establish the critical drug-induced toxicity pathways that act in synergy with the pro-inflammatory cytokine tumor necrosis factor α (TNFα) to cause apoptosis of liver HepG2 cells. Transcriptomics-based analysis of the toxicity response pathway activated by hepatotoxins diclofenac (DCF) and carbamazepine (CBZ) revealed significant activation of the nuclear factor-erythroid 2 (NF-Ε2)-related factor 2 (Nrf2) oxidative stress response, and endoplasmic reticulum (ER) stress/translational initiation signaling. Importantly, significant activation of these pathways after drug exposure could be confirmed by transcriptomics of primary hepatocyte cultures as well as in vivo. Systematic siRNA-mediated knockdown of the individual toxicity pathway determinants established the critical roles of these pathways for the drug/TNFα-induced apoptosis in the HepG2 cell system. Pre-induction of the cytoprotective Nfr2 pathway by knockdown of its negative regulator Kelch-like ECH-associated protein 1 (Keap1) suppressed the drug/TNFα response. Furthermore, ER stress signaling by selective protein kinase R-like ER kinase (PERK) activation and subsequent expression of C/EBP-homologous protein (CHOP) was crucial in the onset of drug/TNFα-induced apoptosis independent of drug-induced oxidative stress. Interestingly, CBZ and DCF caused an enhanced expression of the translational initiation factor EIF4A1. Importantly, downregulation of EIF4A1 almost completely inhibited CHOP expression in association with protection against the drug/TNFα-mediated cell killing. We propose a model in which enhanced drug-induced translation initiation PERK-mediated CHOP signaling thereby sensitizing towards caspase-8-dependent TNFα-induced apoptosis.

The Effect of Thermal Stress on Drosophila melanogaster Gene Expression.

K. Silkaitis1, 2, A. Branco1 and B. Lemos1. 1Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, MA; 2Temple University, Philadelphia, PA. Sponsor: V. Vaidya.

Genetic tools can be used to dissect the biological pathways mediating stress response. Studying Drosophila melanogaster responses to environmental stress is informative because prior studies have shown that resistance to one type of environmental stress often confers resistance to additional stresses. In particular, temperature stress can alter thermal homeostasis, which can affect the biological dosaging of an environmental toxicant. In D. melanogaster, thermal stress has been shown to affect males differently than females, demonstrated not only by male sterility but also in autosomal and X-linked gene expression. Gene expression is further controlled by the geographic origin of the Y chromosome. We investigated the effect of cold stress on two genotypes of D. melanogaster that contained a Y chromosome from a natural population in either Massachusetts (Ymass) or Democratic Republic of Congo (Ycongo). Ymass are highly adapted to temperate and Ycongo to tropical environments. Newly emerged male flies were reared and reared at 25°C or 16°C. The flies were then flash frozen, total RNA was extracted and hybridized to a microarray, and differential expression (DE) of genes was assessed with Bioconductor/Limma. We identified more than 1,000 DE genes (p<0.001) in common between the comparisons of Ymass 16°C to 25°C and Ycongo 16°C to 25°C. Gene expression in the tests was most affected by temperature among the 27 tissues examined, while genes relating to calcium binding, metabolism, and cell proliferation showed high levels of DE. In tandem, we examined the effects of parental growth temperature on gene expression in male F1 progeny. We found that maternal exposure to cold stress did not significantly affect the expression of genes/proteins involved in cell death, metabolism, and responses to sodium. Together, these data suggest that responses to environmental stressors, including toxicants, may depend on both temperature and Y chromosome genotype.

Dual Mechanisms for Controlling Chk1 Protein Levels.

F. Zhang, S. S. Lau and T. J. Monks. Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, AZ.

Chk1 is a key regulator of the DNA damage response. It phosphorylates C/EBP-homologous protein (CHOP) to cause apoptosis of liver HepG2 cells. Transcriptomics-based analysis of the toxicity response pathway activated by hepatotoxins diclofenac (DCF) and carbamazepine (CBZ) revealed significant activation of the nuclear factor-erythroid 2 (NF-Ε2)-related factor 2 (Nrf2) oxidative stress response, and endoplasmic reticulum (ER) stress/translational initiation signaling. Importantly, significant activation of these pathways after drug exposure could be confirmed by transcriptomics of primary hepatocyte cultures as well as in vivo. Systematic siRNA-mediated knockdown of the individual toxicity pathway determinants established the critical roles of these pathways for the drug/TNFα-induced apoptosis in the HepG2 cell system. Pre-induction of the cytoprotective Nfr2 pathway by knockdown of its negative regulator Kelch-like ECH-associated protein 1 (Keap1) suppressed the drug/TNFα response. Furthermore, ER stress signaling by selective protein kinase R-like ER kinase (PERK) activation and subsequent expression of C/EBP-homologous protein (CHOP) was crucial in the onset of drug/TNFα-induced apoptosis independent of drug-induced oxidative stress. Interestingly, CBZ and DCF caused an enhanced expression of the translational initiation factor EIF4A1. Importantly, downregulation of EIF4A1 almost completely inhibited CHOP expression in association with protection against the drug/TNFα-mediated cell killing. We propose a model in which enhanced drug-induced translation initiation PERK-mediated CHOP signaling thereby sensitizing towards caspase-8-dependent TNFα-induced apoptosis.

Atrazine-Elicited Differential Gene Expression in BLTK1 Leydig Cells.

A. L. Fuentes1, 2 and T. R. Zacharewski1, 2. 1Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI; 2Center for Integrative Toxicology, Michigan State University, East Lansing, MI.

Atrazine (ATR) is a widely used triazine herbicide associated with impaired reproductive development and function. We have previously demonstrated that ATR affects basal and recombinant human chorionic gonadotropin (hCG)-induced spermatogenic activity in BLTK1 murine Leydig cells as early as 2 hrs. ATR elicited dose-dependent induction of Star, Hsd3b6 and Hsd17b3 mRNA levels while repressing Hsd4b1, Cyp17a1 and Srd5a1 expression at 24 hrs. The current study evaluates the temporal gene expression effects (1-48 hrs) of 300 μM ATR on Agilent 4 X 44K oligonucleotide microarrays using a dye-swap independent reference design. ATR differentially regulated the expression of 797 unique genes (fold change >1.5, P<0.0999), with 389 up-regulated and 416 down-regulated at a minimum of one time point. Most changes were observed at earlier time points (12-48 hrs) suggesting early ATR induction of testosterone (T) levels in media is independent of gene expression. However, some of the T levels coincide with the induction of Star mRNA. Database for Annotation, Visualization and Integrated Discovery (DAVID) and Ingenuity Pathway Analysis (IPA) identified over-represented gene functions associated with reproductive system development and function, tissue morphology, and regulation of hormone metabolism, consistent with ATR effects on BLTK1 cell morphology and steroidogenesis. The IPA transcription
The goal of the present study was to examine hepatic differential gene expression patterns in Fisher-344 rats in response to dietary 2-aminoanthracene (2AA) ingestion for 14 and 28 days. Twenty-four post-weaning 3-4 week old F-344 male rats were exposed to 0 mg kg⁻¹-diet (control), 50 mg kg⁻¹-diet (low dose), 75 mg kg⁻¹-diet (medium dose) and 100 mg kg⁻¹-diet (high dose) 2AA for 14 and 28 days. This was followed by analysis of the liver for global gene expression changes. In both time points, the numbers of genes affected seemed to correlate with the dose of 2AA. Sixteen mRNAs were differentially expressed in all treatment groups for the short-term exposure group. Similarly, 51 genes were commonly expressed in all 28-day exposure group. Almost all the genes seem to have higher expression relative to the controls. In contrast, cytochrome P450 family 4, subfamily a, polypeptide 8 (Cyp4a8), and monocyte to macrophage differentiation-associated (Mmd2) were down-regulated relative to controls. Differentially expressed mRNAs were further analyzed for associations via DAVID. GO categories show the effect of 2AA to be linked with genes responsible for carbohydrate utilization and transport, lipid metabolic processes, stress responses such as inflammation and apoptosis processes, immune system response, DNA damage response, cancer processes and circadian rhythm. The data from the current study identified altered hepatic gene expression profiles that may be associated with carcinoma, autoimmune response, and/or type 2 diabetes. Possible biomarkers due to 2AA toxicity in the liver for future study include Abcb1a, Nhej1, Adam8, Cdkn1a, Mgmt, and Nrcam.

CYP2S1 expression influences cytotoxicity of the anticancer prodrug, AQ4N, in human bronchial epithelial cells.

N. M. Singh and A. M. Rowland. Chemistry and Biochemistry, NMSU, Las Cruces, NM.

Cytochrome P450 251 (CYP2S1) is one of the most upregulated P450s identified in human cancers and correlates with poor prognosis. The underlying cause of elevated CYP2S1 expression and the consequence of elevated expression is not known. The only recognized substrate for CYP2S1 is AQ4N (Banantrantrone). AQ4N is a bioreductive prodrug under clinical investigations for hypoxic tumors. AQ4N is metabolically reduced in hypoxic environments to the topoisomerase II inhibitor, AQ4. CYP2S1 is recognized as one of the most efficient enzymes to catalyze this reduction. The objective of this study was to determine: i) whether human CYP2S1, like the mouse CYP2S1, is elevated in response to hypoxia and ii) whether changes in CYP2S1 expression influence CYP2S1-mediated metabolism of AQ4N. To determine whether CYP2S1 was induced in response to hypoxia we evaluated mRNA expression in the presence of 1% oxygen as well as the hypoxia mimetics cobalt chloride and o-phenanthroline. CYP2S1 mRNA was significantly increased by approximately 8-, 3-, and 50-fold in response to 1% oxygen, cobalt chloride, and o-phenanthroline. These results suggest that human CYP2S1 mRNA is elevated in response to hypoxia. To determine whether changes in CYP2S1 expression influence AQ4N metabolism we examined the effects of AQ4N and AQ4 on cell viability in bronchial epithelial cells (BEAS-2B) cells differentially expressing CYP2S1. Cytotoxicity was estimated using alamar blue reduction in cells expressing high (CYP2S1-flag), medium (control plasmids: pCDNA3.1 and scrambled shRNA), and low CYP2S1 expression (CYP2S1 shRNA). Preliminary results demonstrate that elevated CYP2S1 expression does enhance cytotoxicity under hypoxic conditions (0.2%-1% O2). Interestingly, our results also suggest a protective role for CYP2S1 in normoxic conditions (21% O2). These data suggest that elevated CYP2S1 expression may have a dual role in protecting normal cells while promoting AQ4N-mediated cytotoxicity in hypoxic cells.
Cytosyme P450 2S1 (CYP2S1) is considered an orphan P450s with an unknown
biological function. Data from our laboratory and others suggests that CYP2S1
may have an important physiological role in modulating the synthesis and metabo-
lism of prostanoids and retinoids, respectively. CYP2S1 expression is elevated in epithelial-derived cancers. Whether increased
CYP2S1 expression in proliferative disease is protective, detrimental, or fails to im-
pact disease progression remains to be determined. To elucidate its role, we need to
understand the physiological significance of CYP2S1. We reasoned that transcripti-
ome analysis of human bronchial epithelial cells (BEAS-2B) differentially express-
ing CYP2S1 would reveal metabolic shifts in key regulatory pathways linked to
CYP2S1-mediated metabolism. To test this idea, we established four stable BEAS-
2B cell lines expressing high (CYP2S1-Flag), medium (pcDNA3.1 and scrambled
siRNA), and low (CYP2S1 shRNA) CYP2S1 expression. Expression levels con-
firmed using qRT-PCR and western analysis. Alterations in the transcriptome were
determined using RNA-sequencing (RNA-seq) analysis. RNA was isolated from
three biological replicates from each of the four experimental conditions (CYP2S1-
Flag vs pcDNA3.1 and CYP2S1 shRNA vs SCRAM shRNA). Eight to fourteen
million sequencing reads were generated from each of the 12 samples. Four distinct
population clusters were identified using principal component analysis, represent-
ing each of the transduced cell lines. Approximately 1000 genes were differentially
expressed in response to CYP2S1. Among these were key regulatory enzymes in-
volved in prostaglandin synthesis. RNA-seq also identified novel changes in the
mTOR pathway, which regulates cell size. Significant differences in cell size was in
lung cells differentially expressing CYP2S1, revealing a potentially novel role for
CYP2S1 in cell size regulation.

Expression of the Nuclear Receptor Corepressor Tnip1 in
Mouse Tissues.
N. Francis, C. Zhang and B. J. Aneskiевич. University of Connecticut,
Williamstown, CT.
Tnip1 regulates multiple signalling pathways (NF-kB, ERK2, PPAR and RAR) in-
volved in either executing or responding to toxic insults. Altered Tnip1 expression
levels are associated with certain human inflammatory diseases. These cell signaling
and pathology studies revealed some molecular targets and potential organ end-
points. Additionally, body-wide data on expression of Tnip1 is incomplete. To de-
velop a better understanding of Tnip1’s expression pattern and functional role, we de-
veloped a Tnip1 gene trap knock out (KO) mouse to identify possible new signaling
and organ targets.

The Tnip1 gene trap KO mouse was created via a β-Geo cassette (β-
galactosidase and neomycin resistance genes) insertion into the Tnip1 intron. Ex-
pression from the cassette allowed for evaluation of Tnip1 promoter activity in
different tissues qualitatively via X-gal staining, immunofluorescent (IF) staining for
β-Galactosidase (β-Gal), and quantitatively via Q-PCR. With WT tissues as a
control, all heterozygote (Tnip1 +/-) tissues turned blue with X-gal staining. Results of IF β-Gal staining in Tnip1 +/- mouse tissues were similar to that of X-gal
whole organ staining and paralleled the Tnip1 -/-body staining. For most organs, both β-Gal and Tnip1 were homogeneously expressed across the tissue. However, for
kidney, both β-Gal and Tnip1 glomerular staining was significantly reduced
compared to convoluted tubules suggesting distinct expression levels and fidelity of
the β-Gal marker for the endogenous Tnip1 expression. Q-PCR results revealed the
same alterations in promoter activity described by X-gal staining. Based upon expres-
sion levels of β-Gal mRNA, varied among different tissues and mirrored the Tnip1 mRNA levels. These results suggest Tnip1 is expressed at varying levels in different mouse tissues. Recent studies report a high rate of lethality in Tnip1 KO mouse embryos due to fetal liver
apoptosis (Oshima et al, 2009, Zhou et al, 2011). By contrast, we demonstrate there are tissues other than liver expressing Tnip1 and that biological function of
these organs may be impacted by changes in levels of Tnip1 protein.
to 50 μM Cd for 4 or 8 hours. Global gene expression profiling was performed using the Agilent 4x4K Zebrafish Oligo Microarray. Overall, 788 probes were significa-cantly upregulated, while 679 probes were downregulated in one or more treat-ments. Principle component analysis was employed to find trends among the vari-ous treatments. The first principle component separated out the 96 and 120 hpf Cd-treated embryos, consistent with the mortality curves suggesting that zebrafish embryos are most sensitive to Cd toxicity around 96 hpf. The majority of genes altered by Cd exposure resulted in the upregulation of a large subset of genes responsive to oxidative stress, genes involved in glutathione synthesis and heme/iron homeostasis, mitochondrial uncoupling proteins, and various solute car-riers with roles in zinc transport/homeostasis or mitochondrial oxidative phospho-rylation. The majority of genes downregulated by Cd were involved in cell cycle control and DNA replication. A thorough analysis of genes differentially regulated by Cd during zebrafish development will be presented. [R00ES017044]

692 Role of Chromatin Structural Changes in Regulating Human CYP3A Ontogeny.

N. L. Giebel1, J. D. Shadley1, K. Dorko3, S. C. Strom1, P. M. Simpson1, K. Yan1 and R. N. Hines1, 1Pediatrics, Medical College of Wisconsin, Milwaukee, WI; 2Pharmaceutical Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS; 3Laboratory Medicine, Karolinska University Hospital, Stockholm, Sweden.

Variability in drug metabolizing enzyme (DME) developmental trajectories con-tributes to differential susceptibility to chemical toxicity and adverse drug reactions, particularly in the first years of life. Factors linked to variability are largely un-known and molecular mechanisms regulating ontogeny are likely involved. To eval-uate chromatin structure dynamics as a contributing mechanism, age-dependent changes in histone marks were evaluated within known CYP3A4, CYP3A7, FMO1, and FMO3 regulatory domains. Chromatin immunoprecipitation with fetal and adult primary human hepatocyte chromatin pools followed by qPCR was used to determine relative histone mark occupancy. Histone mark occupancy is consistent with many regions of bivalent chromatin (i.e., exhibiting histone marks associated with active and repressive transcription) in adult and fetal hepatocytes with the excep-tion of the CYP3A7 XREM and C/EBPβ domains in adult hepatocytes. For CYP3A4, the bivalent histone mark domains are consistent with a low level of fetal liver expression. Differential histone mark occupancy indicates adult histone mark and transcription factor occupancy have a developmental trajectory towards an ac-tive transcriptional state. In contrast, the bivalent CYP3A7 regions in fetal hepato-cyes do not correspond with high expression and surprisingly, adult hepatocytes had less histone mark occupancy, particularly the repressive mark H3K27me3. These finding for CYP3A7 suggest mechanisms other than chromatin structural changes involved in regulating ontogeny. Chromatin structural change is an impor-tant mechanism controlling DME ontogeny, particularly for those whose specific activity increases substantially after birth. Supported in part by NIH grant GM081544.

693 6-Formylindolo(3, 2-b)carbazole (FICZ) Positively Regulates the Signalsome Responsible for Retinoic Acid (RA)-Induced Differentiation of Leukemic Blast Model HI-60.

Tryptophan is an essential amino acid that absorbs strongly in UV (extinction coeffi-cient: 5,050 M-1cm-1 for 280 nm). Both in cell free conditions (such as cell cul-ture media exposed to light) and in the cells (such as skin keratinoctyes exposed to sunlight), tryptophan yields a multitude of photoproducts. One such photoproduct is 6-Formylindolo(3,2-b)carbazole (FICZ). FICZ has a high affinity for AhR (Kd<7x10-11 M). It is proposed to be an endogenous AhR agonist and also a cy-tochrome P450 family 1 substrate. FICZ and a multitude of its metabolites have been shown to be present in human fluids. Currently all the complete parenteral nutrition formulations contain tryptophan. The bags for total parenteral nutrition are made of clear plastic. Since many cancer patients receive both parenteral nutrition and chemotherapy (generally enhancing AhR expression and activity), it is of significant interest to assess potential effects of FICZ on cell differentiation and in particular, the induced leukemic cell differentiation. HL-60 leukemic cells were untreated or treated with RA alone or RA in combination with FICZ for 48 h. To assess the involvement of AhR, other cells were treated either with either- naphthoflavone and RA or β-naphthoflavone and RA. Expression of cell surface dif-ferentiation markers, cell cycle distribution and respiratory burst response were quan-tified by flow cytometry. Western blots were performed to assess the proteins known to be part of the signalome driving the RA-induced differentiation. FICZ augments the RA-induced differentiation as evidenced by CD38 and CD11b re-ceptors, inducible respiratory burst, G0 cell cycle arrest and growth curves.

694 Nrf2 Gene Regulation during Oxidative Stress in Embryonic Development.

A. R. Timme-Laragy1, 2, S. I. Karchner1, R. C. Harbeiner1, A. G. MacArthur3 and M. E. Hahn1. 1Biology, Woods Hole Oceanographic Institution, Woods Hole, MA; 2Public Health, University of Massachusetts, Amherst, MA; 3JAGM Consulting, Hamilton, ON, Canada.

Nrf2 is a transcription factor that regulates antioxidant defenses in response to ox-idative stress. Embryonic development is highly susceptible to disruption by expo-sure to chemicals, including those that alter redox balance. The role of Nrf2 in the oxidative stress response (OSR) during embryonic development remains unclear. Our previous work identified a novel Nrf2 paralog, nrf2b, in zebrafish (Danio rerio). This study builds upon that work to elucidate the roles of nrf2a and nrf2b in regulating the OSR during vertebrate embryonic development. Zebrafish embryos were micro-injected with antisense morpholinolo oligonucleotides (MO) to knockdown translation of either nrf2a or nrf2b, or a standard morpholinolo control (co-MO). At 48 hours post fertilization, embryos were exposed to the pro-oxidant and Nrf2 activator, tertbutylhydroquinone (tBHQ) or vehicle (DMSO) for 4 hours, and preserved for RNA isolation. Microarrays were conducted using Agilent’s V3 4x4k array, and selected genes validated by qPCR. In response to tBHQ, 71 probes were up-regulated in the co-MO group, including gap1, gclc, ferritin, peroxo-dazon1, bsp/70, sod1, and other genes typically found as part of the OSR. Interestingly, we found that an important and often overlooked part of the OSR is the down-regulation of genes, including cathespin, various complement compo-nents, and apolipoprotein E. Knockdown of Nrf2a or Nrf2b blocked some but not all of the tBHQ-induced changes in OSR gene expression and the effects of Nrf2a-MO and Nrf2b-MO were distinct. The results show that Nrf2 paralogs primarily regulate distinct gene sets, with some overlapping targets, in response to oxidative stress in embryos. This study also highlights the importance of gene down-regulation as a component of the OSR during embryonic development. [FJ2E5017585, R01ES016366].

695 On Breast Cancer Treatment, Synergistic Effects of Akt1 shRNA and Paclitaxel-Incorporated Conjugated Linoleic Acid-Coupled Poloxamer Thermosensitive Hydrogel.

S. Hong1, C. Cho2 and M. Cho1. 1Laboratory of Toxicology, Seoul National University, Seoul, Republic of Korea; 2Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.

The phosphonositide 3-kinase (PI3K)/Akt signaling pathway has emerged as a target for treatment of cancer therapy. In this study, we develop a strategy to en-hance Akt-targeted therapy. We thought that combination of Akt1-targeted therapy with conventional chemotherapy using paclitaxel-incorporated conjugated linoleic acid-coupled poloxamer (CLA-CP) thermosensitive hydrogel may have synergistic effects in cancer therapeutics compared with chemotherapy and/or MDA-MB-231 cell, the human breast cancer cell line, was inoculated into 6-week-old female BALB/C nu/nu athymic mice. After 2 weeks of inoculation, shAkt1 and CLA-CP treatments were subcutaneously injected into the tumor. We found that the combination of shAkt1 with paclitaxel showed synergistic anti-cancer effects, thus, inhibiting the growth of human breast cancer cells, and breast cancer xenografts in mice as well. The combination therapy showed enhanced anti-cancer ef-fects through inhibiting Akt1 signaling, inducing apoptosis. In addition, it sup-pressed angiogenesis and proliferation, also. It suggests that the presented strategy of combination of shAkt1 with paclitaxel may have a potential for the treatment of breast cancer. Acknowledgements This work was partly supported by the National Research Foundation (NRF-2011-0000380), Ministry of Education, Science and Technology (MEST) in Korea.

696 TBX5 As Targets for Treatment of Chronic Obstructive Pulmonary Disease.

Chronic Obstructive Pulmonary Disease (COPD) is a progressive disease of the respir-atory system which is characterized by destruction of the epithelium cells of lungs. Current therapies alleviate symptoms of COPD but do not treat the under-
factors that influence the development of COPD. A compendium of lung epithelium microarray datasets was created using GSE 19027 and GSE 994 from the Gene Expression Omnibus database. Probe IDs for TBX5 and genes that have known interactions with the TBX5 transcrption factor were used to generate an initial network. Bayesian Network Inference with Java Objects was then used to generate a new regulatory network, given the gene expression data. Cytoscape was used to visualize the difference between the initial and predicted networks. In addition, analysis of GSE 1650, which compared lung tissue from smokers with severe emphysema and smokers with mild or no emphysema, was done. The resulting network indicates that STAT3 regulates TBX5, NKK2-5, GATA4, ID2 and TAZ. The regulatory relationships between STAT3 and TBX5, NKK2-5, GATA4, ID2 have been validated in the published literature. However, a relationship between STAT3 and TAZ has not been established. It is known that TAZ regulates TBX5. This presents with a possible feed-forward relationship among TBX5, STAT3 and TAZ. STAT3 is known to be involved in cell growth, apoptosis, and regulation of anti-inflammatory response by controlling genes involved in the inflammatory response. This result suggests a potential inhibitory relationship between STAT3 and TBX5 since STAT3 was up-regulated in smokers with severe emphysema and TBX5 was suppressed in patients with COPD. The result suggests that future therapies targeting STAT3 or TBX5 can regulate inflammatory response involved in COPD. Further research is warranted to investigate how TBX5, STAT3 and TAZ play a role in the inflammatory response of COPD.

697 Suppressive Effect of HES1 (Drosophila Hairless and Enhancer of Split-1) on Human Hepatic Multidrug Resistance-Associated Protein 4 (MRP4) Gene Expression and Induction of HES1 by Oxidative Stress.

X. Gu and J. E. Manautou. Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT.

Previous in silico studies in our laboratory identified a total of 107 canonical HES1-binding N-boxes (CANNAG) in a 10kb DNA fragment upstream to the translation start site of the multidrug resistance-associated protein 4 (MRP4/ABCC4). In this study, we investigated the role of HES1 in regulating MRP4 gene expression. We have identified a 16-bp DNA fragment in the MRP4 promoter-proximal region containing a non-canonical N-box (GGCGTG) for HES1 that accounts for a profound suppression of MRP4 promoter transcription activity in HepG2 cells. A point mutation in this cis-element (GGCCGT) resulted in the loss of this suppressive effect of HES1. Furthermore, suppression of MRP4 reporter genes containing 230 bp, 5 kb or 7 kb of 5' flanking regulatory sequences was observed by over-expression of HES1 but not by a dominant negative mutant of HES1. This suppression of MRP4 activity in HepG2 cells was a result of an in cis effect, where HES1 inhibits MRP4 expression by binding to the 16-bp DNA fragment in the promoter region. We have previously reported that the MRP4 induction we have previously reported under conditions of oxidative stress might be due in part to down-regulation of HES1 expression. Our results confirm that HES1 is a negative regulator of MRP4 expression in the human liver cell line (HepG2). The suppression of MRP4 expression by HES1 is mediated through the binding of HES1 to a specific DNA sequence in the promoter region of the MRP4 gene. This suppression is specific to MRP4 and is not observed in other genes that are regulated by HES1. These findings suggest that the mechanism of HES1 regulation of MRP4 expression involves a direct interaction between HES1 and the MRP4 promoter sequence. Further studies are needed to determine the mechanism by which HES1 regulates MRPs expression and how this may contribute to the development of drug resistance in liver cancer cells.

698 Exposure to Metals Mixtures: Genomic Alterations of Infectious Disease Response Pathways in Children Exposed to Environmental Metals.

J. Gruber1,2, R. D. Patel1, J. E. Rager1, A. P. Sanders1, S. Edwards3, J. E. Gallagher1 and R. C. Fry2. 1Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC; 3National Health and Environmental Effects Research Laboratory, US EPA, Research Triangle Park, NC.

Exposure to toxic metals can have harmful health effects, particularly in children. Although studies have investigated the individual effects toxic metals have on gene expression and health outcomes, there are no studies assessing the effect of metal mixtures on gene expression profiles. Here, we assessed the mixture effect of six toxic metals (arsenic, beryllium, cadmium, chromium, mercury, and lead) on gene expression in children exposed to environmental metals. Using the Michigan Indicators of Childhood Asthma (MICA) cross sectional study, we assessed metal exposure in 131 children in Detroit using fingernail metals levels. A mixture meta score was calculated and compared to gene expression profiles across the population adjusting for age and race. There were 145 unique genes that were significantly differentially expressed in children exposed to low levels of the metals mixture. Of the genes differentially expressed, 107 (74%) had increased expression while 38 (26%) had decreased expression. The main biological function associated with multiple metals was infectious disease. Within that group, genes were associated with infection of respiratory tract (P < 10-6) severe acute respiratory syndrome (P < 10-5). Taken together, our data demonstrate that exposure to metals mixtures may activate gene networks related to infectious disease response. This abstract does not necessarily reflect the views or policies of the EPA.

699 Transcriptomics Analysis of Lung Tissues of Brown Norway Rats Exposed to the Sensitizers Trimellitic Anhydride (TMA), Oxazolone (OXA) or Dinitrochlorobenzene (DNCB).

F. Kuper1, M. Radonjic2, J. van Triel1, Y. Staal1, R. Woutersen2 and R. Stierum3. 1TNO Triskelion, Zeist, Netherlands; 2The Netherlands Organisation for Applied Scientific Research, TNO, Zeist, Netherlands.

TMA is a respiratory allergen, OXA is a potent contact allergen in man, but elevates serum IgE levels and Thelper2 cytokines in test animals, suggesting that it has also respiratory allergenic potential. DNCB is a contact allergen. Brown Norway rats (BN) were sensitized by two dermal applications of TMA, OXA or DNCB. The animal model is provoked by inhalation on day 21. TMA and OXA both induced elevation of serum IgE, breathing pattern changes and the same type of allergic laryngeal inflammation. However, microarray analysis of the lung (sampled 24 hrs after provocation) indicated that OXA may act through different mechanisms than TMA, despite a certain overlap in activated genes. TMA upregulated strongly Th2-associated genes and genes associated with lung remodeling, whereas OXA activated predominantly Th1-associated genes. The variability in balance between Th1- and Th2-associated genes may reflect different subtypes of respiratory allergies. DNCB induced a very mild inflammation in the larynx, which resembled DNCB-induced inflammation in the skin; only a few Th1-associated genes were differentially expressed in the lung. The transcriptomics analysis supports the idea that classification of allergens based on single genes is unreliable. Omics data contribute to our understanding of respiratory allergy and may help in the design of a predictive toxicity test for sensitization.

700 In Vivo Expression of P16INK4a in Response to Toxicological Exposures.

J. Sorrentino1, 2, N. Sharpless1, 2, 3, 4 and C. Burd1. 1Toxicology University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Departments of Medicine and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; 3Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC; 4Molecular Genetics, Ohio State University, Columbus, OH.

In mammals, expression of p16INK4a is highly regulated. Excess expression can lead to cellular senescence and aging, while impaired activation is associated with cancer. The precise mechanism of p16INK4a regulation in vivo is poorly understood. In vitro systems have limited utility since proliferation in culture induces p16INK4a. Both extrinsic (chemotherapy and ionizing radiation) and intrinsic (telomere shortening and improper DNA damage repair) stimuli can induce p16INK4a, but the kinetics of and cellular responses to these genomic insults have not been examined in vivo. To address this question, we developed a murine strain with firefly luciferase ‘knocked-in’ to the endogenous p16INK4a locus and under control of the p16INK4a promoter (p16-LUC). We exposed p16-LUC mice to 50ppm arsenic, 42% fat diet, 350 μmol/2 UBV light, or cigarette smoke for a minimum of 6 months. Every other month, p16-LUC mice were imaged to measure luciferase induction. At 30 weeks of exposure, mice exposed to cigarette smoke displayed 2 times higher levels of whole body luciferase activity than no-smoke controls. Additionally, mice exposed to UBV exhibited 1.5 times higher levels of luciferase activity by 6 weeks of exposure that reached 8 times over control mice by 24 weeks. In arsenic exposed mice, there was only a slight induction of p16INK4a by 24 weeks (not statistically significant). We observed no differences in p16INK4a expression in mice on high fat diet (42% fat) compared to normal fat diet (4%) after 78 weeks. Currently, we are correlating luciferase expression in different organs with tissue damage and mRNA expression of p16INK4a. The data generated from these experiments will demonstrate how environmental exposures are associated with expression of p16INK4a, a mediator of tumor suppression and aging. (Supported by T32 ES07126, HHMI Translational Medicine Program, and U01CA141576)
701 Reprogramming of the HepG2 Genome by Long Interspersed Nuclear Element-1: Regulatory Control of Epithelial to Mesenchymal Transition Is Independent of Reverse Transcriptionase.

P. Bojiang1, M. Anderson2, B. Roberts3, and K. S. Ramos1, 3. 1Biochemistry and Molecular Biology, University of Louisville, Louisville, KY; 2General Toxicology Sciences, ArzneiZentrum, Manchester, United Kingdom; 3Center for Environmental Genomics and Integrative Biology, University of Louisville, Louisville, KY.

Long Interspersed Nuclear Element-1 (LINE-1 or L1) is an autonomous, mobile element within the human genome that transposes via a "copy and paste" mechanism and relies upon L1-encoded endonuclease and reverse transcriptase (RT) activities to compromise genome integrity. Because the complexity of L1 biology is not understood, studies were conducted to evaluate the impact of L1 on epithelial to mesenchymal transition (EMT) in HepG2 cells. Forced expression of synthetic wild type or mutant (D702Y) L1 deficient in RT activity was associated with formation of cyttoplasmic foci and mitotic arrest, and increased expression of the nuclear compartment. Random de novo L1 retrotransposition was identified in cells expressing wild type L1, but not the D702Y mutant. Both synthetic wild type and mutant L1 induced marked reductions in the expression of epithelial markers and overexpression of mesenchymal markers. These data establish L1 as a key regulator of genome plasticity in HepG2 cells via RT-dependent and RT-independent mechanisms which do not couple to intrinsic retrotransposition activity.

702 Interoperability Case Study: Connecting Models across Exposure and Dose-Response Areas for Characterization of Vinyl Chloride Hepatotoxicity.

D. S. Womack1, S. M. Beaulieu2, A. B. Parks3, M. Mumtaz2, P. Ruiz2, J. Babendreier4 and A. M. Jarabek4. 1RTI, Research Triangle Park, NC; 2ATSDR, Atlanta, GA; 3US EPA, Athens, GA; 4US EPA, Research Triangle Park, NC.

The 2012 SOT workshop "Building for Better Decisions: Multi-scale Integration of Human Health and Environmental Data" advanced seamless data and model integration for support of sustainability and improved risk characterizations. It highlighted the need for interoperability of models across the source/exposure/dose-response/cost:benefit continuum. We conducted a case study to illustrate integration of in silico methods offer

703 Modeling Acute Exposure Guideline Levels (AEGLs).

M. T. Chu, C. M. Nordberg, R. Manimaran, Y. Tie and E. Demchuk. ATSDR, Atlanta, GA.

Acute Exposure Guideline Levels (AEGLs) are comprehensively peer-reviewed health guidance values for assessing the risk of acute once-in-a-lifetime or rare exposures to hazardous chemical exposures. Each AEGL is a concentration designed to prevent health effects of a certain type (AEGL-1: reversible, AEGL-2: disabling, AEGL-3: life-threatening) at one of five exposure durations (1/6, 1/2, 1, 4, 8 h). Currently only 272 compounds have published AEGLs and among them 114 have unassigned AEGLs-1. The objective of present work was to develop a novel in silico approach for rapid estimation of provisional AEGL-1 thresholds, specifically at 8 h (AEGL-1). Correlation and multivariate linear regression analyses were employed to assess significant predictors for AEGL-1. AEGLs-2 and -3 were identified as per-predictor and explanatory variables, controlled for physicochemical properties and chemical-specific qualitative data used to extrapolate AEGLs (e.g. species, target health endpoint, uncertainty factors). χ²- and t-tests were used to assess the homogeneity of covariates in the training and test sets. Variable selection involved multicollinearity, interaction, and confounding assessments. An exhaustive all-possible-subset selection was employed to determine the best information-entropy model. Available toxicological LOAEL or NOAEL data were used to validate the model. The final model was developed for AEGL-1. It relied on AEGL-2 values as the main explanatory variable, controlled for chemical volatility, testing species, and uncertainty factors. For the chemicals without the AEGL-1 assigned, approximately 70% of model-predicted concentration thresholds were within a 10-factor of their extrapolated LOAEL or NOAEL values. The proposed 1D-QSR model provides a meaningful and statistically-valid method to derive provisional AEGL-1 thresholds that is consistent with available toxicological data. Such in silico methods offer a complementary approach when biological or toxicological evidence is insufficient, budget is limited, and/or rapid assessment is necessary, as in an emergency response.

704 Concentration-Time Relationships for Short-Term Inhalation Exposures to Hazardous Substances.

Acute Exposure Guideline Levels (AEGLs) are developed by the USEPA AEGL committee for controlling acute exposures to airborne chemical hazards. AEGLs are the threshold exposure limits for once-in-a-lifetime or rare chemical exposures at five exposure durations (1/6, 1/2, 1, 4, 8 h). AEGLs are derived from various published and unpublished experimental studies described in Technical Support Documents prepared by the committee. An AEGL concentration (C) for a specific duration (t) is extrapolated from available experimental data. Extrapolations are carried out using the exponential function, Cn = C0 * t^n, where n, the temporal scaling factor (TSF), is chemical-specific. Preferably, it is derived experimentally, but thus far experimental TSFs for few chemicals have been derived. For most of 272 chemicals on the AEGL list, TSFs are unknown. For these chemicals, the AEGL committee has adopted a rule by which n = 1 when extrapolating from short- to short-term durations, and n = 3, when extrapolating from long- to short-term durations. However, for many chemicals with unknown TSFs, this rule has been abandoned in favor of chemical-specific information deemed appropriate by the committee. Thus, the AEGL database contains rich expert-validated chemical-specific information about temporal extrapolation. The objective of the present study was to extract this information. Using regression analysis for each chemical in the database, a surrogate TSF was derived. In addition to being chemical-specific, TSFs were found to be health-effects-specific. The relationship between median TSFs for mild/reversible (n1 = 2.9, AEGL-1 tier), disabling/irreversible (n2 = 2.0, AEGL-2), and life-threatening effects (n3 = 1.8, AEGL-3) was n1 > n2 > n3. A geometric mean of covariates in the training and test sets. Variable selection involved multicollinear regression analyses were employed to assess the risk of acute once-in-a-lifetime or rare exposures to hazardous chemical exposures. Each AEGL is a concentration designed to prevent health effects of a certain type (AEGL-1: reversible, AEGL-2: disabling, AEGL-3: life-threatening) at one of five exposure durations (1/6, 1/2, 1, 4, 8 h). Currently only 272 compounds have published AEGLs and among them 114 have unassigned AEGLs-1. The objective of present work was to develop a novel in silico approach for rapid estimation of provisional AEGL-1 thresholds, specifically at 8 h (AEGL-1). Correlation and multivariate linear regression analyses were employed to assess significant predictors for AEGL-1. AEGLs-2 and -3 were identified as per-predictor and explanatory variables, controlled for physicochemical properties and chemical-specific qualitative data used to extrapolate AEGLs (e.g. species, target health endpoint, uncertainty factors). χ²- and t-tests were used to assess the homogeneity of covariates in the training and test sets. Variable selection involved multicollinearity, interaction, and confounding assessments. An exhaustive all-possible-subset selection was employed to determine the best information-entropy model. Available toxicological LOAEL or NOAEL data were used to validate the model. The final model was developed for AEGL-1. It relied on AEGL-2 values as the main explanatory variable, controlled for chemical volatility, testing species, and uncertainty factors. For the chemicals without the AEGL-1 assigned, approximately 70% of model-predicted concentration thresholds were within a 10-factor of their extrapolated LOAEL or NOAEL values. The proposed 1D-QSR model provides a meaningful and statistically-valid method to derive provisional AEGL-1 thresholds that is consistent with available toxicological data. Such in silico methods offer a complementary approach when biological or toxicological evidence is insufficient, budget is limited, and/or rapid assessment is necessary, as in an emergency response.

705 Refined Animal Toxicity Testing Using Unequally Sized Dose Groups and Benchmark Dose Analysis.

Benchmark dose (BMD) analysis has been recommended as a more robust alternative to the No Observed Adverse Effect Level (NOAEL) as it makes use of all the data from the study to derive the point of departure. In this study, we used simulations to examine the possibility to optimize the study design for BMD analysis by introducing unequally sized dose groups. In addition, this BMD-adjusted design of experiment was evaluated regarding animal distress. Experimental data were generated by Monte Carlo simulations for fixed doses and equally sized groups. We started with the OECD standard of 4 dose groups (logarithmic dose spacing: 0-1, 3-10 mg/kg) with 20 animals per group and assumed a sigmoidal dose-effect curve. The distribution of animals between dose groups was then altered before performing the next set of simulations. The quality of the simulated BMD was evaluated against the "true" dose-effect curve and the standard 4x20 design. The procedure was repeated for scenarios with different effect variability and dose placements on the dose-effect curve. The designs with more animals in the low dose groups generally showed significantly better quality than the standard design with equally sized dose groups. With these designs it was also possible to reduce animal distress with 45%, under the assumption that the distress is proportional to dose. To reduce
the number of animals in the high dose group would be an important refinement of animal testing since the primary parameter for setting the high dose is the tolerability determined by clinical signs of moderate severity, e.g. weight loss of up to 20%, hunched intermittently, intermittent convulsions or transient prostration. In conclusion, our simulations suggest that toxicological studies can be improved by unequally sized dose groups, which also results in substantially reduced distress. The study illustrates how regulatory testing may be refined (one of the Rs in 3R – Reduce, Refine, Replace) by use of BMD-aimed experimental design.

706 A Novel Screening System for Classifying Potential Health and Environmental Impacts Associated with Hydraulic Fracturing Fluids.

C. N. McFarland and D. B. Davies, Intrinsic Environmental Inc., Calgary, AB, Canada.

Public opposition to hydraulic fracturing or “fracking” is being witnessed across many communities in the U.S.A., Canada and elsewhere. Concerns over this practice include the potential impacts of fracking on groundwater and surface water quality, air quality, human health, and terrestrial and aquatic ecosystems. These concerns have prompted some jurisdictions to place temporary moratoriums on the practice until a better understanding of these potential impacts is gained. Numerous initiatives are now underway to heighten this understanding, including measures aimed at increasing awareness of the chemical additives that are used during the process. Many jurisdictions are now mandating public disclosure of these additives, and chemical registries that list the additives delivered down-hole on a well-by-well basis have emerged. Although these registries identify the chemicals used, they provide no indication of the potential health and environmental risks that the additives could present. To help fill this void, a novel risk-based screening system was developed to improve the understanding of the potential health and environmental impacts of the chemical additives used in hydraulic fracturing. The system relies on the results of toxicity and environmental fate studies for a number of key endpoints to assess the potential risks involved. The endpoints include acute and chronic oral toxicity, reproductive and developmental toxicity, mutagenicity, carcinogenicity, aquatic toxicity, environmental persistence and bioaccumulation potential. The outputs of the screening process are used to assign the chemical additive products to one of several categories depending upon the potential risks involved. This categorization process allows the product users to take appropriate steps to manage the potential hazards. The screening system has been used to classify more than 1,500 products to date, has proven to be reliable and effective, and is currently being adopted on an industry-wide basis in Canada.

707 Analysis of the Validated Epiderm Skin Corrosion Test (EpiDerm SCT) and a Prediction Model for Sub-Categorization According to the UN GHS and EU CLP.

S. Letasova1, T. Kandarova1, T. Milasova2 and M. Klausner1. 1MatTek Corp, Ashland, MA; 2MatTek IVLSI, Bratislava, Slovakia. Sponsor: P. Haydon.

Skin corrosion refers to the production of irreversible damage to the skin manifested as visible necrosis through the epidermis and into the dermis. In 2004, OECD adopted two ECVM-validated reconstructed human skin model assays (EpiDerm and EPISKIN) for testing skin corrosion (OECD TG 431). However, OECD TG 431 does not satisfy international labeling guidelines for transport of dangerous goods since none of the methods were validated for sub-categorization. The UN-GHS utilizes 3 corrosion sub-categories (1A-very dangerous, 1B-medium danger, 1C-minor danger). Labeling a chemical as 1A has important consequences for transport, including very small volume package limits for air transport, prohibition from passenger aircraft, protective storage conditions, costly containers, and low market acceptance. Animal tests are still utilized for assessing the packaging subclasses. An in vitro method that discriminates between the 1A and 1B/1C classes will therefore have a substantial impact on reducing animal tests for this purpose.

The current study evaluates whether the EpiDerm SCT can discriminate between UN-GHS classes 1A, 1B/1C and non-corrosives (NC) based on the MTT viability assay. Data obtained during the ECVM validation study (Liebisch et al., 2000) indicated sensitivity of 100% for class 1A. In the current study (> 80 chemicals), sensitivity for class 1A was obtained in a range of 77–87% depending on cutoff chosen following a 3 min exposure. None of 1A chemicals was under-predicted as NC. Specificity for NC chemicals was 80%.

As demonstrated by results of this study, EpiDerm SCT allows a partial sub-classification of corrosives into sub-category 1A, 1B/1C, and NC. Adoption of the new prediction model based on a 3 min endpoint into the validated EpiDerm SCT design would allow identification of severely corrosive substances and would lead to significant reduction in animal use for corrosion sub-group packaging labeling.

708 Physiologically-Based Pharmacokinetic (PBPK) Modeling for the Development of Provisional Advisory Levels (PALs): A Case Study with Fentanyl.

H. Shankaran1, E. Adeshina2 and J. G. Teegarden3. 1Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA; 2Systems Toxicology, Pacific Northwest National Laboratory, Richland, WA; 3National Homeland Security Research Center, US EPA, Washington DC.

Provisional advisory levels (PALs) are tiered exposure limits for toxic chemicals in air and drinking water that are developed to assist in emergency responses. Physiologically-based pharmacokinetic (PBPK) modeling can support this process by enabling extrapolations across doses, and exposure routes, thereby addressing gaps in the available toxicity data. Here, we describe the development of a PBPK model for Fentanyl – a synthetic opioid used clinically for pain management – to support the establishment of PALs. Starting from an existing model for intravenous Fentanyl, we first optimized distribution and clearance parameters using several additional IV dataset. We then calibrated the model for oral and inhalation exposures using pharmacokinetic datasets for various Fentanyl formulations. Predictions of the calibrated model were in good agreement with the >50 datasets considered here.

For aerosolized pulmonary Fentanyl, F=1 and c90<1 min indicating complete and rapid absorption. The F value ranged from 0.35 to 0.74 for oral and various transmucosal routes. Oral Fentanyl was absorbed the slowest (90 - 300 mins); the absorption of intranasal Fentanyl was relatively rapid (90 - 20-40 mins); and the various oral transmucosal routes had intermediate absorption rates (90 - 160-300 mins). Based on these results, for inhalation exposures, we assumed that all of the Fentanyl inhaled from the air during each breath directly, and instantaneously enters the arterial circulation. We present model predictions of Fentanyl blood concentrations in oral and inhalation scenarios relevant for PAL development, and provide an analytical expression that can be used to extrapolate between oral and inhalation routes for the derivation of PALs.

709 Pooled Analysis for Chronic Dietary Studies of Di-Isononyl Phthalate.

C. M. North1, M. J. Nicollich2, K. M. Kranzler3 and R. A. Barter3. 1ExxonMobil Biomedical Sciences, Annandale, NJ; 2Caginet, Lambertville, NJ; 3ExxonMobil Chemical Company, Houston, TX.

Point of departure selection for risk assessment can be complicated when more than one study is available for evaluation. Differences in dose spacing and post–mortem evaluation can result in differing conclusions, leading to uncertainty and additional conservatism in the overall assessment. Here, several analysis methods were utilized to estimate the point of departure using the pooled data from two rat chronic toxicity studies on di-isononyl phthalate (DINP), a general purpose plasticizer used in flexible vinyl applications. Two chronic dietary administration studies (two years) were conducted in DINP-exposed F344 rats. Dietary administration in the two studies were different, with doses of approximately 0, 15, 152 and 307 (Study I) or 0, 29, 88, 359, and 733 (Study II) mg/kg/day. In addition, the number of liver sections dissected between the two studies differed, impacting the overall incidence of observed liver effects. In both studies, a dose-related increase in the incidence of spongiosis hepatitis was observed in male rats. Separate NOAELs of 15 (Study I) or 88 (Study II) mg/kg/day were determined from the two studies; separate Benchmark Doses (BMDs) were estimated at 38 and 205 mg/kg/day, respectively. A pooled data approach, rather than a combining of the NOAEL or BMDs from the individual studies was utilized to derive a rational, data-based NOAEL or BMD. A generalized linear model with a logistic link function was used to determine a NOAEL for the pooled analysis. The NOAEL was the lowest dose group whose model coefficient was not statistically significantly different from the control group coefficient at the 5% significance level. The calculated NOAEL using the pooled data was 0.152 mg/kg/day. A BMDL10 of 7.24 mg/kg/day with a 95% BMDL10 of 61.0 mg/kg/day were calculated with the pooled data. Pooled analysis, combined with robust statistical analysis, is a useful and rigorous method for deriving a point of departure that considers data from multiple, compatible studies.

710 A Systematic Approach for Identifying, Evaluating, and Presenting Mode-of-Action Evidence in IRIS Toxicological Reviews.

Recent National Research Council recommendations on the process of hazard assessment include improving transparency and standardization of evidence collection, selection, presentation, and evaluation. Per this recommendation, we designed...
a process that was tested using di(2-ethylhexyl)phthalate (DEHP) liver tumorigenesis as a case study. Literature searches and reviews and devised an overall search strategy. Literature searches containing relevant synonyms and wildcards for DEHP and its metabolites, MOAs, and species of interest were tested in PubMed. Specific tiered assessment criteria for exclusion/inclusion into the search were also defined and literature was searched and screened according to the tiered criteria. For MOAs with large databases, additional screening criteria were applied through manual curation of the articles. The evidence gathering process was documented as a literature tree, clearly describing each step of the evidence gathering process. Studies satisfying the assessment criteria were summarized into evidence tables. Narratives for each liver cancer related MOA were composed. Literature was organized in the EPA's Health and Environmental Research Online (HERO) database using tags in accordance with assessment criteria. This approach streamlines and exemplifies transparent mechanistic evidence capture and reporting for DEHP liver carcinogenicity. Large amounts of information are effectively managed and appraised, and enabled for analysis of concordance across studies and species in MOA data and consensus for hazard assessment. This research was supported in part by an appointment to the Research Participation Program for the U.S. EPA, Office of Research and Development, administered by ORISE through an interagency agreement between the U.S. Department of Energy and EPA. Disclaimer: The views expressed in this abstract are those of the authors and do not necessarily represent the views or policies of the US EPA.

711 A Nonparametric Bayesian Approach for Benchmark Dose Estimation from Continuous Data.

The current approach for benchmark dose (BMD) estimation from continuous data (e.g., body weight, relative liver weight), proposed by Crump (1984) and used in EPA's BMD software (BMDS), models the responses at each dose level as a population described by mean and variance. Then, various dose-response models (e.g., Hill, Exponential, Power and Polynomial) and variance models are fit to the means, and the model parameters, as well as the variance, are estimated using the maximum likelihood estimation (MLE) approach for BMD calculation. Due to limited data, a common situation in risk assessment, the selection of a particular model and modeling assumptions such as the distribution of the responses (i.e., normal or log-normal distribution) is usually based on limited biological and toxicological information and empirical fit. Consequently, the selection of appropriate BMD and BMDL estimates from the results of a set of acceptable dose-response models is often criticized as being somewhat arbitrary. The non-parametric Bayesian (NPB) approach proposed in the present study models endpoints as a single-point mean response at each dose level without assuming the format of dose-response models or the distribution of responses. The NPB is a data-driven approach and the only assumption employed is that the curve is monotonically increasing or decreasing. The methodology is illustrated through both existing and simulated dose-response datasets, and compared with prevailing parametric methods available in the standard BMDS. The results of these analyses suggest that the NPB method can adequately fit the data and provide comparable BMD estimates (to the standardized models in BMDS). The NPB can provide flexibility in model fitting, and with further research, could be refined into a promising supplemental tool for BMD estimation.

712 Material Threat Assessment Chemical and Scenario Selection Process.

J. Moser1, 2, D. Howell1, 2 and R. Jablonski1, 3, "Chemical Security Analysis Center, Department of Homeland Security, Gaunpown, MD; 2Batelle Memorial Institute, Columbus, OH; 3Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD.

The Department of Homeland Security (DHS) Chemical Security Analysis Center (CSAC) and the Department of Health and Human Services (DHHS) Biomedical Advanced Research and Development Authority Division of Analytic Decision Support (BARDA ADS) currently assess potential chemical threats to the homeland, including potential acts of terrorism and war. The CSAC and BARDA ADS evaluate a broad range of chemicals to assess an adversary’s potential to cause significant adverse consequences. This is accomplished through the development of Material Threat Assessments (MTAs), which examine the potential acquisition of a chemical and whether effective dissemination on a target can cause significant severe or lethal effects. Each MTA consists of an analysis of a single chemical or group of chemicals that have a similar mechanism of action, while modeling these chemicals across a standard set of scenarios to enable comparison among relevant chemicals. MTAs include a comparison of public health consequences of a chemical attack with and without the use of consequence mitigating countermeasures. This presentation describes how the Chemical Terrorism Risk Assessment (CTRA) is used to inform the MTA process and describes the tools and assumptions employed to select high risk and high consequence chemicals and scenarios.

713 Use of REACH Registration Data for Improving Thresholds of Toxicological Concern (TTC).

V. Mosert1, N. Wienieke1, C. Wiegard1, C. Jakupoglu1, M. Sica1, G. Werle-Schneider2 and N. Jägemann2, "ICB EHS TOX-L, Dr. Knoell Consult GmbH, Leverkusen, Germany; 2ICB TOX-C, Dr. Knoell Consult GmbH, Mannheim, Germany.

The Threshold of Toxicological Concern (TTC) concept is utilized to identify human exposures that are so low that in-depth toxicological investigations are expendable. This is called "exposure-based waiving". Exposure-based waiving serves to focus available resources on substances with relevant human exposure potential. Important work into establishing TTC values has been published by Munro et al. (1996). The initial report used a database of 613 organic substances compiled from publicly available sources. In total, 2941 NOELs were collected in this fashion. The Munro concept used the Cramer classification to categorise substances according to their hazard potential.

We broadened the TTC database by including NOAEs published on the ECHA website as per 19 July 2012, containing data for more than 7600 substances. Only non-gaseous mono-constituent substances with oral NOAEs were included in the TTC database. Organophosphates and genotoxic substances were excluded from the database as well as NOAEs obtained for surrogate substances. NOAEs for all systemic endpoints (general toxicity, developmental toxicity, fertility, neoplasia) were taken into account. Where appropriate, default assessment factors of up to 6 were used to establish chronic NOAELs for each substance.

For every eligible substance, we collected the published CLP category for acute oral toxicity as a potential predictor of overall hazard potential. This gives rise to five categories of acute oral toxicity.

A TTC is calculated from the 5th percentile of NOAELs in each of these categories using the REACh rules for establishing DNELs for workers and the general population. This paper presents the preliminary results for more than 1500 substances. The results indicate that the TTC concept becomes more robust when using the very broad ECHA database. It also suggests that acute oral toxicity categories can be used as a predictor for the overall hazard potential of a substance.

714 Evaluation of the Toxtool for Assessing Quality of Toxicological Studies for Risk Assessments.

D. Segal1, S. Makris1, D. Berghel1, A. D. Kraft1, A. Bate1, K. Raff野le1, K. Crofton1, M. E. Gilbert1, M. Selgrade1, R. Blain2 and K. Fedak2, "US EPA, Washington, DC; 2ICP International, Durham, NC; 3US EPA, Research Triangle Park, NC.

In order to improve transparency and consistency, both the European Union and National Academy of Sciences have recommended the standardization and documentation of criteria used to evaluate the quality of studies considered in health risk assessments of xenobiotics. Although peer reviewed publication is an important criterion for judging scientific data, the quality of studies and reporting of results vary tremendously. To find a means to efficiently assess the quality of these studies, we evaluated a publicly available algorithm (Toxicological data Reliability assessment Tool, ToxRTool) recently developed by the European Commission. The ToxRTool builds on the Klimisch score, a method for categorizing the reliability of toxicological studies, but adds important criteria that should be present in a high-quality journal article used to support health risk assessments. To evaluate the ToxRTool, 20 peer-reviewed studies on thyroid disrupting chemicals were selected, ranging in quality from excellent to poor as determined a priori by a thyroid expert on the team. Eight scientists with various levels of expertise then used the ToxRTool to evaluate the papers, and the consistency and reliability of scores were compared across evaluators. Scores were most consistent for previously judged ‘high-quality’ papers with greater variability among scores as the quality of papers diminished. The basis for inconsistencies appeared to be related to the subjective nature and lack of clarity for responding to many criteria. In conclusion, by providing more objective and quantitative basis for responding, the ToxRTool would likely be extremely useful for systematic evaluations of peer reviewed studies being considered for health risk assessments.
GO-Quant Systems-Based Quantitative Analysis of Dynamic Signaling Pathways during Neurodevelopment and Implication for Risk Assessment.

X. Yu and L. Xu. Environmental Health Science, University of Georgia, Athens, GA.

The most critical biological process during neurodevelopment is the timely controlled signaling pathways. Many reports provided qualitative data demonstrating the critical role of neurodevelopmentally related pathways. However, only few have provided quantitative evaluation of the dynamic pathways during these processes. These differences in dynamic signaling pathways are believed to be tightly associated with the sensitivity of window of exposure to toxicants, but still have not been clearly examined. Genome-wide scale evaluation of gene expression has proven to be a powerful tool in understanding molecular mechanisms during neurodevelopment. Thorough analysis of these genomic data during development will inevitably lead to a greater understanding of how changes in transcriptome relate to functional and structural changes in the neurodevelopment. However, the integration of these expression data into a description of dynamic signaling pathways within specific events of development has proven to be a difficult task.

We constructed and established meta-database for neurodevelopment and applied systems-based GO-Quant program to quantitatively map the quantitative and specific landmark of signaling pathways. Our GO-Quant analysis with rat gene expression array data demonstrated the dynamic changes of multiple signaling pathways during different stages of development. The mapping of the dynamic pathways greatly improves our understanding of time-dependent role of each signaling pathway during neurodevelopment. The systems-based identification of developmental stage-specific landmark of signaling pathways helps to create sensitive, breakthrough early biomarkers for neurodevelopmental toxicity.

Safety Assessment of a Novel Antibiotic Using a Mouse Population-Based Approach Predicts Risk of DILI in Humans Where Classical Models Fail.

M. Mosedale, C. Kurtz, J. Eaddy, K. Adkins, H. Wu, P. B. Watkins, and A. H. Harrill. 1 The Hamner Institutes for Health Sciences, Research Triangle Park, NC; 2Pfizer, Inc., Groton, CT; 3The University of North Carolina at Chapel Hill, Chapel Hill, NC.

Development of the macrolide antibiotic PF-04287881 was suspended following elevations in liver function tests observed in a Phase I clinical trial. The potential for drug-induced liver injury (DILI) due to this compound was not predicted by standard nonclinical toxicology studies. We hypothesized that a mouse diversity panel (MDP), comprised of genetically diverse inbred strains, could predict the DILI potential of PF-04287881. Additionally, using the MDP offers the ability to identify genetic loci that underlie PF-04287881 DILI susceptibility. In this study, we collected serum and liver tissue from 34 mouse strains treated with PF-04287881 (600 mg/kg, i.g.) or vehicle once daily for 7 days. Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in 31 of the 34 strains (p<0.05). The average fold change in ALT altered greatly across strains (from 1.6 - 14.2). Microscopic observations of single cell necrosis, hepatocellular hypertrophy and Kupffer cell vacuolation were observed together or individually depending on strain. Genome-wide association analysis conducted to a ≥5 fold change identified 51 significantly associated single nucleotide polymorphisms, 12 of which occurred in known genes. These genes are involved in pathways important for transcriptional regulation, mitochondrial function, and cell structure and signaling. Taken together, these data support our hypothesis that the MDP can predict DILI liability for compounds without a clear hepatotoxicity signal in standard preclinical species. These findings also demonstrate the potential for this population-based approach to improve human risk assessment in drug-safety testing as well as yield mechanistic insights into the toxicity mechanisms via pharmacogenetic investigation.

An Investigation of Factors Associated with Mortality Patterns across the Midwestern United States.

M. P. Chan. Environmental Sciences Program, Southern Illinois University Edwardsville, Edwardsville, IL.

Various studies have indicated that mortality rates are positively correlated with social inequalities, air pollution, elevated ambient temperature, age, availability of medical care and other factors. This study develops a model that uses indicators for multiple factors to predict the mortality rates for selected diseases by county across the Midwestern United States. A total of 1,055 counties from 12 states in the Midwestern region were studied. Systematic random sampling was used to select a subset of counties from the 1,055 counties to validate the model. Appropriate statistical analyses were used to predict the relationship between environmental pollutants, socio-economic factors, risk factors, social capital, weather, crime, social and other factors to explain variations in county-specific mortality rates for the leading causes of death and lifespan in the US. It is anticipated that this study would suggest the complex inter-relationships of multiple factors that influence mortality and lifespan, and suggests the need for a better understanding of the pathways through which these factors, mortality, and lifespan are related at the community level, particularly in urban versus rural settings. The resulting findings might assist policymakers at local, state, and federal levels in developing effective prevention strategies in this region.

Establishment of the Cumulative Margin of Exposure for a Group of Polychlorinated Biphenyl (PCB) Congeners.

F. Kalantar, C. Bergkvist, M. Berglund, F. Fattore, A. Gyllen, H. Häkansson and S. Sand. 1Karolinska Institute, Stockholm, Sweden; 2National Food Agency, Uppsala, Sweden; 3Institute for Pharmacological Research, Milano, Italy.

Due to the fact that humans are exposed to mixtures of chemicals, the development of methods that can assess the combined risk resulting from cumulative exposure to a several chemicals is of high interest. The aims of this study were: (1) to estimate a cumulative margin of exposure (MOE) for a group of polychlorinated biphenyls (PCBs) using reduction of hepatic vitamin A as an example endpoint; (2) To compare a relative potency factor (RPF) based approach with a RPF-free approach for estimating the cumulative MOE. The MOE was defined as the ratio between a reference dose, derived using the benchmark dose (BMD) approach (based on experimental dose-response data), and the estimated human dietary PCB exposure. A distribution for the cumulative MOE was established, taking into account inter- and intra-individual variability as well as uncertainty in data measurements. The cumulative MOE reflected mainly the MOE for PCB 126; other PCB congeners had little contribution to the cumulative exposure and MOE. The median of the 0.1st percentile for the cumulative MOE was about 20 for women; depending on the percentile, the cumulative MOE was 2 - 4 times higher for men compared to women. Furthermore, a relative potency factor (RPF) based approach was compared to an RPF-free approach for estimating the cumulative MOE. The RPF-free approach more completely accounts for variability and uncertainty on the other hand, the RPF-based approach is less data intensive and can be more easily implemented in practice, allowing for a use of existing data on RPFs. Consideration of the discussed approaches may contribute to improving cumulative health risk assessments.

C. Terry, M. Aggarwal, A. T. McCoy, L. G. McFadden, R. J. Rasoulpour, M. Bartels and R. Billington. 1Human Health, Dow AgroSciences, Oxfordshire, United Kingdom; 2The Dow Chemical Company, Midland, MI.

Toxicokinetics (TK) has played a central role in the pharmaceutical industry for decades and this data can provide valuable information for human health risk assessment. However, historically, limited internal dose data have been routinely generated for agrochemicals. In recent years this trend has begun to change; the main drivers for this being: ILSI/HESI-ACSA principles, new EU Regulation (1107/2009 EC) and OECD guidelines. Integrated TK in toxicity studies is now routine at Dow AgroSciences for all new active substances. This approach involves no additional animal usage. This abstract describes the advantages of integrated TK to each stage of the risk assessment process and specific examples are provided from the toxicology program of the new insecticide, sulfoxaflor, to show that integrated TK allows: 1. Hazard identification; a. More relevant routes of administration for toxicity studies – comparison of systemic dose across different routes of exposure, for example in rat and rabbit developmental toxicity studies. b. Kinetically-derived maximum dose approach – allowing more appropriate dose levels to be selected for the mouse carcinogenicity study, for example. 2. Dose-Response Assessment: a. All life-stages of test species to be addressed – application of TK data in developmental and reproduction studies, for example. 3. Exposure Assessment: a. Retrospective analysis of ‘external’ (mg/kg bw/day) exposure assessments – for example, use of TK data from animals in ‘TK Model’, to predict systemic human exposure. 4. Risk Characterisation:

A. T. McCoy1, C. Terry1 and G. Drummond2.1, The Dow Chemical Company, Midland, MI; 2Dow AgroSciences, Milton Park, United Kingdom.

Traditional human health risk assessments include Uncertainty Factors (UFs) to account for toxicokinetic (TK) and toxicodynamic differences between animals and humans. Predictions of systemic exposure in humans, based on animal TK data or measured human biomarker levels, could allow for science-based refinements in the UFs related to interspecies differences in TK. These refinements could provide more realistic reference dose values, while predictions of human blood levels could help to inform calculations of biomonitoring equivalents. The aims of this project were two-fold. The first was to develop a user-friendly modeling method that could accurately predict systemic bioavailability via parenteral exposure routes (i.e. dermal) in humans. Ideally, this model could predict exposure levels in both urine and blood. The second was to utilize animal TK data (measured or modeled from alternate exposure routes) to predict systemic exposure in humans from either occupational, bystander or residential exposures, using a simple TK modeling approach.

TK Modeler is an Excel-based program developed for prediction of blood levels of a test material and optimal sampling time selection for TK analysis. This program was successfully used to predict human blood levels, both, after exposure by parenteral routes (dermal), and using data derived only from animals. Three data-rich Dow AgroSciences molecules were used as case studies: haloxyfop, triclopyr and pyironium. Attempts were made to achieve both of the above aims with each molecule, using data derived only from animals. Three data-rich Dow AgroSciences molecules were used as case studies: haloxyfop, triclopyr and pyironium. Attempts were made to achieve both of the above aims with each molecule, using data derived only from animals.

An 'internal' RfD.

B. K. Gadagbui1, A. Maijer1, P. Nance1, M. Jaycock2 and C. Franklin2.1Toxicology Excellence for Risk Assessment, Cincinnati, OH; 2The LifeLine Group, Annandale, VA.

Polymers display a wide variety of characteristics – e.g., presence of non-bound residual monomers, polymerization chemicals, degradation products, and additives – that may pose a potential health hazard. There is a paucity of direct testing data on many polymers to adequately evaluate their toxicity, but several regulatory agencies have provided guidance for assessing polymer safety. We evaluated each of these approaches and identified the strengths and weaknesses of each. No single published model appears to cover all characteristics of interest. This suggests the need to develop a comprehensive decision tool to identify polymeric substances that may pose potential toxicological hazards to humans. We developed a decision tool that incorporates a weight of evidence approach integrating information for many individual hazard flags. Hazard flags were placed into four broad categories: (1) empirical hazard information on the polymer or residual monomer; (2) evidence of toxicity based on structural properties (i.e., based on polymer class, monomer components, or reactive functional groups); (3) potential for significant tissue dose (i.e., based on molecular weight distribution or systemic bioavailability); and (4) hazard based on foreseeable special use considerations. Some of these hazard flags have not been considered previously by the regulatory agencies. We tested this approach for a number of polymers to demonstrate how the new tool (integrates) incorporates all available regulatory approaches as well as the new features and provides a comprehensive decision framework for evaluating polymer safety.
higher leptin levels, can increase inflammatory responses, hNAG-1 mice and WT were injected with the inflammatory agent lipopolysaccharide (LPS) and serum inflammatory cytokine measured. The levels of KC, IL-6, MCP-1 and TNFα were lower in the leaner h-NAG-1 transgenic mouse. The data indicate the h-NAG-1 mouse may serve as a model for investigating obesity and how environmental exposures may be altered by obesity.

725 Extended Exenatide Treatment Causes Pancreatic Stress and Injury in a Rodent Model of Insulin Resistance.

A possible association between use of the anti-diabetic drug exenatide and acute pancreatitis has been suggested by the analysis of post-approval adverse event data but remains controversial. Studies were undertaken to determine whether an animal model could be developed to reveal potential safety signals consistent with pancreatitis following exposure to drug. Subcutaneous exenatide injection (3, 10, or 30 μg/kg for 6 weeks) of Sprague-Dawley rats, caerulein-treated rats, and Zucker fatty diabetic rats demonstrated no consistent histopathologic pancreatic injury signal on standard chow or a high fat, high carbohydrate diet (HFD). However, C57BL6 mice placed on HFD for 6 weeks exhibited a dose and time dependent pancreatic responses to single daily subcutaneous exenatide injections (3, 10, or 30 μg/kg, for up to 12 weeks) that were exacerbated by the HFD. Focal areas of acinar cell necrosis progressing to edema, inflammation, and general tissue fibrosis and atrophy were identified in control mice but were much more prevalent in exenatide treated mice. Other findings included acinar cell hypertrophy and hyperplasia with increased incidence of autophagy and apoptosis in proportion to necrosis and inflammation. Regardless of exenatide exposure, mice on HFD had increased body weight and significantly elevated blood glucose and serum pro-inflammatory cytokines compared to mice on standard chow. The type of stress and injury produced in this study do not approximate the acute necrotizing pancreatitis described in adverse event reports but represent a reproducible pancreatic signal that might be useful for the preclinical safety evaluation of pancreatic injury induced by anti-diabetic drugs.

726 Adipose Deficiency of Nrf2 in Ob/Ob Mice Results in Severe Metabolic Syndrome.

Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that functions as a master regulator of the cellular adaptive response to oxidative stress. Our previous studies showed that Nrf2 plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β and periloxome proliferator-activated receptor γ. To determine the role of Nrf2 in the development of obesity and associated metabolic disorders, the incidence of metabolic syndrome was assessed in whole body or adipocyte-specific Nrf2-knockout mice on a lean-deficient ob/ob background, a model with an extremely positive energy balance. On the ob/ob background, ablation of Nrf2, globally or specifically in adipocytes, led to reduced white adipose tissue (WAT) mass, but resulted in an even more severe metabolic syndrome with aggravated insulin resistance, hyperglycemia and hypertriglyceridemia. Compared to wild-type, WAT of ob/ob mice expressed substantially higher levels of many genes related to antioxidant response, inflammation, adipogenesis, lipogenesis, glucose uptake and lipid transport. Absence of Nrf2 in WAT resulted in reduced expression of most of these factors at mRNA and/or protein levels. Our findings support a novel role for Nrf2 in regulating adipose development and function, by which Nrf2 controls the capacity of WAT expansion and insulin sensitivity and maintains glucose and lipid homeostasis.

727 Effect of a Purified Openstandard Diet (OSD) on Body Weight (BW), Adiposity, and Glucose Tolerance (GT) in Male C57BL/6 Mice.

Purified diets (PDs) offer biologists the ability to have fine control over diet composition compared to grain-based chows which often contain phytosterogens and toxic heavy metals. However, common PDs such as the AIN-76A (76A) and AIN-93G (93G) may predispose rodents to moderate elevations in BW, blood and liver lipids, and reduced GT vs. chows. The relatively higher levels of sucrose, lower total fiber (~5% in PDs vs. ~20% in chow) and lack of soluble fiber in PDs (~0 vs. ~2% in chow) may be responsible for these effects. Therefore, we tested two new PDs for their metabolic effects vs. chow (Purina 5002), 76A and 93G-1) a PD with no sucrose and 9% fiber (7% insoluble, 2% soluble fiber; OSD) and 2) OSD with a fiber level and type similar to chow (18% insoluble, 2% soluble fiber; OSD+F). 7.5 weaning male C57BL/6N mice (n=15/group) were fed ad-lib for 88 days. Other than BW (weekly) and an oral GT test (OGTT, day 83), all other measures (adiposity index [Al-adipose depot wt*100/carcass wt]), liver triglycerides [TG], 6 h fasted serum glucose, insulin and leptin were terminal. Baseline (17±0.4 g) and terminal BW (31±1 to 37±1) were similar for all groups, but BW gain over time in OSD and 93G was higher (-2.3 g, p<0.05) vs. other groups. AI was similar in all groups but higher in OSD vs. 93G (13±0.004% vs. 11±0.01%, p<0.05). Serum leptin was higher in OSD (34±1 ng/ml) and 93G (36±2) vs. chow (22±3 and OSD+F (2±2, p<0.05). All groups had similar fasting glucose and insulin. Glucose area under the curve during OGTT was higher (p<0.05) for 76A (38,400±2,500 mg/dL/120 min) and 93G (36,500±3,000) vs. both chow (27,500±1,400) and OSD (26,400±1,600), while OSD+F (32,400±1,800) was intermediate and not different from 76A and 93G or chow and OSD. Liver TG levels were no different between chow (4.5±0.2 mg/g), OSD+F (8±1) and 76A (6.5±1) but were higher (p<0.001) for OSD (10±1) and 93G (10±1). These data suggest that PDs with no sucrose and higher fiber can improve GT over established PDs.

728 Development of an Oral Exposure Model to Predict Drug Hypersensitivity Using Brown Norway Rat.

Background: It is important in new drug development to evaluate the potential of drug hypersensitivity as well as the other adverse effects in non-clinical study, but validated methods are not available yet. Brown Norway (BN) rat is a strain that seems susceptible to substances that induce immune-mediated adverse reaction, and thus this particular strain has been used in studies on chemical-induced autoimmunity and food allergy. In the present study we examined whether it would be possible to develop a new predictive model of drug hypersensitivity using BN rat.

Methods: As representative drugs with the potential of drug hypersensitivity in humans, phenytoin (PHT), carbamazepine (CBZ), amoxicillin (AMX), and sulfamethoxazole (SMX) were orally administered to BN rats for 28 days to investigate their effects on these animals. The examinations included observation of clinical signs, hematology, determination of serum IgE levels, histology, and flow cytometric analysis of lymphocyte subsets.

Results: Skin rashes similar to what are often seen in humans were not observed in any animals treated with these drugs. Circulating inflammatory cells and serum IgE levels increased only in the animals treated with CBZ and SMX. Only germinal center hyperplasia was commonly noted in spleen and/or mesenteric lymph nodes in the animals treated with all the drugs. The changes of proportions of lymphocyte subsets were only noted in spleen of the animals treated with PHT and CBZ for 7 days and not for 28 days.

Conclusion: The potential of drug hypersensitivity was detected in BN rats by performing histological examination of secondary lymphoid organs/tissues. The present data suggests that BN rat could provide a useful animal model to evaluate the potential of drug hypersensitivity. Compared to existing models, the advantages of using this model are capable to evaluate 1) by oral administration, 2) not using reporter antigen, and 3) in easy method (general histological examination).

729 Behavioral, Neurochemical and Histological Characterization of a Novel MitoPark Mouse Model for Neurotoxicity and Neuroprotection Studies.

Parkinson’s disease is now recognized as a neurodegenerative condition caused by a complex interplay of genetic and environmental factors. The animal models presently available, created by neurotoxic insults or genetic defects, do not fully recapitulate the chronic and progressive nature of the nigrostriatal dopaminergic neurodegenerative process. Recently, the MitoPark mouse model was created by inactivation of mitochondrial transcription factor Tfam in the nigrostriatal pathway through the control of a DAT promoter. In this study, we tested the utility of MitoPark mice for neurotoxicological and neuroprotective studies using behavioral, neurochemical and histological analyses. Measure of locomotor activity in MitoPark mice over 8-25 weeks revealed that motor function started to decline at 12 weeks of age and progressed over time, leading to severe deficits at 17-25 weeks.
MitoPark mice also showed a dramatic loss of striatal dopamine and its metabolites compared to wild type C57 mice. In order to determine the gene-environmental interaction, we exposed MitoPark mice to Mn (10 mg/kg, p.o) daily for 30 days. Motor deficits were significantly exacerbated in Mn-treated MitoPark mice beginning at week 10 compared to vehicle treated MitoPark mice. The depletion of striatal dopamine, DOPAC and HVA content in MitoPark mice was exacerbated in Mn-treated MitoPark mice. We also evaluated the neuroprotective efficacy of a novel mitochondrial-targeted antioxidant, mitoapocynin. Oral administration of mitoapocynin (10 mg/kg, p.o) three times a week to MitoPark mice through 13-24 weeks of age restored behavioral deficits, striatal dopamine depletion and TH neuronal cell loss in MitoPark mice. Our results demonstrate that the MitoPark mouse is an excellent model to study the gene-environmental interactions associated with mitochondrial defects in the nigral dopaminergic system as well as to evaluate the neuroprotective efficacy of novel neuroprotective agents.

730 Continuous Infusion in Genetically-Altered Down Syndrome Mice.

Performing femoral vein catheterization surgery with tail cuff exteriorization directly at the performing laboratory offers various advantages. Implanted mice avoid transport from a third party supplier post-surgery. This reduces the risks associated with post-operative transport (expression of disease), requires a shorter total recovery time, and allows utilisation of unusual strains not surgically available. In this study we investigated the feasibility of performing femoral vein catheterisation with tail cuff exteriorisation surgery in-house on B6EiC3Sn a/A-Ts(1716)65Dn (Ts65DN) Euploid Ts65Dn mice (Jackson Laboratories, Bar Harbour, Maine, USA) to avoid tube restraint necessary for iv bolus administration and allow behavioural monitoring. Ts65Dn is a widely accepted mutant strain model of Down’s syndrome allowing assessment of medicines for potential unwanted side effects in disease patients. The chromosomal complement of the Ts65Dn mouse is incomplete relative to conventional mice; however the animals do not require special husbandry conditions, housing or maintenance and are considered to show normal behaviour in most respects. They are not affected by heart abnormalities common in humans affected by Down’s Syndrome. The mean bodyweight of the control euploid mice is greater than the Ts65Dn mice (~40g and 30g respectively). The mean body length for Ts65Dn mice is shorter (~1 cm nose - base of tail; 1.5 cm nose - tip of tail) presenting challenges in surgery and tail cuff attachment. To ensure tail size was not likely to impede exteriorisation of the catheter, a range of tail cuff sizes were used. Of the 16 Ts65Dn and 16 wild type mice that were surgically prepared, only one Ts65Dn mouse failed to recover and was humanely killed three days post surgery. No unexpected clinical signs were seen after surgery and infusion and body weights started to regain six days post surgery, which is quicker than previously described by Arts et al 2012. In conclusion, in-house catheterisation of Ts65Dn mice was shown to be more humane than obtaining and transporting surgically prepared mice from a third party, reducing the chance of disease expression.

731 Generation and Characterization of a Humanized C. elegans Transgenic Animal That Results in Early Onset, Age-Dependent Complete Loss of DA Neurons.

S. Jamadar, N. VanDuyne and R. M. Nass. Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN.

Background: Parkinson’s disease (PD) is a slowly progressive neurodegenerative disease characterized by the selective loss of dopamine (DA) neurons. Despite over 50 years of intensive research into the disorder, the origin of the pathogenesis and the molecular determinants involved in PD have not been elucidated. A significant hindrance in dissecting these molecular components is the lack of facile models to explore the mechanisms involved in age-related cell death. Aims/Objectives: Our goal in this study was to develop and characterize a viable C. elegans animal that has early onset, age-dependent complete loss of DA neurons. Methods: We utilized transgenic C. elegans, reverse genetics, biochemical assays, immunofluorescence, mRNA and miRNA arrays, RT-PCR. Western analysis, and neuronal morphology analysis to characterize expression, localization and the role of human alpha-synuclein, parkin and mutant genes in DA neuron pathology. Results: We generated genetic crosses with C. elegans containing human A53T alpha-synuclein, an endogenous parkin mutation and other genetic modifications. One product of this study is the generation of a C. elegans transgenic animal that results in a robust DA neurodegeneration phenotype. Immediately after hatching, the animals have their full complement of DA neurons as determined by confocal analysis and DA levels by HPLC, yet animals approximately 8 days old exhibit a complete loss of DA neurons. Our data suggests that post-translational modifications play a significant role in DA neuron vulnerability to PD-associated genes and toxins. Conclusions: We have generated a novel transgenic, the first animal (vertebrate or invertebrate) that has a complete loss of DA neurons as a function of age. This animal is proving to be invaluable in determining molecular basis of gene- and toxin-associated DA neuron vulnerability. Support: NIEHS ES014459 and ES032399 to RN, and EPA STAR Graduate Fellowship to NVD.

I. G. Metushi and I. Uetrecht. Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.

Background: Idiosyncratic drug-induced liver injury (IDILI) remains a serious health problem and it also significantly increases the risk of drug development. Unfortunately, not much is known about the mechanism of IDILI and a main reason is because there are no good animal models. We set out to develop animal models of IDILI by focusing on two drugs: Isoniazid (INH) and Amodiaquine (AQ), both of which cause IDILI in humans. Results: INH was found to covalently bind to mouse and to a lesser extent rat liver macromolecules. Treatment of Balb C, C57BL/6 mice, Wistar or Brown Norway rats with INH did not result in significant liver injury. Treatment of Cbl-b-/-, PD1-/- and NAT 1/2/- mice resulted in mild liver injury. One possible reason that these animals did not develop more extensive liver damage is immune tolerance. Immunization of C57BL/6 mice with S100 hepatic protein modified with INH produced a greater degree of autoimmune hepatitis than S100 alone, but when INH was subsequently given orally this prevented the autoimmune hepatitis. Treatment of female C57BL/6 mice with AQ resulted in a mild transaminase (ALT) increase at week 3 and this resolved by week 5. Immunohistochemical staining and flow cytometry showed that AQ-induced liver injury in C57BL/6 mice was associated with infiltration of immune cells such as F4/80, CD11b, CD4, CD8 and CD45R in the liver and spleen. Treatment of Cbl-b-/- and PD1-/- mice with AQ resulted in more severe liver injury, but ALT still resolved despite continued treatment. Treatment of Cbl-b-/- mice with FICZ and Anti-CD25 Ab to break immune tolerance was not effective. Treatment of RAG1-/- mice also resulted in a mild increase in ALT but the ALT did not appear to resolve as it did in the C57BL/6 mice. Conclusion: These data suggest that the dominant response to these drugs is immune tolerance. Treatment of female C57BL/6 mice with AQ results in delayed onset of mild liver injury which resolved despite continued treatment; this is similar to what happens in humans and this model is being further characterised. Supported by grants from CHHR.

733 Role of Myeloid-Derived Suppressor Cells in a Murine Model of Drug-Induced Liver Injury Mediated by the Adaptive Immune System.

M. Chakraborty, L. S. Chea, J. D. Berkson, J. C. Morrison, K. Semple and L. R. Pohl. Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, Bethesda, MD.

Although clinical evidence suggests that many cases of serious idiosyncratic drug-induced liver injury (SIDILI) are mediated by hepatic protein adducts of drugs and the adaptive immune system, detailed experimental proof for this mechanism of toxicity has remained elusive due to the lack of animal models. We have hypothesized that SIDILI is as rare in animals as it is in humans due at least in part to the tolegeronic nature of the liver, which consists of multiple negative regulators of the adaptive immune system. This idea has now been tested in an established murine model of halothane-induced liver injury where the toxicity is initiated by the metabolism of halothane to form trifluoroacylated liver proteins and enhanced by the innate immune system, which are prerequisites for activating the adaptive immune system (SIDILI) are mediated by hepatic protein adducts of drugs and the adaptive immune system. Background: Idiosyncratic drug-induced liver injury (IDILI) remains a serious health problem and it also significantly increases the risk of drug development. Unfortunately, not much is known about the mechanism of IDILI and a main reason is because there are no good animal models. We set out to develop animal models of IDILI by focusing on two drugs: Isoniazid (INH) and Amodiaquine (AQ), both of which cause IDILI in humans. Results: INH was found to covalently bind to mouse and to a lesser extent rat liver macromolecules. Treatment of Balb C, C57BL/6 mice, Wistar or Brown Norway rats with INH did not result in significant liver injury. Treatment of Cbl-b-/-, PD1-/- and NAT 1/2/- mice resulted in mild liver injury. One possible reason that these animals did not develop more extensive liver damage is immune tolerance. Immunization of C57BL/6 mice with S100 hepatic protein modified with INH produced a greater degree of autoimmune hepatitis than S100 alone, but when INH was subsequently given orally this prevented the autoimmune hepatitis. Treatment of female C57BL/6 mice with AQ resulted in a mild transaminase (ALT) increase at week 3 and this resolved by week 5. Immunohistochemical staining and flow cytometry showed that AQ-induced liver injury in C57BL/6 mice was associated with infiltration of immune cells such as F4/80, CD11b, CD4, CD8 and CD45R in the liver and spleen. Treatment of Cbl-b-/- and PD1-/- mice with AQ resulted in more severe liver injury, but ALT still resolved despite continued treatment. Treatment of Cbl-b-/- mice with FICZ and Anti-CD25 Ab to break immune tolerance was not effective. Treatment of RAG1-/- mice also resulted in a mild increase in ALT but the ALT did not appear to resolve as it did in the C57BL/6 mice. Conclusion: These data suggest that the dominant response to these drugs is immune tolerance. Treatment of female C57BL/6 mice with AQ results in delayed onset of mild liver injury which resolved despite continued treatment; this is similar to what happens in humans and this model is being further characterised. Supported by grants from CHHR.
Defective Platelet Function in a Mouse Model of Progressive Cholestasis.

Y. Zhang1, F. Li2, S. Cheeapa1, Y. Wang1, E. J. Gonzalez3 and J. D. Schuetz1.
1Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN; 2Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD.

We have recently demonstrated that Abcb11-deficient mice recapitulate the human genetic disease PFIC2 (progressive familial intrahepatic cholestasis type 2) attributed to loss of function of the ABC transporter, ABCB11 (1). Cholestatic liver disease leads to coagulopathies, however it is unclear if these are due to defects in the liver's production of fibrinogen and procoagulant factors or defects in platelet function. By metabolomic analysis we demonstrated that lysophosphatidylcholine (lysoPC) (16:1 and 18:1) concentrations were elevated 2 to 5 times (vs. WT) in the liver and sera of Abcb11-null mice before evidence of frank liver damage. Because lysoPC inhibits platelet aggregation (2) we hypothesized that platelets of Abcb11-null mice might have aggregation defects due to elevated serum lysoPC. Platelet counts were comparable between the Abcb11-null mice and WT mice and platelet-rich plasma was used to test platelet aggregation. Agonist-induced aggregation of Abcb11-null platelets was impaired for agonists: ADP, collagen and thrombin. This ubiquitous defect is consistent with reduced expression of dense granule marker P-selectin and platelet protein GPVI. As there are no changes in the down-stream signaling genes Pcle1, Syk, and FcRy1, in platelets of Abcb11-null mice; our results suggest that defective aggregation of Abcb11-null platelets is the result of down-regulation of GPVI and P-selectin which may be secondary to lysoPC exposure.

Validation of ROS As a Toxicity Marker in Zebrafish.

W. Seng, C. Li and P. McGrath. Phylolinx, Cambridge, MA.

Oxidative stress, associated with an increased level of reactive oxygen species (ROS), is a key factor in both drug-induced toxicity and disease pathogenesis. However, conventional methods for assessing ROS damage are labor intensive and slow hampering widespread use as a toxicity marker. Because of their environmental and physiological similarity to humans, zebrafish have shown promise as an efficient and predictive animal model for assessing drug toxicity, safety and efficacy. Similar to effects in mammals, ROS levels have been shown to increase in zebrafish after drug treatment and irradiation. In this study, we developed a quantitative whole zebrafish microplate-based ROS assay format that relies on a commercially available fluorogenic dye (5-[and-6]-chloromethyl-2,7-dichlorodihydrofluorescein diacetate, acetyl ester, CM-H2DCFDA). We validated the assay using 7 characterized mammalian ROS inducers: TSA [Trichostatin A], PMA [4β-phorbol 12-myristate 13-acetate], Cisplatin, DCA [Dichloroacetate], Menadione, TBHP [tert-Buthyl hydroperoxide] and Ethanol and 1 negative control compound. NAC [N-Acetyl-L-cysteine]. In order to optimize the assay, we assessed ROS level by zebrafish developmental stage, linear relationship between number of animals per microwell and fluorescence intensity, signal to noise (S/N) ratio, effect of carrier DMSO, assay specificity, and assay reproducibility and robustness.

To confirm results using the whole animal microplate format, we also visually assessed site of ROS induction in transparent animals using fluorescent based morphometric image analysis. Using both the microplate format and whole mount morphometric image analysis, compared to mammals, the overall correct prediction rate in zebrafish was 100%, which according to the European Centre for the Validation of Alternative Methods (ECVAM), is considered “excellent”. These results underscore the high conservation of toxicity pathways among species and support use of the whole zebrafish ROS assay as a rapid, predictive in vivo assay for compound screening.

A Population-Level Mouse Model to Investigate the Genetic Determinants of Susceptibility to Environmental Toxicants.

M. C. DeSimone1, S. H. Jennings2, A. B. Rogers3 and D. Threadgill1. 1Genetics, North Carolina State University, Raleigh, NC; 2Veterinary Medicine, North Carolina State University, Raleigh, NC; 3Pathology, University of North Carolina at Chapel Hill, Chapel Hill, NC.

Carcinogenesiosis bioassays have lacked the genetic component critical for the evaluation of underlying disease susceptibility genes. Here we used a systems biology approach to model the genetic heterogeneity of exposed human populations, including the inter-individual variation in drug metabolism and transport. We developed a novel intercross population derived from FVB/N(ABeh x ICR), a multi-drug resistant p-glycoprotein knockout mouse model, and CAST/EiJ a wild-derived strain that is genetically distinct from the FVB/N background. Using this intercross to model human biology, including using a western diet, environmentally-relevant doses of trichloroethylene (TCE) and inorganic arsenic (iAs), were evaluated for their effects on toxicity susceptibility. A study cohort of 900 FVB/N(ABeh x ICR) x CAST/EiJ F3 mice was divided into nine dose groups, each containing 50 female and 50 males, and was administered TCE and sodium arsenite via the drinking water and chow, respectively, at environmentally-relevant concentrations for 56 weeks using a dose-ratio approach. At harvest, biofluids and tissues were either formalin fixed for pathology, or flash frozen for molecular analysis. Mice co-exposed to TCE and iAs developed hepatocellular carcinoma, as well as renal cysts, clear cell foci and dilated renal tubules consistent with human renal disease pathogenesis. Whole genome expression analysis of kidney tissues revealed a distinct response signature for the combinatorial exposures, including overexpression of oncogenes implicated in the development of human renal cell carcinoma. Genome-wide allelotyping of each mouse using a 7,851 SNP genotyping array will reveal the genetic variants underlying toxicity response. This experimental paradigm has successfully modeled the population-level variability in disease response and has the potential to identify individuals sensitive to toxicity.

L. Ma1, L. Zhong2, D. M. Toiber3, A. Hoglund2, J. Beren4, M. G. Norton1, P. Zhang2 and E. B. Struble1. 1Laboratory of Plasma Derivatives, Division of Hematology, OBBR, CBER, US FDA, Bethesda, MD; 2Division of Veterinary Services, CBER, US FDA, Bethesda, MD; 3University of Maryland, College Park, MD; 4OCTEC, CBER, US FDA, Silver Spring, MD.

Disclaimer: The findings and conclusions in this presentation have not been formally disseminated by the Food and Drug Administration and should not be construed to represent any Agency determination or policy.

Despite increased use of monoclonal and polyclonal antibody therapies, including during pregnancy, there is little data on appropriate animal models that could humanly be used to understand determinants of protection, and to evaluate safety of these biologics in the mother and the developing fetus. We have demonstrated that pregnancy guinea pigs can transport human IgG transplacentally at the end of pregnancy. Using an intravenous anti-hepatitis B specific immune globulin preparation as an example, we show that IgG subclasses one, two and three are measurable in both the sows and their piglets. Given that IgG4 can be transferred transplacentally in the guinea pig, our observations indicate that all human IgG subclasses can pass guinea pig placenta during the last third of pregnancy. In addition, we found that all human IgG subclasses are capable of binding to a soluble form of the guinea pig neonatal Fc receptor in vitro in a manner similar to that demonstrated for the human variant. This result suggests that transplacental transport of human IgG subclasses in guinea pig mirrors the receptor-based mechanism seen in humans. Together, our studies lay the groundwork in introducing pregnant guinea pigs as an appropriate model for the evaluation of antibody therapies during pregnancy and advancing the health of women and neonates.

Gender and Perinatal Exposure to Bisphenol A Affect Markers of Inflammation in the Brain and Spleen of Young Rats.

J. Rodriguez-Santiago1, Z. Varguz-Villarrubia1, D. R. Miere1, N. Sadowski1, L. M. Wise2 and S. N. Laverenge3. 1 Aguadilla, University of Puerto Rico, Aguadilla, Puerto Rico; 2Psychology, University of Illinois, Urbana, IL; 3Comparative Biosciences, University of Illinois, Urbana, IL.

Bisphenol A (BPA) is an environmental estrogen disruptor that has been extensively studied for its repro- and neurotoxicity. It has also been shown to activate the immune system and to induce inflammation. This study therefore evaluated markers of inflammation in the brain and spleen of young rats exposed perinatally to BPA. Pregnant rats were dosed with 400 ug/kg/day of BPA during pregnancy, and rat pups continued to be dosed during PND1-PND9: they were then weaned, and eventually humanely euthanized at PND23. The spleens and brains were collected and snap frozen straight away, and stored at -80°C. MHCII levels in the spleens were estimated semi-quantitatively using immunohistochemistry. Cytokine levels were measured in both the spleens and the brains, using a multiplex kit. Female rats had higher MHCII levels in their spleen in the vehicle group; this gender effect was absent in the BPA exposed animals where both genders showed similarly high levels. Spleens showed higher levels of IL-1β than brains, but IL-6 and TNFa levels were similar in both organs. In the spleen, IL-1β and IL-6 were higher in females in the vehicle group, but they were higher in males in BPA exposed animals; TNFa levels were higher in females in the control group, but they were similar between genders in the BPA group. BPA decreased IL-1β, increased TNFa, but did not affect IL-6 in male brains. Work is underway to investigate the effect of BPA on inflammation status depending on the exposure timing during development.

Comparing Minimal Supportive Care Models of Hematopoietic Acute Radiation Syndrome in Nonhuman Primates.

Currently male Rhesus Macaques are the standard non-human primate model for hematopoietic acute radiation syndrome however the availability of these animals may limit the drug development studies conducted with treatment candidates. As an alternative, LRRRI recently performed a comparison study using male and female cynomolgus macaques. Animals were irradiated with a 6-MV Varian 600c linear accelerator using a two-dimensional irradiation scheme (bilateral) at a dose of 3.5 Gy. Blood was collected prior to irradiation (baseline) and at the following time points post irradiation: 1, 2, 3, 6, 8, 13, 15, and 20 days. Antibiotics, supplemental fluids, and nutritional support were administered throughout the study. In accordance with the rhesus macaque published data, an initial spike in neutrophils was followed by neutropenia 24 hours following irradiation. By 7 days post irradiation, the platelets levels dropped. At Day 22, an LD100 for females was established. Males began recovering and survived to their scheduled necropsy at Day 30. Baseline measurements for c-reactive protein were consistent with literature values. A biphasic increase occurred between days 1-3 and days 20-27 post irradiation. In addition to CRP, Ht-LZ (a hemopoietic growth factor) was also consistent with the literature which showed an increase around day 5 and 20-23 post irradiation. Based on the results, male cynomolgus macaques react similarly to rhesus macaque following external irradiation exposure at this dose level and may be a useful substitute based on their availability. In addition, these data suggest a sex sensitivity in this species.

Development of a Phosgene-Induced Acute Lung Injury in the Conscious Pig.

S. Graham1, A. J. Smith1, R. L. Perrott1, S. J. Rutter1, P. Marshall1, T. Mann1, B. J. Jugg1 and A. M. Scuito1. 1Biomedical Sciences, DTSI, Salisbury, United Kingdom; 2Medical Toxicology, USAMRMC, Aberdeen Proving Ground, MD.

The toxic industrial chemical (TIC) phosgene (CG) is a reactive intermediate used in a range of industrial processes. Exposure to high concentrations of CG results in an asymptomatic period (2-6 h) before pulmonary oedema develops. There are no specific medical countermeasures for such poisoning, treatment being supportive in an intensive care setting. Evidence based treatment guidelines are needed for health care practitioners to guide treatment. Small animal models have been used to screen candidate therapies, extrapolation of therapeutic benefit to man requires verification in a larger animal model e.g. the pig. There is, therefore, a requirement to develop a conscious large animal model of CG-induced lung injury in order to verify efficacious treatments. If successful, this model will allow assessment of therapeutic interventions to CG-induced lung injury in a species closer to man. After a period of socialisation, animals were surgically prepared to allow physiological measurements (arterial blood pressures, ECG, temperature and activity via telemetry implant) and blood samples (via exteriorised catheters) to be taken. After a 1 week recovery from surgery and baseline measurements (1 week) animals were exposed to either air or phosgene under anaesthesia, then recovered and monitored for 24 h. Air-exposed and phosgene-exposed animals were successfully recovered and monitored to 24 h post exposure. The phosgene-exposed animals had a severe but non-lethal phosgene-induced lung injury at 24 h compared to air-exposed controls, demonstrated by changes in arterial blood gas measures, gross pathology and histopathology. The feasibility of this unique model has been demonstrated. Further refinement of the telemetry technology may be required to add robustness and improve confidence in extrapolation to man. We intend to use the model to test therapeutic candidates proven efficacious in a small animal model.

Sex Differences in Inflammatory Response in a DAPM-Induced Rat Model of Pulmonary Hypertension.

Pulmonary Arterial Hypertension (PAH) is a cardiovascular disorder characterized by elevated pulmonary artery pressure as a result of arterial wall thickening. Patients survive, on average, 2.8 yr after diagnosis and are 3-4 times more likely to be women than men. There is no cure - the few therapies available can only slow progression. Our purpose was to develop a relevant animal model of PAH in order to identify sex differences that contribute to disease progression, and in doing so, identify potential new treatment strategies. 4,4'-Methylenedianiline (DAPM) is an aromatic amine used industrially in the synthesis of polyurethanes. Chronic, intermittent treatment of rats with DAPM results in medial hyperplasia of pulmonary arterioles, exclusively in females, coupled to increases in pulmonary arterial pressures. After 12 wk, significant increases in plasma levels of endothelin-1 (ET-1) and serotonin (5-HT), but decreases in nitrite (NO2-) and nitrate (NO3-) were observed in females (not males) treated with DAPM. An increase was observed in the serum ratio of the estrogen metabolites 2-hydroxyestradiol (2-OHE1/16α-estradiol) (16α-OHE1; p < .007). In females, ET-1, NO2- and 2-OHE1/16α-OHE were significantly correlated with peak pressure gradient, an indirect measure of pulmonary arterial pressure. In DAPM-treated females, serum IL-10 decreased 57% (p = .0129). INFFy increased by 48% and IL-6 increased 3-fold (as determined by Bio-Plex cytokine assay). These changes were not significant. However, there were significant interactions between sex and treatment. Future studies will address the contributions of these inflammatory cytokines in PAH initiation and progression in females.
Bleomycin Sulfate-Pulmonary Fibrosis has been extensively described in mice. However, to our knowledge few non-murine animal models have been implemented before. Here we investigated the pathogenic/inflammatory potential of Bleomycin administration in Cynomolgus Macaques (Macaca fascicularis), a surrogate model for human pulmonary fibrosis. Fifteen Cynomolgus Macaques (6 inulin resistant on high fat diet and 9 on standard primate chow) were challenged via a bolus insufflator with varying doses of Bleomycin Sulfate (0.1-1.9 mg/kg). Animals were followed during 10 weeks of study by twice daily cage-side clinical observations. Bronchoalveolar lavage (BAL) and pulmonary function tests (PFTs) were performed biweekly until necropsy. PFTs were completed for each animal (previously anesthetized) using a whole body plethysmograph. A subset of inflammasome potential markers was further analyzed in BAL cell mRNA. Macrosopic lung abnormalities were examined at necropsy. Increases in PYCARD and TXNIP were noted in all animals that received high fat diet compared to those on normal primate chow irrespective of the bleomycin dose. Interestingly, NLRP3, PYCARD, PRX2, TXNIP, and IL-1β mRNA expression showed an inverse relationship with the bleomycin dose for both feed types. The development of fibrosis in monkeys mimics more of a chronic process as seen in humans. Though our animals presented structural/molecular changes, all of them were asymptomatic. Animals fed a high fat diet have increased inflammasome activation than those fed the standard diet however there is no evidence to suggest the development of the bleomycin in-flammasome activation. These findings suggest that Cynomolgus Macaques may be a potential animal model for studies of Bleomycin-induced pulmonary fibrosis, and this might prove to be a prerequisite for translational research.

Hepatic biotransformation is an important determinant of chemical bioaccumulation and, consequently, improved understanding of biotransformation models should be made using estimates of chemical biotransformation rates. Cryopreserved trout hepatocytes have previously been used to measure the clearance rates of some compounds. The use of this information within a regulatory context requires, however, that such results be reproducible across laboratories. In this study, three independent laboratories performed a round-robin study using cryopreserved rainbow trout (Oncorhynchus mykiss) hepatocytes. Six compounds were selected for testing: benzo[a]pyrene, 4-nonylphenol, di-tert butyl phenol, fenthion, methoxylchlor o-terphenyl. Pre-trial studies were performed to streamline the assay protocol, standardize hepatocyte counting procedures, and characterize potential sources of variability. The results confirmed first-order depletion kinetics for the selected compounds and highlighted the effects of assay temperature as well as lot variability. Each laboratory then conducted clearance assays for the six compounds using a substrate depletion approach. The analyses for each substrate were conducted at one institute to focus the comparison on the assay itself. Compounds determined to be poorly (o-terphenyl; <0.05 ml/h/106 cells) or rapidly metabolized (benzo[a]pyrene; <0.3 ml/h/106 cells) were similarly determined across laboratories. Coefficients of variation across the three laboratories were generally 30% or better, suggesting this method of determining intrinsic clearance is transferable and reproducible. This inter-laboratory comparison strongly supports the use of cryopreserved trout hepatocytes as a tool for estimating hepatic clearance for biocatalytic factor predictions.
Based on an initial 2 day dose-response study, 5 dogs were orally administered 6.25mg/kg q12h DCA for 4 weeks. Between day 1 and 14, Cmax was significantly different (p<0.01) and clearance approached significance (p=0.067). The differences between day 1 and 28 approached significance for t1/2 (p=0.058) and clearance (p=0.065). Urinary levels of DCA (p = 0.074) and MA (p = 0.056) tended to increase during DCA exposure. There were no differences in packed cell volume, blood alkaline aminotransferase, aspartate aminotransferase or glucose levels, or nerve conduction velocities between day 0 and 28. Liver biopsies on day 0 and 27 demonstrated complete inhibition of GSTZ1 protein expression and activity (0.305±0.030 vs. 0.012±0.009nmol glyoxylate formed/min/mg protein, p<0.01). Dogs demonstrate slower clearance and greater inhibition of DCA metabolism than rodents and most humans. The plasma kinetics of DCA in dogs is similar to humans with GSTZ1/MAA1 polymorphisms that confer exceptionally slow plasma clearance. Thus, dogs may be a useful model to further investigate the toxicokinetics of DCA.

Determination of Onset of Sexual Maturity in Female Göttingen Minipigs.

B. Peter1, H. Lorentzen2, E. van Duijnhoven3, M. van Tuyll1, B. van Rozendaal1

Minipigs are often used in safety assessment studies with pharmaceuticals. Based on breeding experience, female minipigs are considered to reach sexual maturity 4-5 months of age. However, more exact scientific data on sexual maturity is lacking. This information is pivotal for the design and interpretation of toxicity studies during drug development.

First, a pilot study was initiated to find useful parameters for the detection of estrous cycle in adult female Göttingen minipigs. Three sows at 10-11 months of age, housed adjacent to adult boars were monitored daily for signs of heat (specific behavior; changes of the vulva) for 29 days. In addition, rectal body temperature was recorded, vaginal smears were taken for estrous cycle determination and the reproductive hormones progesterone and 17β-oestradiol were measured in serum. Progesterone analysis was the most valuable method, showing a cyclic pattern of release. The outcome of the examination of vulva and vaginal smears was less clear. Other external signs of heat did not reveal a cyclic pattern. Subsequently, the approximate age at which female minipigs reach onset of sexual maturity was determined. For this, two gilts at 2 months of age, housed in the same room as adult boars, were used. Investigations included progesterone analysis, observations of the vulva, estrous cycle determination and recording of body weights. Progesterone levels increased first at approximately 5.5 and 6.5 months of age (body weight: 12.7 and 17.3 kg), respectively. The hormone release was indicative for a functional corpus luteum. For one female progesterone analysis was continued for nearly 3 months. The cycle duration was approximately 3 weeks which is in line with published data (18-21 days). However, the different stages of the cycle could not easily be distinguished by evaluation of vaginal smears. This information will be used in a following study to further investigate onset of sexual maturity in a female minipig population.

Recording of the Full-Field Electroretinogram in the Göttingen Minipig.

R. Forster1, A. Augsburger2, V. Haag1 and J. Legrand1

The purpose of this work was to evaluate a simple electroretinographic protocol on a representative sample of Göttingen minipigs. Electroretinogram recordings were conducted on 162 healthy minipigs (81 males and 81 females) aged 4-6 months. After a 1.5 h light adaptation period, the animals were placed under general anesthesia. First, binocular full-field photopic electroretinogram recordings were conducted under photopic conditions. Subsequently, scotopic electroretinogram recordings were conducted during dark adaptation every 4 min over a 20-min period. At the end of this period, the maximal combined rod-cone response was recorded by measuring the retinal response to a single high-intensity flash. We used sclerocorneal clips as active electrodes and needle electrodes for the reference and ground. The a-wave and b-wave peak times and amplitudes were measured and statistically analyzed. For each of the statistical comparisons, normal homogeneity of variances were evaluated. No significant gender differences were observed, with the exception of a higher b-wave amplitude for the photopic ERG recordings in females (48.14 ± 12.91 IV vs. 42.88 ± 10.67 IV; p < 0.005). The process of dark adaptation was evaluated, and the maximal combined rod-cone response was measured (a- and b-wave amplitudes and peak time). In conclusion, photopic and scotopic electroretinogram recordings were performed in the minipig using a protocol based on light adaptation followed by dark adaptation. Sclerocorneal clip electrodes allowed a quick assembly and examination.

Determination of Onset of Sexual Maturity in Female Göttingen Minipigs.

B. Peter1, H. Lorentzen2, E. van Duijnhoven3, M. van Tuyll1, B. van Rozendaal1

Minipigs are often used in safety assessment studies with pharmaceuticals. Based on breeding experience, female minipigs are considered to reach sexual maturity 4-5 months of age. However, more exact scientific data on sexual maturity is lacking. This information is pivotal for the design and interpretation of toxicity studies during drug development.

First, a pilot study was initiated to find useful parameters for the detection of estrous cycle in adult female Göttingen minipigs. Three sows at 10-11 months of age, housed adjacent to adult boars were monitored daily for signs of heat (specific behavior; changes of the vulva) for 29 days. In addition, rectal body temperature was recorded, vaginal smears were taken for estrous cycle determination and the reproductive hormones progesterone and 17β-oestradiol were measured in serum. Progesterone analysis was the most valuable method, showing a cyclic pattern of release. The outcome of the examination of vulva and vaginal smears was less clear. Other external signs of heat did not reveal a cyclic pattern. Subsequently, the approximate age at which female minipigs reach onset of sexual maturity was determined. For this, two gilts at 2 months of age, housed in the same room as adult boars, were used. Investigations included progesterone analysis, observations of the vulva, estrous cycle determination and recording of body weights. Progesterone levels increased first at approximately 5.5 and 6.5 months of age (body weight: 12.7 and 17.3 kg), respectively. The hormone release was indicative for a functional corpus luteum. For one female progesterone analysis was continued for nearly 3 months. The cycle duration was approximately 3 weeks which is in line with published data (18-21 days). However, the different stages of the cycle could not easily be distinguished by evaluation of vaginal smears. This information will be used in a following study to further investigate onset of sexual maturity in a female minipig population.

Recording of the Full-Field Electroretinogram in the Göttingen Minipig.

R. Forster1, A. Augsburger2, V. Haag1 and J. Legrand1

The purpose of this work was to evaluate a simple electroretinographic protocol on a representative sample of Göttingen minipigs. Electroretinogram recordings were conducted on 162 healthy minipigs (81 males and 81 females) aged 4-6 months. After a 1.5 h light adaptation period, the animals were placed under general anesthesia. First, binocular full-field photopic electroretinogram recordings were conducted under photopic conditions. Subsequently, scotopic electroretinogram recordings were conducted during dark adaptation every 4 min over a 20-min period. At the end of this period, the maximal combined rod-cone response was recorded by measuring the retinal response to a single high-intensity flash. We used sclerocorneal clips as active electrodes and needle electrodes for the reference and ground. The a-wave and b-wave peak times and amplitudes were measured and statistically analyzed. For each of the statistical comparisons, normal homogeneity of variances were evaluated. No significant gender differences were observed, with the exception of a higher b-wave amplitude for the photopic ERG recordings in females (48.14 ± 12.91 IV vs. 42.88 ± 10.67 IV; p < 0.005). The process of dark adaptation was evaluated, and the maximal combined rod-cone response was measured (a- and b-wave amplitudes and peak time). In conclusion, photopic and scotopic electroretinogram recordings were performed in the minipig using a protocol based on light adaptation followed by dark adaptation. Sclerocorneal clip electrodes allowed a quick assembly and examination.

Determination of Onset of Sexual Maturity in Female Göttingen Minipigs.

B. Peter1, H. Lorentzen2, E. van Duijnhoven3, M. van Tuyll1, B. van Rozendaal1

Minipigs are often used in safety assessment studies with pharmaceuticals. Based on breeding experience, female minipigs are considered to reach sexual maturity 4-5 months of age. However, more exact scientific data on sexual maturity is lacking. This information is pivotal for the design and interpretation of toxicity studies during drug development.

First, a pilot study was initiated to find useful parameters for the detection of estrous cycle in adult female Göttingen minipigs. Three sows at 10-11 months of age, housed adjacent to adult boars were monitored daily for signs of heat (specific behavior; changes of the vulva) for 29 days. In addition, rectal body temperature was recorded, vaginal smears were taken for estrous cycle determination and the reproductive hormones progesterone and 17β-oestradiol were measured in serum. Progesterone analysis was the most valuable method, showing a cyclic pattern of release. The outcome of the examination of vulva and vaginal smears was less clear. Other external signs of heat did not reveal a cyclic pattern. Subsequently, the approximate age at which female minipigs reach onset of sexual maturity was determined. For this, two gilts at 2 months of age, housed in the same room as adult boars, were used. Investigations included progesterone analysis, observations of the vulva, estrous cycle determination and recording of body weights. Progesterone levels increased first at approximately 5.5 and 6.5 months of age (body weight: 12.7 and 17.3 kg), respectively. The hormone release was indicative for a functional corpus luteum. For one female progesterone analysis was continued for nearly 3 months. The cycle duration was approximately 3 weeks which is in line with published data (18-21 days). However, the different stages of the cycle could not easily be distinguished by evaluation of vaginal smears. This information will be used in a following study to further investigate onset of sexual maturity in a female minipig population.
based on the development of glutathione S-transferase plasmidic form (GST-P) pos-
itive foci at week 10. The genotoxic clastogens (2-acetylaminofluorene (2-AAF), 2-
amino-3-methylimidazo[4,5-f]quinoxaline (IQ) and safrole (SF), the non-genotoxic
carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen
amino-3-methylimidazo[4,5-f]quinolone (IQ) and safrole (SF), the non-genotoxic
carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen
amino-3-methylimidazo[4,5-f]quinolone (IQ) and safrole (SF), the non-genotoxic
carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen
amino-3-methylimidazo[4,5-f]quinolone (IQ) and safrole (SF), the non-genotoxic
carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen
amino-3-methylimidazo[4,5-f]quinolone (IQ) and safrole (SF), the non-genotoxic
carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen
amino-3-methylimidazo[4,5-f]quinolone (IQ) and safrole (SF), the non-genotoxic
carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen
amino-3-methylimidazo[4,5-f]quinolone (IQ) and safrole (SF), the non-genotoxic
carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen
amino-3-methylimidazo[4,5-f]quinolone (IQ) and safrole (SF), the non-genotoxic
carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen
amino-3-methylimidazo[4,5-f]quinolone (IQ) and safrole (SF), the non-genotoxic
carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen
amino-3-methylimidazo[4,5-f]quinolone (IQ) and safrole (SF), the non-genotoxic
carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen
amino-3-methylimidazo[4,5-f]quinolone (IQ) and safrole (SF), the non-genotoxic
carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen
amino-3-methylimidazo[4,5-f]quinolone (IQ) and safrole (SF), the non-genotoxic
carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen
amino-3-methylimidazo[4,5-f]quinolone (IQ) and safrole (SF), the non-genotoxic
carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen
amino-3-methylimidazo[4,5-f]quinolone (IQ) and safrole (SF), the non-genotoxic
carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen
amino-3-methylimidazo[4,5-f]quinolone (IQ) and safrole (SF), the non-genotoxic
carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen
amino-3-methylimidazo[4,5-f]quinolone (IQ) and safrole (SF), the non-genotoxic
carcinogens piperonyl butoxide (PBO) and phenytoin (PHE), the non-carcinogen
amino-3-methylimidazo[4,5-f]quinolone (IQ) and safrole (SF), the non-genotoxic

With more than one strain of rat now being used in toxicology studies, a study was instigated to see if there were differences in the incidence and nature of background lesions between the Crl: CD SD and the Wistar Han rat. The results of pretest ophthalmologic examinations of Wistar Han (Charles River USA) and Crl:CD rats purchased from Charles River USA and BiolASCO Taiwan Co., Ltd respectively were analyzed The percentage incidences (total number of le-

decision(finding)/total number of rats) of the findings were compared for evidence of any significant differences between the two strains and sexes to see if any particular finding was unique or predominately expressed in one of the two strains/sexes.

Corneal opacity along with the palpebral fissure is commonly observed in rats. Wistar Han rats showed both a dense and higher incidence of this lesion when compared with Crl: CD rats. In addition, for Wister Han rats a higher incidence was observed for females as compared with males. This gender difference was not apparent for Crl: CD rats. Based on the differences of corneal opacity, the number eyes of Crl: CD rats that were considered normal was higher than that recorded for Wistar Han rats. In addition, unilateral or bilateral posterior cortical multifocal pinpoint opacity was observed for Wister Han rats but not Crl: CD rats. In conclu-
sion, there is a clear difference in the incidence of spontaneous ocular findings ob-
served for both Wistar Hans and Crl:CD rats; with Crl:CD rats showing a lower in-
cidence of corneal opacity along with interpalpebral fissure and no posterior
cortical lens opacity.

Large intravenous (IV) dosing continues to be critical in non-clinical develop-
ment of many drugs (e.g., anti-cancer agents, large molecules), or pharmaceuticals
cannot achieve high systemic exposure by other routes. The IV route is com-
monly used in Sprague-dawley rats and the most common injection site is the tail
vein. Although daily tail vein injection is normally feasible in acute and sub-acute
studies (1, 7 or 14-day duration), sub-chronic and chronic studies (28-30 days, 3-
months duration), once, twice and even multiple daily administration may be tech-

crally challenging and require additional animals at each dose level to assure an ad-
equate number of animals to complete the study. Vehicle selection can also influence the success of long term daily or multiple daily tail vein injections and the use of the vena cava allows for a greater pool of blood to minimize secondary effects
caused by non-ideal formulations. In alignment with the 3Rs (Reduction, replace-
ment, refinement), our laboratory has demonstrated that daily intravenous injec-
tion via the femoral vein in the rats and external access port was feasible over a pe-
oriod of up to 3 months, which helped minimizing the number of animals per dose
level to the minimum required by regulations. A medical grade polyurethane-based
catheter was surgically implanted in the vena cava via the femoral vein and con-
ected to a Quick-connect harness with a Luer Valve. A heparin-based locking so-
lution was used to fill the catheter and the injection cap. Sodium chloride for injec-
tion (0.9% Saline) was injected daily for up to 3 months via the injection cap, at a
dose volume of 5 mL/kg. The experimental procedures were well-tolerated and no
adverse effects were observed in clinical signs, body weight, and clinical pathology.
Histopathological tissue changes were comparable to findings in cataractized ani-
mals. The IV bolus injection via the femoral vein and an external access port was
shown to be a suitable alternative to tail vein injection for rat sub-chronic and
chronic studies.

Large animals are generally more sensitive than rodents to drug induced respiratory
changes. Methodologies to measure airway resistance in large animals normally re-
quire the use of new compounds that can be orally administered drugs or a surgically im-
planted pleural pressure catheter. Both approaches could alter experimental end-
points in toxicity studies, which limit their use in drug development. A

S. Authier, 1, 2, M. Maghezzi, 1 M. Pouliot, 1 S. Bernasoni, 1 T. de Geyer d’Orth, 1 P. Zitoun, 2 and R. Forster. 1 1Citelan North America, Laval, QC, Canada; 2Faculty of Veterinary Medicine, University of Montréal, St-Hyacinthe, QC, Canada; 3NOTOCORD, Couzy-sur-Seine, France.

Seizure liability studies in non-human primates generally aim to: 1) confirm drug-induced seizures are self-limiting, 2) determine plasma level at seizure onset 3) identify prodromal clinical signs which can be monitored in clinical trials 4) confirm that conventional drugs (e.g. diazepam) can treat drug-induced seizure and 5) confirm the no observed adverse effect level (NOAEL) by absence of paroxysmal activity. To achieve these goals, typical study designs include video-EEG monitoring. Continuous telemetry monitoring generates a considerable amount of data which translates into lengthy analysis when solely relying on manual EEG review. A new application for seizure detection was developed in non-human primates (NHP). The prototype evaluates temporal and spectral features and compares them to features extracted from a sliding reference window. Detected seizures are validated based on a decision tree and artifact rejection algorithms. The automated prototype was used to evaluate periods of up to 68h of continuous EEG data and all detections were subject to a visual review. All animals presented at least one epileptic event. A detection sensitivity of 86.4% with 2.3 false positives per hour of signal was achieved using the default parameters of the prototype. Detection sensitivity increases to 100% when selecting optimal settings for each individual. The processing time was approximately 5 minutes for a 24h EEG telemetry signal. These promising results reflect progress in an era computerized data analysis. Further improvements are investigated to maintain a detection sensitivity of 100% essential with the model, while keeping the number of false detections low to increase data analysis efficiency.

760 Comparative Analysis of Noninvasive Blood Pressure Data by High-Definition Oscillometry (HDO) in Cynomolgus Monkeys of Mauritian and Asian Origin.

Cardiovascular investigations - among other diagnostic parameters – are essential for the assessment and interpretation of untoward findings in preclinical studies. As cardiovascular toxicity in general and blood pressure determination in particular is concerned with adverse effects of xenobiotics on the circulatory system, a representative analysis of non-invasive blood pressure data is mandatory for the right interpretation of apparent circulatory findings. Cynomolgus monkeys used in toxicity studies and animals from various sources such as Mauritius and Asia are available from acknowledged breeders. The aim of the present work was to compare non-invasive blood pressure data from group housed, untreated and unseeded cynomolgus monkeys of Mauritian and Asian origin.

Individual data of 150 Mauritian and 92/128 Asian male and female animals, each were analysed for systolic, diastolic and mean arterial blood pressure. Blood pressure data of male and female animals of either origin showed slight but significant differences (P ≤ 0.05 to P ≤ 0.0001) and values for males were higher than for female animals. Comparison of blood pressure data from monkeys of Mauritian and Asian origin revealed that systolic pressure (+9.0 % M: +10.4 % F), diastolic pressure (+12.0 % M; +14.1 % F) and mean arterial pressure (+10.1 % M; +11.7 % F) were significantly (P ≤ 0.01 and P ≤ 0.001) elevated in monkeys from Mauritius when compared to monkeys from Asia.

761 Procedure Refinement and Reduced Restraint Enables Extended 6-Hour-Daily Inhalation Dosing in Beagle Dogs.

A. Dumas1, M. Stout1, R. Tavcar1 and R. Forster2. 1Citelan North America, Laval, QC, Canada; 2Citelan France, Evreux, France.

Extended duration of dosing for preclinical assessment of inhaled pharmaceuticals is considered advantageous when testing products of expected low toxicity. Technical limitations have often determined the maximum time of exposure in non-rodents such as Beagle dogs. Increased exposure time can improve the chances and accuracy of determining the maximum tolerated dose rather than being limited to a maximum feasible dose. A study was undertaken to confirm whether reduced restraint (platform) combined with procedural refinements would enable routine 4 hr daily dosing for 6 days. Prior to delivery from the supplier, a number of dogs were presented to platform restraint and inhalation facemask for up to 15 min and those demonstrating acceptance were selected. Following receipt, the four dogs were gradually acclimated for increasing periods of time (2-4 hr) to the inhalation equipment over 13 consecutive days. During the acclimation period, the dogs were monitored for behavior changes (excessive salivation, trembling, vocalization, struggling and increases in respiratory rate). Reinforcement through positive behavior by voice and minimal animal contact during the sham dosing where emphasized. Verbal rewards, petting and treats were provided after completion of each session. All animals underwent the 4 hr daily sham dosing except one female for which the sham dosing had to be interrupted on Days 2 to 4. The 6 hr sham dosing was initiated and successfully conducted using the remaining 3 dogs. There were no changes in clinical signs, body weights or food consumption throughout the study. In conclusion, extended daily inhalation dosing in Beagle dogs is made possible by combining animal screening at the supplier, extensive acclimation, positive behavior re-enforcement and reduced restraint. This enables to more accurately determine the NOEL and improve the determination of a MTD while improving animal welfare by reducing the level of restraint and stress.

762 Reducing Blood Volume for Hematology and Clinical Chemistry Analysis in Mice.

Blood volume limitations are a challenge with mice when used as a preclinical model. Cohorts of mice are often needed, sampled terminally to meet requirements. This is a sub-optimal use of animals and implies more animals, test materials, technical personnel and costs. To permit interim sampling and reduce blood
volume for hematology and clinical chemistry, we investigated dilution of small blood volumes collected by jugular venipuncture. Whole blood (300 μL) or serum (1.2 mL) collected from 46 mice was split; 150 μL for hematology and 150 μL for clinical chemistry. For hematology, 2 blood and 2 reticulocyte smears were prepared prior to diluting 100 μL of blood with 200 μL of ADVIA sheath rinse solution. The 1:3 dilution was analyzed on the ADVIA 120 hematology analyzer (Siemens). All flagged values were verified by microscopic blood smear evaluation. Serial blood dilutions yielded adequate precision up to 1:5 dilution. For clinical chemistry, 40 to 50 μL of serum was diluted 1:3 in saline. Samples were analyzed on the Modular Analytics biochemistry analyzer (Roche) with exception of electrolytes. Serial dilutions of all chemistry parameters evaluated had previously demonstrated acceptable precision up to 1:5 dilution in saline. Jugular vein versus abdominal aorta sample results, were compared using historical ranges. Twelve of 46 (hematology) and 8 of 46 (clinical chemistry) samples were inadequate for analysis, similar incidence to abdominal aorta sampling. Jugular vein samples had slightly higher RBC and platelet counts, while clinical chemistry parameters were comparable except for slight elevations in aspartate aminotransferase. These dilutions necessitated more technical sample processing, but allowed clinical pathology analysis with only 300 μL of blood (ie. 4X reduction), presenting clear advantages, including interim study sampling, reduction in animals, combination of endpoints for in a given mouse, improving correlations and interpretation.

The industry is rapidly evolving – as a result of the variations in world pricing, and expanded greatly over the last decade across the United States and other parts of the world. The expansion came as a result of advances in horizontal drilling technology which helped unlock large natural gas supplies in shale and other tight rock formations across the country. Calls to reduce greenhouse gas emissions, the high cost of energy, and other economic pressures also contributed to the rapid growth of shale gas drilling using hydraulic fracturing. As a result, natural gas production is the highest it has been in the United States in decades. However, with the expansion of hydraulic fracturing into rural communities and areas traditionally not familiar with oil and gas explorations, questions about public health and environmental impacts have been raised by some residents living in proximity to fracturing operations. Data gaps may exist since the growth of fracturing operations has outpaced the research efforts conducted by the broad scientific community around this issue. In general, recent research activities have focused on understanding the potential impacts of the chemical components of the fluids used to fracture rock formations. Other issues raised by the public include the increase in noise, air, and light pollution in hydraulic fracturing areas and the potential for accidental contamination of air or groundwater. This session will provide an overview of the current and projected extent of the use of hydraulic fracturing to meet energy needs, and a discussion of the questions surrounding the public health and environmental impacts of this technology.
Texas is home to the Barnett Shale, a shale-containing geological formation in a highly-populated area which is currently being actively drilled using hydraulic fracturing. The Texas Commission on Environmental Quality (TCEQ) is charged with regulating sources of air emissions from natural gas operations and has spent considerable resources examining emissions from these sources. The TCEQ has utilized flyovers of helicopters outfitted with infra-red (IR) cameras capable of visualizing volatile organic compound (VOC) emissions, conducted numerous mobile monitoring trips, and has installed an extensive ambient air fixed-site monitoring system in areas with intensive drilling. Between August 1, 2009, and June 30, 2012, the TCEQ has surveyed 2,307 sites in the Barnett Shale area using hand-held IR cameras, and at 2,263 of these sites, hand-held survey instruments were also used. These surveys included citizen complaint investigations, compliance investigations, mobile monitoring trips, and follow-up investigations based on helicopter flyovers. As a result of observations with the hand-held IR camera and measurements collected using the survey instruments, 1,167 short-term field canister samples have been collected and analyzed for VOCs. Less than 5% of VOC canister samples measured short-term levels of concern. Short-term samples have also been collected and analyzed for carbonyls, NOx, and sulfur compounds and none of the analyses measured short-term levels of concern. Short-term samples have also been collected for long-term health concern.

Perivascular Adipose and Vascular Dysfunction in Mice after Combined High-Fat Diet and Concentrated Ambient Particulate Matter Exposure.

D. J. Conklin and P. Haberzettl, Cardiovascular Medicine, University of Louisville, Louisville, KY.

Exposure to inhaled fine particulate matter induces endothelial dysfunction and increases the risk of cardiometabolic disease, insulin resistance and the risk of diabetes, however, the mechanisms by which PM2.5 enhances this risk are unclear. Because diabetes and air pollution are worldwide health problems, we examined whether high fat diet (HFD) enhanced concentrated ambient particulate matter (CAP)-induced EPC suppression and insulin resistance to ascertain the relationship between these important changes. Mice (male; C57BL/6) maintained on low fat (LFD, 10% kcal fat) or high fat (HFD, 60% kcal fat) were exposed to HEPA-filtered air or urban Louisville CAP (80-100 pg/m3) for 9 or 30 consecutive days (6h/d). CAP exposure or HFD prevented insulin-induced Akt and eNOS phosphorylation in isolated aorta, and aortic contractility was progressively dysfunctional under CAP, HFD and combined HFD+CAP treatments. Moreover, only combined HFD+CAP treatment increased glucose intolerance without increasing obesity, and thus, worsened the metabolic syndrome and progression toward diabetes. These data implicate alterations in vascular structure such as increased perivascular adipose in the combined effects of HFD+CAP on vascular dysfunction and insulin resistance.

Role of Perivascular Adipose Tissue in Coronary Artery Disease.

M. K. Walker, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM.

The aryl hydrocarbon receptor (AHR) has been demonstrated to be required for normal blood pressure regulation as demonstrated by the hypotensive phenotype in the global AHR knockout mouse. Notably, conditional deletion of the AHR solely from endothelial cells results in a nearly identical blood pressure phenotype as observed in the global knockout. Thus, we hypothesized that AHR plays a critical role in the vascular regulation of blood pressure. We generated ECahr−/− mice by cross-breeding AHR Rosed mice (hrf+/−) to mice expressing Cre recombinase driven by an EC-specific promoter. BP was assessed by radiotelemetry prior to and following an acute injection of the potent vasocostritor, angiotensin (Ang) II, or chronic treatment with an inhibitor of Ang II formation, Ang converting enzyme inhibitor (ACEi). ECahr−/− mice exhibited significantly different responses to Ang II and ACEi. While Ang II increased BP in both genotypes, the increase was sustained in ECahr+/+, whereas the increase in ECahr−/− mice steadily declined. Area under the curve (AUC) analysis showed that Ang II-induced increase in diastolic BP (DBP) over 30 min was significantly lower in ECahr+/+ mice (AUC: ECahr+/+ : 129±233 mmHg/30 min; ECahr−/−: 504±138 mmHg/30 min. p<0.05). In contrast, while ACEi decreased BP in both genotypes, the subsequent rise in DBP after treatment was significantly delayed in the ECahr−/− mice. ECahr−/− mice also exhibited reduced vascular and adipose Ang II type 1 receptor (AT1R) expression, and reduced aortic Ang II-dependent vasocostritction in the presence of vascular
Adipocytes express all components of the renin-angiotensin system necessary to synthesize and respond to angiotensin II (AngII). We have previously demonstrated that infusion of AngII to hyperlipidemic male mice augments atherosclerosis and causes the formation of abdominal aortic aneurysms (AAA). Mechanisms for AngII-induced AAs include inflammation that extends to perivascular adipose tissue surrounding the abdominal aorta. Inflammation in perivascular adipose tissue was augmented by genetic or diet-induced obesity, and resulted in marked increases in susceptibility to AngII-induced AAs. Moreover, weight loss in previously obese mice resulted in remodeling of AAs. Vascular changes in mice experiencing weight loss included reduced adventitial neovascularization, with alterations in stem cell populations in perivascular adipose tissue. Current studies are examining effects of deficiency of components of the renin-angiotensin system in adipocytes on AngII-induced vascular diseases.

Adipocytes express all components of the renin-angiotensin system necessary to synthesize and respond to angiotensin II (AngII). We have previously demonstrated that infusion of AngII to hyperlipidemic male mice augments atherosclerosis and causes the formation of abdominal aortic aneurysms (AAA). Mechanisms for AngII-induced AAs include inflammation that extends to perivascular adipose tissue surrounding the abdominal aorta. Inflammation in perivascular adipose tissue was augmented by genetic or diet-induced obesity, and resulted in marked increases in susceptibility to AngII-induced AAs. Moreover, weight loss in previously obese mice resulted in remodeling of AAs. Vascular changes in mice experiencing weight loss included reduced adventitial neovascularization, with alterations in stem cell populations in perivascular adipose tissue. Current studies are examining effects of deficiency of components of the renin-angiotensin system in adipocytes on AngII-induced vascular diseases.

Adipocytes express all components of the renin-angiotensin system necessary to synthesize and respond to angiotensin II (AngII). We have previously demonstrated that infusion of AngII to hyperlipidemic male mice augments atherosclerosis and causes the formation of abdominal aortic aneurysms (AAA). Mechanisms for AngII-induced AAs include inflammation that extends to perivascular adipose tissue surrounding the abdominal aorta. Inflammation in perivascular adipose tissue was augmented by genetic or diet-induced obesity, and resulted in marked increases in susceptibility to AngII-induced AAs. Moreover, weight loss in previously obese mice resulted in remodeling of AAs. Vascular changes in mice experiencing weight loss included reduced adventitial neovascularization, with alterations in stem cell populations in perivascular adipose tissue. Current studies are examining effects of deficiency of components of the renin-angiotensin system in adipocytes on AngII-induced vascular diseases.
Although a significant amount of research effort and resources have been focused on determining genetic contributors to Parkinson's disease (PD) and Alzheimer's disease (AD), purely genetic contributions account for only a fraction of the cases. Our laboratory has been specifically interested in the potential role of pesticides in the etiology and pathogenesis of both PD and AD. Recently, we have found that serum levels of a long-lasting residue of the organochlorine pesticide hexachlorocyclohexane (BHC) was significantly higher in the serum of PD patients, while the serum levels of DDE, DDT metabolite, p,p'DDE, was significantly higher in patients with AD. DDE clohexane (HCH) was significantly higher in the serum of PD patients, while the serum levels of a long-lasting residue of the organochlorine pesticide hexachlorocyclohexane (BHC) was significantly higher in the serum of PD patients, while the serum levels of DDE, DDT metabolite, p,p'DDE, was significantly higher in patients with AD. DDE levels were 3.8-fold higher in serum of AD patients (2.61 ± 0.35 ng/ml cholesterol; n = 86) when compared to controls (0.69 ± 0.10 ng/ml cholesterol; n = 79; p < 0.001). After controlling for age, sex, education, race, and sample collection site, the OR for increased risk of AD in the highest tertile of DDE levels was 4.26 (95% CI: 3.41-5.32; p < 0.001). To determine whether DDT exposure alters the expression of AD-related genes in vivo, male C57Bl6 mice were dosed with 3 mg/kg DDT every 3 days for 30 days. DDT significantly increased the mRNA levels of APP (25%), NEP (77%), and ApoE (150%) in the hippocampus. These data suggest that DDT selectively alters the expression of AD-related genes in a brain-region specific manner with the hippocampus being more sensitive than the frontal cortex. Specific Questions to be addressed will include: Despite equivocal results, why are genetic factors still considered the primary etiological factor in late-onset neurodegenerative disease? Are there common pathways or mechanisms that are relevant to environmental exposures in both PD and AD? How do chemicals in a similar class of compounds elicit very different effects on the neurodegenerative processes?

New knowledge about environmental risks to human reproduction and development directly relevant to children's health protection derives from the fields of developmental and reproductive toxicology, exposure science, epidemiology, risk assessment, and public health. Together, this information highlights the importance of the intrauterine environment in setting the stage for lifelong health, along with the complexities of the physical, chemical, and social factors that operate during critical windows of development to impact health and wellbeing. For example, breakthroughs in genetic polymorphisms and epigenetics are extending our understanding of inherent and acquired susceptibility to effects of environmental contaminants and showing how various intrauterine stressors such as nutrition, toxicants, and social stress may alter developmental programming at the start and throughout life. These scientific advances point to the need for innovative cumulative risk assessment methods and public health intervention approaches in order to account for risks that accrue across the developmental continuum from cradle to cradle. This workshop brings together the interdisciplinary expertise needed to begin integrating new knowledge into life-course models for children's health and wellbeing. Topics include research findings from toxicity testing and epidemiology studies specific to critical windows of exposure during pre-conception, pregnancy, and early life stages to stimulate research and provide a way to optimize testing and risk assessment models and enabling analyses across the whole life course. The workshop also features an innovative approach for evaluating and communicating complex scientific information about reproductive risks and interventions to diverse audiences including health care providers, parents (present and future), and regulators.

Evidence continues to build for the increasing importance of early life experiences in defining not only childhood development and normal health trajectories but also the potential for chronic disease risk throughout later life. Thus, a critical need for protecting children's health is recognition that our models require a dynamic context, a life course framework in order to address the key differences in development landmarks, functionality and the windows of susceptibility to environmental impact. Such a framework is also needed to provide the context for incorporation of the multitude of research findings across lifespan and discipline and to develop effective public health interventions. To set the stage for the workshop this talk will identify the emerging issues and most pressing questions for reproductive and developmental toxicologists, epidemiologists, and risk and health assessors in life-course study. Research from contemporary science, including community-based cohort studies, coupled with research to elucidate molecular toxicity pathways and genetic polymorphisms will be presented to illustrate these important lifecycles. Critical questions and research will be discussed within the framework and will include: What does this research tell us about critical windows of exposure, susceptibility and impact across lifespan? What sorts of statistical models are needed to account for multiple stressors over time? How can this new science be used to build a case for developing a lifecourse approach to risk assessment and children's health protection? How can we be informed by the parents who live in communities which are highly impacted by environmental stressors? Research by developmental and reproductive biologists, toxicologists, epidemiologists and exposure and risk scientists are required and hence determination of how this multidisciplinary science can be integrated within the lifecourse models is essential. Presentation of both evidence and modeling approaches will be the basis for describing the life course framework for risk assessment.
New Strategies for Addressing Toxicity Testing across the Lifespan.

P. M. Foster, National Toxicology Program (NTP), NIEHS, Research Triangle Park, NC.

A previous NTP workshop evaluating the utility of the cancer bioassay for detecting hormonally-related cancers (particularly breast, prostate, ovary and testis), concluded that the standard approach, commencing exposure as young adults (~ 6 weeks of age) is likely missing important windows during early development that could be critical for cancer outcomes and therefore assessment of lifetime risk. NTP used the workshop results to adopt a new default for rat cancer bioassays to incorporate early life exposures into the assay. NTP had previously conducted perinatal bioassays, but required specific justification; now, such studies are conducted routinely, unless there is a scientific rationale not to do so. This study begins exposure at implantation and continues until the offspring reach 2 years of age. Embarking on a cancer study requires preliminary dose setting information. For a cancer bioassay, this is normally a 90 d study, but would now require exposure from implantation thru weaning prior to the 90d component to evaluate target organ toxicity. Such an approach, would also lend itself easily to evaluations of multiple other endpoints from the same exposure paradigm, including developmental neurotoxicity and immunotoxicity and, if one bred the F1 offspring at adulthood, both fertility/ fecundity and pre-natal developmental toxicity (teratology) - the NTP modified one-generation study. Each of these endpoints could be considered interchangeable “cassettes” depending on the type of toxicity that NTP was required to assess. Compared to the individual, stand alone studies, this would have considerable savings in time, cost and animal usage, yet generate high quality developmental and reproductive toxicity information for risk assessment. This is a similar approach to the OECD extended one-generation study, but has several major advantages, most importantly is a significantly improved ability to detect potential effects on fertility and fecundity in the same animals on which structural changes are evaluated, together with a pre-breed exposure that is consistent with the length of rat spermatogenesis.

US-EU Nanotechnology Databases and Ontology Community of Research.

N. A. Baker1 and H. Rauscher2. 1Pacific Northwest National Laboratory, Richland, WA; 2DG Joint Research Centre Unit Nanobioscience/TP 202, European Commission, Ispra, Italy. Sponsor: K. Waters.

This talk will provide an overview on the work of a new US-EU Nanotechnology Safety Community of Research (CoR) focused on nanotechnology databases and ontology with specific examples and highlights from our own research. CoRs are groups of people who share a significant interest in nano safety, work together to develop a shared repertoire of resources, and have regular contact to address key global research challenges. Interconnected information systems are urgently needed for collating nanoscale material descriptions; their intrinsic and context-dependent properties and their interactions; and their interactions with biological entities. One goal of the CoR is to enable the sharing, searching, and analysis of nanoscale material characterization data across a wide range of experimental sources and guide the structuring of these data to enable their widest possible use. Achievement of this goal will deliver important new capabilities to allow integration of risk assessment data among labs throughout the world, to provide situational awareness of data coverage across nanomaterial categories, and to enable predictive computational models for bridging physical properties and biological outcomes with exposure, dispersal and fate. In order to realize this goal, the CoR will initially focus on the following three areas of investigation: Identification of the data elements necessary to establish common data-sharing models for this domain; specification of requirements for sharing data between research groups and repositories in human- and machine-readable forms; definition of concepts necessary to support the above activities and their representation in those concepts in an ontological framework. This will include descriptors for the material itself, as well as for its interaction with the environment and elements to characterize intermediate effects in adverse outcome.
High-throughput screening (HTS) of bioactivity/toxicity is currently the only cost-efficient and rapid tool to screen the numerous nanomaterials (NMs) in use and under development. In the EPA ToxCast program, diverse classes of NMs and their micro-particle and ionic salt counterparts are tested in HTS assays to help prioritize NMs for further targeted testing. While the measured HTS endpoints are the same as those tested for traditional soluble chemicals, specific challenges arise for NMs for both experimental procedures and computational analysis. Challenges include no standard nomenclature, comparison of potency between different classes of NMs each tested at a different concentration range, linking NM physicochemical (pchem) characterization data into the analysis, and assay interference by NMs. With no standard nomenclature, we identified NMs by combining information on group (nano, micro, ion), chemical composition of the core and coating, primary particle size, and source. CAS numbers were purposely not used for NMs to avoid data being aggregated with bulk counterparts. We accounted NM exposure potential and tested NM at various concentrations, while all soluble chemicals were tested at the same concentrations in ToxCast and their sigmoidal AC50s were compared. NM bioactivity data is being analyzed using various dose metrics (e.g., either NM mass or surface area per medium volume or cell surface area) and potency estimates (LEC, sigmoidal AC50, etc.) for NM toxicity ranking. To link NM pchem properties into the bioactivity data, we choose to build a distinct database of NM pchem characterization results, instead of modifying the existing ToxCast database of bioactivity results. While HTS assays we used have successfully screened hundreds of soluble chemicals, inspecting the NM bioactivity results carefully resulted in discontinuing the use of one of the testing platforms because NMs interfere with the assay. Future research needs include developing computational models using NM pchem properties and/or in vitro data to predict in vivo effects.

Literature-based network analysis of in vivo microarray data, which yields biologically relevant molecular networks from the dataset, is becoming an increasingly useful tool to identify nanoparticle-induced signaling. This approach can be used to discover molecules that contribute to endpoint health effects and otherwise unknown mechanisms of action. While animal inhalation exposures may be the most relevant for predicting human health effects of nanomaterials, it is not always feasible because of the vast number of particles being manufactured. Therefore, in vitro high-throughput screening (HTS) is being used to predict their potential toxicity. While HTS may be necessary, in vivo genomic studies still provide useful information for screening broad classes of nanomaterials. Similar to physiological experiments in which three results are expected—increase, decrease, and no change—the question of whether network-based genomics from in vivo studies is useful for in vitro screening can be answered yes, no, and maybe. The output from these studies provides significant molecular detail of an exposure. Advanced analysis can indicate specific transcription factors involved in the response, upstream, and downstream signaling, and which cell type may be the most affected by a particular nanomaterial. However, there are challenges to converting genomic data from in vivo exposures to in vitro screening. These include responsiveness of the cell type in vitro vs observed in vivo changes, distinguishing temporal effects, and an isolated single cell response in vitro that lacks regulatory effects occurring in vivo. The in vivo genomic findings also have limitations including whether altered molecular networks from studies in rodents are applicable to the human, and therefore applicable to studies utilizing human cell lines. In addition, network design (e.g., dosing relevant to human exposure levels) should be evaluated when interpreting genomic analysis from in vivo studies. In summary, genomic analysis from in vivo studies, although not without limitations, can offer insight for HTS.
The genetic toxicology testing paradigm to support drug development was recently updated in ICH S2(R1) “Guidance on Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use”. Although the guideline contains a variety of revisions, the most substantial impact was on the selection and conduct of genetic toxicity assays. Historically, in vitro and in vivo assays were performed to detect gene mutations as well as structural and numerical chromosome damage. While the revised ICH testing battery addresses these same endpoints, genetic toxicology testing battery, provides options to Sponsors of drug development, and maintain patient safety while preventing unnecessary delays in developing drugs.

As ICH S2(R1) was adopted in November 2011, regulatory agencies and Sponsors are just beginning to gain experience with the guideline. This presentation will discuss the scientific advances that have led to the latest regulatory guideline changes and their implementation.

W 793 US FDA Implementation of the ICH S2(R1) Guideline.

M. W. Powley, CDER, US FDA, Silver Spring, MD.

The genetic toxicology testing paradigm to support drug development was recently updated in ICH S2(R1) “Guidance on Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use”. Although the guideline contains a variety of revisions, the most substantial impact was on the selection and conduct of genetic toxicity assays. Historically, in vitro and in vivo assays were performed to detect gene mutations as well as structural and numerical chromosome damage. While the revised ICH testing battery addresses these same endpoints, genetic toxicology testing battery, provides options to Sponsors of drug development, and maintain patient safety while preventing unnecessary delays in developing drugs.

As ICH S2(R1) was adopted in November 2011, regulatory agencies and Sponsors are just beginning to gain experience with the guideline. This presentation will discuss the scientific advances that have led to the latest regulatory guideline changes and their implementation.

W 794 New Approaches in International Guidelines for Genetic Toxicology Assays: Latest Updates on OECD Guidelines.

V. Thibaud,1 J. von Benthem,2 N. Delreu,3 G. Douglas,3 E. Lorge,3 M. M. Moore,4 R. Schoeny,2 and T. Singer.3 1Drug Disposition, Preclinical Safety and Animal Research, Syngenta, Unity, VT, USA; 2Servier Group, Orleau-Gidy, France; 3National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands; 4Organization for Economic Co-operation and Development (OECD), Paris, France; 5Health Canada, Ottawa, ON, Canada; 6Servier Group, Orleau-Gidy, France; 7National Center for Toxicological Research, US FDA, Jefferson, AZ; 8Office of Research and Development, US EPA, Washington DC.

In March 2010, the 22nd meeting of the Working Group of National Coordinators of the OECD Test Guidelines Programme (WNT) approved a project for updating the Test Guidelines on genotoxicity, with Canada, the Netherlands, France and the USA identified as lead countries for this work. An Expert Working Group (EWG) comprised of international experts was established and has since met twice. The EWG has recommended the deletion of several Test Guidelines, including the assays conducted in yeast and Drosophila. The EWG is currently working on revisions to the in vitro Test Guidelines for the micronucleus test (TG478), chromosomal aberration test (TG473) and gene mutation test (TG476), as well as the in vivo assays for the mammalian erythrocyte micronucleus test (TG474), the mammalian bone marrow chromosomal aberration test (TG475), the dominant lethal test (TG478) and the spermatogonial chromosomal aberration assay (TG483). A new guideline dedicated to the thymidine kinase locus is also under development. In addition, an update has been initiated of the Introduction Document to the genetic toxicology guidelines, which is intended to provide succinct and understandable guidance to guideline users. The purpose of the presentation at the SOT meeting will be to provide information on the status of the revision process and its main accomplishments to date. The opinions in this abstract are those of the authors and do not represent the policies of the U.S. EPA and FDA.

W 795 JACVAM Comet Validation and OECD Guideline.

M. Hayashi, Public Interest Incorporated Foundation, BioSafety Research Center, Shiohizen, Iwata, Japan.

The in vivo rodent alkaline comet assay is used world-wide to detect genotoxicity of chemicals. The assay, however, has not been formally evaluated for its reliability and relevance. Thus, the Japanese Center for the Validation of Alternative Methods (JACVAM) has organized ECVAM, ICVCM, and NICEATM. This validation study has now been supported by JEMS/MMSA and the consultation team including statisticians and specialists for the comet assay. We had the kick-off meeting for this trial in 2006. We have studied on the protocol optimization, intra- and inter-laboratory reproducibility before starting the predictive capability as the 4th phase. In the 4th phase- 1st step validation study, the purpose was to examine the extent of reproducibility and variability of assay results among labs using caged test chemicals and the positive control EMS, when experiments were conducted in accordance with the Comet assay protocol-version 14. In review of the data, Validation Management Team (VMT) confirmed the reproducibility and variability of assay results among laboratories. Thus the VMT decided to move on to the 4th phase- 2nd step validation study with an expanded set of test chemicals in accordance with the Comet assay protocol-version 14.2. The purpose of the 2nd step is to investigate the predictive capability of the assay against carcinogenicity of test chemicals. In the 2nd step, we selected 40 test chemicals, which include different characteristics in chemical classes including: Genotoxic carcinogen, Genotoxic non-carcinogen, Non-genotoxic carcinogen, and Non-carcinogen. Each test chemical was examined in one lab, because reproducibility was robustly confirmed in the 1st step validation study. We will disclose all data shortly but up to now VMT satisfied the outcomes. We are finalizing the validation report of our whole trial and we are also preparing the Comet Assay Atlas to guide how to select nuclei to be analyzed. Now, we are on the line of OECD TG through the peer review of our validation report and we have started to draft test guideline on in vivo comet assay.

W 796 New Approaches for Genotoxicity Assessment and Guidance on Dealing with Positive Results.

B. Gollapudi, V. Thibaud, and J. Kim. ILSI-HESI IVGT Project Committee, Washington DC.

Exposure to mutagens can lead to adverse health consequences such as cancer and genetic diseases. A battery of short-term tests has been in use for decades to identify potential mutagenic agents. However, the relevance of findings from these assays in predicting human risk continues to be a subject of discussion, centering around three major topics on how to 1) improve the existing assays, 2) integrate emerging technologies, and 3) deal with positive findings. An international initiative consisting of experts from academia, industry and the government has been addressing these issues to enable more accurate assessment of human risk from exposure to mutagenic agents. In the area of improving the existing in vitro assays, the experts have been examining the choice of cell lines (e.g., human vs. rodents; p53 deficient vs. competent) and the metabolic activation systems (human vs. rodent) in order to make recommendations for future testing protocols. New technologies being considered as potential replacements and/or complements of the standard testing battery include the application of stem cells, 3-D skin/ liver tissues, humanized animal models, high throughput assays (Tox21), incorporation of biomarkers of epigenetic changes with potential transgenerational significance, and the utilization of non-invasive imaging technologies to probe into time/age-related changes in the same animal with parallel anatomical and functional assessments. Results from the genotoxicity assays have traditionally been interpreted in a qualitative manner without analysis of the dose-response relationships. An expert group examined several quantitative approaches to the analysis of the dose-response data to identify a point of departure (POD) that could be combined with mode of action analysis to determine whether exposure(s) below a particular level (i.e., POD corrected by safety and uncertainty factors) constitute a significant risk for humans. These, along with ongoing national and international initiatives are paving the way for a paradigm shift in the field of genetic toxicology.

PL 797 Early Markers for Screening Workers Exposed to Nephrotoxic Chemicals.

E. M. Merwally and A. ElSafty. Environmental & Occupational Medicine Department, National Research Center, Giza, Egypt.

Routine renal function tests are insensitive for detection of subclinical renal impairment. A marker of early renal affection is needed to be used for screening of workers at risk. In this study the activity of the urinary N-α-acetyl-D-glucosaminidase (NAG) was measured to detect early renal changes in workers exposed to nephrotoxic chemicals. The efficacy of NAG was also compared with that of urinary B2-microglobulin. The studied groups included 50 chemical laboratory workers exposed to aliphatic hydrocarbon solvents, 40 car painters exposed to aromatic hydrocarbon solvents, 36 plumbers exposed mostly to lead fumes and a control group of 36 clerks, matched the exposed groups in age, sex, smoking habits and socio-economic status.
The study describes a mechanistic approach for assessing the timecourse of the source-to-dose exposure to DEHP. The overall modelling framework was built on the following assumptions and consists of:

- Multiphase indoor air quality model, for estimating DEHP concentrations in the gas, particle and dust phase starting from gaseous emissions of products containing DEHP.
- Exposure assessment model that incorporates all possible exposure pathways and routes (inhalation of DEHP, skin exposure through dust rubbing off, non-dietary oral exposure through dust ingestion).
- Internal dose model, for the assessment of DEHP and its 3 major metabolites (MEHP, 5-OH MEHP and 5oxo-MEHP) in human tissues and urine through a multi-compartmental PBPK model.
- Uncertainty/variability analysis tool across all stages of the assessment.

Under a typical scenario in a common residential dwelling (surface area of 270 m² and air exchange rate of 0.5 hr⁻¹) characterized by DEHP gaseous emissions of 200 μg/h (vinyl flooring and other plastic materials), the concentrations of DEHP in the gaseous, particles and dust phase are equal to 1.5 μg/m³, 21 μg/m³ and 4400 μg/particle, respectively. Overall daily intake varies between 0.2 to 10 μg/kg-bw, depending on the exposure scenarios considered. The latter are age-dependent: adults are exposed mostly through inhalation and infants through non-dietary ingestion. For a common repeated aggregate exposure scenario of 2 μg/kg-bw, the DEHP internal dose in venous blood and in adipose tissue (where bioaccumulation is clearly observed) reach a quasi-steady equilibrium of 0.07 and 0.4 μg/L, respectively. The expected urinary concentrations of MEHP, 5-OH MEHP and 5oxo-MEHP are 3.1, 16 and 8 μg/g Cr respectively. These findings are in good accordance to existing biomonitoring data from NHANES. They also suggest a correlation between air pollution and body burdens, but the exact nature of this correlation is yet to be determined.

The laboratory study was to identify a biomarker of ozone oxidative stress and to assess whether inconsistent results often found in the field of ozone oxidative stress might be due to a lack of comparability of the available methods where various oxidative stress biomarkers are measured as biomarkers. The time and dose-dependent effects of ozone exposure of rats on plasma and urine lipid hydroperoxides, TBARS, malondialdehyde, isoprostanes, protein carbonyls, methionine sulfoxidation, various tyrosine oxidation products, and DNA changes were investigated with different techniques. Effects of ozone on ascorbic acid, tocopherol, coenzyme Q, glutathione and uric acid were measured to determine if the oxidative effects of ozone would result in decreases of antioxidants in blood plasma and bronchoalveolar lavage fluid as expected. Generally, antioxidants were not changed or showed only high-dose and/or single time point. Ozone exposure did not cause statistically significant differences in plasma concentration products of lipid peroxidation or protein and DNA oxidation in a time- and dose-dependent pattern. However, urinary concentrations of isoprostanes measured with an immunoassay were increased by two different doses of ozone 8 h, 56 h and 70 h post-exposure. Since elevation of isoprostanes in urine was consistent at three time points studied, it is concluded that it fulfilled the oxidative stress biomarker criterion of significant effects measured in biological fluid and seen at both doses at more than one time point. Measurements of low molecular weight antioxidants in plasma are not sensitive biomarkers for oxidative damage induced by the ozone and may not be the tool of choice for the assessment of oxidative damage by ozone in vivo.

In exposure assessment, samples from the environment and population are collected and analyzed to estimate the magnitude, frequency, and duration of exposure to an agent. In this and other applications, an appropriate design of experiments is critical to assure the optimal usage of resources and the efficient gathering of data necessary to answer important public health questions. To aid in such designs, physiologically based pharmacokinetic (PBPK) models are increasingly used to help elucidate chemical disposition, identify key biomarkers, and characterize the effects of uncertainty and variability. Although a number of approaches have been used to help optimize the design of experiments based on PBPK models, significant gaps remain in the efficiency and utility of these methods.

Here we describe a new approach in experimental design that can be used to identify quantities useful in exposure assessment experiments, such as maximally-informative biomarkers, types of biospecimen, and sampling times. This method involves the integration of an efficient sampling algorithm and metrics to assess information loss within a Bayesian inference framework containing a PBPK model. These features expand upon the capabilities of existing tools to include hierarchical statistical models and design comparison without random error.

To test the methodology, several models relevant to toxicology were evaluated, including those for estrogenic, antiestrogenic, antiandrogenic, diethylhexyl phthalate (DEHP), and chlorpyrifos. Results from these studies showed that the use of information loss as a design metric lead to precise and accurate reconstructions of simulated exposure data. These results also included a characterization and ranking of various biomarker-and exposure-related quantities in terms of their utility in conducting both forward and reverse dosimetry.

We expect that the proposed methodology will be useful in the design of exposure assessment experiments and related studies and will expand the field of Bayesian inference in environmental and human toxicology.

The effect of ozone exposure on antioxidants and oxidation products of lipids, proteins and DNA in the plasma and urine of rats was studied by the international biomarker of oxidative stress study sponsored by NIEHS/NIEH. The goal of this multi-laboratory study was to identify a biomarker of ozone oxidative stress and to assess whether inconsistent results often found in the field of ozone oxidative stress might be due to a lack of comparability of the available methods where various oxidative stress biomarkers are measured as biomarkers. The time and dose-dependent effects of ozone exposure of rats on plasma and urine lipid hydroperoxides, TBARS, malondialdehyde, isoprostanes, protein carbonyls, methionine sulfoxidation, various tyrosine oxidation products, and DNA changes were investigated with different techniques. Effects of ozone on ascorbic acid, tocopherol, coenzyme Q, glutathione and uric acid were measured to determine if the oxidative effects of ozone would result in decreases of antioxidants in blood plasma and bronchoalveolar lavage fluid as expected. Generally, antioxidants were not changed or showed only high-dose and/or single time point. Ozone exposure did not cause statistically significant differences in plasma concentration products of lipid peroxidation or protein and DNA oxidation in a time- and dose-dependent pattern. However, urinary concentrations of isoprostanes measured with an immunoassay were increased by two different doses of ozone 8 h, 56 h and 70 h post-exposure. Since elevation of isoprostanes in urine was consistent at three time points studied, it is concluded that it fulfilled the oxidative stress biomarker criterion of significant effects measured in biological fluid and seen at both doses at more than one time point. Measurements of low molecular weight antioxidants in plasma are not sensitive biomarkers for oxidative damage induced by the ozone and may not be the tool of choice for the assessment of oxidative damage by ozone in vivo.

In exposure assessment, samples from the environment and population are collected and analyzed to estimate the magnitude, frequency, and duration of exposure to an agent. In this and other applications, an appropriate design of experiments is critical to assure the optimal usage of resources and the efficient gathering of data necessary to answer important public health questions. To aid in such designs, physiologically based pharmacokinetic (PBPK) models are increasingly used to help elucidate chemical disposition, identify key biomarkers, and characterize the effects of uncertainty and variability. Although a number of approaches have been used to help optimize the design of experiments based on PBPK models, significant gaps remain in the efficiency and utility of these methods.

Here we describe a new approach in experimental design that can be used to identify quantities useful in exposure assessment experiments, such as maximally-informative biomarkers, types of biospecimen, and sampling times. This method involves the integration of an efficient sampling algorithm and metrics to assess information loss within a Bayesian inference framework containing a PBPK model. These features expand upon the capabilities of existing tools to include hierarchical statistical models and design comparison without random error.

To test the methodology, several models relevant to toxicology were evaluated, including those for estrogenic, antiestrogenic, antiandrogenic, diethylhexyl phthalate (DEHP), and chlorpyrifos. Results from these studies showed that the use of information loss as a design metric lead to precise and accurate reconstructions of simulated exposure data. These results also included a characterization and ranking of various biomarker-and exposure-related quantities in terms of their utility in conducting both forward and reverse dosimetry.

We expect that the proposed methodology will be useful in the design of exposure assessment experiments and related studies and will expand the field of Bayesian inference in environmental and human toxicology.

The effect of ozone exposure on antioxidants and oxidation products of lipids, proteins and DNA was studied by the international biomarker of oxidative stress study sponsored by NIEHS/NIEH. The goal of this multi-laboratory study was to identify a biomarker of ozone oxidative stress and to assess whether inconsistent results often found in the field of ozone oxidative stress might be due to a lack of comparability of the available methods where various oxidative stress biomarkers are measured as biomarkers. The time and dose-dependent effects of ozone exposure of rats on plasma and urine lipid hydroperoxides, TBARS, malondialdehyde, isoprostanes, protein carbonyls, methionine sulfoxidation, various tyrosine oxidation products, and DNA changes were investigated with different techniques. Effects of ozone on ascorbic acid, tocopherol, coenzyme Q, glutathione and uric acid were measured to determine if the oxidative effects of ozone would result in decreases of antioxidants in blood plasma and bronchoalveolar lavage fluid as expected. Generally, antioxidants were not changed or showed only high-dose and/or single time point. Ozone exposure did not cause statistically significant differences in plasma concentration products of lipid peroxidation or protein and DNA oxidation in a time- and dose-dependent pattern. However, urinary concentrations of isoprostanes measured with an immunoassay were increased by two different doses of ozone 8 h, 56 h and 70 h post-exposure. Since elevation of isoprostanes in urine was consistent at three time points studied, it is concluded that it fulfilled the oxidative stress biomarker criterion of significant effects measured in biological fluid and seen at both doses at more than one time point. Measurements of low molecular weight antioxidants in plasma are not sensitive biomarkers for oxidative damage induced by the ozone and may not be the tool of choice for the assessment of oxidative damage by ozone in vivo.

In exposure assessment, samples from the environment and population are collected and analyzed to estimate the magnitude, frequency, and duration of exposure to an agent. In this and other applications, an appropriate design of experiments is critical to assure the optimal usage of resources and the efficient gathering of data necessary to answer important public health questions. To aid in such designs, physiologically based pharmacokinetic (PBPK) models are increasingly used to help elucidate chemical disposition, identify key biomarkers, and characterize the effects of uncertainty and variability. Although a number of approaches have been used to help optimize the design of experiments based on PBPK models, significant gaps remain in the efficiency and utility of these methods.

Here we describe a new approach in experimental design that can be used to identify quantities useful in exposure assessment experiments, such as maximally-informative biomarkers, types of biospecimen, and sampling times. This method involves the integration of an efficient sampling algorithm and metrics to assess information loss within a Bayesian inference framework containing a PBPK model. These features expand upon the capabilities of existing tools to include hierarchical statistical models and design comparison without random error.

To test the methodology, several models relevant to toxicology were evaluated, including those for estrogenic, antiestrogenic, antiandrogenic, diethylhexyl phthalate (DEHP), and chlorpyrifos. Results from these studies showed that the use of information loss as a design metric lead to precise and accurate reconstructions of simulated exposure data. These results also included a characterization and ranking of various biomarker-and exposure-related quantities in terms of their utility in conducting both forward and reverse dosimetry.

We expect that the proposed methodology will be useful in the design of exposure assessment experiments and related studies and will expand the field of Bayesian inference in environmental and human toxicology.
802 Enhancing PM Epidemiological Concentration-Response Functions by Incorporating Lung Deposition and Oxidative Potential.
S. P. Karakitsios1, D. A. Sarijaniatis1, 2, V. Kalaitzis1 and M. Kermendioú1,
1Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; 2Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Thermi, Greece.

Despite the fact that well documented associations have been established between urban air PM and mortality/morbidity, incorporating internal exposure and toxicity metrics would be expected to significantly improve risk assessment and management. Thus, existing concentration response functions were modified taking into account the fraction of particles deposited across the respiratory tract (using the MPPD lung deposition model) and the relevance to the corresponding health endpoint. The latter also depends on the actual size distribution for a given PM mass concentration, which is better described by the particle number count (PNC). Finally, the oxidative potential of particles of different size was also taken into account to derive revised exposure-response functions. To investigate the feasibility of using this approach an extensive measurement campaign was carried out in a large Metropolitan area. PM size and number distributions were recorded in four sites. PM10, PM 2.5 and PM1 samples were analyzed for oxidative potential by measuring Reactive Oxygen Species (ROS) using the DTT protocol. The results showed that the fraction of ultra-fine and fine particles is higher in the city center than in the suburbs. The same is true for oxidative potential especially for the smaller particles. Thus, the actual exposure for endpoints related to lower respiratory tract deposition and possibly translocation within the systemic circulation (e.g. cardiovascular disease, adverse pregnancy outcomes) might rise up to 4 times higher to the one estimated by the respective differences in mass concentration. Besides their implications for spatial epidemiology, our results show that future epidemiological studies would be greatly improved by incorporating evidence based on toxicity metrics, resulting in more robust associations between ambient air PM exposure and ill-health.

D. Close1, T. Xu2, J. Webb2, S. Ripp1 and G. Sayler1. 1490 BioTech Inc., Knoxville, TN; 2The University of Tennessee, Knoxville, TN.
Continuous toxicity monitoring using human cell-based bioreporters can report on the bioavailability and efficacy of toxic substances but is logistically challenging because of the cells’ relatively high autofluorescent background or the expense and/or sample destruction required to perform bioluminescent substrate (i.e., luciferin) addition. To facilitate this process, we have synthetically optimized the bacterial luciferase gene cassette to function autonomously in human cells without the need for external substrate addition. A proof-in-principle demonstration using human kidney cells (HER293) revealed that bioluminescent output declined in response to challenge with the DNA damaging antibiotic Zeocin in a dose response fashion. This response was similar to that displayed using commercially available firefly luciferase reporter assays, but allowed for repeated monitoring of the same samples, leading to a lower overall cost and increased data acquisition potential. Similarly, autoboluminescent reporter cells were designed using a tetracycline activated pro-catalase reporter assays, but allowed for repeated monitoring of the same samples, leading to a lower overall cost and increased data acquisition potential. Thus, existing concentration response functions were modified taking into account the fraction of particles deposited across the respiratory tract (using the MPPD lung deposition model) and the relevance to the corresponding health endpoint. The latter also depends on the actual size distribution for a given PM mass concentration, which is better described by the particle number count (PNC). Finally, the oxidative potential of particles of different size was also taken into account to derive revised exposure-response functions. To investigate the feasibility of using this approach an extensive measurement campaign was carried out in a large Metropolitan area. PM size and number distributions were recorded in four sites. PM10, PM 2.5 and PM1 samples were analyzed for oxidative potential by measuring Reactive Oxygen Species (ROS) using the DTT protocol. The results showed that the fraction of ultra-fine and fine particles is higher in the city center than in the suburbs. The same is true for oxidative potential especially for the smaller particles. Thus, the actual exposure for endpoints related to lower respiratory tract deposition and possibly translocation within the systemic circulation (e.g. cardiovascular disease, adverse pregnancy outcomes) might rise up to 4 times higher to the one estimated by the respective differences in mass concentration. Besides their implications for spatial epidemiology, our results show that future epidemiological studies would be greatly improved by incorporating evidence based on toxicity metrics, resulting in more robust associations between ambient air PM exposure and ill-health.

804 Provisional Biomonitoring Equivalents for a Screening Level Evaluation of Urinary 3-Phenoxycetic Acid Concentrations in a Risk Assessment Context.
L. Ayward1, S. M. Hay2, K. Irwin3, A. St-Amand4 and A. Nong5, 1Summit Toxilogics, LLP, Falls Church, VA; 2Summit Toxilogics, LLP Allenpark, CO; 3Health Canada, Ottawa, ON, Canada.

3-phenoxycetic acid (3-PBA) is a common metabolite of a number of commonly-used pyrethroid pesticides of differing structures and relative potency and also exists as a residue in foods resulting from environmental degradation of parent pyrethroid compounds. Thus, 3-PBA in urine cannot be used as a specific biomarker used to specific pyrethroid compounds. Consequently, an approach derived from the use of Biomonitoring Equivalents (BE), which are estimates of steady-state biomarker concentrations consistent with exposure guidance values, can be used in an assessment of nine pyrethroid compounds in order to estimate a conservative initial screening value for a tiered assessment of population data on 3-PBA in fats. The most common USEPA reference doses (RfD) for these pyrethroids were identified. An average urinary excretion fraction (FUE) for 3-PBA was estimated from four pyrethroid compounds with human excretion fraction data and then applied to all nine parent compounds. Estimated steady-state urinary 3-PBA concentrations associated with the RfD for each of the nine compounds ranged from 6 µg/L for cyhalothrin to 1.857 µg/L for permethrin. The lower end of this range can be used as a highly conservative screening value (FUE) for assessment of population urinary 3-PBA data through an implicit assumption that all exposures leading to the observed 3-PBA were to the most potent parent compound and no direct exposure to 3-PBA has occurred. If population data do not exceed this level, it is unlikely that cumulative exposures to multiple pyrethroids are exceeding the RfD equivalent for the mixture. If population data do exceed this level, more detailed assessment and weighting of individual pyrethroid provisional BE values can be considered.

805 Beyond Biological Equivalents to Biologically Effective Dose.
D. A. Sarijaniatis1, 2, S. P. Karakitsios1, 3 and A. Gotti1. 1Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; 2Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Thermi, Greece.

This paper deals with the refinement of the Risk Characterization Ratio (RCR) calculation by employing the enhanced Biomonitoring Equivalences (BEs) – Biologically Effective Dose (BED) concept, using a generic PBTK model. The overall methodology was demonstrated for Bisphenol-A and DEHP. A generic multi-compartmental two generations (moth-fetus) PBTK model was developed so that it could be adaptable for humans, mice and rat. The model incorporates route and intra-species extrapolations, allowing the direct translation of animal NOAELs into human BEDs and BEs. The model was parameterized for BPA and DEHP based on existing human and rodents toxicokinetic data. To estimate the BEs values, the estimated BED for rodents corresponding to the steady-state concentration of orally administered doses as described in the respective guideline studies (5 mg/kg bw/day in mice for BPA and 592 mg/kg bw/day in Sprague-Dawley Rat for DEHP) from where the respective NOAELs were derived. The corresponding BE derived for mice (BEA) and rat (DEHP) respectively, were then translated by reverse modeling into human external exposure doses. Lastly, the corresponding BEs were derived by running the human parameterized PBTK models. The direct extrapolation of observed NOAELs into human urine BEs through BEDs, resulted in higher values than the ones derived based on using human equivalent NOAELs and simple pharmacokinetic considerations. This comes as result of physiology-dependent differences in clearance and entero-hepatic recirculation between rodents and humans. In addition inter-individual variability is explicitly addressed via this approach. Thus, translating in vivo testing results into equivalent human exposure regimes and expected biomonitored values is facilitated; uncertainties are minimized and unnecessary conservatism in population exposure/risk characterization is avoided.

806 Liver Effects in CD1 Mice Prenatally-Exposed to Low Doses of Perfluorooctanoic Acid (PFOA): Novel Modes of Action.
S. E. Fenton1, A. I. Filgo1, 4, C. A. Cummings1, M. Hoenerhoff2, D. Malarky2 and E. M. Quit3, 1, 4, 3NTP Labs, DNTP, NIEHS, Research Triangle Park, NC; 2Cellular and Molecular Pathology Branch, NIEHS, Research Triangle Park, NC; 3Comparative Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC; 4Department in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC; 5Experimental Pathology Labs, Inc, Research Triangle Park, NC.

Perfluorooctanoic acid (PFOA) is a perfluoroalkyl acid primarily used as an industrial surfactant. It persists in the environment and has been linked to potentially toxic and/or carcinogenic effects in animals and people. As a known activator of peroxisome proliferator-activated receptors (PPAR), PFOA can cause alterations that lead to defects in fatty acid oxidation, lipid transport, and inflammation. Here, CD1 mice were orally gavaged with 0, 0.01, 0.1, 0.3 and 1 mg PFOA/kg body weight from gestation days (GD) 0 through 17. On postnatal day (PND) 21, histopathologic changes in the liver of offspring included hepatocellular hypertrophy and peritubular inflammation that increased in severity by PND91 in an apparent dose-dependent response. In an earlier study, similarly exposed wildtype and PPARα KO SV/129 and CD1 mice also developed significant hepatocellular hypertrophy by 72 weeks (high-dose groups). A significant dose dependent increase in...
bile duct hyperplasia and hepatocellular hypertrophy in the PPARα KO mice sug-
gest a mechanism of hypertrophy independent of that previously reported for
PPARα-induced peroxisome proliferation in the current literature. Transmission
electron microscopy (TEM) of selected liver sections from PND91 mice revealed
PFOA-induced cellular damage and mitochondrial abnormalities with no evidence
of peroxisome proliferation. These mitochondrial changes may represent PFOA-in-
duced alterations in the cell membrane or the mitochondria. The data presented by
PFOA (or) may represent an earlier change that proceeds, or is independent of, PPARα-induced
peroxisome proliferation. This abstract does not naturally reflect NEIHS policy.

807 Dose-Dependent Incidence of Murine Hepatic Tumors

C. Weinhouse1, O. S. Anderson1, L. L. Bergin2 and D. Dolinoy3. 1. Environmental Health Sciences, University of Michigan, Ann Arbor, MI; 2. Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI.

Epidemiological and animal studies have now critically established that environ-
mental exposures during early embryonic development have the ability to influence
adverse health outcomes in adulthood. This study evaluated adult health outcomes
of perinatal exposure to the endocrine disruptor bisphenol A (BPA) in a mouse
model. Prior studies have linked BPA exposure with pre-cancerous lesions in mam-
mamary and prostate glands, and uterus, as well as with hepatic dysfunction. We ex-
posed isogenic mice (n=69) perinatally through the maternal diet to 3 physiological
relevant doses of BPA (50 ng, 50 μg, or 50 mg of BPA per kg diet) or a control
diet. 23% (16/69) of 10-month offspring presented with hepatic tumors (hepa-
tocellular carcinoma or hepatic adenoma), with a risk ratio of 7.15 for the 50 μg group (p=0.0280) and significant dose-response on Cochran-Armitage test of trend (p=0.0295). Importantly, observed early disease onset and lack of characteristic sex-
dimorphism in tumor incidence support a non-classical etiology. Notably, the 1982 National Toxicology Program chronic feed study of micronutrient hepatocytes (MH) was replicated here. MH were present in 7 animals, exclusively in
low-dose groups (n=4 in 50 ng group, n=3 in 50 μg group); these abnormal cells
may be associated with increased hepatocyte proliferation. The significance of this
study includes: (1) these data represent the first report of frank tumors, in addition
to pre-cancerous lesions, in any organ following perinatal or adult BPA exposure; (2)
these data represent the first report of precancerous lesions, in any organ following perinatal or adult BPA exposure; (3) this study underscores the critical importance of exposure timing; (4) this study implicates an environmentally ubiquitous chemical in develop-
ment in mice. Recognition of the proposed mechanism of action may lead to
identification of new chemopreventive agents.

808 Liver Hypertrophy Is Not a Key Event in Constitutive Androstane Receptor (CAR)-Mediated Liver Tumor Development in Mice Treated with Triazoles

K. Tamura1, K. Inoue1, M. Takahashi1, S. Matsuo1, K. Irie1, Y. Kodama2, S. Ozawa2 and M. Yoshida. 1. Division of Pathology, National Institute Health Sciences, Setagaya-ku, Tokyo, Japan; 2. Division Toxicology National Institute Health Sciences, Setagaya-ku, Tokyo, Japan; 3. School of Pharmacology, Iwate Medicine University, Morioka, Iwate, Japan.

Liver hypertrophy is accepted to be a key event in CAR-mediated liver tumor de-
velopment in rodents. Many triazoles (TRIs) have been reported to induce hyper-
trophy and tumors in the livers of rodents. In this study, we clarified the involve-
ment of CAR in TRI-induced liver hypertrophy and tumor development using
CAR knockout mice (CARKO). Seven-week-old male CARKO and wild-type mice
were treated with 0, 3, 32 and 320 ppm TT diet continuously for two weeks. A decrease in body weight gain compared to control was observed in mice treated with 320 ppm TT in diet (3.27 g vs. -1.22 g). Body weight gains were also significantly decreased in the 80 ppm and 160 ppm treatment groups. A significant dose dependent increase in relative liver weight was observed in mice treated with 0, 40, 80, 160 and 320 ppm TT diet (4.81, 5.32, 6.05, 6.55 and 7.43 g respectively). A similar trend was observed in the liver weight. A dose dependent increase in liver centrilobular hypertrophy was seen in mice treated with 80, 160 and 320 ppm TT diet; this was not observed at the 10 and 40 ppm doses. Similarly, a significant dose dependent increase in hepatocyte DNA
synthesis (BrdU incorporation) was seen in mice treated with 40 ppm, 80 ppm, 160 ppm and 320 ppm, compared with the untreated controls with labeling indices of 3.28, 6.34, 11.10, and 15.61 respectively, compared with 1.06 in the control
group). The increase in labeling index showed agreement with the absolute and rel-
ative liver weight results. Based on findings of the range-finding study, a second
study using 0.3, 32 and 320 ppm TT diet was initiated to define the MOA for the
TT mouse liver tumorigenic effects. Using phenobarbital as a positive control, the
well-established hepatic tumor modes of action are being investigated including:
cytotoxicity; receptor activation (PPARα, CAR, estrogen, and AhR) and oxidative
stress in TT treated B6C3F1 mice.

809 Fluopyram: Mechanistic Investigations to Elucidate the MoA for Liver Tumor Formation in the Rat

H. Tinwell1, D. Rouquéi1, O. Blanck1, P. Maliver1, F. Schorsch1, S. Wason1, D. Gett2 and R. Bars2. 1. Bayer CropScience, Sophia Antipolis, France; 2. Bayer CropScience, Research Triangle Park, NC.

Fluopyram, a broad spectrum fungicide, caused hepatomegaly, liver hypertrophy
and resulted in an increased incidence of hepatocellular carcinomas and adenomas in
double exposure female Wistar rats following chronic exposure (24 months) at the highest dose
evaluated (1500 ppm equating to 89 mg/kg/d) in the guideline carcinogenicity study. Mechanistic studies were subsequently conducted in the female rat to iden-
tify the initial key events responsible for the tumor formation and to establish
thresholds for each of the early hepatic changes. Studies showed increased expres-
sion of constitutive androstane receptor (CAR) and pregnane X receptor (PXR) in-
ducible genes from as early as 3 days of treatment. Further confirmation of
CAR/PXR activation was provided by increased activity of specific Phase I enzymes
(PROD and BROD respectively). Increased hepatocellular proliferation (measured
by Ki67) was observed, particularly in the centrilobular region, starting from 3 days
of treatment. Cell proliferation was also increased after 7 and 28 days of treatment
but to a lesser extent than that following a 3 day exposure. In these studies, dose re-
sponses and clear thresholds were established for gene expression, enzyme activity
and cell proliferation. Furthermore, these early hepatic changes were shown to be
reversible following compound withdrawal. Other modes of action (MoAs) for liver
tumor formation such as genotoxicity or peroxisome proliferation were not ob-
served. In conclusion, fluopyram is a threshold carcinogen and the resultant hepa-
tocellular carcinomas in the female rat are due to hepatocellular proliferation medi-
ated by CAR/PXR activation. It is unlikely that fluopyram would induce liver
tumors in humans as the CAR/PXR induced hyperplastic response has been shown
to be absent in human hepatocytes exposed to other known rodent hepatocarcino-
gens with the same MoA.

810 Mechanistic Investigation of Technical Toxaphene (TT)-
Induced Mouse Liver Tumors

Z. Wang1, B. H. Neal1, J. C. Lamb1 and E. Klausing1. 1. Indiana University, Bloomington, IN; Exponent Inc, Alexandria, VA.

Chronic exposure to technical toxaphene (TT) resulted in an increase in liver tu-

mers in B6C3F1 mice, with male mice showing higher response. TT appears to act
on the tumor promotion process. The current study was performed to further in-
vestigate the mode of action (MOA) of TT inducing mouse liver tumors. In a pre-
liminary dose range-finding study, mice were given TT (0, 10, 40, 80, 160 and 320
ppm) in diet continuously for two weeks. A decrease in body weight gain compared
to control was observed in mice treated with 320 ppm TT in diet (3.27 g vs. -1.22 g).
Body weight gains were also significantly decreased in the 80 ppm and 160 ppm
T
 treatment groups. A significant dose dependent increase in relative liver weight
was observed in mice treated with 0, 40, 80, 160 and 320 ppm TT diet (4.81, 5.32,
6.05, 6.55 and 7.43 g respectively). A similar trend was observed in the liver
weight. A dose dependent increase in liver centrilobular hypertrophy was seen in
mice treated with 80, 160 and 320 ppm TT; this was not observed at the 10 and 40
ppm doses. Similarly, a significant dose dependent increase in hepatocyte DNA
synthesis (BrdU incorporation) was seen in mice treated with 40 ppm, 80 ppm, 160
ppm and 320 ppm, compared with the untreated controls with labeling indices of
3.28, 6.34, 11.10, and 15.61 respectively, compared with 1.06 in the control
group). The increase in labeling index showed agreement with the absolute and rel-
ative liver weight results. Based on findings of the range-finding study, a second
study using 0.3, 32 and 320 ppm TT diet was initiated to define the MOA for the
TT mouse liver tumorigenic effects. Using phenobarbital as a positive control, the
well-established hepatic tumor modes of action are being investigated including:
cytotoxicity; receptor activation (PPARα, CAR, estrogen, and AhR) and oxidative
stress in TT treated B6C3F1 mice.

811 In Vitro Cross-Species Comparative Analysis of Pharmacokinetic and Molecular Responses Mediated by a Labile AhR Activator

L. A. Murphy1, D. L. Rick1, L. McClymont2, J. McFadden1, M. Barrels1, N. T. Stage2, R. Billington2, R. J. Rasoulpour2 and D. L. Eisenbrandt2. 1. The Dow Chemical Company, Midland, MI; 2. Dose AgroSciences, LLC, Indianapolis, IN.

A novel herbicide in development, XDE-729 methyl, induces rodent liver effects
through an aryl hydrocarbon receptor (AhR)–mediated mode-of-action (MoA).
To further characterize species differences in these effects, mouse, rat, and human in
vitro assays were used to elucidate differences in 1) AhR activation, 2) hydrolysis
rates to non-AhR activator metabolites, and 3) systemic exposure as predicted by a physiologically based pharmacokinetic (PBPK) model. AhR transactivation and binding assays indicated that XDE-729 methyl exhibits weak AhR agonism in mouse cells, no AhR agonism in human cells, and binds weakly to the rat AhR ligand and binding domain. Fresh hepatocytes from CD-1 mouse, Sprague Dawley rat, and human (6 donor livers) were used to compare XDE-729 methyl mediated CYP1A1 induction, a sensitive biomarker for AhR activation. Gene expression analysis indicated that rats are the most sensitive species with regards to XDE-729 methyl mediated CYP1A1 induction with maximal induction at 100 μM of 147.7-fold in rat, versus 37.8-fold in mouse, and 2.9, 4.5, 6.2, 8.7, 10.3, and 34-fold in the six human livers. An in vitro study to determine hydrolisis rates of XDE-729 methyl to the major metabolite, XDE-729 acid, which does not activate AhR, indicated that: 1) the hydrolisis rate in human liver S9 is faster than rodents; 2) hydrolisis in human synthetic gastric fluid is faster than rodents; 3) hydrolisis of XDE-729 methyl is slowest in human whole blood versus rat or mouse. A PBPK model using the in vitro hydrolisis rates predicted similar blood and liver levels of XDE-729 methyl to rat and human after XDE-729 methyl dietary exposure. However, the in vivo mechanistic data indicate that humans are less sensitive than rats based on faster liver hydrolisis rates of XDE-729 methyl and limited AhR activation; therefore, a margin of exposure assessment using the in vivo rat toxicity studies is protective of human health.

PL 812 Developmental Exposure to 2, 3, 7, 8 Tetrachlorodibenzo-p-dioxin (TCDD) Affects Leukemogenesis in Adult Tumor Prone Mice by Interacting with the Thymus Expressed Notch1.

M. D. Laiosa, L. Ahrenhoefter, D. Almagro and P. A. Lakatos. Zilber School of Public Health, UW-Milwaukee, Milwaukee, WI.

Reprogramming of progenitor cells during development can have profound impacts on later life disease susceptibility and is dependent on the interaction between genetic susceptibility of the child, the maternal intrauterine environment, and the timing of exposure to potential insults. In particular, developmental exposure to the genetic susceptibility of the child, the maternal intrauterine environment, and the timing of exposure to potential insults. In particular, developmental exposure to the persistent contaminant TCDD, acting through the aryl hydrocarbon receptor (AHR), is known to cause immunosuppression and is associated with hematological malignancies later in life. For example, at least 50% of all T-cell leukemias are associated with activating mutations in Notch1. Notch1 is a transmembrane receptor (AHR), is known to cause immunosuppression and is associated with hematological malignancies later in life. For example, at least 50% of all T-cell leukemias are associated with activating mutations in Notch1. Notch1 is a transmembrane receptor

PL 814 Long-Term Inhalation Study with Nanomaterials: Pulmonary Effects of Nanoscale CeO2 and BaSO4 in a Rat 28-Day Range Finding Study.

J. Keller1, S. Göriets1, L. Ma-Hock1, V. Strass1, K. Wienth1, B. van Ravenzwaay1, and L. Landsiedel1. 1Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany; 2Product Safety, BASF SE, Ludwigshafen am Rhein, Germany.

Inhalation exposure has been considered as the major route of concern for nanomaterials. Recent published literature reveals a distinct gap of long-term inhalation studies, especially on industrial relevant poorly soluble bio-persistent particles (PSP), including their carcinogenic potential. Nanoscale CeO2 and BaSO4 will be accurately examined in a combined chronic and carcinogenicity inhalation study. Emphasis is placed on the relationship of inflammatory reactions, particle overload and lung tumor formation.

For this purpose, a 28 day range finding study according to the OECD Guideline 412 was performed. Groups of female Wistar rats (5 rats/group) were whole body exposed to 0.5, 5, 25 mg/m3 CeO2 and 50 mg/m3 BaSO4 for 28 days. A concurrent control group was exposed to clean air. The exposure concentrations for CeO2 were selected to achieve lung burden below and above particle overload. Biological effects were examined immediately after last exposure and in a post-exposure period. Examined endpoints consisted of bronchoalveolar lavage, hematology and clinical chemistry, gross necropsy, histological examination of the respiratory tract and cell proliferation of the lung as well as systemic genotoxicity in peripheral blood cells.

Increased lung weights in the high dose test group of CeO2 (25 mg/m3) and significant changes in lung lavage parameters (cell cytology, protein and enzyme levels) in the mid (5 mg/m3) and high dose test group of CeO2 are indicative for early treatment-related findings. Subsequent results of particle related biological effects associated with an appropriate particle lung burden of the range finding study will be presented here. The outcome of the 28 day study will serve as basis for concentration selection for the upcoming long-term inhalation study.

PL 815 Pulmonary Responses in Rats after Inhalation Exposure to Cerium Oxide Nanoparticles Generated by the Harvard Versatile Engineered Nanomaterial Generating System (VENGES).

V. Castranova1, M. Barger1, W. Goldsmith1, D. Frazer1, B. Hines1, W. McKinney1, G. Pyrgiotakis2, S. Gaes2, P. Demokritou1 and J. Ma1. 1HELD, NIOSH, Morgantown, WV; 2Harvard University, Boston, MA.

Recently cerium compounds have been used in a variety of consumer products including semiconductors, UV shields and diesel fuel additives to increase fuel combustion efficiency and decrease diesel soot emissions. Our previous studies have shown that exposure of rats to CeO2 by intratracheal instillation not only induces sustained pulmonary inflammation, but also lung fibrosis. In the present study, the aerosols of CeO2, or CeO2 coated with a nanothin layer of amorphous SiO2 (aSiO2-CeO2) were generated by the Harvard VENGES. The aerosols were diluted with air and delivered to a whole body exposure chamber. Male Sprague Dawley rats were exposed to CeO2 or aSiO2-CeO2 at 2.7 mg/m3, 24h/day for 4 days along with air controls. Animals were sacrificed at 1or 84 days post exposure. Morphometric analysis of the CeO2 and aSiO2-CeO2 particle cores showed diameters of 12.8 and 19.2 nm, respectively. Mobility diameter modes of 82 and 96 nm were measured for the CeO2 and aSiO2-CeO2 aerosols aggregates in the breathing zone of the animals. Alveolar macrophages (AM) were obtained by bronchoalveolar lavage (BAL), and acellular BAL fluids (BALF) were saved for further analysis. At 1 day after CeO2 exposure, but not aSiO2-CeO2, significantly induced PMN infiltration and lactate dehydrogenase activity in the BALF. CeO2, significantly increased collagen

PL 82 Developmental Exposure to 2, 3, 7, 8 Tetrachlorodibenzo-p-dioxin (TCDD) Affects Leukemogenesis in Adult Tumor Prone Mice by Interacting with the Thymus Expressed Notch1.

M. D. Laiosa, L. Ahrenhoefter, D. Almagro and P. A. Lakatos. Zilber School of Public Health, UW-Milwaukee, Milwaukee, WI.

Reprogramming of progenitor cells during development can have profound impacts on later life disease susceptibility and is dependent on the interaction between genetic susceptibility of the child, the maternal intrauterine environment, and the timing of exposure to potential insults. In particular, developmental exposure to the persistent contaminant TCDD, acting through the aryl hydrocarbon receptor (AHR), is known to cause immunosuppression and is associated with hematological malignancies later in life. For example, at least 50% of all T-cell leukemias are associated with activating mutations in Notch1. Notch1 is a transmembrane receptor

PL 851 Critical Evaluation of the Mode of Action of Carcinogenicity for Acrylonitrile.

Acrylonitrile (AN) is an aliphatic nitrile used as a reagent in industrial processes, and is polymerized into injection-molded plastics used to create pipes, automobile dashboards and children's building blocks. Annually, over 1.5 million tons are produced in the U.S. alone, where AN is regulated by EPA as a hazardous air pollutant. Industrial cohort studies suggest a potential association between AN exposure and is polymerized into injection-molded plastics used to create pipes, automobile dashboards and children's building blocks. Annually, over 1.5 million tons are produced in the U.S. alone, where AN is regulated by EPA as a hazardous air pollutant. Industrial cohort studies suggest a potential association between AN exposure and
degradation enzymes, matrix metalloproteases (MMPs)-2 and tissue inhibitor of MMP-1 in the BALF. It may be involved in the modification of the hyaluronic acid matrix. At 84 days post exposure, none of the particle treatment groups induced lung inflammation, cellular injury or alteration of hydroxypyroline content in lung tissues. These results demonstrated that a thin coating of aSiO2 on CeO2 protected lungs from CeO2-induced acute lung toxicity, suggesting that a thin coating of aSiO2 may potentially be used to modify other nanoparticle-induced lung toxicity.

816 Gene Expression Profiling of Human Lung Epithelial Cell Lines Exposed to Manufactured CoO and CeO2 Nanoparticles.

I. Nelson1, S. Verstraellen1, E. Casal1, S. Remy1, P. De Boever1, H. Witters1 and V. Puntes1. 1Flemish Institute for Technological Research (VITO NV), Mol, Belgium; 2Institut Català de Nanotecnologia (ICN), Barcelona, Spain. Sponsor: P. Hoet.

Exposure to manufactured nanoparticles (NPs) via inhalation can cause adverse human health effects. A transcriptomics study was performed to identify molecules and cellular pathways that are specifically triggered by in vitro exposure of the human bronchial BEAS-2B and alveolar A549 epithelial cell lines to 7-nm CoO and 4-nm CeO2 NPs. We aimed to investigate whether 1) the same lung cell type responds similarly to the NPs, 2) alveolar vs. bronchial epithelial cells respond differently to the same NP, and 3) immunological processes are influenced. Non-cytotoxic exposure concentrations of monodispersed NPs were used. Statistically significant changes in gene expression as compared to solvent-treated cells (median fold-change>1.5, p<0.05) were evaluated after 3, 6, 10, and 24 hours. The kinetics of the cell responses induced by the 2 NPs were similar, but different between the 2 cell models. BEAS-2B cells were found to be more sensitive for NP toxicity, as they showed a higher total number of differentially expressed transcripts (DET) at a 10-fold lower NP-concentration than A549 cells. Hierarchical clustering of all DET indicated that the transcriptional responses were quite heterogeneous among the 2 cell types and 2 NPs. Between 1% and 14% DET encoding markers involved in immune system processes were observed in the BEAS-2B and A549 cell lines, resp., with the highest fractions observed in BEAS-2B cells. Most of these genes, i.e., ITGB2, TLR6, PAG1, HLA-DRB3, TIRAP, and HLA-A, are involved in immune signalling or yet unassigned pathways. Nanoparticle exposure mainly induced suppression of immune gene transcription, rather than immune stimulation. The AKT1 gene was identified as a possible generic marker of lung epithelial cell-NP interaction. Our data suggest that CoO- and CeO2-NP give rise to a distinct immunological response in bronchial and alveolar epithelial cells.

817 Mechanistic Insights into the Toxicity of Multivalved Carbon Nanotubes and Cerium Dioxide Nanoparticles in Primary Human Bronchial Epithelial Cells.

S. Hussain1, R. Snyder1, S. M. Anderson1, J. D. Marshburn1, A. B. Rice1, N. J. Walker2 and S. Garantziotis1. 1Clinical Research Program, NIEHS/National Institute of Health (NIH), Durham, NC; 2DNTTP, NIEHS, Research Triangle Park, NC.

Cerium dioxide nanoparticles (CeO2 NPs) and multi-walled carbon nanotubes (MWCNT) are priority materials for urgent risk assessment due to wide spread industrial, consumer product and environmental utilizations. We aimed at deciphering the impact of CeO2 NPs and MWCNTs on primary human bronchial epithelial cells (BEC) following an ex vivo exposure. CeO2 NPs and MWCNT suspensions were thoroughly characterized, including using transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis. Cells were then exposed to nanomaterials for 18 - 24 hours and mechanisms of cell injury were studied. TEM revealed that both CeO2 NPs and MWCNTs are internalized by bronchial epithelial cells and are found either in vesicles or free in the cytoplasm. CeO2 NPs fail to elicit a toxic response in BECs at environmentally relevant doses. However, diesel exhaust particles and CeO2 NPs co-exposure leads to significant increase in cytotoxicity. MWCNT exposure in bronchial epithelial cells leads to a time-dependent decrease in viability, increased reactive oxygen species production, NF-kB (p65)/Rel A phosphorylation and nuclear translocation. Moreover, we observed caspase-1 activation and increased numbers of autophagic vesicles in MWCNT-treated cells as compared to control cells. An increase in p62 levels indicated a block in autophagic turnover rather than autophagic induction in these cells which was associated with cytoskeletal alterations induced by MWCNT. In conclusion we demonstrate that nanomaterials exposure leads to toxic events in primary human bronchial cells. Moreover, we showed that doses of CeO2 NPs and diesel exhaust particles that are innocuous in themselves can result in toxicity when given as a co-exposure.

818 Inflammatory and Free Radical Generation Characteristics of Nano-Cerium Dioxide.

V. C. Minarchick1, D. W. Porter2, N. R. Fitz3, S. S. Leonard1, E. M. Sabolsky1 and J. R. Nirkkoiewicz1. 1Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, WV; 2National Institute for Occupational Safety and Health, Morgantown, WV; 3Mechanical Engineering, West Virginia University, Morgantown, WV.

Nano-cerium dioxide (CeO2) possesses the potential for use in human health by protecting against the deleterious effects of ischemia and radiation. However, the literature is polarized about the effects this compound has on in vivo. Our laboratory has shown that pulmonary nano-CeO2 impairs arteriolar reactivity 24 hrs post-exposure. The mechanisms of this impairment are currently unknown but may be linked to the free radical scavenging or inflammatory properties of this nanoparticle. The aims of this study were to: 1) thoroughly assess the physical and chemical characteristics of the nano-CeO2; 2) examine the antioxidant potential of nano-CeO2 via electron spin resonance (ESR), and 3) assess the pulmonary inflammation in Sprague-Dawley rats 24 hrs post-intratracheal nano-CeO2 instillation. The primary particle size of the nano-CeO2 was calculated to ~3 nm (via transmission electron microscopy and surface area measurements). Dynamic light scattering determined the agglomerate size (~80 nm) and x-ray photoelectronic spectroscopy determined the valence state of the nano-CeO2. The ESR measurements indicated that nano-CeO2 alone did not generate free radicals and in the presence of cells (Raw264.7), nano-CeO2 quenched the free radicals generated by these cells. Finally, bronchial alveolar lavage from rats instilled with 0, 10, 100 or 400 μg of nano-CeO2 revealed an increase in polymorphonuclear leukocytes (0.6±0.2, 0.8±0.3, 7.1±0.9, and 10.3±0.9 per 106 cells), and lactate dehydrogenase (90±12, 100±9, 453±53, and 60±2±2 units/L) but there was no change in albumin. These findings provide evidence that pulmonary inflammation is present after exposure but does not damage to the epithelial/endothelial cellular barrier. Additionally, these nanoparticles are capable of quenching free radicals there by exerting a systemic effect.

NIH-ROI-E015022 and RC1-E018274 (TRN), and NSF-1003907 (VCM)

819 Nanoparticle Distribution and Biopersistence in Rats Is Not Consistently Affected by Particle Size, Shape, Dose, or Dosing Schedule.

R. A. Yoko1,2 and R. C. MacPhail3, J. M. Utrine3, P. Wu4 and E. A. Grulke4. 1Pharmaceutical Sciences, University of Kentucky, Lexington, KY; 2Graduate Center for Toxicology, University of Kentucky, Lexington, KY; 3Plant and Soil Sciences, University of Kentucky, Lexington, KY; 4Chemical and Materials Engineering, University of Kentucky, Lexington, KY; 5Toxicology Assessment Division, US EPA, Research Triangle Park, NC.

Background: Nanoparticle is a diesel fuel additive, an abrasive in integrated circuit fabrication, and is being developed as an antioxidant therapeutic. Objectives: Determine the influence of nanoparticle size, shape, dose, and dosing schedule on its distribution and biopersistence. Methods: Aqueous dispersions of citrate-stabilized cubic or polyhedral ceria and a ceria nanorod (10 x 40 to 600 nm), synthesized and characterized in-house, were iv infused into rats (single infusion of 5 nm @ 11, 56 or 85 mg/kg, 15 nm @ 70 mg/kg, 30 nm @ 6 or 85 mg/kg, 55 nm @ 50 mg/kg, nanorod @ 20 or 50 mg/kg; and 5 nm @ 11 mg/kg for 2 consecutive days). They were terminated 1 h to 90 days later. Controls received vehicle. Multiple organs were weighed and samples collected from multiple sites and blood for cerium determination. Results: The % of the dose was in the liver, spleen and bone marrow; these levels decreased over time only in liver for the 30 nm ceria @ 6 mg/kg, and increased in spleen and bone marrow over time in several cases. There were no consistently significant differences in the % of the dose in the liver or spleen for the different sizes, shapes, doses, or dosing schedules other than tendencies for more nanorod accumulation in the spleen than the 5 nm polyhedral ceria and more nanorod accumulation in the bone marrow than the 5 or 30 nm ceria. Brain nanoceria was low; little to none was in brain parenchyma. Conclusions: Nanoceria, an insoluble metal oxide, was cleared into mononuclear phagocyte system organs in which it persisted for 90 days. Size, shape, dose, and dosing schedule had little effect on its distribution or persistence, suggesting repeated exposure will likely produce accumulation, perhaps reaching a level shown to be toxic after single high-dose administration. Support: US EPA STAR Grant RD-833772.
Metal Oxide Nanoparticles After Spontaneous Activity and Pharmacological Responses in Neuronal Networks Grown on Microelectrode Arrays.

The widespread use of engineered nanoparticles (NP) has increased their exposure potential and made it necessary to assess potential impacts on human health. Previous studies indicate that NPs can enter the brain via the olfactory nerve or by crossing the blood-brain barrier; thus, it is essential that their effects on neuronal function be examined. In the present study, 5 CeO2 (7 to 1388 nm), and 4 TiO2 (6 to 200 nm) NPs were determined to examine their ability to alter network function in primary cultures of cortical neurons grown on 12 well microelectrode array (MEA) plates. NPs were dispersed in Neurobasal A medium containing 20% FBS (dispersant). Between days 14 to 21 in vitro, 1 hr of baseline activity was recorded prior to exposure to NPs. Changes in spontaneous mean firing rate (MFR) relative to the dispersant control were assessed 1, 24, and 48 hrs after exposure to NPs (3-50 μg/ml). Following the 48 hr recording, the response to a pharmacological challenge with the GABA antagonist bicuculline (BIC; 25 μM) was assessed. In all, 3 of 5 CeO2 and 2 of 4 TiO2 NPs decreased MFR below threshold following 1 hr exposure. All 4 TiO2 NPs altered MFR beyond threshold at 24 hrs. At 48 hr, the MFR for all 9 NPs deviated from minimum threshold. BIC increased MFR in dispersant-treated networks; of the 9 NPs tested, 3 TiO2 particles and 1288 nm CeO2 increased the BIC response in MFR, while <7 nm CeO2 suppressed the BIC-induced change in MFR relative to control. Most notably, the results show that NPs can disrupt both spontaneous and GABAA receptor-mediated neuronal activity in vitro. Additional studies are necessary to investigate the mechanisms underlying these observations and understand the implications of NP exposure to neuronal function in vivo. (This abstract does not reflect Agency Policy.)

Systems and Computational Biology as Foundations for Toxicology Research.

L. D. Lehman-McKeeman, Bristol-Myers Squibb Company, Princeton, NJ.

Systems and computational approaches are holistic methods to elucidate and understand the complex interactions among components of a biologic response network and are central to the comprehensive understanding of all biological processes. The field requires the integration of concepts from biology and physiology, computer science and applied mathematics, as well as physics and engineering. Toxicology is also a multidisciplinary science and application of systems and computational approaches can aid in unraveling the dynamic and complex nature of toxic responses. In light of the broad utility of systems biology approaches to toxicology and risk assessment, the goal of this session is to feature eminent scientists who have made seminal contributions and advances in systems and computational biology. The broad areas to be addressed include:

- general concepts of systems biology tools including network mapping and statistical challenges in assuring the validity of network analyses along with the newest tools and approaches for gaining insight into the regulation and function of complex systems;
- applications of systems biology approaches to studying fundamental biologic responses such as cell signaling and kinase networks;
- perspectives on the application of systems networks to biomedical research and particularly for studying disease etiology and prevention;
- computational strategies that inform the prediction of pharmacologic and toxicologic responses including the prediction of adverse drug reactions; and,
- novel applications of machine learning and cell imaging to evaluate subcellular organization and function that inform hypothesis testing and translational details that may be useful in drug development.

Turning Protein Networks into Gene Ontologies.

T. Ideker, Department of Medicine, University of California San Diego, La Jolla, CA.

Ontologies have been very useful for capturing knowledge as a hierarchy of concepts and their interrelationships. In biology, a prime challenge has been to develop ontologies of gene function given only partial biological knowledge and incoherence in how this knowledge is curated by experts. I will present a method by which large networks of gene and protein interaction, as are being mapped systematically for many species, can be transformed to assemble an ontology with equivalent coverage and power to the manually-curated Gene Ontology (GO). The network-extracted ontology contains 4,123 biologic concepts and 5,766 relations, capturing the majority of known cellular components as well as many additional concepts, triggering subsequent updates to GO. Using genetic interaction profiling we provide further support for novel concepts related to protein trafficking, including a link between Nnf2 and YEL043W. This work enables a shift from using ontologies to evaluate data to using data to construct and evaluate ontologies.
Image-Derived Models of Subcellular Organization and Perturbation.

Because of their complexity, cutting-edge machine-learning methods will be critical for building systems models of cell and tissue behavior and for future drug development. Such models require accurate information about the subcellular distributions of proteins, RNAs and other macromolecules in order to be able to capture and simulate their spatiotemporal dynamics. Unfortunately, information with sufficient resolution and for different cell and tissue types is currently very limited. Microscope images provide the best source of this information, and new tools are being developed to build models of cell organization directly from such images. The number of possible experiments needed is prohibitive, but active machine learning methods can be used to help choose which experiments are needed in order to construct sufficient models of how cell organization changes with cell type and with disease. In order to use these models for drug development, information on how thousands of cell components respond to millions of potential therapeutics is also needed in order to minimize toxicity. Active-learning methods can also guide experimentation to overcome the dimensionality of this problem.

From Inhaled Particles to Cardiovascular Disease and Toxicity: Evidence from Studies in Volunteers, Experimental Animals, and Cell-Based Systems.

E. R. Cassee1 and H. Kipen2. 1Centre for Environmental Health Research (MGO), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands; 2Environmental & Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ.

The adverse effects of air pollution on cardiovascular health have been established in a series of major observational studies. Even brief exposures to air pollution have been associated with marked increases in cardiovascular morbidity and deaths from myocardial ischemia, arrhythmia, and heart failure. The breadth, strength, and consistency of the evidence provide a compelling argument that air pollution, especially traffic-derived pollution, causes cardiovascular disease. However, these observational data are limited by imprecision in the measurement of pollution exposure, and the potential for environmental and social factors to confound these apparent associations. For a causal association to have scientific credence, a clear mechanism must be defined. What are the potential pathways through which air pollution mediates these adverse cardiovascular effects and diseases? And are the effects caused by the nano-sized particles? This session will focus on the underlying biological mechanisms of complex particle mixtures.

Acute Increases in Exhaled Breath Condensate No Metabolites Suggests Oxidative Stress As a Mechanism for the Health Effects of Traffic-Related Pollutants.

H. Kipen1, R. J. Laumber1 and A. J. Grow2. 1Environmental & Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ; 2School of Pharmacy, Rutgers University, Newark, NJ.

Explication of a mechanism lends substantial scientific credence to epidemiologic associations. For example, there are strong epidemiologic associations between increases in air pollution, specifically traffic-related air pollution, and adverse cardiopulmonary outcomes, but our understanding of explanatory mechanistic pathways is incomplete. What are the potential pathways through which air pollution mediates these adverse cardiopulmonary effects? This presentation will focus on some of the underlying biological mechanisms. One specifically hypothesized mechanism is acutely increased oxidative stress/inflammation in the airways, as reflected in exhaled breath condensate (EBC) nitrite and nitrate in human subjects. Nitric oxide (NO) is formed in the lung epithelium from activities of all three NO synthases, and may then diffuse into the airway lining fluid where it is subject to oxidation to nitrite and nitrate by multiple pathways. Data showing an increase in exhaled breath condensate nitrite and nitrate following either controlled diesel exhaust inhalation or acute highway traffic exposure will be reviewed. Multiple oxidative pathways for the acute increases in EBC nitrite will be discussed, along with implications for generation of cardiopulmonary effects.

Air Pollution Is Associated with Chronic Progression of Cardiovascular Disease.

A. K. Lund. Lovelace Respiratory Research Institute, Albuquerque, NM.

Traffic-generated pollutant-exposures appear to have a strong correlation to these adverse vascular outcomes, as shown through roadway proximity studies. Controlled toxicological studies highlight potential interactions between vehicle-source emissions and upregulation of signaling molecules associated with progression of atherosclerosis. Mechanistically, a role for both innate and adaptive immune responses is emerging, with important recent findings demonstrating that receptors such as the lectin-like oxidized LDL receptor (LOX)-1 may play a role in communicating airway exposures to cardiovascular outcomes. Using a mixed vehicle emission (MVE; gasoline and diesel engine, 100 PM μg/m3) model we show that atherosclerotic Apolipoprotein E null (ApoE-/-) mice exhibited increased oxidized LDL, associated with proinflammatory responses and lipid accumulation, as well increased vascular LOX-1 expression, when exposed by inhalation 6 h/d for 7 days, compared to filtered air-exposed controls. Furthermore, we observe a significant upregulation of vascular factors downstream of the LOX-1 receptor that are associated with atherogenic plaque growth and rupture, including reactive oxygen species, endothelin (ET)-1 and matrix metalloproteinase (MMP)-9 in MVE-exposed Apo E-/- mice, expression of which are attenuated with anti-LOX-1 antibody treatment. These data indicate that vascular effects of inhalation exposure to traffic-generated pollutants, resulting in progression of atherosclerosis and onset of clinical cardiovascular events, may be mediated through scavenger receptor ligand binding, internalization, and downstream signaling pathways.

Effects on the Vascular System of Source-Specific Particles.

M. E. Gerlofs-Nijland1, E. R. Cassee1,2, M. Steenhof1,2, M. Strak1,2 and N. A. Janssen1. 1Centre for Environmental Health Research (MGO), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands; 2Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands.

Oxidative potential as a metric to predict source specific cardiovascular toxicity? Presentation Description: Much attention has been paid to the role of tail pipe emissions on pulmonary and cardiovascular toxicity, but less so to sources like brakes as well. Some sources have shown to have a much higher oxidative potential compared to diesel soot. Oxidative stress has been suggested as a key aspect leading to cardiovascular toxicity and worsening of diseases. It is therefore very important to measure oxidative stress to check on the health status. A simple

Health Effects from Traffic Particles and Noise in Road Workers.

M. Riediker1, R. Meier1, A. Ghisi2, E. R. Cassee2 and W. Casco1. 1Department Workers' Health, Institute for Occupational Health Sciences, Lausanne, Switzerland; 2Centre for Environmental Health Research (MGO), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands; 3Environmental Public Health Division, US EPA, Research Triangle Park, NC; 4Human Studies Division, US EPA, Research Triangle Park, NC.

Fine particular matter (PM2.5), gaseous co-pollutant, and noise exposure were assessed in panel of workers for almost most of their professional activities on or near roads. To quantify workers’ exposure and related short term health effects, until now, we observed 13 road maintenance workers, each over 5 non-consecutive work days. We used a methodology based on personal and work site measurements to assess the workers’ exposure to particles, noise and co-pollutants. For examination of personal exposures during and after work, the workers were equipped with a personal particulate monitor (PM2.5) and a noise dosimeter. Additional exposure parameters measured at the work site provided a detailed evaluation of exposure during work. These included ultrafine particle counts, measurement of carbon monoxide, nitrogen dioxide and ozone as well as PM sampling for compositional analysis. Cardiovascular health endpoints were assessed before, during and 15 hours post work shift. These included a continuous ECG from before until 15 hours post work, measurement of blood pressure and lung function before and 15 hours post work as well as measurement of exhaled nitric oxide and blood markers 15 hours post work shift. Noise levels are generally high with extreme levels during certain activities. Mean work shift PM2.5 Mass concentrations ranged from 17.0 μg/m3 (mean 10.8 μg/m3 (100 μg/m3) and UFP counts were between 15,338 particles/cm3 and 408,518 particles/cm3 (70,721 particles/cm3). Results suggest that PM2.5 induces cardiovascular effects and inflammation. PM2.5 and noise were only weakly correlated, allowing further assessment of these associations.
metric for oxidative stress in vivo could be the oxidative potential of particles indicating the possibility of PM to produce oxygen radicals and cause damage in vivo. The focus of this presentation will be on the oxidative potential of PM from different sources as a measure to predict source-specific cardiovascular toxicity in vivo. Systemic effects in rats exposed for 4-weeks to diesel engine exhaust occurred including decreased numbers of white blood cells and reduced von Willebrand factor in the circulation. In addition, lung tissue factor activity is reduced in conjunction with reduced lung tissue thrombigen generation. We have also shown in studies in which volunteers were exposed to air pollution at various locations dominated by different sources of emission that organic carbon, nitrate, sulfate, and soot were most consistently linked with different biomarkers (e.g. high-sensitivity C-reactive protein, fibrinogen, von Willebrand factor and plasminogen activator inhibitor-1) of acute cardiovascular risk. Associations for PM mass concentrations and OP were less consistent, while other measured components of the air pollution

The detrimental effects of air pollution on the cardiovascular system are now well-established, however, the mechanisms underlying these effects remain to be determined. Using diesel exhaust as an example of a common air pollutant, rich in combustion-derived nanoparticles, this presentation will give an overview of the major effects of diesel exhaust particulate (DEP) that provide insight into potential mechanisms for these effects, including oxidative stress, endothelial dysfunction, inflammation, particle translocation, as well as considering with constituents of DEP may be responsible for these harmful effects.

832 The Dynamics of Neuroinflammation and Inflammatory Cell Responses in Neurologic Disease.

G. J. Harry1 and C. P. Curran1. 1NTP Laboratory, NIEHS, Research Triangle Park, NC; 2Northern Kentucky University, Highland Heights, KY.

An increasing body of evidence indicates that neuroinflammation and activation of immune cells within the nervous system are associated with neurodegenerative disease, neurodevelopmental disorders, and potentially in reaction to environmental exposures. However, it is also increasingly obvious that these responses may be beneficial or detrimental, and discriminating between these has only recently been addressed. Understanding the process by which these responses are triggered and the spatiotemporal dynamics of the response is critical to developing a strategy for translating neuroinflammatory and immune response to effective prevention or treatment of neurologic disease/injury. Three well-known neurotoxins: trimethyltin, manganese, and mercury will be used as chemical probes to explore differences in the timing of inflammatory effects and consequences in the brain. We will conclude by discussing approaches to manipulate the lesion microenvironment and/or brain macrophage such that inflammation favors tissue repair in the spinal cord.

833 Microglia Heterogeneity in Neuroinflammation and Neurotoxicity.

G. J. Harry. NTP Laboratory, NIEHS, Research Triangle Park, NC. Sponsor: C. Curran.

Microglia cells are the resident immune cells of the brain; however, they are also critical neural specific cells with multiple roles. The response of microglia has been associated with environmental PM exposures and is present in diagnosed neurodegenerative disease. In many cases, what is considered a microglia response is often a brain macrophage response that can be derived from both resident microglia and infiltrating blood-borne monocytes. In order to better understand the resident microglia response, data will be presented from a delayed neuronal death model of traumatic brain injury which forms highly reactive peroxynitrite anion (ONOO−) upon combining with superoxide, resulting in electrophilic nitration of cellular proteins that damages neurons. Peroxynitrite-mediated nitrosative stress is also implicated in a number of neurologic disorders, including Alzheimer’s and Parkinson’s diseases. Inflammatory changes in glial cells may therefore be an important link between neurotoxic injury and persistent neurological dysfunction during aging.

834 Neuroinflammation and Developmental Vulnerability to Manganese.

R. B. Tullner1, 2. 1Center for Environmental Medicine, Colorado State University, Fort Collins, CO; Toxicology Section, Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO.

There is increasing evidence that activation of microglia and astrocytes during development can influence susceptibility to neurodegeneration later in life. Environmental insults such as infectious agents, pesticides, and heavy metals have all been implicated in neuronal injury leading to increased activation of glial cells and development of chronic neuroinflammation. Exposure to elevated levels of the essential element manganese (Mn) causes a spectrum of neurochemical and neuropathologic changes that can culminate in irreversible neuronal injury in subcortical and cortical structures. Children are more vulnerable to Mn than adults and recent epidemiological evidence links high Mn in drinking water to cognitive and behavioral impairment. Mn neurotoxicity is associated with astrogliosis in the basal ganglia and studies conducted in our laboratory and others suggest that glial-derived inflammatory cytokines and nitric oxide (NO) influence the progression of neuronal injury. Increased expression of INOS/NOS2 by activated glial cells in response to Mn results in nitrosative stress throughout the basal ganglia and enhanced apoptosis within selected populations of neurons in the globus pallidus and striatum. NOS2 is exclusively expressed in glia and produces high levels of NO, which forms highly reactive peroxynitrite anion (ONOO−) upon combining with superoxide, resulting in electrophilic nitration of cellular proteins that damages neurons. Peroxynitrite-mediated nitrosative stress is also implicated in a number of neurologic disorders, including Alzheimer’s and Parkinson’s diseases. Inflammatory changes in glial cells may therefore be an important link between neurotoxic injury and persistent neurological dysfunction during aging.

835 Spontaneous and Mercury-Induced Antibodies to Brain Antigens Affect Fetal Brain Development.

D. A. Lawrence1, Y. Zhang2, Y. Heo2 and D. Gao1. Immunology, Wadsworth Center, Albany, NY; 2Occupational Health, Catholic University of Daegu, Daegu, Republic of Korea.

BTBR mice spontaneously develop a high level of serum IgG of which a proportion are antibodies (Abs) to brain antigens. These Abs enter the brain and are associated with expression of inflammatory cytokines, which are suggested to be related to presence of activated microglia and mast cells. The neurodevelopmental effects of BTBR mice are posited to be autoimmune due to elevated presence of activated CD4+ T cells driving Ab production, and the offspring have behaviors that resemble autism. IgG from BTBR mice intravenously injected into B6 pregnant dams caused offspring to have lowered social interactions; likewise, B6 embryos that are born from BTBR dams have lowered sociability. Changes in mitochondrial functions can alter these behavioral outcomes of BTBR mice, but the mechanisms remain unknown. Abs causing behavioral deficits is not a new finding, in that Abs induce neuropsychiatric syndromes in lupus-prone mice. Additionally, certain strains such as A/SW, which are sensitive to Hg-induced autoimmune responses, generate autoantibodies to brain antigens upon developmental exposure to HgCl2 and have behavioral deficits as adults, and inflammatory cytokines in multiple brain regions are associated with the behavior changes; however, the HgCl2-induced effects are dependent on the genetics of the strain and sex of the developmentally exposed mice.

836 Manipulating Microglia and Macrophages to Promote Repair of Injured Spinal Cord.

P. G. Popovich. Department of Neuroscience, The Ohio State University, Columbus, OH. Sponsor: C. Curran.

Following traumatic or ischemic/reperfusion injury to spinal cord or brain, macrophages derived from resident microglia and infiltrating blood monocytes accumulate in the affected area. Collectively, these cells exert diverse and conflicting effects on neurons and glia. Indeed, microglia/macrophages can cause neuronal cell death, axonal injury and demyelination but can also promote neuron survival, axon regeneration, remyelination and revascularization. Over the past few years, we have
used a number of strategies to manipulate resident and recruited macrophages in an effort to understand their seemingly paradoxical functions, specifically the context of rodent models of traumatic spinal cord injury (SCI). Data will be presented showing that SCelecits CNS macrophages with a distinct molecular phenotype, one that simultaneously favors cell killing and axon growth/regeneration. Newer data also will be presented to show that it is possible to manipulate the lesion microenvironment and/or the CNS macrophages such that the natural course of inflammation progresses to favor tissue repair without concomitant cell killing. In this context, preliminary applications of therapeutic gene transfer and bioengineering will be discussed. Supported by NIH-NINDS and The Craig H. Neilsen Foundation.

W 837 Advances in Carcinogenic Risk Assessment of Low-Level Genotoxic Impurities in Pharmaceuticals.

W. W. Ku¹ and D. Jacobson Kram². ¹Nonclinical Drug Safety US, Boehringer Ingelheim Inc., Ridgefield, CT; ²Center for Drug Evaluation and Research, US FDA, Silver Spring, MD.

Pharmaceutical syntheses involve the use of reactive starting materials, intermediates, and reagents, some of which are known or potential genotoxicants and carcinogens. Therefore, genotoxic and potentially carcinogenic impurities may appear in the final drug product. Risk assessment approaches have focused on defining impurity levels that pose acceptable risk over a patient’s duration of drug treatment. Over the past decade, regulatory guidelines (EMA, US FDA) have been introduced. Drug-associated genotoxic impurities became an ICH guideline topic (M7) in 2009, and an Expert Working Group is currently developing a harmonized guideline. The ICH M7 effort presents an opportunity to review existing guidelines, evaluate new information and experiences since their introduction, and improve the integration of safety and quality aspects for detection, risk management, and control. This workshop will provide a historical overview and introduce newer concepts to SOT members for discussion on several approaches being considered in M7. The workshop will cover the following topics along with case studies: (1) a brief overview of regulatory risk assessment approaches developed over the past decade and introduce current M7 concepts being considered; (2) review current in silico QSAR and genotoxicity testing approaches to predict or identify hazards and qualify impurity risk; (3) introduce advances in the framework and rationale for applying the known lifetime acceptable risk limits during clinical development and marketing; (4) highlight differences in chemical space between pharmaceutical synthetic intermediates or impurities and that used to derive the original lifetime threshold of toxicological concern (TTC) limit, and its potential implications for risk characterization; and (5) review approaches for addressing risk of multiple genotoxic impurities in a drug product.

W 838 Genotoxic Impurities—Regulatory Advances in Risk Assessment Approaches.

P. Kasper. Federal Institute for Drugs and Medical Devices, Bonn, Germany. Sponsor: W. Ku.

The control of impurities in drug substances/products is regulated by internationally harmonized guidelines (ICH Q3A/B). However, these documents lack any specific instructions on how to treat impurities with a genotoxic potential. This has led to considerable differences between regulatory authorities on what levels of daily intake of genotoxic impurities are acceptable and prompted the European Medicines Agency (EMA) to release a “Guideline on the Limits of Genotoxic Impurities” in 2007 followed by publication of a draft guidance by CDER/FDA in 2009. Several basic principles are common to both documents and are currently under discussion for further development in the ICH process.

Genotoxic impurities are defined as compounds that are DNA-reactive and have the potential to directly cause DNA damage when present at low levels leading to mutations and therefore, potentially causing cancer. Consequently, in silico predic-tion of DNA reactivity/mutagenicity and Ames mutagenicity testing are basically the recommended approaches for hazard identification. Since risk assessment based on such limited set of data is not feasible a generic “Threshold of Toxicological Concern” (TTC)-value of 1.5 μg/day corresponding to a 10-5 lifetime risk of cancer is used as a pragmatic approach for control of impurities that are Ames-positive. Derived from linear extrapolation of rodent potency data from over 700 carcinogens and based on an accumulation of worst-case assumptions the TTC value is a very conservative and therefore sufficiently safe limit. Possible deviations from the default TTC approach are currently under discussion and include cases when more extensive and appropriate data for a proper assessment of potential risks are available, e.g., data from carcinogenicity studies with the impurity or mechanistic data providing evidence for a threshold. Also specific clinical aspects may justify an ad-justment of accepted intake levels of mutagenic impurities, such as for instance treatment of life-threatening condition, short life expectancy of patients, or indications with less-than-lifetime exposure.

For many years, pharmaceutical companies have been using in silico methods as a primary tool for the identification of mutagenic impurities or degradants in drug substances or products as recommended in the European Medicines Agency (EMA) guidance, as well as the CDER/FDA draft guidance. Although neither guideline provides specific recommendations on the conduct of in silico assessments, a recently published survey of industry practice showed that the in silico methods employed by 8 companies are highly similar. More importantly, the survey showed that in silico analysis alone or in conjunction with an expert evaluation provides a high degree of confidence that an impurity that is predicted non-mutagenic will produce a negative result in the Ames assay. Despite the encouraging survey results, there remain specific points of concern which are currently being addressed by a European pharmaceutical industry (EFPIA) working group in collaboration with regulators. The working group intends to provide recommendations on the conduct of (Q)SAR assessments, which, if followed, would be considered sufficiently rigorous methodology. Although many pharmaceutical impurities can be confidently categorized as mutagenic or non-mutagenic based on in silico methodology alone, there are instances in which biological testing is necessary. The Ames assay is considered to be the most practical and appropriate test for the identification of directly DNA reactive substances that warrant TTC control. In most cases the outcome of this assay is sufficient to define and implement appropriate impurity control measures. However, on occasion (e.g. Ames positive degradant that can’t be controlled to TTC limits) additional testing is necessary to further address the biological relevance and risk of Ames positive results. Case studies will be used to illustrate potential scenarios warranting additional testing and factors to take into consideration when deciding what studies to conduct.

W 840 Less Than Lifetime (LTL) Carcinogenic Risk Limits for Mutagenic Impurities during Clinical Development and in Marketed Products.

Mueller et al have provided in 2006 a framework for the application of the threshold of toxicological concern concept to pharmaceuticals with introduction of a “staged TTC”. In this staged approach, acceptable daily intake levels were defined for the clinical development phase of pharmaceuticals, i.e. for up to 1 year intake. In the meantime, this “staged concept” was also introduced into regulatory framework in the existing EU regulatory process on genotoxic impurities. In the ICH M7 group, the principle has been expanded based on the application of Haber’s Rule relating concentration (or dose) and duration of exposure. According to a recent review by Felter et al. (2011), the majority of carcinogens are more potent in rodents if the same cumulative dose is given over a shorter period (e.g. three months) than a longer one (e.g. two years). Although the number of compounds tested in such scenarios is low and it is unclear if these data can be extrapolated to very low exposure scenarios, it was proposed to adjust the acceptable daily exposure to mutagenic carcinogens for shorter durations with an extra uncertainty factor in comparison to longer durations of intake. On the other hand, it was recognized that medication treatment durations are often less than lifetime and depend on many factors (indication, nature of disease being treated and late onset of disease in life). Hence, it appeared unreasonable to propose the lifetime TTC or 1.5 μg/day for mutagenic carcinogens in most marketed pharmaceuticals. In adopting this consideration, it is currently proposed to place clinical trials of longer duration (>1 year) and medical intervention schemes of shorter than 10 years into one category of “up to 10 years” with the assignment of an adjusted TTC of 10μg/day. The presentation will include examples for such clinical trials and pharmaceuticals in use.

W 841 Many Potential Mutagens Used in Pharmaceutical Syntheses Are in Less Potent Classes Than the Carcinogens Used to Derive the TTC, Justifying Higher Levels without Increasing Risk.

The TTC for mutagenic impurities was derived using several worst-case assumptions, and was based on the more potent carcinogens in the public databases. The TTC is needed only when insufficient information exists to estimate safe levels of a mutagen. Most reactive chemicals used in pharmaceutical syntheses are not in the categories of potent carcinogens on which the TTC was based (Delaney, Reg.Tox).
Pharm 49, 107-24, 2007), confirmed here by data from 12 companies and 602 "alerting" structures. Thus, for many synthetic intermediates with structural alerts for mutagenicity, higher daily intakes are appropriate without increased risk. Especially in early stages of pharmaceutical development the risks from exposure to potentially mutagenic impurities are negligible without imposing the default TTC for each. The most common classes are alkylating agents and aromatic amines. For alkyl halides, the relation between the complexity of the structure and carcinogenic potency is well established, (Brito and Muller, in Teasdale, "Genotoxic Impurities", Wiley 2010) and justifies an acceptable daily intake for mono-functional alkyl halides 10 times the default TTC. Aromatic amines have a wide range of carcinogenic potencies, and we lack sufficient knowledge to define the likely potency of each new one. However the structural characteristics of the most potent carcinogens are well defined, so one can rule out that a new aromatic amine is a highly potent one. The "cohort of concern" (COC) was highlighted as so potent that even the default TTC did not provide sufficient control of exposure. The COC comprises aflatoxins and N-nitroso compounds, not usually relevant to pharmaceuticals, but also tosy structures. The known alkyl azoxy compounds are thought to be mutagenic by forming carboxylation and alkylating DNA. In pharmaceutical syntheses, aromatic azoxy groups are used, which cannot form the alkyl carboxylation, so are not in the highly potent class and need not be excluded from the TTC/ADI approach.

842 Addressing Risks of the Potential Presence of Multiple Genotoxic/Carcinogenic Impurities in Pharmaceuticals.

There has been an evolution of risk assessment and regulatory guidance for multiple genotoxic/carcinogenic impurities in pharmaceuticals. While experiences from other relevant industries have been adapted to pharmaceutical impurities (e.g. food, environmental), there are also unique aspects applied to pharmaceutical process development. Scientific discussions have included application of a probabilistic risk assessment to low level genotoxic substances, impacts of structurally/mechanistic similar impurities versus non-similar impurities, and the risk of synergism/potentiating. The science has shaped regulatory guidance to ensure product quality and patient safety throughout development and in registered use. The European Medicines Agency (EMA) and US Food and Drug Administration (FDA) have developed guidelines (USFDA is in draft) which include control of multiple genotoxic/carcinogenic impurities. The International Conference on Harmonization (ICH) is developing guidance (i.e., ICH M7) on DNA reactive (mutagenic) impurities. According to the ICH M7 concept paper, one of the issues to resolve is multiple impurities. Industry is developing strategies to implement these regulatory guidelines. In conclusion, there are many challenges and issues to resolve, but the advancement of risk assessment for multiple genotoxic/carcinogenic impurities will best occur through science and regulatory guidance.

843 Health Risks of Sodium (Salt) Intake: Too Much or Too Little?

M. G. Soni¹ and P. M. Bolger. ¹ Soni & Associates Inc, Vero Beach, FL; ²Charles Street, Annapolis, MD.

Public health advocates have been concerned for decades that Americans consume unhealthy amounts of dietary sodium. Recently, the Institute of Medicine (IOM) recommended a Tolerable Upper Intake Level of 2,300 mg sodium/day and an Adequate Intake of just 1,500 mg/day, based on risks of adverse health effects, particularly hypertension. However, the average sodium intake is estimated to be 3,500 mg/day. The risk for morbidity and mortality due to excessive or insufficient salt intake varies because of biochemical individuality. The available evidence from a wide variety of clinical trials shows a direct relation between salt intake and blood pressure. A recent meta-analysis suggests that salt reduction tended to increase levels of hormones (renin, aldosterone), cholesterol, and triglycerides, which are all thought to be risk factors for heart disease. It has been asserted that while the risks of consuming too much salt are real, the risks have been exaggerated for the general population, or that the studies done on the consumption of salt can be interpreted in many different ways. There have also been recent scientific debates upon whether “excess” sodium in our diet has any adverse effect at all on healthy individuals and whether the last 50 years of scientific research that strongly correlates salt intake and hypertension might just be a well intentioned misinterpretation of the scientific data. In an effort to broaden the understanding of the aforementioned issues pertaining to salt intake and risk, the following key aspects will be addressed in this session: (1) Health risks associated with sodium intake; (2) Should salt’s GRAS status be modified? (3) Any unintended consequences of salt reduction. (4) Is there a sufficient evidence for salt reduction?

844 Sodium Homeostasis and Cardiovascular Health.

P. M. Bolger. Charles Street, Annapolis, MD.

Under normal circumstances the mammalian physiological system is a highly complex and exceedingly efficient homeostatic system for monitoring and regulating extracellular fluid and many other events. The cardiovascular system is an example of this. The key sodium dependent mechanisms with particular emphasis on those that involve renal function also need attention. An integrative approach will be needed to demonstrate the multi-factorial and organ system functions that are involved in the overall systemic homeostatic system to regulate sodium status.

845 Strategies to Reduce Sodium Intake in the United States.

J. Henney. College of Medicine, University of Cincinnati, Cincinnati, OH. Sponsor: M. Soni.

Reducing sodium intake is a critical public health need for all Americans. In spite of nearly 40 years of voluntary effort to reduce sodium intake, Americans average daily intake of more than 3,400 mg, of sodium (approx. 1.5 teaspoons) exceeds the existing maximum intake level 2,300 mg/d (1 teaspoon of salt) established by the 2005 Dietary Guidelines for Americans. High sodium intake puts the population-young and old, male and female, and all ethnic groups at risk for hypertension, and subsequently cardiovascular and/or renal events. The study committee convened by the Institute of Medicine consulted many sources and was provided additional information and insight at its public meeting and through the committee’s website. The committees recommendations were in three categories: Primary; Supporting and Interim. Primary Recommended Strategy: A coordinated approach to set mandatory standards for safe levels of sodium in food using existing FDA authorities to modify the Generally Recognized as Safe (GRAS) status of salt and other sodium containing compounds. Supporting strategies: A nationally organized campaign to educate the public about risks, healthy food choices and support for government, industry and consumer effort; Update nutrition labeling; Training for restaurant/food service operations; Purchasing specifications by large food purchasers; Enhanced monitoring; Research. Interim strategies: Food manufacturers and restaurant/service operations voluntarily accelerate and broaden efforts; The food industry, government, professional and public health partners should work together to promote voluntary collaborations to reduce sodium in foods. The specific recommendations and rationale for each strategy will be discussed along with the actions taken since the release of the report.

846 The Effects of Sodium Reduction on Blood Pressure, Hormones, Lipids, and Mortality.

N. Graudal. Department of Internal Medicine/Infection Medicine/Rheumatology, Copenhagen University Hospital, Copenhagen, Denmark. Sponsor: M. Soni.

The average normal salt (NaCl) intake in the world is about 9 g per day. The result of a meta-analysis of 167 intervention studies randomly allocating participants to a low salt diet or a normal salt diet indicates that the effect of a reduced salt intake of about 6 g on blood pressure is less than 1 mmHg in people with normal blood pressure and about 3 mmHg in people with hypertension. These effects were contrasted by significant increases in variables associated with a poor survival prognosis, such as renin, aldosterone, cholesterol, and triglycerides. It is therefore not obvious that sodium reduction leads to health benefits. In agreement with this, population studies generally cannot confirm that people on low sodium diets have less morbidity or mortality than people on normal sodium diets, on the contrary these studies show a trend towards increased all cause mortality among individuals on low sodium diet.

847 Unintended Consequences of Salt Reduction.

While there is considerable clinical evidence to indicate that substantial reductions in dietary sodium intake may result in small digit reductions in systolic blood pressure for salt-sensitive individuals, further evidence reveals that these same reductions may cause a significant increase in morbidity and mortality across a broad...
range of the population. It is generally agreed that most of these negative health outcomes are a consequence of the increase in renin-angiotensin-aldosterone system activity that accompanies reductions in salt consumption. Other negative health outcomes may result from the changes in nutrient consumption patterns that accompany recommended salt reductions. The ideal level of sodium consumption for individuals will result from a rational balance of positive and negative health outcomes. As new research findings continue to emerge and concern over potential unintended consequences of restricting sodium intake grows, it is imperative to ensure that nutrition policies reflect the most current, robust and scientifically sound research.

The Importance of Population-Wide Sodium Reduction As a Means to Prevent Cardiovascular Disease and Stroke.

D. Arnett. Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL. Sponsor: M. Soni.

High blood pressure is one of the leading causes of preventable mortality and morbidity, worldwide. National health agencies and professional societies around the world recommend reduction in dietary sodium as a means to lower blood pressure and preventing CVD. The American Heart Association (AHA) recommends limiting daily sodium intake to less than 1,500 mg/d for all Americans. For the estimated one in three who will develop high blood pressure in their lifetime, a high-sodium diet may be to blame. Many consumers do not realize that sodium is ubiquitous in the environment and found in many unsuspecting foods at levels that are often unrecognized. Consequently, consumers continue to purchase foods that are relatively high in sodium and increase their risk of hypertension and related health risks. There is overwhelming scientific evidence that lowering sodium intake improves cardiovascular outcomes. Even a modest reduction in sodium intake is likely to result in substantial health benefits, especially when it is achieved in the general population. The AHA has undertaken an organizational approach to sodium reduction in the United States. The health risks associated with consuming too much sodium in the diet are clear and cannot be ignored.

Unique Challenges in Biologic Drug Development: Separating Mechanism of Action from Mechanism of Toxicity.

L. Andrews and M. Todd. Genzyme, Framingham, MA; Pfizer, La Jolla, CA.

A common safety concern of biotherapeutic agents is toxicity associated with mechanism of action (MoA). The term MoA refers to the specific biochemical interaction through which a drug substance produces its pharmacological effect. This workshop will address areas of significant impact to biotherapeutic drug development where there is a known dissociation of MoA and MoT in toxicity studies and/or in translation to the clinic. Most nonclinical toxicity studies are conducted in healthy animals which may not predict the effects of a biotherapeutic when used in the patients with specific diseases. The latest paradigms for using animal disease models, including study conduct and interpretation, will be explored. For many years, the likelihood of off-target toxicity was considered to be very low for most biotherapeutics. Data will be presented highlighting that off-target activity, particularly hematoxicity, can occur and may be more prevalent than previously thought. Effort has also been put into better understanding the development and impact of antidrug antibodies (ADA) in nonclinical toxicity studies and their relevance to clinical ADA. In addition to impacting biotherapeutic drug exposure, ADA may also cause a variety of non-MoA associated toxicities including acute hypersensitivity, immune complex disease, and neutralization of the endogenous target. The incidence of ADA-associated toxicities has been increasing and the current understanding of these toxicities and their clinical relevance will be discussed.

Introduction to the Mechanism of Action/Mechanism of Toxicity Challenges of Biotherapeutics.

Toxieties associated with biologics are often attributed to the mode of action (MoA). Mechanisms of toxicity (MoT) can be caused by “exaggerated pharmacology” which can occur as a direct effect of the biotherapeutic on the intended cell type or biochemical pathway, or as an indirect effect on unintended cell types or pathways. The extent of the pharmacologic response can be influenced by numerous factors including, but not limited to, biophysical properties of the biotherapeutic agent such as binding potency, effector function and immune stimulatory properties, drug dose and/or duration, tissue distribution of the target, perturbation of signaling networks and disease state. Since the expected pharmacologic mode of action of biotherapeutics is usually understood, many of the manifestations of toxicities may be predicted using relevant test systems. To this end, specialized pharmacologic endpoints are needed in addition to the conventional nonclinical safety assays for toxicity testing in animals. Important considerations to evaluate MoA/MoT include the use of alternative animal models, safety biomarkers, drug exposure and immunomodularity, impact of drug delivery routes and modalities, novel drug formats and the impact of process changes and engineering on drug safety. Challenges for nonclinical toxicity testing of biotherapeutics include how and when to incorporate “fit-for-purpose” investigational approaches, and importantly how to extrapolate in vitro and in vivo data to the clinical setting.

Use of Animal Models of Disease in Safety Assessments of Biotherapeutics—Is This the Future?

J. Cavagnaro. Access Bio, Boyce, VA.

A guiding principle in the design of preclinical safety studies is to parallel as closely as possible the clinical conditions of use and exposure. In accordance with this principle, much attention is paid to the dosing regimen with respect to route of administration, duration of treatment and dosing interval. With respect to mirroring the characteristics of the patient population to be exposed normal animals appropriately parallel the typical Phase I population in normal subjects (healthy volunteers). Where toxicologists deviate from the principle of correlation of clinical conditions of exposure is in the evaluation of potential toxicity in patients in the later safety and activity/efficacy clinical trials. The deviation from this principle relates primarily to the physiologic state of the clinical populations involved as they are no longer healthy volunteers but rather individuals who either have a specific disease and/or are very ill. Therefore a relevant question for the toxicologist to ask is whether toxicology studies in “normal animals” adequately assess the risks in “sick people”. The answer to this question has even greater significance for biopharmaceuticals when first in human (FIH) Phase I trials are conducted in subjects with disease for ethical and practical reasons. Thus animal models of disease are being used not only to establish preclinical POC but also to assess exaggerated pharmacology and toxicity in an attempt to improve relevance and extrapolation of results to the intended disease population.

Antidrug Antibodies: Interpreting Toxicology Studies and Translating Nonclinical Findings to the Clinic.

C. Horvath. Genzyme, Framingham, MA.

Animals frequently mount an anti-drug antibody (ADA) response to biological drugs during toxicity studies. In some cases ADAs have no effect on the product’s behavior; while in others they may produce a variety of undesirable effects. ADAs may affect the pharmacodynamics, pharmacokinetic, bioavailability and efficacy of a test article. For example, enhanced clearance of a test article from the circulation by ADAs will affect exposure in a toxicology study. The production of ADAs can also result in potentially life-threatening adverse effects. A histamine mediated Type I hypersensitivity response can be experienced when dosing large foreign proteins into rodents. This response can often be mitigated by co-medication with antihistamines, such as diphenhydramine, but can significantly affect the ability to conduct repeat dosing in rodent models. A Type III hypersensitivity reaction can lead to tissue injury, such as vasculitis, as a result of the formation of immune complexes. Additionally, the neutralization of an endogenous protein may occur when the ADA directed against the drug cross-reacts with an endogenous protein. The level and resulting toxic effects of an ADA response to a particular product can be different in various animal species and are not predictive from one species to another. In general, immunogenicity in animals does not predict immunogenicity in humans, however, caution must be taken when translating the relevancy of any ADA-mediated toxicity observed in an animal to human safety. It is important to consider the implications of ADAs when interpreting the results of a toxicity study and include a comprehensive investigation of potential ADA-mediated lesions to determine if they are solely related to the presence of ADAs or to the pharmacology of the target. The ramifications of nonclinical ADA-mediated toxicity on the clinic can range from additional clinical monitoring to product development termination.

Unexpected Toxicities of Biotherapeutics on Peripheral Blood Cells.

Monoclonal antibodies and other biotherapeutics are an increasing proportion of drugs being developed by pharmaceutical companies. Unintended effects of biotherapeutics on peripheral blood cells may occur in nonclinical testing or only after SOT 2013 ANNUAL MEETING 181
clinical trials or product launch. Nonclinical studies generally predict clinical hematotox-

cytokines and growth factors, but have not been predictive for the majority of biotherapeutics with clinical hematologic liabilities, espe-

by monoclonal antibodies or other biother-

mechanically, hematotoxicity caused by monoclonal antibodies or other biother-

are directly related to the activity of the test article, or can be indirect

influence, biological cascades, antidrug antibodies, or other immune

may be species-specific and affect one or multiple blood cell lineages.

achromatoplasts. In vitro assays can be utilized to further investigate and understand

the pathogenesis of unexpected effects of large molecules on blood cells.

indicators of systemic inflammation, such as cytokines, complement, and immune

complexes, and often are observed as acute post-dosing events. Platelets are particu-

larly susceptible to effects of biotherapeutics, perhaps due to the high expression of

complexes, and often are observed as acute post-dosing events. Platelets are particu-

larly susceptible to effects of biotherapeutics, perhaps due to the high expression of

complexes, and often are observed as acute post-dosing events. Platelets are particu-

larly susceptible to effects of biotherapeutics, perhaps due to the high expression of

complexes, and often are observed as acute post-dosing events. Platelets are particu-

larly susceptible to effects of biotherapeutics, perhaps due to the high expression of

complexes, and often are observed as acute post-dosing events. Platelets are particu-

larly susceptible to effects of biotherapeutics, perhaps due to the high expression of

complexes, and often are observed as acute post-dosing events. Platelets are particu-

The 21st-Century shift to more prospective hazard identification and hypothesis

generation requires greater strategic application of systems biology. QSAR and

archived toxicological data in the form of adverse outcome pathways (AOPs). AOPs

describe the causal linkages among biological responses to chemicals over time. The

complexity of integrating science can be a barrier to progress in terms of the toxic-

ity pathways and networks involved as well as the need to organize knowledge from

many disciplines. Effectopedia is an open-knowledge aggregation and collaboration tool for delineat-

ing AOPs in an encyclopedic and predictive manner. It includes discrete cause-e

effect studies and critical reviews that are relevant to toxicity. To achieve human

and machine interpretability, Effectopedia uses an ontology-enhanced, natural lan-

guage interface that offers clarifying questions and special tags to define the semantic

knowledge while preserving the natural language description of the AOP’s ele-

ments. The use of ontologies also allows Effectopedia contributors to publish their contributions as nanopublications.

Effectopedia serves as a graphical editor to delineate causal linkages at any level of biological organization and test species. It creates a common organizational space that (1) helps experts identify gaps in knowledge of causal linkages of biological re-

sponses and (2) acts as a web-based conference room for dialogue and synthesis by

experts with interest in specific AOPs. Effectopedia’s live documents are instantly open for focused discussions and feedback, whilst giving credit to original authors and reviewers. New contributions are immediately distributed to interested parties, keeping all information current and documented. Uncoupling the contribution and review processes also permits organizations to define their own seals of approval and associate them with special interest pathways without slowing down the Wiki-inspired stream of contributions.

Toxicology research is rapidly transitioning from the observational study of adverse effects of the chemical to understanding predictive science based on mechanistic understanding of chemical actions. Integration of exposure information into the network of interactions among chemicals, genes, diseases, and molecular pathways is essential to this transition. Therefore, we initiated a project to curate exposure data for inclusion into the publicly available Comparative Toxicogenomics Database (CTD). The CTD is a manually curated database containing over 1 million toxicogenomic relationships of chemical-gene-disease interactions and Gene Ontology and pathway annotations that are integrated with analysis tools to promote understanding of the molecular mechanisms underlying environmental diseases. Building on the community-based development of the ExO exposure ontology (http://ctdbase.org/downloads/ExO), biocurators manually curate four types of inter-related exposure data from the scientific literature: Exposure Stressor, Exposure Receptor, Exposure Event, and Exposure Outcome. Both controlled vocabulary and free text data fields are used to allow searches among variables, while retaining details specific to the exposure study. Inclusion of exposure information into CTD will create a centralized exposure data resource that will facilitate the identification of connections between real-world exposures, chemicals, genes, proteins, diseases, and molecular pathways. Here we describe our exposure curation paradigm, initial content, and vision for in-

The US EPA’s Toxicity Reference Database (ToxRefDB) was originally populated with pesticide registration toxicity. ToxRefDB now incorporates guideline-like studies from the pharmaceutical industry, National Toxicology Program (NTP), and publicly available research literature. ToxRefDB now captures 5000 animal studies on 1000 chemicals and study data was captured using a standardized, mul-

tilayered effect vocabulary across varied study types and species. Seven predomin-

ant, data rich study type and species combinations were examined in this analysis:

subchronic rat (590), chronic rat (590), chronic mouse (518), chronic dog (325),

developmental rat (663), developmental rabbit (512), and multigenerational repro-

duction rat studies (594). While the majority of chemicals did not have complete

toxicity study coverage, there was substantial overlap with study type and species

combinations. Of 590 chemicals tested in chronic rat studies: 488 have been tested

in chronic mouse studies, 416 in subchronic rat studies, 415 in developmental rat

studies, 372 in developmental rabbit studies, and 573 multigenerational rat studies.

Differences in key study parameters such as dosing duration, species, strain, and

life-stage provided a heterogeneous view of chemical toxicity profiles while helping

to gain evidence as common phenotypic outcomes arise. Across 382 chemicals with

a subchronic and chronic rat study, 42% observed liver pathology in both (correla-

tion = 0.486). The hierarchal effect vocabulary was mapped from study type and
species combination to endpoint supercategory, category, subcategory, class, and

down to effect type, target and description covering over 27,000 effect possibili-

ties. This multilayered vocabulary allows for comparison of effects occurring within a biological continuum creating a more effective comparison of hundreds of chemicals now captured by ToxRefDB.

This abstract does not necessarily reflect US EPA policy.

The Chemical Evaluation and Risk Estimation System (CERES) project at FDA Center for Food Safety and Applied Nutrition delivers a foundation providing workflows for decision support activities for both pre-market and post-market safety assessments of food additives, food contact substances, and potential con-

taminants. CERES v1.0 is a data repository and platform for database searching and computational tools. The content includes chemical structures and properties, regulatory records, toxicity studies, and other biological screening assays. CERES is also an institutional knowledgebase where historical regulatory decisions on a given substance are kept. The system also assists new decision-making processes in a sys-
tematic and consistent manner. In cases where no information is available for a par-

ticular substance, CERES provides tools to estimate the toxicity and to assist

with other aspects of safety assessment. Two use cases of the CERES system are described in this presentation. One is the read-across process within the CERES system to es-
timate a carcinogenicity potential of a compound. The analog searching capability

along with the supporting experimental data as well as genetic toxicity and carcino-
genicity models based on mode-of-actions are employed. Various information types

are combined using a weight-of-evidence (WOE) decision theory method. The sec-

ond use case is a post-market analysis of all historical food-contact substances in the
database of the Office of Food Additives using the MOA (mode-of-action)

QSAR models in the CERES system. The MOA toxicity endpoints, carcinogenicity and

reproductive-developmental endpoints. In addition, a plan to connect CERES to

other predictive methods to enhance the system will be discussed.

The US EPA’s Toxicity Reference Database (ToxRefDB) was originally populated with pesticide registration toxicity. ToxRefDB now incorporates guideline-like studies from the pharmaceutical industry, National Toxicology Program (NTP), and publicly available research literature. ToxRefDB now captures 5000 animal studies on 1000 chemicals and study data was captured using a standardized, multilayered effect vocabulary across varied study types and species. Seven predominant, data rich study type and species combinations were examined in this analysis: subchronic rat (590), chronic rat (590), chronic mouse (518), chronic dog (325), developmental rat (663), developmental rabbit (512), and multigenerational reproduction rat studies (594). While the majority of chemicals did not have complete toxicity study coverage, there was substantial overlap with study type and species combinations. Of 590 chemicals tested in chronic rat studies: 488 have been tested in chronic mouse studies, 416 in subchronic rat studies, 415 in developmental rat studies, 372 in developmental rabbit studies, and 573 multigenerational rat studies. Differences in key study parameters such as dosing duration, species, strain, and life-stage provided a heterogeneous view of chemical toxicity profiles while helping to gain evidence as common phenotypic outcomes arise. Across 382 chemicals with a subchronic and chronic rat study, 42% observed liver pathology in both (correlation = 0.486). The hierarchal effect vocabulary was mapped from study type and species combination to endpoint supercategory, category, subcategory, class, and subclass, down to effect type, target and description covering over 27,000 effect possibilities. This multilayered vocabulary allows for comparison of effects occurring within a biological continuum creating a more effective comparison of hundreds of chemicals now captured by ToxRefDB.

This abstract does not necessarily reflect US EPA policy.

The Chemical Evaluation and Risk Estimation System (CERES) project at FDA Center for Food Safety and Applied Nutrition delivers a foundation providing workflows for decision support activities for both pre-market and post-market safety assessments of food additives, food contact substances, and potential contaminants. CERES v1.0 is a data repository and platform for database searching and computational tools. The content includes chemical structures and properties, regulatory records, toxicity studies, and other biological screening assays. CERES is also an institutional knowledgebase where historical regulatory decisions on a given substance are kept. The system also assists new decision-making processes in a systematic and consistent manner. In cases where no information is available for a particular substance, CERES provides tools to estimate the toxicity and to assist with other aspects of safety assessment. Two use cases of the CERES system are described in this presentation. One is the read-across process within the CERES system to estimate a carcinogenicity potential of a compound. The analog searching capability along with the supporting experimental data as well as genetic toxicity and carcinogenicity models based on mode-of-actions are employed. Various information types are combined using a weight-of-evidence (WOE) decision theory method. The second use case is a post-market analysis of all historical food-contact substances in the database of the Office of Food Additives using the MOA (mode-of-action) QSAR models in the CERES system. The MOA toxicity endpoints, carcinogenicity and reproductive-developmental endpoints. In addition, a plan to connect CERES to other predictive methods to enhance the system will be discussed.
Flexible and Transparent Computational Workflows for the Prediction of Target Organ Toxicity.

A. N. Richarz1, S. J. Enoch1, M. Hewitt1, J. C. Madden1, K. Przybylak1, C. Yang2, M. R. Berthold1, T. Meinl1, P. Ohl3, and M. T. Cronin1. School of Pharmacy and Chemistry, Liverpool John Moores University, Liverpool, United Kingdom; 2Umicore LLC, Columbus, OH; KNIME.com AG, Zurich, Switzerland.

In silico modeling of target organ toxicity has been held back in part by an inability to capture all relevant information into a meaningful reductionist approach. It has also been considered at times too simplistic, using data of often variable quality and seldom allowing the user to assess the relevance to the intended use. The purpose of this study was to develop a novel computational toxicology workflow system, to allow the users greater control and understanding of the target organ toxicity prediction. The workflows were built on the KNIME open-access platform which allows pipelining via a graphical user interface. Various building blocks, known as nodes, were incorporated, to access chemical inventories and/or databases, to profile structures and calculate properties and to report prediction results. The “basic” user sees a web-interface, whilst a “trained” user can go behind this to interrogate the nodes and, if required, link to additional data sources or investigate and update the models. The workflow was developed to address in particular the prediction of target organ toxicity of cosmetic ingredients. It comprises an inventory of over 4,400 unique chemical structures (cosmetic ingredients and related substances). The database contains repeat dose toxicity data for over 1,100 compounds including NOEL values. Thus, a user is able to search for similar compounds in the inventory file or database. The compound is then profiled using relevant structural alerts and chemotypes, currently comprising 108 alerts for protein reactivity, 85 for DNA binding, 32 for phospholipidosis and 16 for other liver toxicity endpoints. The workflows are flexible and transparent, they are successful in guiding a user through the process of making a prediction of target organ toxicity. Supported by the EU FP7 COSMOS Project.

C. Yang1, K. Arvidson2, A. Detryroyer3, J. Gasteiger4, J. Maruszczik4, J. Rathman5, A. M. Richard6, S. Ringesson7, C. Schwab5, A. Tarkhov8 and A. Worth9. Atalanta, LLC, Columbus, OH; 2US FDA, College Park, MD; 3L’Oreal, Aulnay SS, France; 4Molecular Networks, Erlangen, Germany; 5US EPA, RTP, NC; 6IRC, Ispra, Italy.

The representation of structural moieties that carry biological activity information, historically referred to as structural alerts, has a long association with Structure Activity Relationships (SAR). Typically, structural knowledge development is performed only by experts and implemented using SMARTS or proprietary formats. With few exceptions, scientists have generally not been able to query structures with customized substructure rules. Furthermore, there are needs for standardized representations and the ability to encode attributes such as atomic and/or bond properties within structural constructs. Recent efforts to apply chemoinformatics to systems-biology have called for innovation in this SAR area by integrating properties with structure connectivity. To this end, an XML-based representation of chemotypes has been developed to define substructures in which each atom and bond can be annotated with atomic, bond, and/or electronic properties, adhering to a controlled vocabulary, that go beyond the confines of conventional structural classes. These chemotypes have been implemented in a publicly free software application to enable search and data filtering. This chemotype has been developed as part of a project from FDA’s Center for Food Safety and Applied Nutrition to aid in updating FDA structure categories used by toxicology reviewers and to support the mode-of-action modeling (MOA) approach adopted in the Chemical Evaluation and Risk Estimation System. A series of chemotypes have been developed to incorporate SAR-informed annotations associated with phenotypic effects in hepatotoxicity and developmental morphology, as well as skin irritation and sensitization. These chemotypes enhanced accuracy of categorizations and MOA model predictions. This abstract does not necessarily reflect EPA policies.

ToxicML: A Structured and Serialisable Exchange Standard for Toxicology.

M. Asli1, M. L. Patel1, P. N. Judson2, and D. B. Bentz3. L’Oreal Limited, Leeds, United Kingdom; 2Judson Consulting Service, Harrogate, United Kingdom; 3US FDA Center for Drug Evaluation and Research, Silver Spring, MD.

The amount of toxicity data available for those wishing to share and communicate knowledge, or to use for data mining and modelling, is continually growing within the biomedical disciplines. The challenge with this expanding amount of data is that it exists in a multitude of different formats. ToxicML is an open standard based on Extensible Markup Language (XML) that consists of an XML Schema (XSD) defining the toxicology schema and lists of controlled vocabulary that ensure consistency of usage. The use of XML means that the data can be created, stored and transported in a structured format that is not bound to a specific software application or programming language. The data file model resulting from this approach is very versatile and allows for the aggregation of experimental data up to the compound level in the detail needed to support areas such as quantitative structure-activity relationship (QSAR) development. ToxicML formats have been developed, so far, for 27 toxicity study types. These cover both in vivo and in vitro, and currently include the following super toxicity endpoints: genotoxicity, carcinogenicity, skin sensitisation, skin penetration, in vivo repeat dose toxicity, in vivo single dose toxicity and ecotoxicity.

Informatics groups at the FDA CDER-CFSAN use ToxicML to populate repositories with the results of FDA toxicological and clinical data harvesting efforts, and employ the resulting information to model QSARs. We describe an example of how ToxicML could be used as a practical data exchange standard for genetic toxicology information. The standard is maintained by a curation team overseen by the ToxicML organization. The standard is published on a web site (www.toxicml.org) together with tools to view, edit and download it. Contributions from the user community to the ongoing evolution of the standard are facilitated in an open forum via a wiki on the web site.

In Silico Models of Sequence-Specific Mutagenicity: Exploring Chemical-Mutation Site Associations.

A. Sedykh1, Y. Lou1, S. Chakravarti2, R. Saiakhow3 and A. Tiropsha1. 1Edelmann School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC; 2MultiCASE, Beachwood, OH.

The Ames Salmonella test for genotoxicity has undergone several transformations since its introduction in 1971. The initial strains, histidine-deficient mutants involving different mutation-prone DNA sequences, were designed to detect specific frameshifts and base substitutions. Later, many strains with the same target sequence but improved antibiotic resistance, cellular permeability and required repair mechanisms were introduced as more sensitive alternatives. However, most existing Quantitative Structure-Activity Relationship (QSAR) models predict either mutagenicities in major strains or overall mutagenicity. We hypothesized that using additional sensitive strains can provide more refined models predicting sequence-specific mutagenicity. Hence, we created the Chemical Carcinogenesis Research Information System (CCHRIS) database (n=6,545) and the CASE Ultra data set (n=5,438) to create a larger database of 6,967 molecules with fewer missing entries (42% vs 33-39% in original sources). Using mutagenicities reported either in the presence or absence of metabolizing enzymes, we built QSAR models for five sequence-specific mutation sites (hisD3052, hisD3018, hisD6610-hisO1242, hisG46 and hisC3076). These 10 models were compared with the previous strain-specific models in CASE Ultra. Sequence-specific models generally exhibited greater sensitivity (68-88%) and dataset coverage (88-98%) but lower specificity (51-72%). Conversely, previous strain-specific models, built on unbalanced data sets, exhibited high specificity (82-99%) but low sensitivity (17-82%). We have further analyzed the models in terms of statistically significant chemical fragments that were interpreted as structural alerts, highlighting the susceptibility of targeted DNA sequences to certain chemical features. For example, fluorones, due to their planar structures, are good intercalators often associated with frameshifts in hisD3052. The curated data, models, and new structural alerts will be included in future releases of CASE Ultra.

ToxCastTM Workflow: High-Throughput Screening Assay Data Processing, Analysis and Management.

P. G. Kothiya1, M. T. Martin1, A. M. Frame1, A. M. Richard1, R. Judson1, and D. Reif1. 1National Center for Computational Toxicology, Office of Research and Development, US EPA, Research Triangle Park, NC; 2Bioinformatics Program, North Carolina State University, Raleigh, NC.

USEPA’s National Center for Computational Toxicology (NCCCT) is developing the ToxCast program with the aim of providing high-quality screening data on thousands of chemicals. The huge library of compounds and wide diversity of high-throughput assays in ToxCast present daunting challenges with respect to data processing, analysis, and management with the goal of providing transparent and sustainable data outputs across these massive data sets. To successfully address these goals, the data analysis workflow was designed with 8 levels of processing from raw data to finalized hit calls and is distributed within two major portions of the workflow: “Pipeline” (levels 1-4) and “Curve fit” (levels 5-8). The pipeline portion takes incoming raw data files, performs automated chemical and assay mapping, provides plate/batch effect correction, and assay specific data normalization to supply highly consistent data formats for the curve fitting process. The curve-fitting
and hit-calling process consists of cytotoxicity-point and outlier detection/masking, concentration-response curve estimation using dose-response modeling, systemic data consolidation (e.g., fluorescence or non-specific activity). The finalized results are subsequently uploaded into ToxCastDB for data integration and analysis as well as to serve as the primary portal for publication and data release. In addition, the ToxCast workflow has data quality and error identification features quantifying assay performance and quality. The ToxCast data workflow has been systematically developed to efficiently address data management challenges, increase curve-fitting and hit-calling accuracy, and to allow for technology-specific customization resulting in repeatable and transparent analyses. This work does not necessarily reflect Agency policy.

High-Throughput Electronic Literature Libraries (E-Libraries) to Support Development of Toxicity Prediction Models and Adverse Outcome Pathways (AOPs).

N. C. Baker1, T. B. Knudsen2 and K. M. Crofton2.

The elucidation of adverse outcome pathways (AOPs) and mechanistic models of toxicity depends on a thorough understanding of the relationships among protein targets, molecular pathways, cellular processes, adverse outcomes, and exogenous chemicals in a given biological system. Scientists rely on the biomedical literature for a significant portion of this information; however, common tools and resources such as PubMed are designed primarily for article retrieval and may fall short in synthesis of important relationships from the large amounts of available literature. We developed a series of electronic libraries (e-libraries) to provide investigators a way to streamline information retrieval from the biomedical literature and focus the retrieval on key relationships. The foundation for the e-libraries is a broad literature database in the form of a compilation of the MeSH annotations extracted from each MEDLINE record. These annotations are processed and organized so that the relationships among target proteins, biological effects, and chemicals are more easily extracted. For a particular area of interest (e.g., cleft palate, limb development, endocrine disruption) or for a particular set of chemicals (e.g., ToxCast) the literature database is batch-searched for articles containing the corresponding MeSH terms and the co-annotated terms. To produce the e-library, the terms are organized and written to Excel spreadsheets. Finding relevant articles is facilitated by allowing users to use built-in filtering capabilities. A filtering flag for species for instance, will allow the user to see only the rows about a desired species. The e-libraries have been constructed around subject areas as diverse as cleft palate, zebrafish, retinal development, flame retardants, and endocrine disruption. Access to e-libraries has been used to assist all kinds of research from basic exploratory research to development of AOPs and computer simulations. [This abstract does not necessarily reflect EPA policy.]

Interactive Web Application (Dashboards) to Integrate Data on Chemical Hazard and Exposure.

The USEPA has developed web-based interfaces (Dashboards) to synthesize multiple sources of data from Aggregated Computational Toxicology Resource (ACToR) into customized information displays. Users may select subsets of chemicals and data types to focus on for the assessment process. The data are organized into custom classes to present all relevant information for a given task. While not all chemicals will have complete information across all classes, each class reports available data including relevant high-throughput assay results, regulatory information, relevant articles from the biomedical literature, exposure data, and in vivo toxicity data. Custom widgets display each type of data according to its nature (e.g. dose-response plots or tables for assay data and summary tables for exposure data). Chemical-specific summary scores that consider all information in each class are presented in a dynamic summary table that highlights areas deserving additional attention. Transparency in decision-making is preserved since Dashboards record and save all user selections and decisions. Expert judgment can be used to override score criteria if necessary, again with such events recorded for transparency purposes. The scores are carried over into a prioritization process where the chemicals are ranked in a weight-of-evidence scheme to identify candidates for focused assessment. For example, the Dashboard created to support analysis of potential endocrine disruptors contains over 8000 chemicals with the classes Estrogen, Androgen, Thyroid, Steroidogenesis, Exposure, Occurrence, and Health Effects. The aggregation of relevant data and use of Dashboards to generate custom displays streamlines the toxicity assessment process and allows users to zoom from larger chemical subsets down to very focused chemical-wise views. While the initial Dashboards have been created to support EPA programmatic needs, future versions will include a public-facing web interface. This abstract does not necessarily reflect US EPA policy.

Literature Visualization and Navigation to Facilitate Development and Application of Computational Biological Models.

N. Pena, S. R. Crowell, S. Dowson, D. McQuerry and J. G. Teegarden. Systems Toxicology, Pacific Northwest National Laboratory, Richland, WA.

Physiologically based pharmacokinetic (PBPK) and quantitative structure activity relationship (QSAR) modeling rely heavily on mining of published literature for model development and parameterization, a time and resource intensive process. Because PBPK and QSAR modeling are relatively new disciplines, there is a need for readily accessible and high quality resources to support the increasing model use. Resource needs are broad, ranging from parameter values to model archives and publication archives. A common thread is the need to organize the available model related literature in a fashion that supports rapid access and organization according to data needs and more detailed analysis. We have developed a tree map application, a powerful, visually intuitive literature navigation interface, which exploits the naturally hierarchical nature of information used in biological modeling. Tree maps organize data thematically, and can be navigated by the user choosing a theme of interest, and then drilling down through sub-themes to the level of individual documents (existing models or relevant publications). Subject matter experts developed a taxonomy of themes in biological modeling, and relevant documents were identified in the literature by means of specific search strings. IN-SPIRE Visual Document Analysis was used to identify linguistically significant themes within the data, and to develop and test search strings used by the tree map to identify relevant documents from within the database of biological modeling publications. Documents were then labeled with their relationships within the class structure, loaded into a database, and a tree map user interface generated. With continuing refinement of search strings and development of the tree map application, this work has the potential to yield a powerful, evergreen (automatically updating) search tool specifically designed to aid in biological model development and utilization. An external demo of the tree map can be found at https://nvacademo.pnl.gov/ses/dashboard/epa/

Database of Chemicals Assayed for Estrogenic Activity in the US FDA’s Endocrine Disrupting Knowledge Base (EDKB).

J. Shen, L. Xu, W. Tong and H. Hong. 1University of Georgia, Athens, GA; 2Tiangang University, Wuxi, China.

Endocrine disruptors (EDs) are chemicals with ability to disrupt endocrine system. EDs have sparked intense international scientific discussion and debate and provoked regulatory action. The FDA’s National Center for Toxicological Research (NCTR) developed a publicly available Endocrine Disrupting Knowledge Base (EDKB) (http://geo.gl/GtRmh) 13 years ago. It has been a widely used resource in the scientific community. Currently, we are expanding the data collection in the EDKB by including the most up-to-date literatures. Since many EDs display estrogenic activities and affect the normal estrogen signaling pathway, we first updated the estrogenic data and developed a database of chemicals assayed for estrogenic activity as a component in EDKB. The database contains over 16,500 activity data of about 7,000 compounds from many public resources. The activity data are categorized based on assay types into binding assay, reporter gene assay and cell proliferation assay. The database also contains protein subtypes and domains used in the assays. Original data were converted into the same units such as logRBA for binding data (RBA=Relative Binding Affinity). Quality control was performed to ensure the data quality. The database was implemented using Instant JChem. A user-friendly interface was designed and developed for rapid navigating and searching the database. Searching multiple fields such as chemical structure, substructure, chemical name, CAS, assay type, assay species, activity range, and references can be conducted using logical operations. To the best of our knowledge, this database is the most comprehensive collection of chemicals assayed for estrogenic activity. It provides the scientific and regulatory communities a free source to search estrogenic activity data for chemicals of interest and to develop predictive models for predicting chemicals for which no assay data are available.

The Comparative Toxicogenomics Database.

C. Mattingly1, C. G. Murphu1, R. Johnson2, J. M. Lay2, K. Lennon-Hopkins2, C. Saraceni-Richards3, D. Sciaky2, B. L. King2, M. C. Rosenstein2, T. C. Wiegens1 and A. P. David1. 1North Carolina State University, Raleigh, NC; 2MDIBL, Salisbury Cove, ME.

The goal of the Comparative Toxicogenomics Database (CTD; http://ctdbase.org) initiative is to inform hypothesis development about mechanisms of chemical actions and the impact of environmental exposures on human health. CTD is a freely
available tool that provides a foundation of manually curated data describing chemical-gene interactions and chemical-disease and gene-disease relationships. Curated data are integrated with external data sets (e.g., Gene Ontology and pathway data) and tools that allow users to navigate and analyze over 16 million biological relationships relevant to environmental health sciences (EHS). Here we describe CTD functionality and highlight several new analysis and data visualization features, including: a Gene Entrich tool that provides deeper insight into the functional themes and pathways associated with user-defined genes or genes forming the basis of inferred chemical-disease relationships; filtering options that allow users to better customize queries and analyses; and a 'slim' list for our disease vocabulary that was implemented with graphical views to provide visual summaries of disease categories associated with chemicals in CTD. We also present information about emerging projects, including the use of curated data for developing chemotypes (a chemical substructure that carries information about biological activity), text-mining workflows for identifying chemical-gene-disease data, novel pathway development tools, and exposure data curation. We continue to expand the depth and functionality of CTD to meet the evolving needs of the EHS research community.

868 Mode-of-Action Ontology: An Application Ontology for Risk Assessment Data Mining.

Automated natural language processing (NLP) will make the practice of risk assessment more efficient. In the future, computer algorithms will use NLP to screen the literature for appropriate studies, identify relevant data, and help synthesize mode of action (MOA) evidence across several studies. However, before we can utilize the data from the literature, the MOAO ontologies must be built to facilitate efficient data storage and sharing using existing standards. We developed the Mode of Action Ontology (MOAO) to support automated NLP discovery, integration, and management of mode of action knowledge. MOAO is a semantic model that 1) describes MOA knowledge, 2) easily combines data from multiple sources, 3) makes MOA knowledge more transparent and easily available to the public via semantic web interfaces, and 4) will allow computers to discover latent information and relationships via logical inference. MOAO is the first ontology we are aware of that describes mode of action information for toxicological purposes. MOAO was conceptualized as an application ontology, borrowing terms from existing high-quality ontologies produced for various biological sub-specialties. This allows us to maximize integration with outside data sources. In this way, MOAO can be a model for how other sub-domains in toxicology can reap the benefits of ontologies without the overhead of constructing one completely from scratch. We leverage the work by the Open Biological and Biomedical Ontologies (OBO) Foundry and the Basic Formal Ontology (BFO) to facilitate the integration of our ontology with others. The reference ontologies which MOAO uses include the Gene Ontology (GO), CHEBI (Chemical Entities of Biological Interest), the Uber Anatomy Ontology (UBERON), the NCBI Taxonomy, and the NCI Thesaurus. The views expressed in this abstract are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

869 Development of a COSMOS Database to Support In Silico Modelling for Chemicals Ingredients and Related Chemicals.

J. Rathman1, 2, C. Yang3, A. Arvidson1, M. T. Cronin1, S. Enoch3, D. Hristozov3, Y. Lan4, J. C. Madden5, D. Neagu6, A. N. Richarz5, M. Ridley6, O. Sacher2, C. Schwab5 and L. Yang2, Alamine, LLC, Columbus, OH; 3The Ohio State University, Columbus, OH; 4Office of Food Additive Safety, CPSEAN, US FDA, College Park, MD; 5Molecular Informatics, Liverpool John Moores University, Liverpool, United Kingdom; 6University of Bradford, Bradford, United Kingdom.

The Seventh Amendment of the EC’s Cosmetics Directive foresees a deadline in 2013 for the replacement of animal testing of cosmetic products for repeated dose/reproductive toxicity and toxicokinetics. To this end, the COSMOS project has been initiated to fill the gap in knowledge and technology via in silico toxicology. The management and sharing of chemical, biological and toxicity data play a central role to evaluate the COSMOS database architecture: an overview of toxicity data sources and studies; the design of the data model and the data entry tool for the database; and the definition of a data curation strategy. The new COSMOSDB provides a publicly available web-based searching/retrieval system and also serves for sharing resources, models and supporting workflow developments. The database is “compound-centred” and represents both EU COSING and US PCPC inventories for cosmetics ingredients. For biological data, the database supports repeated dose toxicity, metabolism information and dermal absorption data. The data have been collected, curated, quality-controlled, stored and managed in a flexible and sustainable manner to support predictive modelling tasks. An extensive toxicology data has also been reflected in building the data entry system. Based on the review of existing approaches on good practice to assess quality entries, the reliability of the toxicity data is supported by all available data from multiple sources. Additional functionalities for data aggregation within a data governance framework are described. The COSMOS project is funded by European Community’s 7th Framework Program (FP7/2007-2013) and by Cosmetics Europe.

870 The Toxbank Infrastructure Project to Support the Replacement for Repeated Dose Toxicity.

G. J. Myatt1, B. Benfenati2, D. Bower1, R. Ceder1, K. P. Cross1, R. C. Graafström2, L. Healey3, C. Helma4, N. Jeliazkova5, V. Jeliazkova5, L. Kidane3, P. Kohonen3, S. Maggioni1, S. Miller1, M. Rautenberg5, G. Stacey4, J. Wiseman4 and B. Hardy2, 1ReED, Leadscope, Columbus, OH; 2Karolinska Institutet, Stockholm, Sweden; 3Istituto di Ricercare Farmacologiche Mario Negri, Milan, Italy; 4National Institute for Biological Standards and Control, Potters Bar, United Kingdom; 5In silico toxicology, Basel, Switzerland; 6Idesaconsult, Sofia, Bulgaria; 7Doudna Connect, Zeinigwen, Switzerland; 8Pharmatrace, Wayne, PA; Sponsor: B. Benz.

The aim of the €50 million SEURAT-1 (Safety Evaluation Ultimately Replacing Animal Testing-1) research cluster, sponsored by the European Union and Cosmetics Europe, is to generate a proof-of-concept replacement for repeated dose systemic toxicity testing on animals. The SEURAT-1 strategy is to adopt a mode of action framework to describe repeated dose toxicity, combining in vitro and in silico methods in an intelligent manner to derive predictions of in vivo toxicity responses. ToxBank is the cross-cluster infrastructure project whose activities include the development of a data warehouse, the selection of reference compounds for use across the cluster to support the mode-of-action framework, a physical compounds repository, and a reference resource for biomaterials. The ToxBank data warehouse provides a web-accessible shared repository for protocols and experimental results supporting SEURAT-1 research objectives such as toxicity pathway elucidation and biomarker discovery. Information in ToxBank is uploaded from the research activities of the cluster partners and relevant information on the reference compounds from public databases. In this poster we describe the data warehouse and implementation based on open standards, the selection of reference compounds, and an analysis linking the reference compounds to publicomics data.

871 Software for Integration of Experimental, Chemical, and Environmental Data.

E. Peterson1, K. Hobbie2, S. C. Tilton1, R. I. Tanguay2, K. Anderson1 and K. M. Watter1, 1PNNL, Richland, WA; 2OSU, Corvallis, OR.

The Oregon State University Superfund Research Program evaluates the potential health effects of polycyclic aromatic hydrocarbons (PAHs). More than 100 parent PAH compounds, and an unknown number of PAH derivatives and metabolites have been identified. PAHs raise concern at over 800 Superfund Sites and serve as the risk driver for remediation at 20% of all Superfund sediment sites. Assessing the health effects of PAHs is a major challenge because environmental exposures to these chemicals are from complex mixtures of PAHs and other toxicants. Integration of exposure data with biological activity and pharmacokinetics is essential to evaluate the effects presented by these mixtures on human health. Increasingly researchers are generating data streams of high content data from analytical, high-throughput, and ‘omic’ studies, which make direct applications from these technologies out of reach for clinicians and regulators. However, more accurate and precise thresholds for risk assessments and prediction will ultimately arise from leveraging the integration of data from across disciplines. Therefore, the principle challenge for mixture assessments, exemplified by PAHs, is the efficient integration of large and diverse data sets. To this end we’ve extended PNNL’s Experimental Data Management System (EDMS) to create a seamless data workflow among researchers and analysts. EDMS has been extended to track and manage relationships among any and all data points across a project. This allows us to integrate chemical and biological data for environmental extracts (LIMS and EDMS) with analogs data on pure chemical compounds. EDMS provides a query mechanism that will reach through all the relationships of data from chemicals to the analytics and statistics run on the experimental data. Query results, visualizations, and data processing results are all also stored together with the related experimental information. This increases data replication and supports a streamlining of analysis, collaboration and experimental design allowing researchers to take advantage of all the data generated.
Drug development scientists and regulatory reviewers alike have a need to understand the toxicity patterns of a drug candidate across animal species prior to human trials. Effective exploitation of collected study data has previously been impeded by differences in mnemonics, terminologies and units across sponsor and CRO data. Moreover, computational techniques to analyze large volumes of disparate quantitative and qualitative study data, and their respective endpoints, have not been routinely available for use by practicing toxicologists and reviewers.

To address these common challenges for the FDA and the Industry, we have developed new repository techniques to prepare and hold in vivo harmonized datasets (including standardized formats like SEND, the Standard for Exchange of Nonclinical Data), and extracted metadata, as a first step towards advanced analytics and study reviews. Predictive, comparative and cluster analysis techniques have been performed on large study repository datasets to reveal similarities and differences in dose-response patterns across species in terms of their magnitude, shape and trends. Finally, signal processing techniques such as Z-transform box plots have been adapted to present trends in ways that scientists and regulatory reviewers can easily use to interpret potential toxicity patterns and their inter-relationships.

Collectively, new computational tools are available to better exploit legacy and ongoing data that are already being collected, provide better decision support for species selection and protocol design, and advance our understanding of how dose-response patterns translate across species for the same compound and to detect other compounds that share similar responses. Implications of applying such computational methods to improve safety prediction across species, and eventually into humans, will be discussed particularly in light of the FDA’s mandate to require computational methods to improve safety prediction across species, and eventually into other compounds that share similar responses. Implications of applying such computational methods to improve safety prediction across species, and eventually into humans, will be discussed particularly in light of the FDA’s mandate to require computational methods to improve safety prediction across species, and eventually into other compounds that share similar responses. Implications of applying such computational methods to improve safety prediction across species, and eventually into humans, will be discussed particularly in light of the FDA’s mandate to require computational methods to improve safety prediction across species, and eventually into other compounds that share similar responses. Implications of applying such computational methods to improve safety prediction across species, and eventually into humans, will be discussed particularly in light of the FDA’s mandate to require computational methods to improve safety prediction across species, and eventually into other compounds that share similar responses. Implications of applying such computational methods to improve safety prediction across species, and eventually into humans, will be discussed particularly in light of the FDA’s mandate to require computational methods to improve safety prediction across species, and eventually into other compounds that share similar responses. Implications of applying such computational methods to improve safety prediction across species, and eventually into humans, will be discussed particularly in light of the FDA’s mandate to require computational methods to improve safety prediction across species, and eventually into other compounds that share similar responses.
Web-Based Benchmark Dose Modeling Module As a Prototype Component of an Informatics-Based System for Human Health Assessments of Chemicals.

A. J. Shapiro1, N. Cook1, B. Ross1, J. Fox2, C. V. Coglan3, W. A. Chiuri1, N. Wang3, L. Zeise3, K. Gurtov4 and I. Ryun5
1University of North Carolina at Chapel Hill, Chapel Hill, NC; 2NCEA, US EPA, Washington DC; 3Scientific Affairs Division, Cal/ERA, San Francisco, CA; 4ICF International, Fairfax, VA.

We propose developing a modular, cloud-ready, informatics-based system to synthesize multiple data sources into overall human health assessments of chemicals. This system would seamlessly integrate and document the overall workflow from literature search and review, data extraction, and evidence synthesis, to dose-response analysis and uncertainty characterization. Crucial benefits of such a system include improved data integrity, greater transparency, standardization of data presentation, and increased consistency. By including both a web-based workspace for assessment teams, and complementary web-based portal for reviewers and stakeholders, all interested parties would have dynamic access to completed and ongoing assessments. The modular approach will also facilitate rapid prototyping, testing, review, and incorporation of methodological improvements. Here we present a prototype module for benchmark dose (BMD) modeling used to develop points-of-departure, from which toxicity values are derived. Previously-developed BMDS Wizard and DRAGON Excel-based programs were used to develop a web-based tool where assessment teams can view/upload/enter dose-response data sets into the module, perform BMD modeling, and export results. Example summary views and plots are available online, or can be converted to report format. In addition, multiple nested views of the data and analyses enable interested users to rapidly "dive into the details." We conclude that given new data streams, diverse user needs, and multiple stakeholder interests, assuring the utility, integrity, and objectivity of human health assessments will be greatly facilitated by a modular, upgradeable, informatics-based system for their development, review, and dissemination. Disclaimer: The views expressed in this abstract are those of the authors and do not necessarily represent the views or policies of the US or California EPA.

A Research Sample Safety Data Sheet (RSSDS) is a hazard communication document, which describes health and safety properties and characteristics of a chemical substance, typically for one-time-use only. This document enables research samples to be safely packaged and shipped worldwide using commercial carriers in compliance with all regulatory requirements. It is the critical vehicle for communicating relevant toxicity information to workers, shippers and first responders in case of unplanned release. It can be a time critical service where the client expectation is that cycle time (CT) will be short, typically 24-48 hrs. Implementation of the Global Harmonized System (GHS) around the world necessitates the inclusion of GHS content in RSSDS. This requirement has increased the complexity of RSSDS hazard assessment, especially in situations where hazard profiles must be estimated for novel chemicals where only the structure is known. This poster describes an optimized method for the delivery of hazard information as developed by The Dow Chemical Company. The method utilizes cheminformatics tools such as QSAR modeling, read-across and identification of analogs to enhance the ability to predict hazards for novel chemicals, enabling clients to comply with complex international regulations and product stewardship while still meeting competitive timelines for product development and sampling.

California Communities Environmental Health Screening Tool (CalEnviroScreen).

G. V. Alexeff1, J. Faust1, L. August1, R. Cendak1, W. Wieland1, T. Kadi1, L. Cushing1, K. Randles1, C. Milan1 and L. Zeise1. 1OEHHA, Cal/ERA, Oakland and Sacramento, CA; 2Energy and Resources Group, University of California Berkeley, Berkeley, CA.

Many Californians are burdened by multiple sources of pollution and some people are more vulnerable to the exposures. We developed a method, called CalEnviroScreen, which uses existing environmental, health and socioeconomic data to create a cumulative impacts score for different geographic area across California. We conducted a preliminary statewide screen at the ZIP code level to identify communities most burdened by multiple sources of pollution with populations that may be especially vulnerable to its effects. The method uses a concept of total pollution burden based on measures of exposure, public health effects and environment outcomes. This is modulated by measures of sensitivity and relevant socio-economic factors. The screen considered data for ambient ozone and PM2.5 concentrations, traffic density, toxic releases from facilities, pesticide use, cleanup sites, impaired water bodies, leaking underground storage tanks, solid and hazardous waste facilities, low birth weight infants, asthma, prevalence of children and elderly, educational attainment, income, poverty and race/ethnicity. The analysis consisted of a relative comparison of approximately 1800 ZIP codes in California using a relative risk model structure. The comparisons can viewed by individual indicators, measures of burden or measures of vulnerability. The results are presented graphically using Geographic Information System tools for each indicator and are summarized by categories of exposures, environmental effects, public health effects, sensitive individuals and socioeconomic factors. Sensitivity analyses are used to test the model structure and the usefulness of each indicator selected.

Cellesis: A Novel System Biology Toxicology Tool.

C. F. Biscarrat, P. Picamal and N. A. Compagnone. Department of Toxicology, ICDD, Meyreuil, France. Sponsor: Y. Will.

Understanding and predicting adverse drug reactions (ADRs) are crucial goals in toxicology, since unrecognized toxicity is the most frequent reason for drug withdrawal. We have developed a novel technology based on dynamical image analysis of intracellular organelles in live cells. Mitostream®, the dynamic measure of the mitochondrial behaviour, is a novel technology predictive of the severity and incidence of ADRs. It is a powerful HCA to help identify drug-induced toxicity, differentiate risk between compounds and evaluate the potential for rare but severe adverse events. Mitostream® decodes the mitochondrial behavior, quantifying motility, morphology, permeability and network organization with multiple endpoints associated to qualitative descriptors to model their interrelations. We developed the Cellesis algorithm to identify classifiers and predictors able to fuse the matrix of recorded multi-modal markers into a unique statistical toxicity index. An original set of 27 molecules was studied to classify drugs on a toxicity scale. The algorithm classified properly 83% of the drugs with 94% specificity and 75% sensitivity. We extended the set to include more non-toxic compounds and compounds with rare but severe toxicity as well as compounds that did not target the mitochondria. The second training set included 47 compounds and yielded 85% proper classification, a specificity of 91% and a sensitivity of 92%. Independent industrial validation was performed through the Consortium for Technology Evaluation at the DSEC, testing 10 new compounds. Chosen by our industrial partners these compounds classified properly with similar performances, showing a good association between Cellesis-predicted ADRs and the lowest tolerable dose seen in the clinic. A set of NSAIAD was further studied. Results showed 86% proper classification through Cellesis-predicted ADRs. Specificity was 92%, sensitivity was reduced to 85%, some apparent false positive had a h (or lower thresh (or) dial) 0, is not >id potentially be used as a new biomarker for toxicity.

Development of a Systems Computational Model to Investigate Early Biological Events in Hepatic Activation of Constitutive Androstane Receptor (CAR) by Phenobarbital.

Activation of the nuclear receptor CAR (constitutive active/androstane receptor) is implicated in the control several key biological events such as metabolic pathways. Here, we combined data from literature with information obtained from in vitro assays in the US EPA ToxCast database, and in vivo outcomes in the US EPA ToxRef database to link CAR activation to a proposed adverse outcome pathway (AOP) of hepatic tumors. Key in vivo pathological events for this proposed hepatic tumor AOP are similar to those of other non-genotoxic receptor-mediated chemicals (i.e., hypertrophy, cellular proliferation, preneoplastic foci, and neoplasia), highlighting the importance of upstream biological mechanisms mediating the early proliferative signals of CAR activation. Using phenobarbital (PB), a known rodent tumor promoter and CAR activator, we developed a computational model for the early initiating events of CAR activation leading to its nuclear translocation. Based on literature evidence, the computational model describes the cascade of biological events leading to CAR nuclear translocation. These events are initiated by PB activation of Adenyl cyclase (AC) leading to an increase in the rate of ATP transformation to cyclic AMP. In turn, cyclic AMP increases intracellular calcium levels which inhibit the activity of AC via a negative feedback loop mechanism. However, the resulting transient increase in cyclic AMP levels activates protein...
BSEP inhibition and consequent bile acid (BA) buildup has been proposed to be an important mechanism in drug-induced liver injury (DILI). There are many gaps in the knowledge of BA homeostasis and its disruption by transporter inhibitors. Modeling can help us understand which of these knowledge gaps should be filled first in order to provide maximum understanding. We have constructed a model of BA homeostasis and toxicity within DILISym®[1], a mechanistic model of DILI that includes bile acid flux into and out of hepatocytes, the role of the farnesoid X receptor (FXR) in the regulation of BA transport and synthesis, and gallbladder BA release and recirculation. We first analyzed our system's behavior in the presence of a simulated BSEP inhibitor similar to glibenclamide. We predict a 41% increase in total heptocytic content of amide conjugated chenodocholic acid (CDCA). However, the simulated BSEP inhibition resulted in no change in either unconjugated CDCA or the amide-conjugated lithocholic acid (LCA), and the heptocytic content of unconjugated LCA decreased by 15%. Next we performed a sensitivity analysis on our system's response to BSEP inhibition in order to determine which parameter has the greatest effect on heptocytic content of BAs and hence BSEP inhibitor-induced hepatotoxicity. We found that the most important unknown in the system is the intrahepatic BA concentration that triggers FXR-mediated regulation of BA transporters, while other parameters such as the affinity constants for translocation of CAR and the subsequent binding to a PB-enhancer module may contribute to this difference, we built a primary hepatocyte culture model, based on rat primary hepatocyte data from the literature and incorporated the same parameters used in the in vitro PBPK model of AhR agonists. Based on differences in parameter values between the two models, we identified critical factors determining the difference in sensitivity between in vitro and in vivo (e.g., TCDD availability). The hepatocyte culture model built for TCDD can predict the toxicities or downstream events for other AhR agonist by changing the parameter associated to AhR binding affinity only. This evaluation provides a model example of a quantitative in vitro to in vivo extrapolation for nuclear receptors and informs on how to better use in vitro data for risk assessment. This abstract does not necessarily reflect the policies or views of NIH.

A critical question in human risk assessment is how best to incorporate in vitro data. In a quantitative in vitro to in vivo extrapolation, one assumption is that media concentration equals blood concentration. Here, we evaluate this assumption by applying physiologically based pharmacokinetic (PBPK) models to predict cellular responses in primary rat hepatocytes exposed to an aryl hydrocarbon receptor (AhR) agonist. PBPK models for AhR agonists (e.g., TCDD, PaCDE, PCB126) were developed based on NTP two-year rat carcinogenicity bioassay data. The model predicts tissue concentrations and CYP1A1 induction well and demonstrates that ligand binding affinity is an important parameter for AhR-mediated enzyme induction and distribution of these chemicals. Using this model, we predicted the dose response for Cyp1a1 induction in whole rat liver at 48 h after an oral dose of TCDD. The predicted results were compared to literature data on rat primary hepatocyte treated with TCDD for 48 hours. The EC50 obtained for Cyp1a1 induction in vitro is about 100 fold less than that predicted in vivo (i.e., the primary cell culture system is about 100 times more sensitive). To identify which factors might contribute to this difference, we built a primary hepatocyte culture model, based on rat primary hepatocyte data from the literature and incorporated the same parameters used in the in vivo PBPK model of AhR agonists. Based on differences in parameter values between the two models, we identified critical factors determining the difference in sensitivity between in vitro and in vivo (e.g., TCDD availability). The hepatocyte culture model built for TCDD can predict the toxicities or downstream events for other AhR agonist by changing the parameter associated to AhR binding affinity only. This evaluation provides a model example of a quantitative in vitro to in vivo extrapolation for nuclear receptors and informs on how to better use in vitro data for risk assessment. This abstract does not necessarily reflect the policies or views of NIH.

A novel prediction approach for OATP substrates was developed using in vitro sandwich cultured hepatocyte (SCHH) data as input into a physiologically based pharmacokinetic (PBPK) model and was validated for intravenous (iv) dosing (Jones et al., 2012). The aim of our work was to extend this to the prediction of oral profiles. Data for plasma concentrations following oral doses were obtained from literature. Simple descriptors of oral absorption (fa, ka) were predicted using a physiologically based gastrointestinal (GI) tract model, which were then used in the published transporter PBPK model with a single compartment for oral absorption. The seven literature compounds were bosentan, cerivastatin, fluvastatin, pravastatin, repaglinide, rosuvastatin, and valsartan. In vitro passive permeability and solubility under fed and fasted conditions were measured as inputs to the GI model. We tested whether the oral absorption parameters were reasonable by combining them with the transporter parameters obtained from fitting the iv plasma data. Characterizing plasma pharmacokinetics using area under the curve to infinity (AUC(0-inf)), maximum concentrations (Cmax), and time to maximum concentration (Tmax), the fold error for the seven compounds was 1.6, 2.3, and 1.9 respectively, indicating the oral absorption parameters were reasonable. Forward predictions for the seven compounds based on SCHH data and the oral absorption parameters provided a test of both aspects of predicting oral plasma time course. The average fold errors for the seven compounds increased somewhat to 2.5, 3.3, and 2.4, respectively. This method was then applied to oral plasma data for four in-house compounds resulting in reasonable predicitions for three of the four. An initial prediction method has been developed using in vitro and in silico inputs to estimate plasma profiles and pharmacokinetic parameters for iv and oral dosing of anionic drugs that are substrates for liver transporters.
885 A Mechanistic Approach to Understand Idiosyncratic Toxicity of Perhexilene and Sulindac.

Idiosyncratic DILI is one of the most common causes of safety-related post-marketing drug withdrawals. We have developed a dynamic systems based integrative approach that aids in its understanding by combining a mathematical model along with a panel of in vitro enzyme and transporter assays.

We tested perhexilene and sulindac in this assay system and fed the assay results into a mathematical model of liver biology. Our simulations identified the key mechanism behind the steatohepatitis caused by perhexilene. They predict perhexilene-induced alterations in mitochondrial function, i.e. inhibition of oxidative phosphorylation, generation of oxidative stress along with inhibition of mitochondrial beta-oxidation leads to steatosis. An interesting insight gained in this process was the fact that whole cell measurements such as ATP or GSH alone can provide an erroneous understanding of the impact of a compound in vivo. On the other hand measuring various enzymatic functions enabled us to quantify the impact of ROS in vivo.

In the case of sulindac, intracellular accumulation of GSH in HepG2 cell line indicated impaired transport of system. Applying this impairment in the model, our simulations predict bile and bilirubin accumulation indicating the potential for idiosyncratic cholestasis.

Thus our system enables us to understand mechanistic insights into the effect of leads and make predictions on their effects in vivo without necessitating the use of whole animal studies.

886 An Integrated Structure-Based Systems Approach to Predict Hepatotoxicity.

A. Das, N. Mandyam, N. Tiwari and K. Subramanian, Strand Life Sciences, Bangalore, India.

We have developed a systems biology model for hepatotoxicity prediction. The input for the model is a set of in vitro assays that capture the effects of a chemical compound on selected proteins. The model takes these assay results as input, simulates their likely effects on selected pathways in a liver cell and outputs the toxicity effects in vivo. Though this approach has good predictive value and provides mechanistic insights into the toxicity response, the time consuming and expensive assays are a bottleneck for using the model in a high-throughput manner.

Using structure based approaches, we have virtualised the assays to use this model to rapidly evaluate hepatotoxicity of molecules. The binding affinity of a molecule to each of the proteins is estimated using structure prediction, flexible and induced docking and pharmacophore approaches and classified as low, intermediate or high. This forms the input for the systems model. Using this, we estimate the impact of these perturbations on various pathways in the liver. We expected that the model output, though not as precise as with in vitro inputs, can flag likely hepatotoxicity of a molecule.

As an initial proof of concept, we tested this approach in a set molecules, pioglitazone, tolcapone, rofecoxib, quinacline, panprothalamine bromide, benoxatone, bumetanide, AZ177 and acetaminophen. We found that this method is able to flag the key toxic mechanisms of each of these molecules and is able to predict synergistic toxic effects. We believe that this approach can be used as screening tool to rapidly and accurately assess mechanistic toxic effects and has utility during lead discovery and optimization.

887 Application of an In Silico Approach to Predict Intrinsic In Vitro Cytotoxicity for Compounds in Primary Human Hepatocytes during Preclinical Development.

Drug-induced liver injury is a major cause of compound attrition in preclinical and clinical development and often, intrinsic hepatotoxicity can be related to chemical structure. Screening in primary human hepatocytes has been routinely used to assess toxicity in the preclinical setting to allow for assessment of metabolic contributio. However, the knowledge gained from this screening has not been fully utilized to drive medicinal chemistry design before compound synthesis. Herein, we present work in progress in the development of a computational model that is used to predict the outcome of hepatocyte screening for a set of preclinical compounds with significant accuracy. Cytotoxicity was determined by treating cryoplateable human hepatocytes with individual compounds and evaluating cellular ATP levels. In vitro cytotoxicity was classified based on IC50 values into three buckets: high (<50 μM), moderate (50-100 μM) and low (≥100 μM) groups. Using a machine learning approach, a large set of structural and non-structural descriptors were evaluated for their usefulness to classify cytotoxicity on a training set of 72 compounds. Three calculated physicochemical properties emerged as the most predictive descriptors (most-basic-pKa, plasma protein binding % and logP), and were used to construct a decision tree model. Subsequently, predictions were made for 102 compounds prospectively. The positive predictive values were 77% & 65%, and negative predictive values were 72% & 85% for high (H) and low (L) toxicity groups, respectively. Interestingly, addition of structural descriptors did not improve the accuracy of prediction, suggesting that the intrinsic toxicity of those compounds were not specific to their structures. We show that this model proved useful in reducing compound attrition for an ongoing project. Furthermore, the physicochemical property space that this work has implicated as being associated with toxicity may also provide clues toward understanding the underlying mechanism(s).

888 In Vitro In Vivo Correlation: Apparent or Ambiguous? Analysis of Pfizer Compounds in US EPA’s ToxCast Chemicals-Assay Space.

In 2009, Pfizer collaborated with EPA in their ToxCast initiative to identify predictive bioactivity signatures for toxic compounds using ‘dead’ pharmaceuticals. A total of 52 Pfizer compounds with preclinical data were profiled in multiple assay platforms measuring bioactivity in vitro for diverse assay endpoints. The first part of this work was focused on the analysis of Pfizer compounds in ToxCast chemicals and pharmacological space. These include a) comparison of bioactivity profile of Pfizer compounds with other pharma and EPA compounds; b) analysis of compounds sharing similar chemical and pharmacological space as of Pfizer compounds; and c) ability of assay platforms to reproduce the primary mode of action of Pfizer compounds. Analysis revealed that compound from EPA set seemed to have different pharmacological and chemistry space than pharma compounds. It also highlighted assay platforms and sensitive endpoints that are more relevant to understand the off-target activities of compounds. The second part involves correlation of in vitro ToxCast assay signals with in vivo findings related to liver injury, observed either in preclinical or clinical studies. The analysis pinpointed diverse cytotoxicity endpoints within ToxCast as markers of compound potential to cause preclinical or clinical liver injury.

889 Improved In Silico Methods to Group Liver Toxicants Related to Adverse Outcome Pathways.

Prediction of repeat dose toxicity by in silico methods remains an elusive goal. Current quantitative structure-activity relationship (QSAR) approaches have acknowledged limitations. A more pragmatic approach is to identify relevant molecular initiating events associated with an adverse effect – integrated into the Adverse Outcome Pathway (AOP) concept - and attempt to group chemicals accordingly. Such an approach will have a greater probability of success if targeted at organ level toxicity. The purpose of this study was to develop novel structural alerts to enable to the grouping of potential liver toxicants. Specifically, the utility of current approaches for grouping according to protein reactivity (relating to reactive hepatotoxicity) was investigated along with novel methods to group chemicals and extract usable information from the grouping, placing in the context of relevant AOPs. The objectives, therefore, were to: a) provide a better predictive model for liver toxicity, but to improve structural alerts to group compounds to perform read-across for liver toxicity. Data for over 900 compounds classified as either being toxic or non-toxic to the liver were assessed in this study. Attempts to group compounds on the basis of protein reactivity (the OECD Profiler in the OECD QSAR Toolbox) had poor predictivity, only identifying approximately 34% of liver toxicants, whilst nearly 25% of non-toxicants were found to contain a reactive structural alert. Therefore, the liver toxicants were grouped according to structural similarity using the ToxMatch software. Over 80 categories were found by this automated method from which 16 robust categories were manually curated, many of which were associated to mitochondrial toxicity AOPs. The suite of reactive and non-reactive MIEs, defined by structural alerts and chemotypes, provides a basis for grouping potential liver toxicants. Supported by the EU FP7 COSMOS and eTox Projects.
Drug-induced liver injury (DILI) represents the second most common reason for pre-market attrition of drug candidates and post-market withdrawal of approved products, prompting the need for better tools to predict these serious effects. Quantitative structure-activity relationship (QSAR) modeling uses computational algorithms in conjunction with large chemical data sets to identify correlations between molecular structural features and biological activity, and lends itself well to the task of improving the prediction of drug safety by exploiting FDAs vast institutional knowledge of DILI and other adverse event (AE) data. This report describes the development of a new method for creating a DILI QSAR training set based on FDAs Adverse Event Reporting System data. The method utilizes the Multi-item Gamma Poisson Shrinker (MGPS) algorithm, the gold standard used by FDA.

The EPA ToxCast project uses high-throughput screening (HTS) to evaluate in vitro biochemical models of chemicals. Here we are attempting to bridge HTS data with histopathological effects in ToxReD using a data-driven computational approach. Starting with 2,200 guideline studies for 763 chemicals stored in ToxReD, we defined 8 broad categories of hepatic histological effects consisting of hypertrophy, cytototoxicity, inflammation, regeneration, steatosis, fibrosis, preneoplasia, and neoplasia. A subset of 560/763 chemicals were screened in 500 ToxCast assays. Univariate statistical analysis found 91 assays in which chemicals had a significantly (p<0.05) greater potency for hepatic effects. We identify mechanistic relationships between the molecular and cellular targets of these assays from literature and use an information-theoretic criterion to calculate the most plausible sequence of key events for each outcome. The results are summarized as a dependency network including a molecular circuits in individual hepatocytes with cell-cell interactions and blood-molecule uptake of toxins through hepatic sinusoids, and dosimetry estimated by whole-body PBPK models, to enable quantitative, mechanistic prediction of dose-response. We use the activation of the aryl hydrocarbon receptor (AhR) toxicity pathway in hepatocytes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other dioxin-like compounds (DLCs) as a case study for data integration and multi-scale model development for mechanistic dose-response prediction. By explicitly accounting for basal gradients in AhR expression across the lobule and stochastic uptake of TCDD molecules by individual hepatocytes, we were able to reproduce experimentally observed zonal heterogeneity in TCDD accumulation and cytochrome P450 1A1 expression. A detailed implementation of the AhR signaling and transcriptional cascade in each hepatocyte in this multi-cellular model enabled us to characterize differential dose response for various AhR-mediated endpoints at the tissue level, including cytotoxicity and cell proliferation.

Perchlorate (ClO4-) is both a naturally occurring and man-made chemical widely distributed in the environment with low levels detected in food and drinking water. Disturbances in the maternal hypothalamic-pituitary-thyroid (HPT) axis leading to hyperthyroxinemia and hyperthyroidism have been shown to cause negative effects on the neurodevelopment of the fetus. Downstream perturbations of maternal and fetal HPT axes following ClO4- competitive inhibition of sodium iodide symporter-mediated thyroidal iodide (I-) uptake have not been evaluated quantitatively. In order to quanitate effects of dietary I- intake, ClO4- exposure and their interactions on maternal and fetal HPT axis, a biologically based dose response (BBDR) model for HPT axes in the pregnant woman and fetus was developed. The BBDR model includes sub-models for I-, ClO4-, thyroxine (T4) and triiodothyronine (T3). The model was successfully calibrated for euthyroid, marginal iodide deficiency and ClO4- exposure. Serum thyroid hormone changes were predicted for dietary I- intake ranging from 75 to 250 μg/day and for ClO4- exposures of 0.01 to 1000 μg/kg/day. Model simulations suggest that ClO4- at environmentally relevant ranges of exposure (0.1 μg/kg/day) does not result in significant decreases in maternal and fetal free serum T4 concentrations for maternal I- intake of 75 to 250 μg/kg/day and for ClO4- exposures of 0.01 to 1000 μg/kg/day. As I- intakes were lowered (150, 100 and 75 μg/kg/day), ClO4- doses required for similar reductions in fT4 levels were reduced to 28, 16, and 4 μg/kg/day, respectively. This BBDR-HPT axis model for pregnancy provides a novel tool for public health assessment for endocrine active chemicals found in food and the environment. Funded by the Air Force Center for Engineering & the Environment through 711 HPW/RHDJ, WPAFB, OH.
895 Evaluating Early-Life Sensitivity to Pyrethroids by Physiologically-Based Pharmacokinetic (PBPK) Modeling Using In Vitro to In Vivo Extrapolation.

H. Wu1, M. Yoon1, S. Anand2, B. G. Lake3, T. Osimite4, N. Assaf5, A. Efremenko6 and H. J. Clewell2. 1The Hamner Institute for Health Sciences, Research Triangle Park, NC; 2DuPont Haskell, Newark, DE; 3LFR Molecular Sciences, Leatherhead, United Kingdom; 4Science Strategies, LLC, Charlottesville, VA; 5Valent BioSciences, Libertyville, IL.

The increased sensitivity of post-natal day (PND) 21 (weaning) rats to acute high-dose neurotoxicity of deltamethrin (DLM) poses the question of whether children will be more sensitive than adults both of whom are exposed to a much lower dose than rats. Age-related pharmacokinetic (PK) differences are hypothesized to be responsible for the observed differences in rats. We developed a PBPK model for human children based on rat PK and rat and human in vitro data. Our model incorporated species and age-dependent differences in metabolism of DLM as well as physiological changes during growth. The predicted age-dependent changes in brain Cmax correlated well with the maturation of metabolic capacity suggesting the lower metabolic clearance as a mechanism for the increased sensitivity in neonatal rats. The predicted Cmax in brain of PND 21 pups after a single oral dose of 4 mg/kg was 50% higher compared to PND 70 rats. The human model was developed similarly by incorporating maturation physiology and developmental changes in DLM metabolizing enzymes. Unlike the rat, the predicted brain Cmax of DLM was comparable between children and adults. After a single oral dose of DLM (0.1 mg/kg), the predicted Cmax was 1.4, 1.7, 2.4, and 2.0 pg/g, respectively, for children ages 1, 5, and 10 years old, and adults. The observed species differences in age-dependent PK seems to be largely attributable to the species differences in enzyme ontogeny and resulting metabolic clearance rates for DLM as well as differences in doses. In conjunction with age-specific exposure data, the current model will enable us to evaluate early life sensitivity in humans under environmentally relevant exposure conditions for this chemical and can be readily applicable to other pyrethroids with proper parameterization (supported by CAPRA).

896 Evaluating Age-Related Sensitivity to Carbaryl-Induced Behavioral Changes by PBPK/PD Modeling.

D. Billing1, M. Yoon1, V. C. Moser2, R. C. MacPhail3 and H. J. Clewell2, 1The Hamner Institute for Health Sciences, Research Triangle Park, NC; 2TAD/NHEERL/OR, US EPA, Research Triangle Park, NC.

Due to its reversible inhibition of cholinesterases (ChEs), acute neurotoxicity is the primary effect of concern for carbaryl. Sensitivity to acute behavioral neurotoxicity of carbaryl was observed to be greater in aged rats, which was not fully attributable to differences in ChE inhibition. We used a PBPK/PD model to evaluate appropriate dose metrics to describe the observed age-related sensitivity to carbaryl in Brown Norway rats, using the change in horizontal motor activity as a marker of biological effect. The current model extends our previous PBPK/PD model in adult Sprague-Dawley rats that describes carbaryl disposition and inhibition of ChE in brain and blood. Age-appropriate physiological parameters were incorporated in the model in conjunction with age-specific metabolism parameters determined in primary hepaticocytes isolated from young adult and aged rats (4, 12 and 24 month old). The model-simulated values compared well with the data both for peak and time-dependent changes in carbaryl concentration in the brain, liver and plasma as well as inhibition of ChE in brain and erythrocytes after a single oral exposure of carbaryl (3, 7.5, 15, or 22.5 mg/kg). While changes in motor activity were correlated with the degree of ChE inhibition at the time of peak effect (40 min), the model did not reproduce the recovery of activity in the older rats up to 240 min. The age-related difference was not explained by kinetics of reaction with ChE by carbaryl, but suggested differences in recovery dynamics in aged rats. The current study demonstrated the use of a PBPK/PD model to describe age-dependent acute effects and recovery from carbaryl, and provided a novel explanation for prolonged recovery in old animals. This is an abstract of a proposed presentation and does not reflect EPA policy (supported by EPA STAR grant R833452 and ACC-IIR).

897 Interpreting Biomonitoring Data for Di-n-Butyl and Di-(2-Ethylhexyl) Phthalate Metabolites in Urine Using Physiologically-Based Pharmacokinetic Model and Reverse Dosimetry: Estimation of Cumulative In Utero Exposure.

At high doses, several phthalate esters, including di-n-butyl and di-2-ethylhexyl phthalate (DBP and DEHP respectively), disrupt normal male reproductive development in rats. Human biomonitoring data have demonstrated phthalate exposure in humans of all ages based on serum, urine, cord blood and breast milk measurements. We used PBPK modeling and reverse dosimetry to infer likely environmental exposures from human biomonitoring data on phthalates in urine. Human PBPK models for DBP and DEHP and their primary metabolites – mono-n-butyl and mono-2-ethylhexyl phthalate (MBP and MEHP) – during pregnancy were developed from published rodent PBPK models and human data. To estimate daily intake of DBP and DEHP consistent with population measures of urinary metabolic levels, Monte Carlo analyses were performed to generate an inverted distribution between urine concentration and steady state exposure. Based on the NHANES III biomonitoring data, the predicted distribution of daily intake for DBP in the U.S. had a median of 0.65 μg/kg/day with a 95th percentile of 5.0 μg/kg/day. For DEHP the estimated daily intakes were higher, with a median of 1.86 μg/kg/day and a 95th percentile of 20.4 μg/kg/day. Using forward dosimetry with the pregnancy PBPK model, the 95th percentile exposure concentration resulted in an average fetal plasma concentration of 6.77 μg/l for MBP and 1.4 μg/l for MEHP. These values can be compared to an average concentration of 1.680 μg/l for MBP and 71.1 μg/l for MEHP in rat fetal plasma, simulated with the rat PBPK models at the NOAELs of 30 and 5 mg/kg, respectively, for developmental effects.

898 Species Extrapolation of Life-Stage PBPK Models to Investigate Ethanol Developmental Toxicity Using In Vitro to In Vivo Methods.

Ethanol (EtOH), which induces fetal alcohol spectrum disorder-related effects, was selected to investigate the use of PBPK models in a quantitative human fetal and mouse dam population. Due to its reversible inhibition of cholinesterases (ChEs), acute neurotoxicity is the primary effect of concern for carbaryl. Sensitivity to acute behavioral neurotoxicity of carbaryl was observed to be greater in aged rats, which was not fully attributable to differences in ChE inhibition. We used a PBPK/PD model to evaluate appropriate dose metrics to describe the observed age-related sensitivity to carbaryl in Brown Norway rats, using the change in horizontal motor activity as a marker of biological effect. The current model extends our previous PBPK/PD model in adult Sprague-Dawley rats that describes carbaryl disposition and inhibition of ChE in brain and blood. Age-appropriate physiological parameters were incorporated in the model in conjunction with age-specific metabolism parameters determined in primary hepaticocytes isolated from young adult and aged rats (4, 12 and 24 month old). The model-simulated values compared well with the data both for peak and time-dependent changes in carbaryl concentration in the brain, liver and plasma as well as inhibition of ChE in brain and erythrocytes after a single oral exposure of carbaryl (3, 7.5, 15, or 22.5 mg/kg). While changes in motor activity were correlated with the degree of ChE inhibition at the time of peak effect (40 min), the model did not reproduce the recovery of activity in the older rats up to 240 min. The age-related difference was not explained by kinetics of reaction with ChE by carbaryl, but suggested differences in recovery dynamics in aged rats. The current study demonstrated the use of a PBPK/PD model to describe age-dependent acute effects and recovery from carbaryl, and provided a novel explanation for prolonged recovery in old animals. This is an abstract of a proposed presentation and does not reflect EPA policy (supported by EPA STAR grant R833452 and ACC-IIR).

899 A Simple In Vitro Approach for the Rapid Detection of Neurotoxicity.

Neurodegeneration is the underlying cause of a vast majority of neurological disorders and often a result of brain trauma, stroke, or neurotoxic insult. A widely used and reliable method for labeling degenerative neurons in ex vivo brain tissue involves the use of the Fluoro-Jade stains. Recently we described a novel method for...
the labeling of degenerating neurons in unfixed brain tissue samples using Fluoro-Jade-C (FJC) (Gu et al. Journal of Neuroscience Methods 2012, 20:40-43). This method is simple, fast, and applicable to unfixed brain tissue sections and works at neutral pH. Based on these features, we extended our experimentation by examining the utility of FJC in vitro using cell cultures. Using neural stem cells, for example, we report here specific FJC labeling following treatment with neurotoxins such as cadmium. The FJC labeling appears to be specific to neural cells, since other cell types such as cultured kidney epithelial cells did not show similar labeling even when cells were dying or dead. Further characterization and validation of this in vitro approach is underway. By employing FJC labeling in multi-well culture plates and using high-content time-lapse recordings and additional techniques, a primary goal will be to achieve high-throughput monitoring and analysis of morphological, biochemical and molecular changes associated with the entire neurodegenerative process in cell culture models after neurotoxicant exposures. This in vitro approach has the potential to not only reduce animal use and suffering in toxicity tests but also to facilitate high-throughput screens for potentially neurotoxic compounds.

Supported by NCTR Protocols E07460 and E07477.

900 Evaluation of the Neuroactivity of ToxCast Compounds Using Multwell Microelectrode Array Recordings of Primary Cortical Neurons.

P. Valdivia1,2, M. Martin1, W. LaFevre3, J. Ross3, K. Houch1 and T. J. Shafer4.
1Duke University, Durham, NC; 2Axion Biosystems, Atlanta, GA; 3NCCT, ORD, US EPA, Research Triangle Park, NC; 4ISTD, ORD, US EPA, Research Triangle Park, NC.

Assessment of spontaneous activity in neuronal cultures on microelectrode arrays (MEA) is a sensitive method to detect responses to drugs, chemicals, and particles. While single-well MEA systems lack the efficiency to screen large numbers of compounds, recently developed multi-well MEA systems have increased throughput of MEAs. The present experiments examined the ability of a subset of EPA’s ToxCast library of compounds to alter neuronal activity using 48 well MEA plates. Thirty-eight compounds were selected from the ToxCast Phase I and II chemical libraries based on known neuroactivity or data from 14 ToxCast in vitro assays indicating that they interacted with ion channels. Two compounds expected not to alter neuronal function, acetaminophen and saccharin, were included as negative controls. One hr of baseline activity was recorded prior to exposing the cortical networks to 40 μM of each compound for 1 hr and the weighted mean firing rate (wMFR) was determined in the absence and presence of each chemical. All experiments were conducted on day in vitro 14 or 15. Based on DMSO-treated wells, chemicals that increased or decreased activity by ≥23.6% were considered hits. Of the 68 compounds, 47 altered wMFR by more than the threshold. Saccharin and acetaminophen did not change wMFR beyond the threshold. Four of six pyrethrroids, and 3/3 conazoles were detected as hits. Interestingly only 1/7 nitocinic agonists (nicotine & nicotinicotinoids) were hits, but were close to the threshold. These data demonstrate that multwell MEAs can be efficiently screened for potential neurotoxic compounds and that the results are concordant with predictions from 14 ToxCast ion channel assays. Further, changes in wMFR may not be a sensitive measure to detect nicotinic effects in this culture model (This abstract was supported by CRADA #644-11 with Axion Biosystems. This abstract does not reflect Agency Policy).

901 Development of an In Vitro Multwell Microelectrode Array (MEA) Neurotoxicity Assay with Human IPS-Derived Neurons.

J. Bradley1, J. Reas2, M. Brock2, H. Luithardt1, J. Gilbert2 and C. Stock1.
1Cypresst, Watertown, MA; 2Axion Biosystems, Atlanta, GA.

Seizure-related neurotoxicity produces significant drug attrition during drug discovery. Current available in vitro assays fail to predict this toxicity due to the failure of general cytotoxicity assays to predict sublethal targets specific electrophysiological liabilities. Ion channel and receptor activity assays can be used to predict some seizure potential, but this only focuses on specifically measured targets for prediction and may miss a response which relies on a combination of endpoints. Most evaluation of seizure inducing compounds occurs later in preclinical development in in vivo studies which have higher costs and could result in species specific results. Therefore the development of an in vitro assay to screen compounds for seizure potential in a human neural model would provide the potential to screen compounds earlier at lower cost and greater reliability. Here we demonstrate the use of multiwell MEAs to screen for seizurogenic compounds in human IPS derived neurons. Over 40 hits were screened in 48 well MEAs and spontaneous activity began at 3 days post plating with greater activity at 7 days when the assay is performed. Neural action potentials were detected and the results were reported as mean firing rate (MFR). The seizurogenic compounds tested show dose dependent increase in MFR with changes in spike train organization, while all of the negative controls were unaffected. The seizurogenic compounds tested were Picrotoxin, 4-aminopyridine, kainate, L-Glutamate, and pentylenetetrazole (PTZ). Negative compounds tested were acetaminophen, naproxen, and DMSO. To further demonstrate the responsiveness of the cells in the assay, we tested Domoic Acid, a neurotoxin known to cause amnesia, and found that it completely blocked network activity while not causing cell death. These results illustrate the power of the human Neural MEA assay for predicting compound induced neural toxicity, especially the seizurogenic response.

902 In Vitro Neurotoxicity of Tetrabromobisphenol-A (TBBPA).

Neurotoxicology Research Group, Institute for Risk Assessment Sciences (IRAS) - Utrecht University, Utrecht, Netherlands.

Tetrabromobisphenol-A (TBBPA) is a widely used brominated flame retardant. Studies on the in vitro neurotoxic potential of TBBPA focused on cytotoxicity and presynaptic effects of neurotransmission, while recent studies indicate that persistent organic pollutants can also affect postsynaptic inhibitory human GABA and excitatory μ4/2 nicotinic acetylcholine (nACh) receptors. Possible effects of TBBPA on these neurotransmitter receptors are of considerable interest as these receptors are critically involved in neurotransmission, synaptic plasticity and brain development. We therefore investigated the effects of TBBPA on these receptors, expressed in Xenopus oocytes, using the two-electrode voltage-clamp technique. Our results demonstrate that TBBPA acts as full (≥10 μM) and partial (≥0.1 μM) agonist on human GABA receptors, while it acts as antagonist (≥10 μM) on human μ4/2 nACh receptors. To further study the effects of TBBPA on calcium-permeable nACh receptors, effects in B35 cell were examined using single cell fluorescence calcium imaging. TBBPA (≥1 μM) inhibits ACh receptors in B35 cells as evidenced by a reduction in the ACh-evoked increases in the intracellular calcium concentration ([Ca2+]i). Additionally, TBBPA (>1 μM) induces a strong and concentration-dependent increase in basal [Ca2+]i in B35 cells. In dopaminergic PC12 cells, TBBPA (>1 μM) also increases basal [Ca2+]i. The increase in basal [Ca2+]i is also evident under calcium-free conditions, indicating it originates from intracellular calcium stores. Moreover, depolarization-evoked increases in [Ca2+]i are strongly reduced by TBBPA (≥1 μM), indicating TBBPA-induced inhibition of voltage-gated calcium channels. Our in vitro results thus demonstrate that TBBPA exerts multiple adverse effects on functional endpoints for neurotransmission, justifying the quest for flame retardants with reduced neurotoxic potential. Funding: EU-FP7 (ENFIRO; grant agreement FP7-ENV-2008-1-225653).

903 Modulation of Nicotinic Acetylcholine Receptor by Brominated and Alternative Halogen-Free Flame Retardants.

The large scale use of brominated flame retardants (BFRs) is associated with ecological and toxicological concerns. Previous in vitro research demonstrated that nicotinic acetylcholine (nACh) receptors are a direct target for e.g., PBDEs and TBBPA. These (neuro)toxic effects of BFRs argue for replacement of safe and less persistent alternatives. Since it is essential to assess the (neuro)toxic potential of brominated flame retardants (HFRs) before they are used on large scale and in high volume, we measured the effects of three frequently used BFRs and 13 possible halogen-free substitutes on the function of human μ4/2 nACh receptors, expressed in Xenopus oocytes, using the two-electrode voltage-clamp technique. Our initial rank-order potency based on the in vitro inhibition of nACh receptors indicates the neurotoxic potential of the HFR triphenylphosphate (TPP), aluminium diethylphosphinate (AlPhP), ammonium polyphosphate (APP), and the nano clay cloisite 30B (MMT). However, additional studies focusing on expected concentrations in humans and the environment are required before these compounds can be excluded as viable alternatives. Importantly, five out of the sixteen tested compounds (brominated polystyrene (BPS), biphenyl-A bis(diphenylphosphate) (BDP), resorcinol bis(diphenylphosphate) (RDP), 9,10-dihydro-9-oxa-10- phosphaphenanthrene-10-oxide (DOPO), and zinc stannate (ZS) are classified as not potent. Based on this specific neurotoxic endpoint, these five compounds could therefore be selected for additional testing to further assess the viability of these HFRs as alternatives to replace current BFRs.
Neurotoxic Effects of Bisphenol AF by the Calcium-Induced ROS and MAPKs.

S. Kim and S. Lee. Pharmacology, Kyungpook National University Medical School, Daegu, Republic of Korea.

Bisphenol AF (BPAF), a newly introduced chemical structurally related to bisphenol A (BPA), is used extensively in fluoroplastomers and polyesters, and has been known to induce estrogen-dependent responses. However, the toxicity of BPAF is largely unknown except for its endocrine-related effects. In this study, we investigated the neurotoxicity of BPAF and underlying mechanisms of action using hippocampal cell line (HT-22) and mouse primary neuronal cells. We found that BPAF induced apoptosis in both HT-22 and primary neuronal cells. To clarify the underlying mechanisms of BPAF-induced apoptosis, various signaling molecules were evaluated. BPAF increased the level of intracellular calcium, followed by the generation of reactive oxygen species (ROS). BPAF upregulated the phosphorylation of mitogen-activated protein kinase (MAPK): extracellular signal-regulated kinase (ERK), p38 and c-Jun-N-terminal kinase (JNK), and nuclear translocation of nuclear factor (NF)-κB. Using specific inhibitors, we confirmed that calcium, ROS, p38, and JNK mediated the BPAF-induced apoptosis. In addition, BPAF inhibited microglial activation in a microglia/neuroblastoma coculture model by the reduction of nitric oxide production. We found that BPAF interrupted the normal physiological functions of microglia at non-toxic levels. Taken together, our results suggest that BPAF, the substitute of BPA, also have neurotoxic properties.

Potent Induction of a Series of Endogenous Antioxidative Enzymes by Triterpenoid CDDO-IM Leads to Neutroprotection Against Oxidative and Electrophilic Injury.

A. Speen, C. Jones, R. Patel and Z. Jia. Department of Biology, University of North Carolina Greensboro, Greensboro, NC.

Evidence suggests oxidative and electrophilic stress as a major factor contributing to the neuronal cell death in neurodegenerative disorders, especially Parkinson’s disease (PD). Early depletion in the levels of thiol antioxidant glutathione (GSH), which may lead to generation of reactive oxygen species, is an important biochemical feature of PD. However, whether induction of endogenous antioxidative enzymes by a novel triterpenoid CDDO-IM (2-cyano-3,12 dioxooleana-1,9-dien-28-oxy) imidazoline) affords protection against oxidative and electrophilic neurotoxicity has not been carefully investigated. Retinoid acid-induced differentiation of human neuroblastoma SH-SYSY cells are known to possess properties of mature neurons and thus have been widely used in vitro model for the study of neurotoxicity and neuroprotection. In this study, we showed that incubation of retinoic acid-induced differentiation of human neuroblastoma SH-SYSY cells with nanomolar concentrations of CDDO-IM (1-400 nM) for 24 h resulted in significant increase in the levels of reduced glutathione (GSH) and NAD(P)H:quinone oxidoreductase 1 (NQO1), two critical cellular defenses in detoxification of reactive oxygen species and electrophilic quinone molecules. Pretreatment of the cells with CDDO-IM was found to afford remarkable protection against the neurotoxicity elicited by acrolein, 4-hydroxynonenal, 3-morpholinosynonimine hydrochloride, xanthine oxidase/xanthine, and hydrogen peroxide. Taken together, this study demonstrates for the first time that CDDO-IM potently induces the cellular GSH system and NQO1 in retinoid acid-induced differentiation of human neuroblastoma SH-SYSY cells, which is accomplished by dramatically increased resistance of these cells to the damage induced by various neurotoxicants. The results of this study may have important implications for the development of novel neuroprotective strategies.

1, 3-Dinitrobenzene Induces Age-Specific Responses in Primary Neurons.

J. Maure1, N. D. Hein2, J. D. Latham1, R. Landsi3, I. Speirs1 and M. A. Phillips1.1 Toxicology Program, University of Michigan, Ann Arbor, MI; 2Neurology, University of Michigan, Ann Arbor, MI; 3Kalamazoo College, Kalamazoo, MI.

During the normal aging process, the brain successively loses the ability to cope with pathophysiologic stressors. The accumulation of iron in the aging brain potentially contributes to this by increasing redox activity. Astrocytes participate in the preservation of neurons during chemically induced stress by releasing adenosine, thereby silencing the electrical (hence energetic and metabolic) requirements of neurons. 1,3-dinitrobenzene (DNB) stimulates adenosine release from astrocytes, and is used as a neural stress probe in this study. Primary stressors and astrocytes were exposed to DNB (0, 100nM, or 100 μM) and 10 μM adenosine with 100nM or 100μM DNB. Neurons were isolated from male F344 rats (1 mo, 3 mo, & 18 mo), maintained for two weeks and exposed to DNB. Astrocytes were isolated and maintained for five weeks and cocultured with neurons. Adenosine triphosphate (ATP) was measured in both cell types. Neurons from 3 mo brains exhibited higher ATP than neurons from other age groups. Cocultured astrocytes had higher ATP levels than neurons at all age groups. Neurons were assayed at a later timepoint for lactate dehydrogenase (LDH). Neurons from brains of 1 mo and 18 mo rats, but not 3 mo rats, exposed to DNB exhibit statistically significantly higher LDH than neurons treated with both DNB and adenosine. Immunocytochemistry for the presence of transferrin (TF) and mitochondrial frataxin (mtFr) was performed on neurons. Increases in TF were observed in older neurons. Colocalization of TF and mtFr was observed in the oldest age group. These results suggest that neurons from older animals sequester more mitochondrial iron than younger cohorts, increasing potential for higher redox activity, rendering them more vulnerable to chemical insults such as DNB. Future work will elucidate the significance of mitochondrial iron in the aging process.

Magnetic Resonance Imaging and Spectroscopic Markers of Kainic Acid-Induced Excitotoxicity in the Rat Brain.

S. Lienchenko1, J. Ramu1, M. G. Paula4, L. Schmuel1 and J. P. Hanig2.

1Neurotoxicology, NCTR/US FDA, Jefferson, AR; 2Office of Testing & Research, CDER/US FDA, White Oak, DC.

Neurotoxicity assessment in drug development is typically accomplished using microscopic analysis, which may be time consuming and not always comprehensive. In this study we describe changes in brain after acute administration of kainic acid (KA) using non-invasive magnetic resonance imaging (MRI) and spectroscopy (MRS) in comparison to histopathology. Adult male Sprague-Dawley rats (N = 24, 361 ± 36 g) were anesthetized with isoflurane and positioned inside a 7 tesla MRI scanner. T2 relaxation mapping of the whole brain and proton MRS in the left hippocampus were performed. KA (10 mg/kg, ip) was then administered to all animals after baseline scans and imaging was continued for another 2 hours. One group of animals (N = 6) was euthanized at this time. The MRI procedure was repeated one day (N = 6) and 2 days later (N = 12) and these animals were euthanized. All rats were perfusion-fixed and their brains underwent histopathological assessment. KA led to an increase in T2 in the hippocampus as early as 1 hour after administration. These changes were more pronounced at 2 hours and drastically so at 1 and 2 days after the treatment at which point the findings spread to wider areas of the brain, including the amygdala, thalamus, and cortex. MRS revealed immediate increases in glutamate and glutamine concentrations right after KA administration followed by decreases at 1 and 2 days, at which point N-acetyl-aspartate signal was also decreased. Lactate was not detectable in the normal brain but appeared at 15 min and increased to a maximum at 2 hours after treatment. At 1 and 2 days lactate was still detectable. The T2 changes correlated with histopathological changes in the brain at all time points. These data provide the basis for the development of imaging biomarkers for the early detection of neurotoxicity, which would benefit public health by increasing the number of tools available for safety evaluation of new drugs. (Supported by NCTR and CDER, FDA, #E0714801).

Effect of Acute Administration of Beta-N-Methylaminoalanine (L-BMAA) on Rat Hippocampus Neurochemical Profile Determined with 1H Magnetic Resonance Spectroscopy (MRS).

1Neurotoxicology, NCTR/US FDA, Jefferson, AR; 2Office of Testing & Research, CDER/US FDA, White Oak, DC; 3Lovelace Respiratory Research Institute, Albuquerque, NM.

L-BMAA is a non-proteogenic amino acid present in cyanobacteria and in cereal seed, exposure to which is implicated in western Pacific amyotrophic lateral sclerosis and parkinsonism-dementia complex (ALS-PDC). After absorption, L-BMAA is transported into the brain, metabolized, and L-BMAA and/or its metabolites may accumulate in brain protein. This bound form may serve as a sink from which L-BMAA or its metabolites are released, contributing to its neurotoxic effect. L-BMAA has been shown to be excitotoxic, acting as a glutamate receptor agonist. In
this study we used non-invasive 1H-MRS to investigate the changes in the hip-
cocapal neurotumetabolic profile after single dose of L-BMAA. Nine adult male
Sprague-Dawley rats (390 ± 8 g) were anesthetized with isoflurane and positioned in 7 tesla MRI scanner. MRS in the left hippocampus (voxel size 4 x 4 x 2 mm) was performed before and for 1.5 hrs after BMAA administration (100 mg/kg, ip). Signal intensity of N-acetyl-aspartate, gamma-aminobutyric acid (GABA), creatine, choline, glutamate, glutamine, myo-inositol, and taurine were measured relative to water peak in water-suppressed reference spectrum. At the end of observation pe-
period the GABA signal was elevated relative to the baseline (+23%, P = 0.051) and taurine was decreased (-10%, P = 0.014). Signal intensity of other neurotransmit-
ters did not change. These data may be consistent with L-BMAA mediated gluta-
mate agonist activity Both GABA and taurine are released into extracellular space
after stimulation of NMDA receptors. Increase in GABA may be due to a combi-
nation of uptake and increased synthesis. The lowering of hippocampal taunine may reflect a reduction in re-uptake after release. These data suggest that L-BMAA has measurable effect on glutaminergic pathways in undisturbed, intact tissues in rats.

909 Pattern of Pathologic Changes Observed in the CNS of Chronic Toluene Abusers.

D. Pears1, 2 and P. Keriz1, 1Summit Toxicology, Superior, CO; 2Schools of Pharmacy and Public Health, University of Colorado at Denver, CO; 3Cinpathgen, Los Angeles, CA.

Toluene is a common volatile organic chemical (VOC) found in petroleum-based products and has wide-spread industrial use as a solvent in paints, lacquers, inks, adhesives and cleaning agents (decreasing). The toxicity of toluene has been well described in experimental animals, occupationally exposed humans and healthy volunteers. Considerable toxico-lological data has also been obtained from individuals who purposely expose themselves to high levels of toluene and/or toluene contain-
ing solvents to achieve the narcotic effect common to most organic solvents. Collectively, this data has demonstrated that high-dose prolonged exposure to toluene can cause neurological toxicity, ranging from non-specific, reversible symp-
toms to permanent pathalogical changes in the 'white matter' of the brain. Evaluation of chronic toluene abusers by magnetic resonance imaging (MRI) have revealed a series of pathologic alterations that appear to be common to most, if not all, toluene abusers that suffer from permanent neurological alterations. These indi-
viduals almost always provide evidence of direct toxic insult, including diffuse atro-
phy in the brain and/or areas of de-myelination and axonal dying. Other frequently reported pathalogical changes include hypo-intensity of the thalamus region and basal ganglia, high T2 signal intensity in the periventricular white matter and a loss of grey-white demarcation or differentiation. Most authors report a clear dose-re-
sponse relationship, describing exposures (durations as well as intensities) necessary to cause these lesions observed in the white matter. While none of the reported al-
terations are dispositive of toluene exposure, the consistent pathological pattern ob-
served in the MRIs of chronic toluene abusers (or those with severe occupational
exposures) has not been previously appreciated or reported. The existing scientific
served in the MRIs of chronic toluene abusers (or those with severe occupational
exposures) has not been previously appreciated or reported. The existing scientific
findings and are measurable effect on glutaminergic pathways in undisturbed, intact tissues in rats.

**910 Effects of Short- and Long-Term Exposure to 1-
Bromopropane on Neurogenesis in Adult Rats.**

L. Zhang1, T. Nagai2, K. Yamada2, D. Ibi2, S. Ichihara3, K. Subramanian1, Z. Huang1, S. Sheik Mohideen1, H. Naito1 and G. Ichihara1, 1Department of Occupational & Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan; 2Neuroscience Research, Nagoya University Graduate School of Medicine, Nagoya, Japan; 3Mie University Graduate School of Regional Innovation Studies, Tsu, Japan.

Purpose: People with 1-bromopropane (1-BP) intoxication show depression and reduction of cognitive function and memory. The present study tested the hypothesis that 1-BP suppresses neurogenesis in the dentate gyrus which is involved in higher cerebral function in adult rats.

Methods: Four groups of twelve male Wistar rats were exposed to 1-BP at 0, 400, 800 and 1000 ppm for 7 days. Three groups were exposed to 1-BP at 0, 400, 800 and 1000 ppm for two weeks and 0, 200, 400 and 800 ppm for another 2 weeks. The other four groups of six rats were exposed to 1-BP at 0, 200, 400 and 800 ppm for 4 weeks. Rats were injected with 5-bromo-2'-deoxy-uridine (BrDU) after four-week exposure at 1000/800 ppm to examine neurogenesis in the dentate gyrus using immunostaining. Factors known to affect neurogenesis, including monoamine level in different brain regions, hippocampal brain-derived
neurotrophic factor (BDNF) and glucocorticoid receptor (GR) mRNA expression levels were measured.

**911 Nitrosative Stress in Chemooconvulsant-Induced
Epileptogenesis.**

K. Ryan1, 2, L. Liang1 and M. Patel1, 1Toxicology, Skaggs School of Pharmacy and
Pharmaceutical Sciences; University of Colorado Anschutz Medical Campus, Aurora, CO; 2NTP, NEIHS, Morrisville, NC.

Reactive oxygen and nitrogen species (ROS/RNS) are mediators of oxidative stress and are increased in the brain as a result of seizure activity and reactive gliosis; yet their contributing role in the process by which injury leads to epilepsy (i.e. epilep-
togenesis) is largely unknown. Our previous work in the kainate model of chemo-
convulsant-induced epilepsy has confirmed significant oxidative macromolecular
damage to hippocampal mitochondria (Ryan et al 2012). The primary goals of this study were to assess the consequences of nitrosative stress in cellular compartments to gain greater mechanistic insight into mitochondrial dysfunction during epilep-
togenesis. Rats were exposed to a single high dose of kainate (11mg/kg) or vehicle
and monitored by video and/or EEG for seizure activity 6 wks. Nitrosative stress
was measured in the susceptible hippocampal brain region acutely after kainate ad-
ministration (8hr, 24hr, and 48hr), 1wk after kainate prior to development of
epilepsy (latent period) and during the chronic stages of epilepsy (3wk and 6wk). Analysis from frozen hippocampal sections indicated global astrogliosis (GFAP) and microgliosis (Iba-1) after kainate. Hippocampal nitric oxide spilled 2-fold 8hr
after kainate and remained elevated throughout epileptogenesis. Preliminary results
suggest this could be associated with increased iNOS detected by immunohisto-
chemical staining. Furthermore, cellular and mitochondrial 3-nitrotyrosine (3NT)
potentially and significantly increased during epileptogenesis indicating protein
nitrosylation. Recent findings with an in vivo nitric oxide fluorescent co-labeling showed that 3NT is local-
ized to hippocampal neurons (NeuN). This study demonstrates a probable mecha-
nism for gliosis-mediated nitric oxide production and downstream protein damage
to hippocampal neurons in epileptogenesis. These studies propose a role for target-
ing oxidative and nitrosative species to delay or prevent disease progression by in-
hibiting detrimental protein nutrition. NS039587 (M.P.) and NS R21 NS027099 (M.P.)

**912 Ozone-Induced Changes in Oxidative Stress Parameters in
Brains of Adult, Middle-Age, and Senescent Brown
Norway Rats.**

Understanding life-stage susceptibility is a critical part of community based human
health risk assessment following chemical exposure. Recently there is growing con-
cern over a common air pollutant, ozone (O3), and adverse health effects including
dysfunction of the pulmonary, cardiac, and nervous systems. Oxidative stress (OS)
is a known contributor in multiple organ toxities and plays an important role in
age-related diseases. Growing evidence implicates OS in O3 toxicity. The current
study explored OS as a potential toxicity pathway for O3 exposure and addressed
whether these effects are life stage-dependent. OS-related measures included reac-
tive oxygen species (ROS) production [NADPH Quinone oxidoreductase 1 (NOQ1),
NADH Ubiquinone reductase (UBIQ), antioxidant homeostasis [total
antioxidant substances (TA), superoxide dismutase (SOD), γ-glutamylcysteine syn-
thetase (γ-GCS)], and oxidative damage (total aconitate). Male Brown Norway rats
(4, 12, and 24 months) were exposed to O3 (0, 0.25 or 1 ppm) via inhalation for 6
h/day, 2 days per week for 13 weeks. Frontal cortex (FC), cerebellum (CB), stria-
tum (ST), and hippocampus (HP) were dissected 24 hours after last exposure,
quick frozen, and stored at 80°C until analysis. Results indicated life stage-related
increases in ROS production (~ 2x in UBIQ and ~ 1.5x in NOQ1 in striatum), slight
decreases in antioxidant homeostatic mechanisms (TAS, γ-GCS, and SOD), and
a decrease in aconitase activity. The effects of O3 exposure were brain area-spe-
cific, with the striatum being more sensitive than other brain regions. With regard
to life stage, the effects of O3 appeared to be greater in 4 month old than 12 or 24
month old rats. This result may suggest a critical period during O3 exposure for
O3, but the complex interactions between age, exposure and brain region require
 further investigation. (This abstract does not necessarily reflect USEPA policy).
We recently found that carnosine, an endogenous pleiotropic dipeptide, has a neuroprotective activity against ischemic stroke. To investigate the mechanism of carnosine neuroprotection, we examined the effect of carnosine on mitochondrial dysfunction and autophagic process in ischemic brain. In rat permanent middle cerebral artery occlusion models, intravenous treatment with carnosine exhibited robust neuroprotection. Carnosine treatment improved brain mitochondrial function as found in mitochondrial respiration, and fusion/fission signaling. Interestingly, autophagic pathways were activated in brain following ischemic insults, such as reduction of phosphorylated mTOR/p70S6K and the conversion of LC3 I to LC3 II, as found in western blot analysis of isolated brain homogenates. Treatment of carnosine attenuated the autophagic signaling in ischemic brain, while the change of ERK phosphorylation was not detected. Taken together, our data suggest that carnosine neuroprotection is mediated by mitochondrial protection, inhibiting excessive autophagic processes. We believe that our finding contributes to the development of carnosine as a strong candidate for stroke treatment, providing a new insight into the role of mitochondrial damage and autophagic pathways in ischemic brain damage.

914 The Neurotoxic Effects of Tributyltin on Tokai High Avoider (THA) Rats Evaluated by the Sidman Electric Shock Avoidance Test.

1. Preventive Medicine, Kitasato University School of Medicine, Sagamihara, Japan; 2. Public Health and Environmental Medicine, Jikei University School of Medicine, Tokyo, Japan; 3. Epidemiology and Environmental Health, Faculty of Medicine, Juntendo University, Tokyo, Japan; 4. Basic Clinical Science and Public Health, Tokai University School of Medicine, Isehara, Japan; 5. Kitasato University, Tokyo, Japan.

Tributyltin (TBT) compounds have been known as environmental pollutants. Although neurotoxicity is one of the major toxicities of TBT, the effects of TBT on learning ability have not yet been clearly demonstrated. Wistar-derived Tokai High Avoider (THA) rats, which were developed at Tokai University, can achieve stable learning ability in the Sidman electric shock avoidance test. The male and female THA rats were administered TBT in their food at 0 and 125 ppm after weaning (males, n = 5/group; females n = 4/group). From 6 weeks of age, the Sidman test sessions were performed for 60 min/day for 10 consecutive days. Rats can avoid electric shocks by pressing a lever. Avoidance rates for shock exposures were calculated for the first and second halves (30 minutes each) of each session. The mean values of the avoidance rates were compared between the control and TBT groups for each sex, and those of the TBT-exposed group were lower than those of the control for both sexes for all the sessions. Significantly lower mean values of the avoidance rates compared to the control were observed in the first 30 minutes of the sessions in male rats on days 2 and 5. It is suggested that learning ability was impaired in the THA rats exposed to TBT at 125 ppm. To detect the statistically significant differences in future studies, more THA rats should be used.

915 Protein Biomarker Panel of Cisplatin-Induced Neurotoxicity in a Preclinical Model.

1. Banyan Biomarkers, Inc., Alachua, FL; 2. University of Florida, Gainesville, FL; 3. College of Pharmacy, Hanyang University, Ansan, Republic of Korea; 4. College of Pharmacy, Ajou University, Suwon, Republic of Korea; 5. Department of Neurology and Manchester Academic Health Sciences Centre, Salford Royal Hospital, Salford, United Kingdom.

Background: Neurotoxic brain damage is a widely recognized adverse effect of chemotherapy affecting overall outcome and quality of life cancer survivors. Effective clinical monitoring of neurotoxicity using simple and reliable assays could provide timely information to clinicians allowing them to adjust treatment and reduce neurologic and cognitive side effects of chemotherapy. The goal of this study was to investigate spatiotemporal distributions in the brain, CSF and serum of glial, neuronal and inflammatory biomarkers: ubiquitin C-terminal hydrolase-1 (UCH-L1), glial fibrillary acidic protein (GFAP), α-spectrin break down products (SBDPs), microtubule-associated protein 2 (MAP2), myelin basic protein (MBP), MBP break down products (MBP-BDP), intercellular adhesion molecule (ICAM) and their relationships to cisplatin-induced neuropathology in rats.

Methods: Neurotoxicity in adult rats was induced by cisplatin (10 mg/kg, i.p.). The levels and localization of biomarkers in the brain were examined by immunohistochemistry (IHC) and their levels in CSF and serum were evaluated by ELISA. Results: HIC revealed that cisplatin caused abnormal changes in the brain starting at 6 h and increasing at 24 h and 48 h including gliosis, determined by increased GFAP level, dendritic damage determined by decreased MAP2 level, neuronal demyelination determined by increased level of MBP-BDP, and inflammation determined by increased level of ICAM. Serum levels of UCH-L1, GFAP and SBDP150 were significantly increased at 24 h after cisplatin administration as compared to controls. The levels of these biomarkers were correlated with IHC brain pathologies and survival.

Conclusion: This study demonstrated the potential of using levels of glial and neuronal proteins in blood for assessment of cisplatin induced neurotoxicity. In addition, assessment of serum levels of biomarkers can provide information on underlying mechanisms of neurotoxicity and facilitate a personalized treatment to minimize side effects during and after chemotherapy.

916 Effects of a Smokeless Tobacco, Gutkha on Neurotransmitter Levels and Associated Parameters in the Mouse Brain.

1. Environmental Medicine, New York University, Tuxedo, NY; 2. Memorial Sloan-Kettering Cancer Center, NY, NY; 3. Rutgers University, New Brunswick, NJ.

Many studies have been performed on the relationship between smoked tobacco and adverse effects on health. However, fewer data are available on the toxicity of smokeless tobacco. Gutkha, a smokeless tobacco (ST) product manufactured in India and readily available in the U.S. (used extensively by South Asian communities), is composed of powdered tobacco, spice, and lime. To determine the effects of Gutkha usage on the brain, adult male mice (B6C3F1) were exposed daily via the oral mucosa to water (control), 50 μL of a 21 mg water-soluble Gutkha solution or of a 8 mg/kg nicotine solution for 3 days and changes in brain levels of dopamine (DA), serotonin (5-HT), and norepinephrine (NE) were assessed in the striatum. Monoamine oxidase and tyrosine hydroxylase (enzymes important for neurotransmitter (NT) breakdown and synthesis, respectively) levels were assessed in the striatum, frontal cortex, and locus coeruleus. Serum cotinine levels for all the groups were analyzed upon sacrifice within 1 hr post-exposure; Gutkha- and nicotine-exposed mice had comparable cotinine levels ranging between 18-50 ng/mL and 20-60 ng/mL, respectively. HPLC studies measuring NT levels in the brain demonstrated that Gutkha-exposed mice had a significant increase in NE compared to those exposed to either nicotine or water. In contrast, Gutkha-exposed mice had a significant decrease in DA and 5-HT compared to the control and nicotine-exposed groups. The results here suggest that: effects of Gutkha on certain brain parameters may be due to Gutkha-associated toxicants other than nicotine; Gutkha may provide an additional biological stressor for the brain compared to nicotine alone; and, Gutkha may be more addictive than nicotine alone based on the rapid depletion rate of catecholamines in the brain. Studies supported by funds from the NYU Cancer Center and NYU NIEHS Center.

917 3,4-Methylenedioxymethamphetamine (Ecstacy)-Mediated Acute and Long-Term Effects Are Reduced in SERT-Knockout Rats.

Pharmacology and Toxicology, University of Arizona, Tucson, AZ.

3,4-Methylenedioxymethamphetamine (MDMA, Ecstacy) is a ring-substituted amphetamine derivative structurally related to the psychomotor stimulant amphetamines and the hallucigenen mescaline. The neuropharmacological effects of MDMA are biphasic in nature. MDMA initially causes synaptic monoamine release, primarily of serotonin (5-HT), producing hyperthermia and hyperactivity (5-HT syndrome). The long-term effects of MDMA manifest as a prolonged depletion in 5-HT, and structural damage to 5-HT nerve terminals. The effects of MDMA are in part mediated by an ability to inhibit the presynaptic 5-HT reuptake transporter (SERT). Using a SERT-knockout (SERT-KO) rat model, we determined the effects of SERT deficiency on MDMA (10mg/kg, sc, X 4 at 12h intervals) -mediated hyperthermia, locomotor activity, and neurotoxicity in SERT-KO or Wistar-based wild-type (WT) rats. Open-field activity cages equipped with photoelectric sensor rings revealed that WT rats were 2.4-fold more active (displaying higher horizontal movement distance and mean velocity) than their SERT deficient counterparts. Exposure to MDMA stimulated total movement by 4.2-fold in both WT and SERT-KO rats. Although the peak hyperthermic response in SERT-KO (38.9°C & 38.4°C) and WT animals (39.1°C & 38.8°C) were similar after the first and third doses of MDMA, the response was delayed and prolonged in WT animals. Thus the cumulative (temp X time) elevation in temperature was significantly lower.
Structurally-Distinct Dopaminergic Neurotoxicants Acutely Decrease ATP-Dependent Calcium Signaling in Astrocytes by Inhibiting TRPC3.

K. Streifel, A. Gonzales, B. Trout, B. Mohl, S. Earley and R. B. Tjalens, Environmental and Radiological Health Science, Colorado State University, Fort Collins, CO.

Dopaminergic nuclei within the basal ganglia are important for control of motor function but are highly sensitive to damage from oxidative stress, inflammation, and environmental neurotoxicants. Here we propose that inhibition of transmitter-evoked calcium (Ca2+) signaling in astrocytes may contribute to this sensitivity because ATP-dependent Ca2+ waves in these cells modulate diverse trophic functions in the CNS, including metabolism, synaptic activity, and regional cerebral blood flow. To examine mechanisms underlying alterations in Ca2+ signaling in astrocytes, we postulated that cationic neurotoxicants of the basal midbrain would acutely inhibit ATP-dependent Ca2+ signals throughout a common channel. To test this hypothesis, we examined the capacity of MPP+ and 6-Hydroxydopamine (6-OHDA) to block ATP-dependent Ca2+ waves and transients in primary striatal astrocytes. Calcium imaging studies revealed a dose-dependent decrease in ATP-induced intracellular Ca2+ transients and mechanically stimulated Ca2+ waves following acute application of both MPP+ and 6-OHDA. These compounds may therefore share a common mechanism of neurotoxicity in their capacity to acutely disrupt astrocytic trophic functions relevant to this signaling mechanism.

Comparative Toxicity of Amphetamine B and Amphetamine B Methyl Ester in Oligodendrocytes In Vitro and In Vivo.

O. U. Nnoji1, C. P. Schaffer2 and K. B. Reuhl3. 1Pharmacology & Toxicology, Rutgers University, Piscataway, NJ; 2Wildman Institute, Rutgers University, Piscataway, NJ.

Amphetamine B methyl ester (AMB) is a polyene macrolide antibiotic highly effective against systemic fungal infections. Introduced more than 40 years ago, AME is an effective treatment for systemic fungal infections. AME is structurally distinct from AMB and exhibits some attenuated hyperthermia and neurotoxicity but not locomotor activity. The data confirm that SERT is essential for the manifestation of the acute and long-term effects of MDMA (NIDA R01 DA023552, P30ES066094, and T32ES007991).

919 Comparative Toxicity of Amphetamine B and Amphetamine B Methyl Ester in Oligodendrocytes In Vitro and In Vivo.

O. U. Nnoji1, C. P. Schaffer2 and K. B. Reuhl3. 1Pharmacology & Toxicology, Rutgers University, Piscataway, NJ; 2Wildman Institute, Rutgers University, Piscataway, NJ.

Amphetamine B methyl ester (AMB) is a polyene macrolide antibiotic highly effective against systemic fungal infections. Introduced more than 40 years ago, AME is less toxic than the commonly used Amphetamine B (AMB), which has serious dose-limiting nephrotoxicity. Nevertheless, reports of neurotoxicity led to cessation of its therapeutic use. Despite these concerns, AME shares a common mechanism of neurotoxicity in their capacity to acutely disrupt astrocrotic trophic functions relevant to this signaling mechanism.
measurable neurobehavioral endpoints was evaluated. Socially defeated or submis-

sive rats exhibit exploratory behavior relative to socially dominant rats. It was hypothesized that any impact of social dominance on a neurobehavioral endpoint (e.g., motor activity) would correlate with a difference in bodyweight gain between the two pair-housed rats. However, the control data from five 90-day studies (N=114) indicated no significant correlation between the differ-

ence in bodyweight gain within each cage and the difference in motor activity, grip strength, hindlimb splay, or body temperature values within the same cages. Our second objective was to optimize the use of a photo-beam-based system which computes multiple parameters for motor activity assessment and is widely used in the industry. We evaluated baseline data from eight studies (N=816), to select two representative motor activity parameters from a list of multiple options. Duration of movement and number of ambulatory movements offered the greatest unique value (lowest correlation coefficients) and were the best predictors (highest R-squared values) of the remaining motor activity parameters. A positive control study conducted with carbaryl and amphetamine using pair housing conditions demonstrated neurobehavioral effects that were consistent with previously published literature. Based on the analysis of data from multiple studies including a positive control, we concluded that pair housing does not interfere with neurobehavioral evaluations and that motor activity can be characterized effectively using duration of movement and number of ambulatory movements in a photo-beam-based sys-

tem.

923 Feasibility Study of EEG Measurements in Chair Restrained Cynomolgus Monkeys.

Quantitative EEG is one of the most sensitive non-invasive approaches for the de-

tection of drug effects on the brain. Therefore, a validation study was performed using 4 male and 4 female cynomolgus monkeys. Two electrodes each were placed on the frontal, central, and occipital cortex, with the reference electrode either placed at CZ (central region) or the mastoid. The electrode positions were calcu-

lated and marked with a tattoo on the head of the sedated animal 1-3 weeks before start of EEG measurements to guarantee exact electrode placement over the course of the study. The animals were habituated to the primate chair before start of the study. At the day of EEG recordings, the animals were habituated to the room approximately 5-10 minutes prior to EEG recordings. Subcutaneous steel needle elec-

trodes as well as a reference electrode were fixed on the primate head and connected to the EEG system (EEG Kit for Neuropack S1, MEB-9400, Nihon Kohden). For determination of artefacts, ECG recordings were simultaneously performed. Sedating effects were shown using the drug lorazepam. An intermittent slowing of Delta- and/or Theta- waves was observed for all animals dosed intravenously with 0.2 mg/kg lorazepam, however the expected increase in frontal beta-activity was only recorded after a lorazepam dose of 0.4 mg/kg. For the 0.6 mg/kg dose level, an antider was applied after sedating effects were observed in the EEG. To demon-

strate seizure-inducing effects, female animals of an inhouse project were treated with pentylenetetrazole (PTZ) under anesthesia until seizures were visible. Anesthesia was induced with ketamine, the animals were ventilated and anesthesia was maintained with a mixture of oxygen and nitrous oxide. To avoid muscle arte-

facts in the EEG recordings, nocturnal urine samples were used as peripheral muscle relaxant. Seizures were observed at a single intravenous dose of 20 mg/kg PTZ at a dose vol-

ume of 0.2 mL/kg. In conclusion, this validation study demonstrated the feasibility of EEG recordings in chair-restrained cynomolgus monkeys since sedating as well as seizure-inducing effects could be demonstrated.

924 Characterization of Urinary microRNA in Cisplatin-Induced Nephrotoxicity in Rats.

M. Kanki1, A. Moriguchi1, D. Sasaki1, H. Mitori1, A. Yamada2, R. Hirota1 and Y. Miyamaw1. 1Astellas Pharma Inc., Osaka, Japan; 2Astellas Research Technologies Co., Ltd., Osaka, Japan.

Recent studies with urinary microRNA (miRNA) report that some urinary miRNAs detect renal dysfunction and histopathological damages. The purpose of this study is to find urinary miRNAs that can detect the drug-induced nephrotoxi-

city in rat as one of novel biomarkers. Male Sprague-Dawley rats were given a single intraperitoneal injection of saline (10 animals) or cisplatin (6 mg/kg, 20 animals) and the urine was collected from 4 to 5 days (173h) after administration. To examine the effects of feeding condition, half of animals in each group were fed and the others were fasted during urine collect-

ion. The kidney and serum were collected at 5 days after administration. Eighteen protein biomarkers of nephrotoxicity in the urine were also measured. Urinary miRNAs were detected individually from 5 animals in each group. cTn I and miRNA ex-

pression data was obtained by TaqMan® rodent microRNA array cards. In cisplatin-treated groups, moderate or marked proximal tubular necrosis was observed in the kidney and blood urea nitrogen and creatinine were significantly increased in the serum. Furthermore, most of protein biomarkers were significantly increased in the urine. There were no noteworthy differences in these items due to the feeding conditions. Regarding miRNAs, approximately 80 miRNAs showed statistically significant difference in the expression levels between fed and fasted conditions. These miRNAs might be affected by feeding condition and were ex-

cluded when we explore changed miRNAs in cisplatin-treated groups. Approximately 30 miRNAs were found to be up- or down-regulated in cisplatin-

treated group regardless of feeding condition during urine collection. Some of up-

regulated urinary miRNAs, such as miR-192, were reported their expression in the rat kidney, so that these miRNAs might be derived from the injured kidney tissue. In conclusion, the feeding condition during urine collection affects the urinary miRNA profiles and we could identify some of urinary miRNAs that can detect the cisplatin-induced nephrotoxicity in rats.

925 Circulating miR-208a As Potential Cardiac Toxicity Biomarker.

Literature is rife with information about several potential miRNAs that are in-

volved in acute cardiac injury. In this dose finding study, we evaluated miR-1, -133a, -208a and -499-5p as potential biomarkers for cardiac injury in an oxidative stress mouse model and compared them alongside Troponin I. Isoproterenol Hydrochloride (80, 160 or 320 mg/kg) was administered to female SOD2 +/- mice intraperitoneally once daily for one day to induce cardiac injury. EDTA plasma samples were collected at 6 and 24 hours for assessing miR-1, -133a, -208a, and -499-5p by Taqman real time PCR and Troponin I, the current golden standard for detecting early cardiac injury via MSD® ELISA kit. Cardiac damage was confirmed microscopically in heart tissues collected at day 10 and by measuring conventional serum biomarkers ALT, AST, ALP and GLDH at day 10. Treatment related fatalities at doses of 80 mg/kg at 6 and 24 h consisted of increased of cTn I in a dose-response fashion. Levels of cTn I declined after 6 hours. Concordant with cTn I results, miR-208a was elevated significantly. A similar, yet smaller, magnitude of response was noted for miR-499-5p while miR-1 and miR-133a appeared to be the least sensitive. Microscopically, mild myocardial inflamma-

tion and fibrosis at the heart base was observed in some mice given 160 mg/kg while ALT, AST, ALP and GLDH were not changed. In conclusion, the release profile of miR-208a is comparable to cTn I suggests its utility as a putative cardiac injury biomarker. A dose level of 160 mg/kg caused sig-

nificant elevations in cTn I and miR-208a which correlated with histopathologic findings in the heart.

926 Evaluation of the Pancreas-Specific microRNA, miR-216a, and miR-217 As Biomarkers of Acute Pancreatitis.

Pancreatitis is a serious side effect associated with nearly half of the 100 most pre-

scribed medications that is often under- or misdiagnosed because of its non-specific symptoms and the relative insensitivity of the clinical biomarkers, serum amylase and lipase. MicroRNAs (miRs) are short, non-coding RNA sequences involved in the regulation of gene expression. Serum miR-216a has been reported as a potential biomarker of acute pancreatitis, and our results suggest that miR-217 may also serve that purpose, miR-216a and miR-217 are selectively expressed in pancreatic acinar cells and are present at very low or undetectable levels in serum under normal conditions. To further evaluate the possible utility of miR-216a and miR-217 as serum biomarkers of pancreatitis, we investigated their performance in models of acute pancreatitis induced by cationic 1-arginine and dextrose ligation in both rats and mice. Liver and acute kidney injury models were used to demonstrate the specificity of miR-216a and miR-217 for pancreatic injury. Both miR-216a and miR-217 showed a trend and dose dependent correlation with the severity of pan-

creatitis in each of the pancreatic injury models and with amylase and lipase levels. The preliminary data suggest that miR-216a and miR-217 may be more sensitive and specific indicators of pancreatic injury than amylase and lipase in mice and rats and useful in pre-clinical drug development. Given the highly conserved nature of these microRNAs, a translation to clinical use would be anticipated.
Multilaboratory Assessment of Best Practices for Quantification of microRNAs Associated with Isoproterenol-Induced Myocardial Injury in the Urine and Plasma of Rats.

1Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan; 2Department of Pathology, University of Michigan Medical School, Ann Arbor, MI; 3Sanofi-Aventis, Bridgewater, NJ.

MicroRNAs are promising noninvasive biomarkers of drug-induced toxicities due to their tissue-selective expression, rapid release post-injury, and stability in biofluids, but their low levels in biofluids present challenges to their reliable quantification. The HESI Genomics committee initiated a collaborative study to assess best practices for measuring injury-related microRNAs in biofluids. Samples were derived from a model of acute cardiotoxicity in male Wistar rats induced by a single s.c. injection of 0.5 mg/kg isoproterenol. The heart-enriched microRNAs miR-208, miR-499, and miR-1 increased by approximately 10-fold in serum and plasma 4 hr after treatment. In a follow-up study using the same model system, urine was collected overnight and plasma at 24 hr post-injection. Biofluids were pooled from 5 rats per group and aliquots were sent to 10 laboratories for analysis of levels of the 3 heart-enriched miRNAs. At each site, samples were assayed using a standard protocol and the data normalized to levels of a spiked-in ath-miR159a control. The results from this interlaboratory analysis of multiple preanalytical and technical issues provide guidelines for the accurate measurement and reporting of injury-related microRNAs in biofluids.

Circulating miR-9 and miR-384-5p As Potential Indicators for Trimethyltin-Induced Neurotoxicity.

K. Ogata1, 2, K. Sumida1, K. Miyata1, M. Kusuda1, M. Kuwamura2 and J. Yamate2.

1Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan; 2Laboratory of Veterinary Pathology, Division of Veterinary Sciences, Graduate School of Life and Environmental Sciences, Ookayama Prefecture University, Izuoyama, Japan. Sponsor: T. Yamada.

MicroRNAs (miRNAs) are believed to be promising biomarkers due to their tissue-specific expression and high stability in blood. Our study was conducted to determine nervous system-specific miRNAs in blood as potential indicators for neurotoxicity. Using trimethyltin (TMT)-induced neurotoxicity model, we analyzed serum miR-9 and miR-384-5p which were reported to be highly or specifically expressed in the nervous system, and compared the sensitivity as neurotoxicity parameters with nervous symptoms and histopathology. Seven-week-old SD rats were orally given a single dose of 6, 9 and 12 mg/kg of TMT. Nervous tissues (brain, spinal cord and sciatic nerve) and blood were collected 1, 4 and 7 days after administration (D1, 4 and 7). Daily observation of symptoms and histopathology were conducted. Immunohistochemistry (PCNA, GFAP, Iba1) and TUNEL method were performed on brain. Expressions of miR-9* and miR-384-5p in serum and hippocampus were analyzed by RT-PCR. TMT-induced tremor, hypersensitivity and decreased auditory response after D2 at 12 mg/kg and after D4 at 9 mg/kg. Neural cell death including apoptosis and glial reaction in cerebral cortex were observed after D7 at 12 mg/kg and after D4 at 6 and 9 mg/kg, and the severities increased in a dose- and time-dependent manner. Expression levels of miR-9* (D4 at 7 mg/kg and D7 at 6, 9 mg/kg) and miR-384-5p (D4 at 9 mg/kg, D7 at 12 mg/kg) in serum were significantly higher than the vehicle control, but not changed in hippocampus. Increased serum level of these miRNAs might be due to leakage from damaged nervous tissue. The detection sensitivity of neurotoxicity of serum miR-9* miR-384-5p was similar to observation of nervous symptoms, therefore they were considered possible novel indicators of neurotoxicity.

Assessment of microRNA 122 As a Preclinical and Clinical Biomarker of Hepatotoxicity Utilizing Affymetrix QuantiGene Technology.

S. J. Schomaker1, D. Burt1, R. Warner2, K. Johnson3 and L. Aubrecht1.

1Safety Sciences, Pfizer Inc, Groton, CT; 2Department of Pathology, University of Michigan Medical School, Ann Arbor, MI.

Hepatotoxicity is major challenge in drug development. While alanine aminotransferase (ALT) remains the gold standard biomarker of liver injury, the availability of alternative biomarkers to better predict the potential for drug induced liver injury is essential. In this study we evaluated the utility of miRNA122 as a biomarker of liver injury in both preclinical and clinical serum samples utilizing Affymetrix QuantiGene Technology. The Affymetrix system is a 96-well plate based assay that uses a sandwich nucleic acid hybridization platform to detect miRNA directly without a reverse transcription step followed by signal amplification via a branched DNA amplifier and chemiluminescence signal generation. In this study, male Sprague-Dawley rats were treated with a single dose of 1,400 mg/kg acetaminophen (APAP), 100 mg/kg naphthylisoquinoline (ANIIT), or 0.2 mg/kg microcystin-LR (MC) to induce hepatocellular necrosis which was confirmed by histopathological examination. Statistically significant increases (p<0.01) in miRNA122 were observed after treatment with all three of the model hepatotoxins. miRNA122 was also assessed in cohorts of human subjects including 27 healthy subjects, 31 patients with a variety of liver impairments, and 7 cases of APAP poisoning collected from the University of Michigan health care system under an approved IRB. In the absence of histopathologic evaluation that was not feasible due to ethical and practical reasons, miRNA122 values were correlated with ALT levels as an indicator of liver injury. A Spearman's rank correlation analysis between miRNA122 and ALT of the 65 human samples yielded a correlation coefficient of rS=0.88. Analysis of miRNA122 in the APAP poisoned subjects resulted in increases of 13-95 fold when compared to miRNA122 levels from healthy subjects. This study demonstrates the utility of miRNA122 as a preclinical and clinical biomarker of liver injury utilizing Affymetrix QuantiGene Technology.
For the TLDA-derived PCR data, a modified ΔΔCt method was applied: delta-Ct values obtained by subtracting αt-miR-159a Ct values from target miRNA Ct values were de-logarithimized and divided by the corresponding uCrea value. This normalization reduced the variation of the delta-Ct values for miRNAs across samples. Then ratios were calculated between treated and time-matched control groups. With this method we identified 131 miRNAs with significantly increased urinary levels on days 3 and 5. Twenty miRNAs with distinct time-dependent profiles were then measured using TaqMan® MicroRNA Assays. The data were analysed either with the modified ΔΔCt method, or absolutely quantified using synthetic miRNA standard curves in parallel. With both methods we obtained comparable results with respect to observed direction of changes and time course of affected urinary miRNAs.

Our results indicate that urinary miRNAs may be used as BMs for nephrotoxicity in rats. Furthermore, normalization to uCrea, which is recommended for urinary BMs, appears feasible for analysis based either on the PCR-generated Ct values only, or including absolute quantification.

Consistent differentiation of embryonic, or induced pluripotent, stem cells into functional hepatocyte-like cells available on demand for hepatotoxicity screening would be a valuable resource for drug development programs. Assessments of stem cell-derived hepatocyte-like cell maturity often lack quantitative comparisons with primary human hepatocytes and the presumed fetal-like phenotype currently achieved is concluded from observations of cell morphology and the detection of a small number of proteins such as albumin, alpha fetoprotein and alpha 1-antitrypsin. The identification of a hepatocyte-specific marker that can be quantified absolutely would aid the assessment of cells and be useful for inter-laboratory comparisons. miR-122 is a micro-RNA species that is very highly enriched in hepatocytes. We hypothesised that this molecule would be a useful biomarker of differentiation and could also serve as a more sensitive indicator of hepatocyte-specific injury. Our study demonstrates that miR-122 is a specific and sensitive marker of hepatocyte phenotype, present at high levels in primary human hepatocytes and in fetal liver samples but of low abundance or absent in hepatoma and non-hepatic human cell lines. Expression of miR-122 was greatly elevated in stem cell-derived hepatocyte-like cells compared to the undifferentiated stem cell lines. Furthermore, we demonstrate miR-122 utility as a sensitive marker of hepatotoxicity in primary hepatocytes and a potential adjunct to screens such as lactate dehydrogenase release and ATP depletion. We conclude that quantitative measurement of miR-122 may be used as sensitive and specific marker during the hepatocyte differentiation process or to confirm the hepatocyte-like status of stem cell-derived material following hepatotoxicity screening assays.

Consistent differentiation of embryonic, or induced pluripotent, stem cells into functional hepatocyte-like cells available on demand for hepatotoxicity screening would be a valuable resource for drug development programs. Assessments of stem cell-derived hepatocyte-like cell maturity often lack quantitative comparisons with primary human hepatocytes and the presumed fetal-like phenotype currently achieved is concluded from observations of cell morphology and the detection of a small number of proteins such as albumin, alpha fetoprotein and alpha 1-antitrypsin. The identification of a hepatocyte-specific marker that can be quantified absolutely would aid the assessment of cells and be useful for inter-laboratory comparisons. miR-122 is a micro-RNA species that is very highly enriched in hepatocytes. We hypothesised that this molecule would be a useful biomarker of differentiation and could also serve as a more sensitive indicator of hepatocyte-specific injury. Our study demonstrates that miR-122 is a specific and sensitive marker of hepatocyte phenotype, present at high levels in primary human hepatocytes and in fetal liver samples but of low abundance or absent in hepatoma and non-hepatic human cell lines. Expression of miR-122 was greatly elevated in stem cell-derived hepatocyte-like cells compared to the undifferentiated stem cell lines. Furthermore, we demonstrate miR-122 utility as a sensitive marker of hepatotoxicity in primary hepatocytes and a potential adjunct to screens such as lactate dehydrogenase release and ATP depletion. We conclude that quantitative measurement of miR-122 may be used as sensitive and specific marker during the hepatocyte differentiation process or to confirm the hepatocyte-like status of stem cell-derived material following hepatotoxicity screening assays.

The present study investigated the role of oxidative stress as a possible risk factor for colorectal cancer in humans. Blood samples were collected from 232 subjects including 102 healthy controls, 90 patients with polyps, 39 patients diagnosed with colorectal cancer. We measured both direct and oxidative DNA damage in peripheral white blood cells (WBCC) using alkaline (direct DNA damage) and formamidopyrimidine DNA glycosylase modified (oxidative DNA damage) Comet assay. Trolax equivalent total antioxidant capacity (TEAC) in plasma was also determined spectrophotometrically. Results showed that Oxidative Stress induced DNA damage was associated with a significantly higher probability of colorectal cancer in males (p = 0.008) but not in females (p = 0.675) compared to healthy controls. Direct DNA damage also showed a marginally significant effect on colorectal cancer (p = 0.071). Results from the TEAC assay showed a positive trend on colorectal cancer, but was not statistically significant (p = 0.230). Oxidative stress induced DNA damage, TEAC, and direct DNA damage did not show significant relationships with probability of polyps. Females showed significantly higher probability of developing polyps (p < 0.01); and older patients showed significantly lower probability of polyps in this study (p < 0.001). Further, these results were not affected by lifestyle-related oxidative stress such as smoking and alcohol. Selected SNPs for oxidative damage, detoxification and DNA repair were examined. Initial results suggest that the interaction between HOG2 and GSTM1 and colorectal cancer. The results of this study suggest that high level of oxidative stress induced DNA damage is associated with increased risk of colorectal cancer in males, not in females.

Circulating nucleic acids (CNAs) are present in various bodily fluids such as blood, serum, and urine. A number of studies have reported the use of circulating nucleic acids as biomarkers for pathological conditions and developmental stages. In this study, a Long Evans rat model system is used to identify lead exposure-induced circulating nucleic acid biomarkers in rat blood. Two different groups of animals are used, females and time-pregnant Long Evans rats. Females are exposed to 112 parts per million (ppm) Pb (lead acetate) via drinking water ad libitum for 5 days then switched to 19 ppm Pb treatment for an additional 15 days. Dams are exposed to 112 ppm Pb (lead acetate) via drinking water ad libitum from gestation day 16 through 21 then switched to 19 ppm Pb treatment on postnatal day 1 through 15. Animals are euthanized at the conclusion of treatment and blood and brain tissue are collected for analysis. Inductively coupled plasma optical emission spectrometry (ICP-OES) is used to determine blood lead levels of all samples. A microarray approach was initially used to identify differentially expressed circulating nucleic acid sequences only present in animals exposed to Pb. This data highlighted 3 genes of interest: NTS5c, Skap1, and Coq7. Circulating nucleic acid expression levels in blood samples will be quantified using real-time RT-PCR analysis. Comparison between lead exposed females and pregnant females will identify unique genes as biomarkers of lead exposure and confirm the origin of the circulating nucleic acids.

Circulating nucleic acids have been proposed as a new class of biomarker of human diseases and implications for the use of serum or plasma miRNA profiles as biomarkers for Th2-associated diseases. The overlap with tissue miRNA expression as described in the literature suggests that circulating miRNA expression may be a sensitive indicator of disease activity in the target organ.

Circulating Nucleic Acids As Lead Exposure Biomarkers in a Mammalian Model System.

S. Lee and M. E. Gillespie, Pharmaceutical Sciences, St. John’s University, Queens, NY.

Drug-induced vascular injury (DIVI) continues to be an obstacle to early drug-development due to the lack of biomarkers and by a limited understanding of the pathologic mechanism/s. Recently, a novel gene panel has been developed, for use in rat mesenteric arteries, which can potentially be used to identify and/or predict Drug-Induced Vascular Injury.

M. Sicchitano, D. Dalmas, K. Roland and H. Thomas, GlaxoSmithKline, King of Prussia, PA.

Drug-induced vascular injury (DIVI) continues to be an obstacle to early drug-development due to the lack of biomarkers and by a limited understanding of the pathologic mechanism/s. Recently, a novel gene panel has been developed, for use in rat mesenteric arteries, which can potentially be used to identify and/or predict Drug-Induced Vascular Injury.

Potential Utilization of microRNA As Circulating Biomarkers in Th2-Mediated Disorders Such As Asthma and Ulcerative Colitis.

H. Lin1, M. Kasaian1, A. Brennan2 and S. Ramaiah1. 1DSRD, Pfizer Inc., Andover, MA; 2Immunology & Autoimmunity, Pfizer Inc., Cambridge, MA.

MicroRNAs (miRNAs) are single-stranded RNAs which constitute a class of non-coding RNAs which have emerged as key regulators of gene expression. They are generally thought to inhibit translational activities or promote degradation of mRNA targets. miRNA profiles have been proposed as a diagnostic tool to predict survival and relapse in lung and colon cancer patients. Moreover, circulating miRNAs have been proposed as a new class of biomarker of human diseases and toxicities. IL-4 and IL-13 are central Th2 cytokines in the immune system and potent activators of inflammatory responses during Th2-mediated inflammation. In particular, an essential role for Th2-mediated immune response has been demonstrated in animal models of allergic asthma and experimental colitis. We hypothesized that miRNAs may be involved in the homeostatic regulation of IL-4/-13 expression in disease, or may be modulated during the course of therapeutic antagonism of IL-4/-13 in order to maintain homeostasis of IL-4/-13 expression. Using web based databases that provide literature information on the predicted miRNA targets of miRNAs related to the Th2 immune response, distinct subsets of miRNAs were selected and used to construct a Taqman miRNA assay panel for miRNA screening of sera from asthmatic and ulcerative colitis patients. We found that the profile of circulating miRNAs is capable of distinguishing healthy volunteers from patients with asthma or ulcerative colitis. The results described here have
the occurrence of drug-induced medial arterial necrosis (MAN) in rats; however, a non-invasive method for detecting this type of injury is currently lacking. To determine whether these genes regulated in mesenteric arteries have the potential to be utilized as circulating serum genomic biomarkers, the gene panel was assessed in mRNA isolated from the serum of rats given a vasotoxic dose of Fenoldopam or Dopamine and compared to mRNA data obtained from serum of rats given Yohimbine, a vasoactive compound which does not cause histologic evidence of vascular injury. Out of the 69 potential circulating biomarkers, 10 genes, including Lrcc59, Tubb6, Kpn2a, Abca8a, S100a11, IL-8R, CTGF, Nkbb, and Dafl, were observed to be upregulated (5 fold or greater) and correlated with histologic evidence of MAN following treatment with a vasotoxic dose of Fenoldopam. Six of the 10 genes including Lrcc59, Abca8a, S100a11, IL-8R, Nkbb, and Dafl, were also upregulated (4 fold or greater), in the serum of rats given Dopamine. With exception of S100a11, these genes were not regulated in the serum of rats given Yohimbine thereby, providing further evidence of their association with vascular injury, namely mesenteric MAN. Although further studies are required to fully assess the utility of these serum-derived mRNAs as biomarkers of DIVI, they have the potential to help improve the characterization of DIVI in rats for early safety assessment in drug development.

937 Identification and Quantitative Evaluation of Novel Circulating Liver-Specific mRNAs in Rats Treated with Various Hepatotoxic Compounds: Validation for Biomarkers of Drug-Induced Liver Injury
S. Okubo1, 2, M. Miyamoto1, 2, K. Takami1, 2, M. Kanki3, A. Ono1, 2, N. Nakatsu1, H. Yamada1, Y. Ohno1 and T. Uruhashid1, 2. 1Drug Safety Research Laboratories, Takeda Pharmaceutical Company Limited, Kanagawa, Japan; 2Innovateomics Informatics Project, National Institute of Biomedical Innovation, Osaka, Japan; 3Astellas Pharmaceutical Incorporated, Osaka, Japan; 4National Institute of Health Sciences, Tokyo, Japan; 5Doshisha Women’s College of Liberal Arts, Kyoto, Japan.

In our previous report, circulating liver-specific albumin (Alb) and t-microglobulin/bikunin precursor (Amblp) mRNAs have been shown to be potential biomarkers for drug-induced liver injury (DILI). We identified apolipoprotein h (Aph) and group specific component (Gc) mRNAs as additional biomarkers, and quantified total of four mRNAs in plasma from rats treated with wide variety of hepatotoxicants to validate circulating liver-specific mRNAs as biomarkers for DILL. Bioinformatic and molecular biological analyses revealed the high liver-specificity of Aph and Gc mRNAs, and increased plasma levels of these mRNAs were confirmed by real-time quantitative RT-PCR in rats treated with thioacetamide (TAA). To examine the characters of the four circulating liver-specific mRNAs, seven hepatotoxins were administered to rats. The severities of liver injury were variable among individuals and compounds. At 24 hr after single dosing, parallel increases of the four circulating liver-specific mRNAs were noted and the levels correlated with changes in the ALT values and hepatocellular necrosis scores. In addition, all the four mRNAs increased with greater magnitude than the ALT values. Time course analysis within 24 hr after single dosing of TAA showed that the plasma levels of Alb and Gc mRNAs increased remarkably before the ALT elevations and the timing of the increase was different among mRNA species, indicating that circulating liver-specific mRNAs may predict the beginning of liver damage and enable us to know the stages of injury. This validation study clearly demonstrated that the four circulating liver-specific mRNAs would be reliable and useful biomarkers for DILL.

938 Metabolomics and Transcriptomics Evaluation of Preclinical Biomarkers of Hepatotoxicity: An Update
R. D. Beger1, 2, L. K. Schneackenberg1, S. Jinhun1, L. Pence1, T. Schmit1, Y. Ando3, X. Yang1, J. Greenhaw1, S. Slavov4, S. Bhattacharyya1, 2, W. F. Salminen1 and D. L. Mendrick1. 1NCTR, US FDA, Jefferson, AR; 2Daichi Sankyo Co. Ltd., Tokyo, Japan; 3Arkansas Children’s Hospital Research Institute, Little Rock, AR.

Drug-induced hepatotoxicity represents a major reason that drugs are recalled post market. Furthermore, it has been estimated that 10% of acute liver failure is due to idiosyncratic events. While there is no standard definition for “idiosyncratic,” the term is generally applied to compounds that induce a relatively low incidence of hepatotoxicity in humans and fail to exert liver damage using classical toxicity endpoints in commonly used preclinical testing species such as rats and dogs. The inability to identify such compounds with classical preclinical markers of hepatotoxicity has necessitated the need to discover new biomarkers. In order to identify biomarkers of idiosyncratic toxicity, a systems biology study was initiated to evaluate omics endpoints in urine, blood and liver tissue from rats dosed with compounds that have been shown to be overt hepatotoxics, idiosyncratic hepatotocicants, and negative hepatotoxicants. The two overt hepatotoxics were acetaminophen (APAP) and carbon tetrachloride (CCL4). Three additional compounds have been studied; one is generally classified as idiosyncratic in nature, felbamat (FEL), while the other two are considered to not cause liver injury, meloxicam (MEX) and penicillin (PEN). Since idiosyncratic and non-hepatotoxic drugs do not cause overt hepatotoxicity, doses were used to induce some adverse effect (e.g., a decrease in body weight) to provide a phenotypic analog. Early results show that increases in blood levels of multiple acyl carnitines could be an indication of hepatic mitochondrial injury and altered levels of bile acids may be related to drug-induced hepatotoxicity, activation of liver transporters or due to effects on gut microflora. Blood levels of lysoPCs were decreased in the rats treated with a high dose of APAP. CCL4 and FEb at 6 and/or 24 hr.

939 Whole Transcriptome RNA-Seq of FFPE Liver
S. S. Auerbach1, B. A. Merrick1, R. R. Shah2, D. Phadke2, B. Xie3, J. Shin3, Y. Gao4 and R. R. Tice5. 1Division of the National Toxicology Program, NIEHS, Research Triangle Park, NC; 2SRA International, Durham, NC; 3Lieber Institute for Brain Development, Johns Hopkins University, Baltimore, MD.

Formalin fixed, paraffin embedded (FFPE) pathology specimens represent a potentially rich resource for transcriptomic-based biomarker discovery. While a number of approaches have been developed that employed targeted, amplification dependent microarray analysis, no one has employed the agnostic approach of whole transcriptome RNA-seq to the analysis of RNA extracted from FFPE samples. Here, we compare whole transcriptome using RNA-seq performed on fresh frozen (FF) and FFPE RNA samples obtained from Fischer F344 rats exposed to Aflatoxin B1 (AFB1) at 1 ppm in feed for 90d and paired control animals. -70% of reads generated from each FFPE sample aligned to RNAveand mapping corresponded well with defined transcription boundaries for most RefSeq genes. Whole transcriptome PCA indicated clear distinction between FFPE and FF however robust, parallel differentiation between AFB1 and control samples was obvious in both data sets. A rank based comparison of global transcript abundance was strongly correlated between FF and FFPE, suggesting the global liver biology at the transcript level remained intact in the FFPE samples. Differential expression analysis indicated that of the 405 RefSeq genes altered by AFB1 in FF samples, 288 (of 487 showing differential expression) were also differentially expressed in FFPE samples. Expression of selected genotoxic carcinogenicity biomarker genes (e.g., Adam8, Mybhl2, Cdh13, Ccng1, Ddrl4l, Cdkn1c) were concordantly up-regulated in FF and FFPE by AFB1 treatment. Comparison of the genomic response to AFB1 in FF and FFPE at a pathway level using GSEA found concordant regulation of cell cycle, autophagy, xenobiotic metabolism, and p53 signaling and discordant regulation of proteosomes and NOD-like signaling pathways. We have demonstrated that accurate whole transcriptome profiling is possible with RNA extracted from FFPE samples. The success of this approach opens up new avenues for performing signature-based biomarker discovery.

940 Hepatic Hemangiosarcoma Due to Occupational Vinyl Chloride Exposure Generates a Distinct Plasma Metabolite Profile
M. Cave1, 2, B. Wheeler1, K. Falkner1 and C. McClain1, 2. 1Department of Medicine/GI, University of Louisville, Louisville, KY; 2Louisville VAMC, Louisville, KY.

Occupational vinyl chloride (VC) exposure has been associated with the development of hepatic hemangiosarcoma (HS), an extremely aggressive and otherwise unusual form of liver cancer. Routine liver biochemistries are typically normal even in advanced hemangiosarcoma. The purpose of this study is to determine if VC-related hemangiosarcoma alters the plasma metabolome. Plasma samples from 16 highly-exposed VC workers with hemangiosarcoma (VC+/HS+), 17 highly-exposed VC workers without hemangiosarcoma (VC+/HS-), and 27 unexposed healthy volunteers (VC-/-HS-) were obtained from a specimen bank. GC/MS and LC/MS were performed following metabolite extraction. Software was used to match ions to a library of standards for metabolite identification and quantitation by peak area integration. Random Forest analysis was performed. Welch’s Two Sample t-test comparisons were made between the means of each biochemical. Results of Random Forest analyses of all 613 named and 518 unnamed biochemicals observed in plasma yielded an overall predictive accuracy of 82% for classifying
samples within each group, strongly indicating that hemangiosarcoma generates a distinct global metabolic profile in plasma from those that were exposed but failed to develop the disease. When comparing VC+/HS+ vs. VC+/HS−, 65 named biochemicals were up-regulated while 50 were down-regulated. Likewise, 43 unnamed biochemicals were up-regulated and 27 were down-regulated. Four key metabolite subclasses containing named biochemical were identified. Hemangiosarcoma increased metabolite levels in these classes accordingly: Class A (8/10 metabolites, up to 6 fold increase); Class B (5/7 metabolites, up to 121 fold increase); Class C (3/3 metabolites, up to 84 fold increase); Class D (9/15 metabolites, up to 92 fold increase). In chemical workers with high-level vinyl chloride exposures, hemangiosarcoma generates a distinct plasma global metabolic profile from those that were exposed but failed to develop the disease.

941 Metabolomic Biomarkers in Long-Term Smokers and Moist Snuff Consumers.

G. L. Prasad1, B. A. Jones1, P. Chen1 and A. D. Kennedy2. 1R & D, RJ Reynolds Tobacco Co., Winston-Salem, NC; 2Metabolon Inc, Durham, NC. Sponsor: G. Krautter.

The long-term health effects associated with cigarette smoking have been shown to be more harmful compared to those associated with the use of non- combustible tobacco products, such as moist snuff. To investigate the long-term effects of tobacco exposure, we evaluated the biochemical profiles of 40 smokers, 40 moist snuff consumers (MSC), and 40 non-tobacco consumers (NTC) using UHPLC-mass-spectrometry based global metabolomics. Matching twenty-four-hour urine and plasma samples were collected from study subjects to generate metabolomic profiles. In this global profiling study, a total of 511 biochemicals (290 known and 221 unknown metabolites) were detected in the plasma, whereas 972 biochemicals (396 known and 596 unknown) were found in urine. The ’named’ metabolites could be grouped into diverse physiological pathways such as glucose, lipid, bile acid and amino acid metabolism.

Based on the differential levels of metabolites, random forest analyses separated non-tobacco consumers (NTC), smokers, and MSC with high accuracy (96%) when all metabolites were included. On the other hand, MSC showed more subtle changes in their metabolic profiles, and were more difficult to separate from NTC when nicotine metabolites were excluded from the analyses. The metabolic changes suggest that smokers exhibited exacerbated oxidative stress and inflammatory pathways relative to MSC and NTC cohorts. Biochemical changes in glucose, lipid amino acid and xenobiotic metabolism were also noted in the study cohorts. These metabolites could be used as potential biomarkers of effect, pending further validation. In summary, global metabolomic profiles and panels of selected biomarkers could potentially be used to assess the effects of tobacco use.

942 Effect of Benzo(a)pyrene Exposure Dose on Levels of Exposure Biomarkers, DNA Adducts, and Gene Expression in Rats.

M. Moreau1, P. Ayotte2 and M. Bouchard1. 1Department Environmental and Occupational Health, University of Montréal, Montréal, QC, Canada; 2Institut national de santé publique du Québec, Québec, QC, Canada.

The effect of benzo(a)pyrene (BaP) doses on levels of several biomarkers of exposure and early effects was studied in rats intravenously injected with 0.4, 4, 10 and 40 μmol/kg of BaP. Blood, tissues and excreta were collected 8 h and 24 h post-treatment. BaP and several of its metabolites, 3- and 7-OH-BaP, 4,5- and 7,8-BaPdiols, tetrol, 1,6- 3,6- and 7,8-BaP-diones, were simultaneously measured in blood, tissues and excreta by UHPLC/fluorescence. BaPDE-DNA adducts in lungs were quantified in parallel using an ultrassensitive immunoassay with chemiluminescence detection. Expression of various genes in lungs of treated rats (lung RNA) compared to non-treated control rats was also assessed by QRT-PCR. There was a dose-dependent increase in blood and tissue levels as well as excretion of BaP metabolites. At 8 h and 24 h postinjection, BaP and 3-OH-BaP were found in higher concentrations in blood and tissues compared to the other analytes. However, BaPdiols were excreted in greater amounts in urine and apparently more quickly than hydroxyBaP. Mean percentages (± SD) of injected dose excreted in urine as 4,5-diol-BaP during the 0-8 and 0-24-h period post-treatment were 0.16 ± 0.03% and 0.14 ± 0.08%, respectively. Corresponding values for 3-OH-BaP were 0.004 ± 0.001% and 0.026 ± 0.014%. Diones were not detectable in blood, tissues and excreta using the developed method and BaP-7,8-diol and 7-OH-BaP were found to be more minor metabolites. There was also a dose-dependent increase in DNA adduct formation. Analysis of gene expression further showed a modulation of cyplα1, cyplβ1, npo1, nrf2, fos and Ah receptor expression at the 10 and 40 μmol/kg doses, but not at the lower doses. This study confirms the interest of measuring multiple metabolites in combination with DNA adducts and alteration of gene expression for a more comprehensive assessment of links between biomarkers of BaP exposure and early effects.

943 Biomarker Discovery for Early Detection of Hepatocellular Carcinoma (HCC) in Hepatitis C (HCV) Infected Patients.

G. M. Mustafa1, J. R. Petersen1, J. Hyun1, L. Cicalese1, N. Snyder2, S. J. Haidacher1, L. Denner1 and C. Eilers1. 1University of Texas Medical Branch, Galveston, Galveston, TX; 2Kelsey Seybold Clinic, Galveston, TX.

The projected rise in HCC (the most common primary liver cancer) cases in the US is mainly due to HCV infections with onset of HCC coming several decades after initial infection. However, additional environmental risk factors including alcohol, tobacco and other dietary insults that induce liver injury also increase the incidence of HCC. The poor prognosis for HCC is largely due to late stage diagnosis making successful intervention difficult. Existing biomarkers for early HCC detection lack the specificity and sensitivity to be very effective. Our aim is to develop serum-based biomarkers suitable for early HCC detection that will provide a sensitive yet specific screen. Serum was obtained from individuals positive for HCV who were clinically diagnosed with liver disease (pre-HCC) or HCC. Serum was pre-fractionated using an aptamer-based technology and further fractionated using 2D-Difference In Gel Electrophoresis. Pre-HCC and HCC profiles were compared and the peptides located in 24 different 2D-DIGE spots exhibiting a statistically significant ≥1.5-fold change between pre-HCC and HCC samples were identified by mass spectrometry (MS). Stable isotope O18/O16 labeling was used to verify the identity of proteins identified by 2D-DIGE and to aid in development of Selected Reaction Monitoring (SRM) assays. ApoA1 was selected to develop an SRM as proof of concept in this biomarker discovery protocol. Using a Triple Quadrupole MS (Agilent), Optimizer (Agilent) and skyline (MacCoss) to assist in the design we developed an SRM assay to quantify this candidate biomarker using labeled internal standards (AQUA peptides). The SRM is capable of reliably detecting a >30% reduction in ApoA1 in HCC serum samples relative to the pre-HCC samples. Future multiplexing of SRM assays for other candidate biomarkers is envisioned to develop a biomarker panel for subsequent verification and validation studies.

944 Effects of Acrylamide Exposure on Gene Expression in the Thyroid of Male and Female Rhesus Wistar Rats.

R. C. Colli-Duda1, M. A. Friedman2 and N. Denzlov1. 1CEHT, University of Florida, Gainesville, FL; 2TR Services, Osideo, FL.

Acrylamide is a chemical commonly utilized to make polymers used in industry including waste water treatment, mining, among other uses. It became a public health concern when it was detected in food products. Daily exposure to acrylamide has been associated with neurological toxicity in different animal species and with tumors in the mammary gland, testicular tunica vaginalis, and thyroid. In relation to potential for forming tumors, it is important to distinguish its ability to act as a genotoxin from a hormone mimic. The goal of this study was to use microarray analysis to determine changes in gene expression in the thyroid gland of male and female RecHan Wistar rats treated at 3 mg/kg in drinking water from gestational day 6 to postnatal day 30. Thyroid glands were collected from rats at 10 PM to reflect non-quiescent thyroid activity. The microarray analysis showed that acrylamide caused a significant alteration in the expression of genes related to phase II detoxifying enzymes and oxidative stress, neurotoxicity, apoptosis, and tumorigenesis. Results from enrichment and pathway analysis showed that in both genders, acrylamide caused differential regulation of genes associated with cell processes of protein folding, microtubule cytoskeleton assembly; DNA replication, DNA repair and ROS generation. These data suggest a potential involvement of this chemical in cell processes other than mutagenicity which may be associated with tumorigenesis. Furthermore, our study, by identifying affected gene ontologies and pathways, provides insight into a potential mechanism of action and may have substantial impact on risk assessment.

945 Development of a Quantitative Proteomics Multiplexed Assay for the Predictive Assessment of Drug-Induced Organ Toxicity in the Preclinical Setting.

M. Gharib1,2, P. Thibault2, A. Nelson3, D. Cheksy1, L. Di Donato1 and L. McIntosh1. 1Ceptron Proteomic Inc, Montréal, QC, Canada; 2Universté de Montréal, Montréal, QC, Canada; 3TRC Services, Osideo, FL. Sponsor: W. Lee.

Drug-induced organ toxicity is the primary reason for the withdrawal of drugs from the market and the failure of lead compounds during drug development. Detection of organ toxicity early in the development pipeline would not only reduce the cost
of drug development but also prevent injuries to patients in the clinic. Limitations of traditional approaches highlight the need for more sensitive and specific tools to predict drug toxicity. With the recent regulatory qualification of seven renal safety biomarkers for use during drug development, biomarkers are increasingly viewed as potential means for providing toxicity assessments. Here, we have employed a targeted mass spectrometry (MS) approach, known as multiple reaction monitoring (MRM) to quantitatively measure changes in organ-specific toxicity biomarkers in rats. A highly multiplexed MRM assay, targeting 192 candidate protein biomarkers of hepatotoxicity, nephrotoxicity, cardiotoxicity as well as muscle, vascular and neurotoxicity, was developed. Results show that markers for all organs covered in our toxicity biomarker panel are detectable in serum and urine under normal conditions. Significantly, GGT5 and MDH-1, important liver injury biomarkers currently under investigation as well as qualified kidney injury biomarkers cystatin-C, clotrin and β-2-microglobulin and albumin were successfully detected in serum and urine, respectively. We tested the predictive value of our panel on cyclophosphamide treated rat blood samples. In agreement with the literature, we found that serum biomarkers for the kidney, the vascular system and the liver were markedly increased following toxicity. The present MRM assay has the potential to become standard practice for pre-clinical drug safety assessments. Further studies will be centered on applying this assay to monitor kidney injury biomarkers following cisplatin-induced nephrotoxicity of rats.

946 Development of a LC/MS Serum Bile Acid Profiling Method for Sensitive Detection of Biliary Injury in Dogs.

Currently there are many non-invasive methods for assessing hepatic toxicity in large animal species, but biliary injury is often difficult to detect in lieu of histopathology. Notably hepatobiliary biomarkers such as liver transaminases, alkaline phosphatase, gamma glutamyl transferase, and total bilirubin suffer from poor specificity or sensitivity in detection of biliary injury. Quantification of serum bile acids has been utilized in veterinary medicine in the diagnosis of biliary disease with success, but the current methods of quantification suffer from technical hurdles and lack robustness. Thus the purpose of the current study was to develop a method for detection of serum bile acids in dogs using liquid chromatography-mass spectrometry (LC/MS) for sensitive and rapid detection of hepatobiliary injury by quantifying the individual bile acid species in tandem. Twenty bile acid species were assayed with the current LC/MS method, including primary cholic and chenodeoxycholic bile acids and secondary bile deoxycholic and lithocholic bile acids, including the glycine- and taurine-conjugated forms. A diagnostic reference range was established from more than 50 untreated, fasted beagles of both genders to assess normal variability with benchmarked clinical pathology. These individual serum bile acid levels ranged from approximately 900 pmol/ml to levels below the limits of detection, with all taurine-conjugated species notably detected in serum. The applications of this method in assessing the sensitivity and specificity of serum bile acid versus existing methods will be discussed in the early detection of drug-induced hepatobiliary injury.

947 Lack of Concordance in Microarray Gene Expression Responses to Phenobarbital in Companion-Aged FFPE and Frozen Liver Samples.

S. Hester, G. Carswell, B. Vallanat, A. B. DeAngelo and C. E. Wood. US EPA, Durham, NC.

Despite the immense potential value of public and private biorepositories, direct utilization of archival tissues for molecular profiling has been limited. A major reason for this limited use is the difficulty in obtaining reliable transcriptomic profiles from formalin-fixed paraffin-embedded (FFPE) tissue samples with highly fragmented nucleic acid. The goal of this study was to evaluate transcriptional responses in 16 year-old FFPE and companion frozen (FROZ) liver samples from F344 rats treated with 0.1% control water or water with 0.006% Phenobarbital (PB), a known CAR/PXR inducer and rodent liver mitogen. RNA isolation and gene expression was performed using the Rat Illumina Bead Array® for 16 samples, paired FFPE and FROZ. The RNA integrity numbers (RINs) ranged from 2.3 for FFPE and 3.5 for FROZ, and RNA yield for both FFPE (2 10μm sections) and FROZ (20 mg) samples was 2-4 micrograms. Norgen Ovation® and Encore® reagents optimized for FFPE tissues were used to amplify and label the RNA followed by hybridization to arrays. We selected 12 of 16 samples based on successful hybridization performance for analysis. Differential gene expression was assessed using Rank Products followed by pathway mapping. Results showed only 10 significantly altered PB-responsive genes in common between paired FFPE (n=1573) and FROZ (n=211) samples whereas pathway analysis identified only a 10% overlap in pathways significantly altered by PB between FFPE and FROZ samples. Pathway profiles for both FFPE and FROZ samples were unique to their respective sample type. The lack of concordance in genomic responses to PB suggests that traditional microarray platforms are inadequate for genomic profiling of aged FFPE samples, despite improved RNA isolation and labeling methods. Further work will evaluate more recent next-generation sequencing (NGS) technologies for transcriptomic analysis of archival specimens. This abstract does not reflect EPA policy.

948 Formaldehyde-Induced Changes in microRNA Signaling.

J. E. Rager1, B. C. Moeller2, M. Doyle-Eisele3, J. A. Swenberg1, 2 and R. C. Fry1, 2. 1Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Curriculum in Toxicology, The University of North Carolina at Chapel Hill, Chapel Hill, NC; 3Lovelace Respiratory Research Institute, Albuquerque, NM.

MicroRNAs (miRNAs) are critical regulators of gene expression, yet much remains unknown regarding miRNA changes resulting from environmental exposures and whether they influence pathway signaling across various cell types and tissues. To gain knowledge on these novel topics, we set out to investigate in vivo miRNA responses to inhaled formaldehyde, an important air pollutant known to disrupt miRNA expression profiles. Rats were exposed by inhalation to either 0 or 2 ppm formaldehyde (6 hours/day) for 7 days, 28 days, or 28 days followed by a 7 day recovery. Genome-wide miRNA expression profiles and associated signaling pathways were assessed within the nasal respiratory mucosa, circulating mononuclear white blood cells (WBC), and bone marrow (BM). We found that miRNAs were responsive to formaldehyde exposure in the nose and WBC, but not the BM. A transcription-based analysis was performed in the nose and WBC of the rats exposed for 28 days. In the nose, formaldehyde altered the expression of 42 transcripts; of these, 15 (36%) were computationally predicted to be regulated by formaldehyde-responsive miRNAs. Conversely, in the WBC, formaldehyde altered the expression of 130 transcripts; of these, 18 (14%) were predicted to be regulated by miRNAs. Systems-level analyses revealed that the transcripts regulated by miRNAs play diverse roles in cell signaling. Key players include dosage suppressor of mck1 homolog, meiosis-specific homologous recombination (Dmc1) and secreted frizzled-related protein 4 (Sfrp4) within the nose, involved in cell death signaling. In WBC, key players were v-akt murine thymoma viral oncogene homolog 3 (protein kinase B, gamma) (Akt3) and integrin, alpha 2 (Iga2), involved in inflammation signaling. Our study informs critical knowledge towards the biological consequences of inhaled formaldehyde exposure.

949 Dermal Sensitization to Toluene Diisocyanate in Mouse Is Manifested by Early Changes in the Proteome of Auricular Lymph Nodes and Serum.

S. Haenen1, 3, E. Clynen1, V. De Voogt1, L. Schoofs1, B. Nemery1, P. Hoes1 and J. Vanorbeek2. 1Occupational, Environmental and Insurance medicine, KU Leuven, Leuven, Belgium; 2Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium; 3Research Group of Functional Genomics and Proteomics, KU Leuven, Leuven, Belgium.

Introduction.

Diisocyanates are capable of initiating an allergic response, which can lead to occupational asthma after a latency period. Clinical symptoms such as cough, wheezing and dyspnea occur only late, making it difficult to intervene at an early stage. We explored proteome changes, before asthma is apparent, in the local draining lymph nodes and serum of mice diermally sensitized once or twice with toluene diisocyanate (TDI) to explore biomarkers of sensitization. Methods.

The proteomes of male BALB/c mice (6 weeks old, 20g), sensitized once (n=12) or twice (n=12) with 0.3% TDI, were individually compared with control mice (n=12) using two-dimensional difference gel electrophoresis (2D-DIGE). A level of p<0.05 (Student’s t-test) was considered significant. Western blot or ELISA was used to verify a subset of the differential proteins. A level of p<0.05 (unpaired t-test) was considered significant.

Results.

In the lymph nodes, we found between TDI-treated and control mice 38 and 58 differential proteins after one and two treatments, respectively. In serum, 7 and 16 differential proteins were detected after one and two treatments, respectively. We identified 80-85% of these proteins by mass spectrometry. Among them, lymphocyte specific protein-1, coronin 1a and hemopexin were verified in an independent group of mice by Western blot or ELISA. Conclusion.

Our study revealed, in a mouse model, alterations in the proteome during sensitization. If validated in humans, these changes could lead to earlier diagnosis of exposed workers. All animal experiments were approved by the Local Ethical Committee for animal experiments of the KU Leuven.

202 SOT 2013 Annual Meeting
Recent work has suggested that some of the constituents of cigarette smoke, along with other environmental chemicals, can have adverse effects not just on the exposed individuals, but also on their progeny. Although the mechanisms underlying multigenerational toxicity are not well understood, a number of studies have implicated heritable microRNA-mediated epigenetic modifications. Using microarray profiling and pathway analysis, we have shown that cigarette smoke induces specific differences in the spermatozoa microRNA content of human smokers compared with non-smokers, and that these altered microRNAs appear to predominantly mediate pathways vital for healthy sperm and normal embryo development, particularly cell death and apoptosis. MicroRNA-mediated perturbation of such pathways may explain how harmful phenotypes can be induced in the progeny of smokers. Consequently, we have also been developing an in vitro system for investigating the potential roles of microRNAs in toxicology. By differentiating embryonic stem cells into embryoid bodies we have been able to generate and subsequently isolate sets of tissues represent a rich and largely untapped resource of invaluable information. Until recently, the application of “omics technologies to toxicology studies has been limited primarily to fresh frozen tissue samples collected at necropsy. Archival FFPE tissues represent a rich and largely untapped resource of invaluable information. There is a clear need to develop methods to apply “omics based technologies to FFPE tissue banks. ILS and ILS Genomics have developed a systematic approach using bioinformatics and laboratory testing for the de novo design of gene specific qRT-PCR assays for use on FFPE archival tissue samples. For these studies, mouse liver carcinogen mix treated and untreated liver sections (0.0, 2.0, 4.0 and 8.0 mg/kg with 5 animals per group for three weeks. Animals were necropsied at 4 hrs after the final administration, liver sections were flash frozen in liquid nitrogen and stored at -80°C. Other liver sections were fixed in formalin for 18-24 hrs, processed, and embedded in paraffin. Total RNA was extracted from paired frozen and FFPE tissue sections (10 um sections) for subsequent qRT-PCR analysis. Custom designed qRT-PCR assays using TaqMan technology with amplicons of approximately 70 bp were tested to demonstrate equal primer efficiencies between frozen and FFPE tissue RNA isolations. Using this strategy we have validated a set of 8 genes and 2 IncRNAs (Chek1, Cyp4a14, Egr1, Epha2, Cdk1a, Xrc1, Dppa5a, Gsta1) and can be used to quantify mRNA levels in liver tissue samples from FFPE compared to frozen tissues. These studies demonstrate that quantitative analysis of mRNA levels from FFPE tissue samples can be used using highly specific mRNA qRT-PCR assays.

Archival formalin fixed paraffin embedded (FFPE) tissue samples collected over decades from toxicological studies represent a rich source of biological materials with detailed pathological evaluations from the testing of numerous substances. Until recently, the application of “omics technologies to toxicology studies has been limited primarily to fresh frozen tissue samples collected at necropsy. Archival FFPE tissues represent a rich and largely untapped resource of invaluable information. There is a clear need to develop methods to apply “omics based technologies to FFPE tissue banks. ILS and ILS Genomics have developed a systematic approach using bioinformatics and laboratory testing for the de novo design of gene specific qRT-PCR assays for use on FFPE archival tissue samples. For these studies, mouse liver carcinogen mix treated and untreated liver sections (0.0, 2.0, 4.0 and 8.0 mg/kg with 5 animals per group for three weeks. Animals were necropsied at 4 hrs after the final administration, liver sections were flash frozen in liquid nitrogen and stored at -80°C. Other liver sections were fixed in formalin for 18-24 hrs, transferred to ethanol for 2 days and then processed into FFPE tissue blocks. Total RNA was extracted from paired frozen and FFPE tissue sections (10 um sections) for subsequent qRT-PCR analysis. Custom designed qRT-PCR assays using TaqMan technology with amplicons of approximately 70 bp were tested to demonstrate equal primer efficiencies between frozen and FFPE tissue RNA isolations. Using this strategy we have validated a set of 8 genes and 2 IncRNAs (Chek1, Cyp4a14, Egr1, Epha2, Cdk1a, Xrc1, Dppa5a, Gsta1) and can be used to quantify mRNA levels in liver tissue samples from FFPE compared to frozen tissues. These studies demonstrate that quantitative analysis of mRNA levels from FFPE tissue samples can be used using highly specific mRNA qRT-PCR assays.

Renal papillary necrosis (RPN) is a type of kidney injury that is often observed in diabetics and patients taking nonsteroidal anti-inflammatory or anticancer drugs. However, no prognostic biomarkers (BM) for RPN in humans have been identified. Here, we searched for novel BMs suitable for early RPN detection using toxicoproteomic techniques. Urine from rats with RPN induced by a single injection of 2-bromomethylamine hydrochloride (BEA; 0, 3, 10, 30, and 100 mg/kg) was pooled into 4 groups. Urinary proteins in each group were analyzed by 2-dimensional LC-MS/MS coupled with isobaric tags (iTRAQ) to identify BM candidates. The urinary levels of BM candidates were quantified in individual rats after BEA treatment to assess the ability of these markers to detect RPN in comparison with FDA- and EMA-approved BMs for assessing renal clinical kidney injury. The identified BM candidates were also measured in the urine of rats with glomerular- or proximal tubular (PT)-injury induced by puromycin, cisplatin, or gentamicin to verify the site specificity of the kidney lesions. In BEA-treated rats, 75 proteins with 2-fold increases in urinary concentrations compared with those in control rats were identified. Among these proteins, the selectivity and sensitivity of Es2, fetuin-A, and fibrinogen for RPN were evaluated. Es2 levels in urine were elevated rapidly after BEA treatment compared to those of serum BUN, creatinine, urinary clusterin, KIM-1, and RPA-1, and were also increased in glomerular- or PT-injury rats, suggesting that Es2 is a highly sensitive, but nonselective for RPN. In contrast, fetuin-A and fibrinogen were selective for RPN, as no marked changes in their urinary concentrations were observed in glomerular or PT-injury rats, but had low sensitivity for RPN detection. In conclusion, we identified three BM candidates for RPN with kidney lesion-site specificity and different sensitivities.

Formaldehyde (FA) is classified as a known human and animal carcinogen. It is a ubiquitous environmental pollutant and is used in a number of consumer products or industrial applications. FA is also endogenously produced as part of normal cellular metabolism. FA is a genotoxic agent, causing a number of effects on cells including DNA monoadducts, DNA-DNA crosslinks and DNA-protein-crosslinks (DPCs). DPCs are believed to be one of the critical lesions involved in FA induced carcinogenesis and is thought to provide a key initiating step in the Mode-of-Action. Currently, there are no available methods to distinguish between endogenous and exogenous FA induced DPCs. To investigate the possible link between inhibited FA and the formation of both endogenous and exogenous DPCs, several analytical techniques are being developed. O-Alkylguanine-DNA alkytransferase (AGT) is a DNA repair enzyme that is known to form DPCs with FA and other crosslinking agents at the active Cys145 residue. Using AGT as a model protein, a series of experiments were undertaken to understand the formation, stability and degradation of the DNA-protein-crosslink at the reactive cysteine and the position of deoxyguanosine. Digestion conditions for both DNA and protein cleavage were investigated to determine approaches that would allow for the isolation and identification of either cysteine-CH3-dg or AGT peptide-CH2-dg crosslinks using sensitive and selective Liquid Chromatography – Mass Spectrometry. Further experiments investigating the ability to distinguish between crosslinks formed by both [13CD2]-FA and unlabeled FA were accomplished. Further validation and development of these approaches may allow for accurate and quantitative determination of endogenous and exogenous FA specific DPCs in cell culture and animal models. This information will be critical in advancing the understanding of the risks associated with inhaled FA and its role as a human carcinogen.

The ability to detect target organ toxicity as well as to determine the molecular mechanisms underlying such toxicity by employing surrogate biospecimens that can be obtained either by a non-invasive or minimally invasive procedure has significant advantage in toxicology. Pulmonary toxicity and global gene expression profiles in the lungs, blood and bronchoalveolar lavage (BAL) cells were determined in rats 44-hours following inhalation exposure to crystalline silica (15 mg/m3, 6-hours/day, 5 days). A significant elevation in lactate dehydrogenase activity and albumin content in the BAL fluid as well as histological alterations, mainly type II pneumocyte hyperplasia and fibrosis, observed in the lungs suggested silica-induced pulmonary toxicity in the rats. A significant increase in the number of neutrophils and elevated monocyte chemoattractant protein 1 in the BAL fluid indicated silica-induced pulmonary inflammation in the rats. Determination of global gene expression profiles in the lungs, BAL cells, and blood of the silica exposed rats identified 175, 273, and 59 significantly differentially expressed genes (SDEGs) (FDR p<0.05 and >1.5 fold change in expression), respectively, compared with the corre-
Critical endpoints in in vitro testing of cosmetic ingredients are the determination of the bioavailability of test substances in different skin layers and the examination of the toxicokinetic profile. Skin penetration studies are so far performed in Franz diffusion cells using pig skin. Unfortunately with these cells an automated toxicokinetic determination of percutaneously penetrated substance is not receivable. To perform toxicokinetic studies, we developed a new Vitrocell systems skin penetration system (SPS) with eight parallel running diffusion cells, which is able to take samples from the receptor fluid automatically. To substitute the Franz diffusion cells with the SPS it is important to compare both systems in terms of performance and reproducibility. Therefore we compared the penetration of caffeine through full thickness pig skin in Franz diffusion cells with manual sampling from the receptor fluid with the prototype of the SPS that provides automated sampling from the receptor fluid.

We could show toxicokinetic profiles for manual and automated samples with comparable lag times and recovery rates. Furthermore we could even show lower standard deviations using the SPS.

In conclusion, the new SPS is highly comparable to the Franz diffusion cell with the additional advantage to allow the automated detection of toxicokinetic profiles from the receptor fluid.

Risk Assessment for Cosmetic Ingredients Using Alternative Methods—Skin Sensitization.

Safety Technology Development Group, Shiseido Research Center, Yokohama, Japan; 2Department of Biochemical Toxicology, Showa University School of Pharmacy, Tokyo, Japan; 3Department of Dermatology, Tokoh University Graduate School of Medicine, Sendai, Japan.

Development of non-animal safety evaluation methods for chemicals is necessary from the viewpoint of animal welfare and to meet the 7th amendment of the European cosmetics directive. As an in vitro skin sensitization test, we have established two methods. One was the human cell line activation test (h-CLAT) detecting augmentation of CD86 and CD54 expression in THP-1 cells exposed by skin sensitizers. The other was the SH test taking advantage of changing cell-surface thiols on THP-1 cells induced by skin sensitizers. Recently the Antioxidant Response Element (ARE) assay measuring oxidative stress caused by skin sensitizers have been attracted attention. However, hazard assessment of skin sensitization has been unable to predict by only one test in vitro yet. Furthermore, non-animal methodologies in risk assessment how much a chemical has skin sensitization potency has just started in earnest. This study attempted to verify how to combine tests in vitro or in silico to assess chemical skin sensitizers. EC3 values from LLNA were accumulated by non-linear analysis using each endpoint from in vitro skin sensitization test and then some descriptors suggesting correlation to LLNA threshold values were selected. Correlation between the descriptors and EC3 values were analyzed by Artificial Neural Network (QwikNet Ver. 2.23). Molecular orbital of the three-dimensional chemical structures was also used in silico. As a result, the model obtained from tests in vitro or in silico reveals good correlation to in vivo data, thus the combination of in vitro and in silico method could be a sophisticated non-animal testing for risk assessment in skin sensitization.

Application of a Modified Keratinosens Assay to Predict Sensitization Hazard for Botanical Extracts.

D. Gan, K. Norman, N. Barnes, H. Rabbe, C. Gomez and J. W. Harbell.

Mary Kay Inc., Addison, TX; 2IVOS, Gaithersburg, MD.

An essential step in the safety review of cosmetic/personal care ingredients is hazard assessment, including dermal sensitization potential. In vitro methods to identify allergic (haptenic) potential are based on electrophilic interaction with marker peptides or cellular target systems. These assays use a specific molar ratio of the test chemical to the test system, which is necessary to preclude specific molar ratio determination. Often, the botanical extract portion is a small fraction of the complete ingredient. To assess these mixtures, the KeratinoSens assay was selected because it operates over a wide dose range and sets cytotoxicity limits on doses used to measure marker gene expression (Unter et al, 2010). Induction of a latent system under the control of the antioxidant response element (ARE), was measured. Cytotoxicity was assessed by both NRU and MTT assays. Concentrations up to 1 mg/ml (of complete ingredient) were tested and a test dose was considered positive if the fold induction of luciferase was 1.5x (EC1.5) and viability >70% relative to the solvent controls. The goal of the study was to measure the activity of 3 known sensitizers (gluteraldehyde [GA] [strong], dimethyl maleate [DM] [moderate] and cinnamic aldehyde [CA] [moderate] spiking into four different botanical ingredients (with different excipient solvent systems). Activity was measured, relative to the EC1.5 of the neat sensitizer, as a function of sensitizer concentration and ingredient composition. Three independent trials were performed. No appreciable cytotoxicity was observed. The recovery of the GA spike required at least a 3-fold increase in concentration relative to the chemical alone and one extract reduced the activity below detection. The DM and CA showed activity at about the same effective concentrations as the neat chemicals although the DM showed reduced activity in one extract as well. These data suggest that the KeratinoSens assay has the potential to identify electrophile allergens within a botanical extract ingredient matrix.

Comparison of a New Skin Penetration System Containing an Automated Toxicokinetic Modul with Franz Diffusion Cells.

4218-Research Toxicology, Beiersdorf AG, Hamburg, Germany.

An essential step in the safety review of cosmetic/personal care ingredients is hazard assessment, including dermal sensitization potential. In vitro methods to identify allergic (haptenic) potential are based on electrophilic interaction with marker peptides or cellular target systems. These assays use a specific molar ratio of the test chemical to the test system, which is necessary to preclude specific molar ratio determination. Often, the botanical extract portion is a small fraction of the complete ingredient. To assess these mixtures, the KeratinoSens assay was selected because it operates over a wide dose range and sets cytotoxicity limits on doses used to measure marker gene expression (Unter et al, 2010). Induction of a latent system under the control of the antioxidant response element (ARE), was measured. Cytotoxicity was assessed by both NRU and MTT assays. Concentrations up to 1 mg/ml (of complete ingredient) were tested and a test dose was considered positive if the fold induction of luciferase was 1.5x (EC1.5) and viability >70% relative to the solvent controls. The goal of the study was to measure the activity of 3 known sensitizers (gluteraldehyde [GA] [strong], dimethyl maleate [DM] [moderate] and cinnamic aldehyde [CA] [moderate] spiking into four different botanical ingredients (with different excipient solvent systems). Activity was measured, relative to the EC1.5 of the neat sensitizer, as a function of sensitizer concentration and ingredient composition. Three independent trials were performed. No appreciable cytotoxicity was observed. The recovery of the GA spike required at least a 3-fold increase in concentration relative to the chemical alone and one extract reduced the activity below detection. The DM and CA showed activity at about the same effective concentrations as the neat chemicals although the DM showed reduced activity in one extract as well. These data suggest that the KeratinoSens assay has the potential to identify electrophile allergens within a botanical extract ingredient matrix.

Development of a Highly Reproducible Three-Dimensional Chinese Skin Reconstructed Model for Evaluating Drug and Cosmetic Skin Irritation.

1Foreland Biopharma Co. Ltd., Beijing, China; 2Boston University, Boston, MA. Sponsor: J. Wang.

In vitro models to study irritation, corrosivity and phototoxicity are important tools for research and development in the pharmaceuticals and cosmetic industries. Human skin is the best possible model for such in vitro studies. The commercially reconstructed human epidermis models are similar to the morphology, lipid composition and biomarkers of native human tissue and have been approved by European Centre for the Validation of Alternative Methods (ECVAM) for the validation of cosmetics. The models are available in many countries but not in China. Here, we describe the development of a constructed three-dimensional (3D) model using Chinese human skin, which consists of a ‘dermis’ with fibroblasts embedded in human dermal collagen matrix and an ‘epidermis’ comprised of differentiated keratinocytes. The fibroblasts and keratinocytes were first separated from foreskins of Chinese adults after incubating in dispase and collagenase solutions. Then, rat type I collagen was constructed onto the polycarbonate membrane of a culture insert. After gels solidified at room temperature, a collagen matrix with Chinese dermal fibroblasts was constructed above the acellular collagen layer. Keratinocytes were added to the surface of the construct, and the collagen gel was allowed to contact to the matrix to form a confluent cellular monolayer. The reconstructed tissues were raised to an air-liquid interface to enable complete stratification and differentiation. After exposure and incubation, MTT assay was performed for cell viability. Nineteen well-known irritants or corrosive chemicals caused cell viability rates less than 50%. Cosmetics both from Western nations and China were also tested in the model. We found the Western cosmetics were of good toxicological viability performance, while some Chinese cosmetics which dramatically decreased cell viability 1 hour after exposure. Our data indicate that the reconstructed 3D Chinese skin model is highly reproducible and sensitive to assess skin irritation to chemicals and cosmetics.
IL-1β. This approach has been advantageous for the simultaneous screening of multiple formulations for irritation potential during research and development for new products. Other customized studies have evaluated the efficacy of various skin washing agents at removal of a viscous coating from the skin tissues, in a simulated washing study to help formulate occupational health recommendations for workers. These studies evaluated irritation potential using MTT, IL-1β and LDH release, and also analyzed the dermal penetration of an amine component in the coating. In summary, incorporation of these test methods has been very useful for the evaluation of a multitude of dermal exposure scenarios. The tissues have been used in standardized irritation and corrosion assays, as well as custom protocols utilizing additional markers of cell damage, and also specialized skin washing and dermal penetration studies. The results of these studies have provided valuable information for safety and risk assessment purposes, particularly during the product development phases, and have permitted these evaluations without animal use.

One characteristic of a chemical allergen is its ability to react with proteins prior to the induction of skin sensitization. The majority of chemical allergens are electrophilic and react with nucleophilic amino acids such as cysteine and lysine. In the DPRA, test chemicals are incubated for 24 hours with two synthetic peptides containing a cysteine or lysine residue, and the reactions are analyzed by HPLC to measure peptide depletion. We have previously demonstrated that reactivity correlates with sensitization potential and has developed a prediction model to assign a reactivity category for each material tested in the assay (Gerberick et al. Toxic Sci 2007; 97:417-427). In order to assess the robustness of this prediction model and its ability to distinguish reactive skin sensizers from minimally reactive non-sensitizers, a historical DPRA dataset of 133 chemicals was analyzed retrospectively with a modified prediction in which the cut-off between minimal and low reactivity was changed from 63.80% to 8% depletion. Regardless of cut-off, the accuracy of the prediction model remained at 86% with little to no change in sensitivity, specificity, and positive and negative productivity. To further investigate the robustness and reproducibility of the prediction model, a small intra-laboratory study was conducted. In this study, 9 chemicals were tested blindly in three independent runs. The depletion data was analyzed using the current prediction model as well as the described modified prediction model. In both cases, 7 out of 9 chemicals showed the same reactivity prediction in all 3 runs. Neither the retrospective analysis nor the intra-laboratory study provided any compelling evidence to adjust this cut-off value from the current model. Taken together, these studies further display the reproducibility and robustness of the DPRA and its prediction model.

Dermal absorption of chemicals from topically applied products is studied in a variety of in vitro and in vivo models. Skin barrier function may be impaired due to intrinsic or extrinsic factors. To our knowledge there is not a standardized model for evaluation of dermal absorption in compromised skin barrier conditions. Our objective was to validate an in vitro model of altered barrier function generalizable across compromised skin states. To investigate the permeability properties of compromised skin compared to normal skin, we explored the relationship between non-invasive (Trans Epidermal Water Loss, TEWL) and invasive (Electrical Resistance, ER; Tritiated Water Flux, TWF) markers of barrier function in slaughterhouse pig skin before and after tape stripping. Skin samples were randomly divided into groups and subjected to a standardized tape stripping procedure. The pre- and post-values for the 3 measures of skin integrity were recorded for 0, 5, 10, 15 and 20 tape strips. A full analysis of the distribution of TEWL, ER and TWF for 70 separate skin samples revealed that only ER was robust enough to discriminate between the barrier property changes effected by sequential tape stripping. The measurement of water flux through the skin (TEWL, TWF) required a long period of stabilization and proved to be unsuitable as a short term test. However, a significant difference could be observed with ER between control and each group of 5-20 tape strips (p<0.01, n=53). Further analysis of the data revealed that removal of 10 tape strips provided a loss of barrier function approximately equivalent to a 3-4 fold increase in TEWL, which approximates the altered barrier function clinically observed in atopic dermatitis, psoriasis, and diaper dermatitis. In conclusion, we have developed an in vitro model of compromised skin barrier function that is simple and robust and can be used to study the dermal absorption of chemicals that may come in contact with skin impaired barrier properties.

Allergic contact dermatitis (ACD) is a health effect that can develop in those exposed to skin sensitizing chemicals. To decrease the occurrence of this adverse reaction, regulations require that testing be performed to identify which chemicals are responsible for this effect, and be labeled accordingly. The current standard for ACD measurement is the Local Lymph Node Assay (LLNA), which is both animal and labor intensive. The LLNA testing procedure is based upon enumerating the responding cells in the draining lymph nodes of the mouse after treatment. Alternatives for this assay have depended on the measurement of phenotypic changes of a defined cell line, which would be analogous to a prior step in the pathway of induction of sensitization than that of the LLNA endpoint. To the end of developing an assay that more comprehensively mimics the role of the immune system during ACD in vitro, we describe a phenotypic and functional cell based assay that can be used to predict the sensitizing potential of compounds. The prediction method of this assay is based upon the up-regulation of cell surface molecules and proliferation indicative of the induced maturation of the cell line after compound treatment, and also a functional response whereby the treated cells are exposed to chemotaxis inducing reagents and migration measured. These features can easily be captured and measured via an automated fluorescent imaging and analysis platform. The measurement of these features when combined allow for prediction of sensitizing potential, but also provide toxicity data which allows for compounds to be easily re-screened at lower concentrations. Tested compounds (n=24) yielded a high sensitivity rate (100%) and a high concordance (82%) to the LLNA. In summary, this assay shows promise in its ability to predict in vivo responses and may offer a viable alternative to traditional animal studies. In addition, it could provide a valuable first level triage for chemicals entering the consumer and industrial products pipeline.
To encourage the development and validation of alternative toxicity test methods, the effort required for validation of test methods proposed for regulatory purposes should be minimized. Performance standards (PS) facilitate efficient validation by requiring limited testing. Based on the validated method, PS define accuracy and reliability values that must be met by the new similar test method. The OECD adopted internationally harmonized PS for evaluating new endpoint versions of the local lymph node assay (LLNA). However, in the process of evaluating a lymph node cell count alternative, the LNCC, simultaneous conduct of the regulatory LLNA showed that this standard test may not always perform in perfect accord with its own PS. The LNCC results were similar to the concurrent LLNA; discrepancies between PS, LLNA and LNCC were largely associated with “borderline” substances and the variability of both endpoints. Two key lessons were learned: firstly, the understandable focus on substances close to the hazard classification borderline are more likely to emphasize issues of biological variability, which should be taken into account during the evaluation of results; secondly, variability in the results for the standard assay should be considered when selecting reference chemicals for PS.

Alternative Method in Practice: Post-validation Experience of the Skin Sensitization In Vitro Test Strategy

S. N. Kolle, B. van Ravenzwaay and R. Landsiedel. Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany.

Several in vitro methods including dendritic cell line activation (e.g. MUSST and h-CLAT), keratinocyte activation (e.g. LuSens and KeratinoSens) and in chemico (e.g. DPRA) assays have been described as promising animal-free tools to qualitatively predict skin sensitizing potential. While these methods are currently undergoing evaluations in the different stages of formal validation, testing strategies have been proposed based on the combination of these assays. Yet to use suggested methods and prediction models for the diverse industrial sectors, such as the cosmetic, industrial chemical, pharmaceutical and maybe even the agrochemical sector, the scope of the substance classes tested as part of the initial validation exercise needs to be extended. Typically in a first validation phase novel alternative methods are evaluated against their gold standard in vivo assays using model substances selected from literature for their well described toxicological endpoint effects. The substances tested in the first validation phase, do, however, usually not reflect the typical test substance portfolio of the different industrial sectors. Therefore in this study we present the post-validation evaluation of 40 additional substances with available in vivo skin sensitization data from various substance classes including acrylates, surfactants, isocyanates, plant extracts, and agrochemical formulations in state of the art in vitro methods to assess skin sensitization. This additional data provides valuable information to understand the predictive capacity in terms of the applicability domains and may also help to manage expectations what can be achieved with those assays.

Evaluation of Skin Irritation for Household Products Using a Reconstructed Human Epidermis Model

Classification for irritation using reconstructed epidermis test methods have been developed. These test methods have been validated with the ability of dividing chemicals into skin irritants or non-irritants, in accordance with the UN Globally Harmonized System of Classification and Labeling (GHS). Application of these models to dermal safety evaluation of household products, which are consisted of several chemical substances, is of highly importance from the point of view to ensure product safety.

The aim of this research is to estimate skin irritation potential of household products comparing cell viability patterns on reconstructed epidermis when household products are applied. We select LabCyte EPI-MODEL24 (Japan Tissue Engineering Co., Ltd) model with JACVAM validated protocol for GHS classification of chemical substances. Twenty-five commercial household detergents in Japan including laundry detergents, dishwashing detergents, fabric softeners and household cleaners were tested. It appeared that the cell viability becomes comparable in some product categories. The products which contains highly anionic surfactants tends to show low cell viability. Fabric softeners which were based on cationic surfactants showed no cytotoxicity in this model. Powder laundry detergents tend to show low cytotoxicity. Liquid laundry detergents, dishwashing detergents and household cleaners shows various cell viability. It seemed that category and/or its concentrations of contained surfactants might be affected the results.

These results suggested that reconstructed epidermis test methods useful for the products safety assessment by performing comparative assessment in each product category.
For the replacement of the LLNA, the combination of several alternative methods is necessary. JCIA organized a working group to investigate testing strategies. In this study, considering the applicable domain, we demonstrated the utility of a testing strategy using the human Cell Line Activation Test (h-CLAT), Direct Peptide Reactivity Assay (DPRA) and the in silico system, DEREK. A total of 135 chemicals, some of which exhibit poor water-solubilities, were evaluated. For h-CLAT, THP-1 cells were exposed to each test chemical for 24 hours. The CD86 and CD54 expressions were analyzed by flow cytometry. For DPRA, model peptides were mixed with test chemical for 24 hours. The depletion of peptides was analyzed by HPLC. For DEREK, the alert of chemical structure was examined. For 135 chemicals, the accuracy of h-CLAT, DPRA and DEREK to predict LLNA results was 78, 74 and 74%, respectively. Next, we investigated 3 testing strategies: the Integrated Testing Strategy (A), a tiered approach (B), and a multiple regression set gave 92 S, 56 NS predictions and 60 INC. Statistical methods based on a stack-

corrected or preservative agent in personal care products. Although the European Union restricted the use of alkyltrimonium chlorides and bromides as preservative at ≤0.1%, these compounds have been safely used at ≤0.1% in hundreds of cosmetic products for other uses than as a preservative. In vitro, clinical, and controlled consumer usage tests in barrier-impaired individuals were conducted to determine if whole body, leave-on skin care products containing 1-3% BTC cause dermal irritation or any other skin reaction with use. BTC-containing formulations were predicted to be non-irritants by the EpiDermTM skin irritation test and the bovine cornell opac-

ity and permeability (BCOP)/choirioallantoic membrane vascular assay (CAMVA) ocular irritation test battery. No evidence of allergic contact dermatitis or cumulative dermal irritation was noted under the exaggerated conditions of confirmatory human occlusive patch tests. No clinically assessed or self-reported adverse reactions were noted in adults or children with atopic, eccematosus, and/or xerotic skin during two-week and four-week monitored home usage studies. These results were validated by post-marketing data for five body lotions, which showed only 0.69 undesirable effects (skin irritation) reported per million shipped consumer units during 2006-2011. No serious undesirable effects were reported during in-market use of the products. Therefore, if formulated in appropriate conditions at 1-3%, BTC will not likely cause dermal irritation or delayed contact sensitization when used in a whole-body, leave-on product.

H. Koiwa1,2, N. Annaka1, S. Tsuchiya1, Y. Yoshitake1, R. Xu1, M. Suzuki2, W. Shimatani2, A. Kajita2, M. Nakamura3, M. Watanabe4, M. Nakajima5, K. Sakamoto1, R. Takeda1, M. Hisama1, H. Ikeda1, A. Inagaki1, Y. Manechika1, Y. Yamamoto1, T. Kasahara2, T. Fukuda2, S. Nakahara2, S. Watanabe2, H. Kurata2, S. Shinoda2 and M. Kato2,3.
Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan; 2Japanese Society for Alternative to Animal Experiments, Tokyo, Japan; 3Japan Tissue Engineering Co., Ltd., Aichi, Japan.

LabCyte CORNEA-MODEL24 is a human corneal model that was developed by Japan Tissue Engineering Co., Ltd. (J-TEC) as an alternative to animal tests for ocular irritation. It has been reported to provide highly-accurate predictions. A first step toward the future inclusion of this method in test guidelines is to verify trans-
ferability of the protocol. In collaboration with the Planning Committee of the Japan Society for Alternative to Animal Testing, a call for collaborating partners was issued, with respondents participating in a technical training session and a collabora-
tion study to identify potential problems with the protocol. A total of twenty-
four laboratories responded to the call for collaborating partners. These laboratories were divided into four groups, and four chemicals as well as a positive control were distributed to each group without coding. These test chemicals and their control groups were tested using a WST-8 assay to determine cytotoxicity and thereby verify transferability of the protocol. As a result, we had a good inter- and intra-labo-
atory reproducibility in this study. On the other hand, a number of problematic points have already been noted, including several difficult-to-understand parts of the protocol and an inability to clear standard values for negative controls. The future inclusion of this method in established guidelines requires smooth implemen-
tation of a validation process, and a first step in that process is to verify the trans-
ferability of a suitable protocol.

974 Assessing Eye Irritation Potential of Cosmetic Products Using the STE Test.

1Kao Corporation, Tokyo, Japan; 2Kanebo Cosmetics Inc., Kanagawa, Japan; 3Kao USA, Cincinnati, OH; 4KoA Germany, Darmstadt, Germany.

Various in vitro assays that have been developed as an alternative for the Draize test are currently used to evaluate the eye irritation potential of cosmetic products and ingredients. A Short Time Exposure (STE) test, which we developed as a potential alternative test for eye irritation using rabbit cornea cells (SIRC), is planned for peer review and expected to be accepted as an OECD test guideline for classifying mate-
rials as Non-irritant/Irritant (NI/I). The test is expected to be able to evaluate cos-
metic products as well as chemicals and cosmetic ingredients. Firstly, we evaluated the accuracy of the STE test against GHS classification for 20 cosmetic products (14 rinse-off and 6 leave-on products). Secondly, the results of STE test (including various rinse-off and leave-on products) were compared with the results of 43 cos-
metic products tested in BCOP (bovine cornea opacity and permeability test) test, 20 cosmetic products tested in HET-CAM, and 40 cosmetic products tested in CAMVA (two hen egg chorioallantoic membrane tests) in order to confirm the ho-
mology of in vitro assays used for evaluating eye irritation of the cosmetic products. In the first step, the accuracy for STE classifying a product as NI/I, compared to GHS, was 90% (18/20). Furthermore, STE test is able to provide a rank order (minimal irritant, moderate irritant and severe irritant) for materials based on the cell viability. The accuracy which compared GHS classification to a rank order of STE test was 75% (15/20). In the second step, comparison between STE test and three in vitro assays demonstrated that the accuracy of STE classifying a product as NI/I compared to BCOP HET-CAM, and CAMVA was 79% (34/43), 80% (16/20), and 90% (36/40), respectively. Our findings show that STE test can be an alternative for the Draize test as well as for the three in vitro assays used to evaluate a cosmetic product.

975 The Interlaboratory Reproducibility of the STE Test for Assessing Eye Irritation of Cosmetic Products.

1Kao Corporation, Tokyo, Japan; 2Kao Germany, Darmstadt, Germany.

The Short Time Exposure (STE) test, a potential alternative test for eye irritation using rabbit cornea cells (SIRC), is planned for peer review and expected to be ac-
cepted as an OECD test guideline for classifying materials as Non-irritant/Irritant (NI/I). Currently, we evaluated the technical transfer and inter-laboratory repro-
ducibility of the STE test at 3 contract research laboratories and lead laboratory (Kao Corp). We first assessed the technical transfer at the 3 contract labs by using 5 chemicals (sodium lauryl sulfate, calcium thioglycolate, Tween 80, 1-octanol, and dodecane). Cell viability, following exposure to a 5% concentration, was used as an indicator of eye irritation potential, where a material is considered a NI if the vi-
ability was more than 70% and an I if the viability was less than 70%. Furthermore, a rank order (minimal irritant, moderate irritant and severe irritant) was given to materials based on scores obtained from exposures to 5% and 0.05% concentra-
tion. All 3 contract labs had reproducible and similar results for the 5 chemicals confirming the technical transfer among the contract labs. The inter-laboratory repro-
ducibility was confirmed by using 21 cosmetic products (13 rinse-off and 8 leave-on products) and assessed by comparing the accuracy (i.e., ability to classify same materials as either NI or I, and same rank order) of the results among the 3 contract labs and Kao Corp. The respective accuracy for classifying as either NI/I for Lab A, B and C were 100, 81 and 95%. The respective accuracy for obtaining the same rank order for Lab A, B and C were 95, 67 and 76%. Overall, our findings show that a good inter-laboratory reproducibility was obtained for STE test using the finished cosmetic products.

976 Choosing the Appropriate Solvent for Solid Materials Tested in the Bovine Cornea Opacity and Permeability (BCOP) In Vitro Assay.

G. Costin1, Y. Jeong2, D. Anderson2, J. E. Bader1, L. Krawiec3, J. R. Nash1 and H. Raabe3.
1Institute for In Vitro Sciences, Inc. (IIVS), Gaithersburg, MD; 2The Dow Chemical Company, Midland, MI.

In compliance with OECD Test Guideline 437 for eye irritation (BCOP assay), non-surfactant solid materials are typically tested as 20% dilutions prepared in 0.9% sodium chloride solution, distilled water, or other solvent that has been demonstrated to have no adverse effects on the test system. However, the limited solubility of some chemicals adds technical challenges in finding a vehicle that would ensure the material’s availability to the excised corneas and that itself would not affect the test system. In this study, we evaluated five solvents frequently used in the BCOP assay: distilled water, mineral oil, corn oil, polyethylene glycol (PEG-400), and methocel solution (0.5%). Based on the available classification systems, our preliminary data showed that water, methocel, mineral oil and corn oil were predicted as non-irritants, while PEG-400 was predicted as a mild irritant. To demonstrate the influence of the type of solvent on the outcome/prediction of the BCOP assay for solid materials, we tested a 20% suspension of benzoic acid (BA) prepared in these solvents. BA has a non-polar benzoic ring that would preferably dissolve in non-polar solvents and a polar acidic group with affinity for polar sol-
vents, thus making it a good model for testing its effect on corneas when dissolved in various solvents. Previous animal tests reported moderate to severe eye irritation induced by BA. Our results demonstrated that when mixed in water, mineral oil, corn oil, or methocel, BA was predicted to be a corrosive/severe irritant, while it was predicted to be a moderate irritant when mixed in PEG-400. These results sup-
port the need for further investigation of the solvent’s influence in the BCOP assay to allow the correct prediction of the irritation potential of solid materials.
The bovine corneal opacity and permeability (BCOP) test has been adopted by OECD for the identification of ocular corrosive and severe irritants (GHS category 1) for single component substances and multi-component formulations. Further, human reconstructed tissue models have been suggested for incorporation into a tiered strategy to ultimately replace the Draize rabbit eye irritation test (OECD TG 405) and the value of the Epicuticular Eye Irritation Test (EIT) for the prediction of ocular non irritants (GHS no category) has been shown previously. The purpose of this study was to evaluate whether the BCOP including corneal histology and the EIT could be used to predict eye irritancy of agrochemical formulations according to different classification schemes including UN GHS, EPA and ANVISA systems. We have assessed opacity, permeability and histology in the BCOP assay and relative tissue viability in the EIT for 50 agrochemical formulations with available in vivo eye irritation data. Using the OECD TG guideline evaluation scheme for opacity and permeability in the BCOP did not prove predictive with respect to severe eye irritation potential for the 50 agrochemical formulations assessed here, while corneal histology grades and the Epicuticular tissue viabilities where useful predictors of eye irritancy potencies. Further we describe here statistical evaluation based on the experimental in vitro data to predict eye irritancy for the different classification schemes.

978 A Preliminary Investigation in the Use of Porcine Corneas As a Substitute for Bovine Corneas in the BCOP Assay.

D. Wolfinger and D. R. Cerven. MB Research Laboratories, Spinnerintron, PA. Sponsor: G. DeGeorge.

The Bovine Cornea Opacity and Permeability Assay (BCOP) has been used since 1992 to provide estimates of ocular irritation. It has been accepted as an alternative to the use of rabbit in acute ocular safety testing. However in some areas of the world, access to bovine eyes is limited, and the Draize eye-scoring test, performed in rabbits, is still being utilized. In response to this, we have been investigating the replacement of excised bovine corneas with porcine corneas for evaluation of acute ocular irritation (PCOP). This preliminary investigation involved the evaluation of 100% ethanol, 0.1% Benzalkonium Chloride (BAK), and four cosmetic products, all of which had previously been tested in the BCOP as well as the Chorioallantoic Membrane Vascular Assay (CAMVA). Initially the results from the ethanol and BAK testing in the porcine corneas showed no correlation to the results from bovine corneas. These suggested the need for certain modifications to the trimming and mounting procedures for the porcine corneas, which are smaller than the bovine corneas. Thus, the trimming process to excise the cornea was modified, and the same chambers supplied with the opacitometer for use with bovine eyes was also used for the porcine eyes. After modifying the pre-testing procedures, we proceeded to test four cosmetic compounds successfully in the BCOP and PCOP. These investigations indicate that the In Vitro Scores obtained with porcine eyes are similar to those in bovine eyes. Additional evaluation with a wider range of chemical entities is underway.

979 In Vitro Ocular Irritation Testing Strategy for Prototype Cleaning Products.

M. Bauman1, K. Norman2, G. Mun3 and H. Raabe1. 1, S.C. Johnson & Son, Inc., Racine, WI; 2, 3 Institute for In Vitro Sciences, Gaithersburg, MD.

The Bovine Corneal Opacity and Permeability (BCOP) assay can be used for predicting mild, moderate, and severe ocular irritation through quantitative assessment of the changes in opacity and permeability of bovine corneas. In addition, histological evaluation of the corneas may be performed to assess the depth of damage. The BCOP assay with histology was used to determine the ocular irritation potential of prototype cleaning products with antimicrobial claims according to the guideline provided by the EPA-OPP program (OPP). Several prototype cleaners of similar formulation were evaluated along with a reference material. The results of the BCOP assay showed noticeable differences among the products. The *in vitro* score, determined by changes in opacity and permeability of the corneas, ranged from -1 to 80. These scores indicate mild, moderate, and severe irritation according to the guideline provided by the EPA-OPP. In addition, the histological evaluation of the corneas showed differences in the depth of damage to the stroma between moderate and severe category products, confirming the classification of the products by the *in vitro* score. These results demonstrate the utility of the BCOP assay with histology as a stand-alone assay for eye irritancy evaluation in the EPA-OPP program. Furthermore, this testing strategy distinguished the ocular irritation potential among similar prototypes demonstrating its effectiveness in the product development process.
Surfactant Responses in the Bovine Corneal Opacity and Permeability Assay: Points to Consider for In Vitro Eye Irritation Testing.
J. E. Bader, G. Costin, A. Hilberet, G. Mun, J. R. Nash, K. Norman, N. Wilt and H. Raabe. Institute for In Vitro Sciences, Gaithersburg, MD.

The Bovine Corneal Opacity and Permeability (BCOP) assay is an *ex vivo* test used to evaluate the ocular irritation of a broad range of chemicals. In the regulatory classification and labeling arena, BCOP can be used to identify severe and corrosive eye irritants according to the OECD Test Guideline (TG) 437. However, BCOP has historically under-predicted certain anionic surfactants, when tested according to the standard liquid protocol. TG 437 specifies that liquid surfactants may be tested as 10% aqueous dilutions for 10 minutes (although alternate dilutions and exposure times may be conducted with scientific rationale), and the relevant guidance document (GD) No. 160 suggests that solid and concentrated liquid surfactants may be diluted to 10% for testing. However, GD No. 160 further directs that surfactant-based formulations are usually tested neat, but could be diluted with justification, imparting some confusion in identifying the most appropriate test methods. Since neither the basis for selecting the appropriate surfactant test methods, nor the justification for modifications are clearly presented in TG 437 or GD No. 160, we present on the testing of sodium lauryl sulfate (SLS) in the BCOP assay, using standard and modified dilutions and exposures, to elucidate the impact of these variables on eye irritation prediction. For example, *in vitro* scores of 20.7, 28.4, and 28.3 were obtained when testing SLS at concentrations of 50, 20, and 10% for 10 minutes, showing that irritation responses were not fully concentration-dependent, but demonstrated optimally at intermediate doses. When tested using modified exposure times, SLS showed time-related responses, with irritation scores in prediction at the 20 and 30 minute exposures. Histopathology was performed to assess the surfactant-induced corneal changes. Based upon these results, a framework for testing surfactants, and surfactant-based formulations is proposed.

Determination of eye irritation potential is an essential part of the safety assessment of chemicals, pharmaceuticals, and cosmetics. For many years, the ocular irritation potential of chemicals has been mainly evaluated by the Draize rabbit eye irritation test (OECD Test Guideline 405). Because Draize rabbit eye irritation test is based on subjective visual scoring evaluation, significant variability has been observed. In addition, the test causes considerable discomfort and pain to the animal, and it has also been identified that the eye irritation response of rabbits does not always correspond to those of humans. For scientific reasons, animal welfare issues and the ban of cosmetics in animal eye irritation tests in the European Union (EU), there are many efforts to develop alternative methods replacing animal study. Using a human corneal cell line (HCE-T cells), we developed a new alternative method to assess the eye irritation potential of chemicals. We exposed HCE-T cells to 3 fixed concentrations of the 38 chemicals (5%, 0.5%, and 0.05%) for 1 h and measured the relative cell viability (RCV) at each concentration. Using the RCV values at 5%, 0.5%, and 0.05%, we developed a new criterion for eye irritation potential (total eye irritation score, TEIS) and estimated the ocular irritancy. We then assessed the correlation of the results of TEIS with those of the Draize rabbit eye irritation. TEIS results exhibited good correlations (sensitivity: 80.77%, specificity: 85.33%, and accuracy: 81.58% for TEIS). We conclude that the new in vitro model using HCE-T cells is a good alternative evaluation model for the prediction of the eye irritation potential of chemicals.

Neonatal Hyperoxia Promotes Lung Fibrosis Independent of Excessive Leukocyte Recruitment to the Lung following Influenza A Virus Infection.

There is a growing appreciation that environmental exposures during critically important periods of development can influence the onset of many childhood and adult diseases. For example, preterm infants prematurely exposed to excess levels of oxygen (hyperoxia) at birth are at increased risk for impaired lung development and are often more sensitive to respiratory viral infections later in life. Similarly, adult mice exposed to 100% oxygen during PND 0-4 exhibit persistent lung simplification, as assessed following infection with influenza virus. Levels of the inflammatory chemokine MCP-1 are selectively increased following infection in these mice. Since increased levels of MCP-1 are often associated with pulmonary inflammation and fibrosis, we hypothesized that MCP-1/-/- mice exposed to hyperoxia at birth would have an attenuated inflammatory response, and reduced fibrotic responses following infection with influenza virus. Prior to infection, lung simplification was evident and indistinguishable amongst Mcp-1+/+ and Mcp-1/-/- mice exposed to hyperoxia at birth. When infected, Mcp-1/-/- mice exposed to hyperoxia had reduced mean body weight loss and leukocyte recruitment to the lung in comparison to Mcp-1+/+ mice exposed to hyperoxia. Although leukocyte recruitment was not excessive following infection in Mcp-1/-/- mice exposed to hyperoxia, they still developed pulmonary fibrosis, which was not observed in infected Mcp-1/-/- mice exposed to room air. Thus, the aberrant fibrotic repair observed following infection in mice exposed to hyperoxia at birth occurs independently of excessive leukocyte recruitment to the lung. Our findings identify novel neonatal hyperoxia-mediated pathways disrupted in response to influenza virus infection, which may provide insight into how early-life exposure to high levels of oxygen leads to childhood and adult diseases later in life.

Integrating Genome and Transcriptome Data to Understand Susceptibility to Postnatal Lung Injury.

Late lung development is a critical window of susceptibility as perturbations impair alveolarization and vascular development. Currently, genetic control of differential gene expression during lung development and injury is incompletely understood. We hypothesized that integration of genetics and genomics in expression quantitative trait loci (eQTL) analysis will identify genetic factors contributing to variability in the neonatal lung and characterize genetic susceptibility. Full term neonates from 30 inbred strains of mice were maintained in room air or exposed to 95% oxygen for 72hrs beginning on postnatal day 1 (P1). Lungs were collected from 3 neonates/group for each strain on P4. RNA was isolated for transcriptomic analysis using Illumina WG6v2.0 BeadChips. Transcript intensities were analyzed for differential expression, and associations between genetic polymorphisms and transcript intensity (eQTLs) were identified by haplotype association mapping with FastMap. 4513 differentially expressed transcripts were identified on P4, and cis-eQTL analysis, or associations between a transcript and polymorphism in the same gene, yielded 29 genes. Biologically interesting candidate genes included Adam17, Prdx1, Tnfaip2, and Eif2ak2. After hyperoxia exposure, 5386 transcripts were differentially expressed. 1230 were specifically hyperoxia-induced and related to developmental and inflammatory pathways. 23 cis-eQTLs were identified and biologically interesting candidates included Vep, Casp9, and Trim30. These analyses identified unique transcripts and levels in the developing lung that is, in part, due to genetic background. Furthermore, network and pathway analysis of these candidate genes pointed to a novel role for the integrated stress response and proteostasis in neonatal lung development and injury.

Analysis of the Developmental Origins of Health and Disease (DOHaD) Grant Portfolio at the NIEHS.

Environmental exposures combined with genetics can have a persistent influence on common chronic health conditions of children and adults. A growing body of research at the National Institute of Environmental Health Sciences (NIEHS) is focusing on environmental effects during early-life development and disease occurrence over the lifespan—a branch of scientific study referred to as Developmental Origins of Health and Disease or the “DOHaD paradigm.” This paper describes the evolution of DOHaD research at NIEHS and how extramural events, including Requests for Applications (RFA) in the areas of Fetal Basis of Adult Disease (FeBAD), children’s health, and epigenetics, have stimulated the field of environmental health science as it relates to DOHaD. In order to build and analyze a portfolio of active NIEHS-funded grants in the area of DOHaD, the electronic Scientific Portfolio Assistant (eSPA) software application was used. DOHaD portfolios for the years 1991, 2001, and 2011 were analyzed for exposures, disease/orган endpoints, windows of exposure, study design, and impact on the field based on publication data. Priority exposures in the 1991 and 2001 portfolios comprised of metals (e.g. lead and mercury), PCBs, and air pollutants; but by 2011, the portfolio has evolved to include or expand the variety of endocrine disruptors (e.g. BPA, phthalates), pesticides/Persistent Organic Pollutants (POPs) (e.g. 210 SOT 2013 ANNUAL MEETING
organophosphates, organochlorines, PBDE, PAH, and metals (e.g. arsenic, man-
ganese). Several disease endpoints related to brain/CNS are apparent across all three
portfolios, whereas reproduction and cancer increase steadily over the same time
period, and new endpoints like obesity are introduced by 2011. The analysis of
NEIHS-funded DODxR research provides insight into the institute’s impact on
the field, and will help determine how to improve the quality and health impact of
funded DODxR projects.

987 Effects of Gutkha Use during Pregnancy on Hepatic Parameters Later in Life.
S. P. Doherty-Lyons1, C. Hoffman1, J. Odin1, I. Fiell2, F. Ganey3,
D. J. Conklin1 and J. T. Zelikoff1,1. Environmental Medicine, New York
University School of Medicine, New York, NY; 2Mount Sinai School of Medicine,
New York, NY; 3Biochemistry and Cancer Biology, Meharry Medical College,
Nashville, TN; 4University of Louisville, Louisville, KY.

Gutkha, a popular smokeless tobacco (ST) herbal concoction made in India
and sold throughout India and the U.S. is a combination of tobacco, lime, betel
and areca nut, spices, and catechu. Recent evidence demonstrates that consuming
gutkha during pregnancy may be linked to adverse obstetric consequences.
However, whether gutkha exposure during pregnancy increases offspring risk
of chronic disease later on in adulthood, as with combustible tobacco products,
remains unknown. For this study, pregnant B6C3F1 mice were exposed daily to 21
mg of a water-soluble gutkha solution beginning on gestational day (GD) 2-4 until
parturition. The main objectives of this study were to evaluate whether prenatal ex-
posure to gutkha altered offspring susceptibility for hepatic disease later in life.
After male pairing, female mice were exposed to a gutkha solution via the oral mu-
cosa. Serum cotinine levels in pregnant mice were measured weekly and ranged
from 24-44 ng/ml. Cotinine levels, also measured in the amniotic fluid and fetal
hepatic liver on ~GD 15, averaged 21-22 ng/ml. Beginning at 12-wk-of-age, a sub-group
of male and female offspring were fed a high fat (HF) diet for 14 days. Male off-
spring prenatally exposed to gutkha and fed subsequently a HF diet had increased
hepatic fat mass, fibrosis, and inflammation compared to the other groups.
Additionally, female offspring exposed to gutkha alone had significantly higher
serum levels of the hepatic injury markers, alanine transaminase and aminotrans-
ferase. In conclusion, findings from these studies demonstrate that gutkha usage
during pregnancy may be linked to adverse obstetric consequences. Supported by
Memorial Sloan Kettering Cancer Institute.

988 Transcriptional Profiling of Embryos and Adult Female Brain
Tissue Links a Developmental Origin of Atrazine-Induced
Reproductive Alterations in Zebrafish.
G. I. Weber1, S. M. Peterson1, S. S. Lewis1, M. S. Sepulveda2 and
J. J. Freeman1,1. Health Sciences, Purdue University, West Lafayette, IN; 2Forestry
and Natural Resources, Purdue University, West Lafayette, IN.

Atrazine, an herbicide commonly applied to agricultural areas throughout the
Midwest and a common contaminant of potable water supplies, is implicated as an
docrine disruptor and potential carcinogen. The specific adverse health effects as-
sociated with atrazine exposure and the underlying molecular mechanisms of these
effects are not well defined. In an effort to delineate the mechanisms of atrazine tox-
icity, we exposed zebrafish embryos to environmentally relevant concentrations of
atrazine shortly after fertilization through 72 hours post fertilization (hpf).
Transcriptional profiles immediately following the embryonic atrazine exposure
were obtained and subsequent analyses identified an enrichment of genes with al-
tered expression patterns that are involved in neuroendocrine development and
function, cell cycle regulation and carcinogenesis. From these exposures a subset
of individuals was permitted to mature under normal conditions to evaluate later life
effects of the developmental exposure and in unexposed subsequent generations.
A significant difference in the number of pairs that successfully bred in one of the
atrazine treatment groups coupled with distinct altered reproductive histological
and morphological alterations in female adult zebrafish was observed indicating a
later life effect of the developmental atrazine exposure. Furthermore, gene ontology
analysis from microarrays performed on adult female zebrafish brains showed en-
richment for genes involved in neuroendocrine system function and disease. The
reproductive alterations observed in the adult females along with decreased mating
success and altered transcriptional profiles provide support to the endocrine disrup-
tive effects of this herbicide and warrant further mechanistic investigation.
Current efforts are aimed at assessing transgenerational effects of this developmen-
tal atrazine exposure in subsequent unexposed generations.

989 Bisphenol A and Diethylstilbestrol Treated Mice Respond
Differently to a Very High Fat Diet.
I. Chaitou1,2, B. Patel1,2 and I. A. Sebag1,2,1. Lady Davis Institute, Montréal,
QC, Canada; 2McGill University, Montréal, QC, Canada.

Rationale: Bisphenol A (BPA) is an estrogenizing endocrine disruptor, and diethyl-
stilbestrol (DES) is a non-steroidal estrogen. Some data suggest that BPA is an obe-
sogen. We hypothesized that BPA and/or DES would increase the metabolic impact
of a very high fat diet and that this obesity would reduce heart structure/function.
Methods: C57/bl6/n mice were exposed to Vehicle, oral BPA (5.0/μg/kg/da) from
gestation day 11 to weaning and then (0.5/μg/kg/da) to 4 months, or diethylstilbe-
sterol (DES, 1μg/kg/da) from GD 11-14. Mice were fed control (CD, 10% calories from
fat) or very high fat (HFD, 60% calories from fat) diets from weaning. Body weight
(BW) and body length (BL) were measured monthly. Body mass index (BMI) and body
area surface (BSA) were calculated. Glucose tolerance was tested at 15
weeks. Echocardiography, organ weights and serum for cholesterol, triglycerides
and leptin were collected at 16 weeks. Results: All HFD mice had increased BW,
BL, BMI and BSA. HFD VEH and BPA males had similar increases in total fat and total fat indexed to BW or BSA, but HFD BPA males were smaller in BW, BMI and BSA. HFD VEH and BPA females had similar total fat and total fat indexed to BW or BSA, BM and BSA. In
contrast, HFD DES treated males and females had the least fat gain, BW, BM and
BSA. Cholesterol and triglycerides were increased with HFD in all males and
leptin was increased in BPA and DES males. Cholesterol, triglycerides and leptin were
increased with HFD identically in VEH, BPA and DES females. Glucose tolerance
was reduced with HFD equally in all mice. Fractional shortening was unaffected,
but HFD induced eccentric cardiac hypertrophy in VEH and BPA with DES mice
showing the greatest increase. Conclusions: Neither BPA nor DES worsened the response to a very HFD. VEH and BPA mice responded similarly to a very HFD. DES mice had a blunted meta-
abolic response to a very HFD. Cardiac function was unaffected, but cardiac
structure was affected by HFD.

990 Analysis of Transcriptional Profiles and Functional
Clustering of Global Cardiovascular Gene Expression in
Response to In Utero B(a)P Exposure.
G. E. Jules1, S. Pratap2, A. Ramesh3 and D. B. Hood1,1. Neuroscience and
Pharmacology, Meharry Medical College, Nashville, TN; 2Microbiology
& Immunology, Microarray/Bioinformatics Core, Meharry Medical College,
Nashville, TN; 3Biochemistry and Cancer Biology, Meharry Medical College,
Nashville, TN.

Interest in the correlation between environmental toxicants and cardiovascular
diseases has increased considerably over the past few decades. However, little is known of
B(a)P’s effect on the developing heart or the specific biological pathways altered
by B(a)P. Functional comparison and genomic analysis of the cellular and developmen-
tal effects of different polycyclic aromatic hydrocarbon (PAH) compounds is con-
sidered a helpful approach to distinguish the complex and specific effects of B(a)P
exposure in utero. Using timed-pregnant Long Evans Hooded rat offspring, we
characterize the genetic modulation in cardiovascular related genes for three con-
centrations of B(a)P (0, 600, and 1,200 μg/kg/BW) at postnatal days 0 and 53 (P-
and P-53). In utero exposure to B(a)P at both 600 and 1,200 μg/kg/BW significantly
modulated the expression of 89 out of 45,000 genes in offsprings. The focused microarray
approach identified important subgenomic differences in the pattern of cardiovascular disease cell-related gene expression in response to in utero
B(a)P exposure. These molecular targets and deduced networks may be employed as
a guide for classifying, monitoring and manipulating the molecular and patho-
logical specificities of different PAHs in key cardiovascular related cell systems and
for potential pharmacological application.
to DDT would increase the risk of metabolic syndrome in the adult offspring of mice. We administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5, when litters were culled to six pups. We performed comprehensive metabolic phenotyping in offspring. Maternal DDT exposure increased diastolic- and systolic- blood pressure in adult offspring. Maternal DDT exposure also caused a mild obese phenotype in female offspring that was due to impaired thermoregulation (increased cold intolerance) and decreased energy expenditure while food intake was not different. When these female offspring were fed a diet high in fat, they developed elevated fasting insulin and lipids. Thus, the results from the current study suggest that maternal DDT exposure leads to metabolic syndrome in adult offspring.

A Developmental Neurotoxicity (DNT) study with MeHg was carried out in Wistar rats [Guidelines US-EPA OPPTS 870.6300/8600]. To map neurodevelopmental defects of MeHg and uncover underlying mechanisms, cerebellum and cerebrum of female F1-rats, prenatally exposed to MeHg via maternal diet (GD6- PD10), were sampled at weaning (PD61-70). Brain tissue were analysed by [18F]FDG PET functional imaging, synaptic excitation analysis and microarray gene expression profiling. Brain activity and functionality of neurotransmission assessed by [18F]FDG PET imaging and synaptic excitation analysis revealed a delayed in brain activity and impaired neural function. The findings were substantiated by genome-wide transcriptome analysis. The discovered transcriptional patterns revealed that exposure to MeHg causes (1) a delay in onset of neural development and/or function and (2) alterations in pathways related to structural and functional aspects of nervous system development. The latter includes changes in gene expression of developmental regulators, developmental-phase associated genes, small GTPase signaling molecules and representatives of all processes required for synaptic transmission. A linked repression of genes regulating brain development and neural function were observed particularly at PD70, showing that prenatal exposure to MeHg has long-lasting effects in adult brain. No effects of MeHg were found in tests proposed in DNT guidelines. Summarizing, structural and functional defects associated with MeHg were demonstrated with [18F]FDG PET functional imaging, synaptic excitation analysis and microarray gene expression profiling, and molecular mechanisms underlying these developmental defects identified. The findings are relevant from a health perspective, but also show that the approaches used are sensitive and superior to conventional tests proposed in current DNT guidelines.

Mechanisms Underlying Neurodevelopmental Defects in Weanling and Adult Rats Associated with Prenatal Exposure to Methylmercury.

A Developmental Neurotoxicity (DNT) study with MeHg was carried out in Wistar rats [Guidelines US-EPA OPPTS 870.6300/8600]. To map neurodevelopmental defects of MeHg and uncover underlying mechanisms, cerebellum and cerebrum of female F1-rats, prenatally exposed to MeHg via maternal diet (GD6- PD10), were sampled at weaning (PD61-70) and adulthood (PD61-70). Brain tissue were analysed by [18F]FDG PET functional imaging, synaptic excitation analysis and microarray gene expression profiling. Brain activity and functionality of neurotransmission assessed by [18F]FDG PET imaging and synaptic excitation analysis revealed a delayed in brain activity and impaired neural function. The findings were substantiated by genome-wide transcriptome analysis. The discovered transcriptional patterns revealed that exposure to MeHg causes (1) a delay in onset of neural development and/or function and (2) alterations in pathways related to structural and functional aspects of nervous system development. The latter includes changes in gene expression of developmental regulators, developmental-phase associated genes, small GTPase signaling molecules and representatives of all processes required for synaptic transmission. A linked repression of genes regulating brain development and neural function were observed particularly at PD70, showing that prenatal exposure to MeHg has long-lasting effects in adult brain. No effects of MeHg were found in tests proposed in DNT guidelines. Summarizing, structural and functional defects associated with MeHg were demonstrated with [18F]FDG PET functional imaging, synaptic excitation analysis and microarray gene expression profiling, and molecular mechanisms underlying these developmental defects identified. The findings are relevant from a health perspective, but also show that the approaches used are sensitive and superior to conventional tests proposed in current DNT guidelines.

Vulnerability Windows of the Developing Rat Brain to TBTO Demonstrated by Animal-Friendly MRI.

To design a proper strategy for safety evaluation of drugs for children and adolescents the brain during critical phases of development is essential. In this study developmental and juvenile exposure windows proposed in current guidelines for toxicity testing were in a rat model with tributyltinoxide (TBTO).

Rats were exposed to 8mg TBTO/kg BW/day during development (TBTOdev: gestation day (GD) to postnatal day (PD) 10) or adolescence (TBTOjuv: PD22- PD62). Brain weight (cerebrum and cerebellum separately) was determined at weaning (PD22) and at postnatal age (PD62). Brain (tration) volume was estimated from magnetic resonance imaging (MRI) images. Brain specific gravity (SG) was calculated from the ratio [weight / volume]. Relative growth for these brain measures was calculated over time (from PD22 to PD 62) for control and TBTO-exposed brains.

Effect of TBTOdev included reduced cerebral weight but increased volume at PD22, whereas at PD62 both weight and volume appeared reduced. Effects of TBTOjuv implied reduced weight and increased volume at PD62. Effect of TBTOdev on brain SG was most pronounced on cerebrum at PD22, which was no more observed at PD62. Effect of TBTOjuv (PD62) was most pronounced on SG of cerebellum. Animal-Friendly MRI scans demonstrated that effects within cerebrum were located in particular in anterior regions.

The etiology of prostate cancer is unknown, although it has been suggested that early life exposures to various toxicants, such as estrogenic chemicals, may play an important role. Previous studies in rat models have demonstrated that early life exposures to estrogens is responsible for causing epithelial and stromal hyperplasia, inflammation, and prostatic intraepithelial neoplasia (PIN) lesions. We have developed a xenograft rodent model to characterize the growth and differentiation of human fetal prostate implants (gestational age 12-24 weeks). This model encompasses the events of both early and later-life exposures to both corn oil (control) or 250 ug/kg/body weight of 17β-estradiol-3-oxide post-transplant. To ensure proper growth of implants, the renal subcapsular space was chosen as the site of implantation to allow for appropriate growth and vascularization of prostate tissue. This model was characterized based on the expression of key immunohistochemical markers responsible for epithelial and stromal maturation including p63, cytokeratins 18, alpha smooth muscle actin, vimentin, caldesmon, ki-67, prostate specific antigen, estrogen receptor-α, and androgen receptor. As expected, the human fetal implants grew and matured as demonstrated by the histopathology seen in tumors, blood vessels, and stroma. Alternatively, the human prostate xenografts exhibited marked differences in response to estrogen exposure compared to their endogenous rodent prostate counterparts. The endogenous rodent xenografts exhibited apical hyperplasia along with the presence of massive cellular debris after estrogen exposure, while the human prostates demonstrated basal cell hyperplasia as indicated by p63 staining. This study of human fetal prostate tissue will allow for future mechanistic studies investigating the origins of prostate disease.

The Effects of Endocrine Disruption on the Maturation of the Developing Human Fetal Prostate.

The Effects of Endocrine Disruption on the Maturation of the Developing Human Fetal Prostate.
The continued development of engineered nanomaterials (ENM) has given rise to concerns over the potential for human health effects. While the lung is the primary site of exposure, the cardiovascular system is a principal site of impact. One of the most complex and acutely demanding circulations is the enhanced maternal system to support fetal development. The "Barker Hypothesis" proposes that metabolic impairments during gestation predispose future sensitivity. Herein we initiated testing at the microvascular level. Pregnant (gestation day 10) Sprague-Dawley rats were exposed to nano-titanium dioxide aerosols (count mode aerodynamic diameter of 137 nm, 10 mg/m³, 4 hrs/day) for 10 days to evaluate the maternal and fetal consequences of maternal exposure. The calculated daily maternal deposition was 20 μg. These exposures lead to fetal irregularities and maternal microvascular dysfunction. Isolated maternal uterine arteriolar (< 150 μm) reactivity was significantly impaired overall, consistent with a metabolically impaired profile. This dysfunction presented as blunted endothelium-dependent reactivity (acetylcholine, ACh, 10-9-10-4 M), reduced adrenergic responsiveness (phenylephrine, 10-9-10-4 M), and impaired myogenic responsiveness (transmural pressure, 15-120 mm Hg). With respect to the fetal group, maternal exposures lead to a significant decrease in total fetal weight. Fetal tail arteries (< 150 μm) were isolated to assess microvascular alterations after maternal exposure. Interestingly, the vessels from the exposed group also demonstrated significant impairment to increasing concentrations of ACh (10-9-10-4 M), spermine-NONOate (10-9-10-4 M), and increases in transmural pressure. Collectively, impaired uterine microvascular reactivity after ENM exposure during pregnancy can reduce nutrient exchange, drastically impacting fetal weight and number. This prenatal exposure may also lead to cardiovascular consequences for the developing fetus.

NIH-R01-ES015022 and RC1-ES018274 (TRN)
NSF-1003907 (VCM)
Embryonic vascular development can be disrupted by diverse compounds (thalidomide, estrogenics, dioxins, retinoids, cigarette smoke, metals). Collaborative studies are underway to test these predictions across an array of assays (whole embryo culture, aortic explants, endothelial tubulogenesis, transgenic zebrafish, etc.). Here, we describe initial results with a complex human-cell based in vitro angiogenesis assay, on the first 7 of 20 ToxCast Phase I chemicals selected by a range of predicted activity as vascular disrupters (pVDCs). Degree of endothelial tubule formation in vitro was scored by AC50 values relative to cytotoxicity. Both chemicals predicted as non-pVDCs, imazamox and pymetrozine, showed no inhibitory activity. The predicted inhibitory potential of 5 pVDCs was confirmed for 4 out of 5 chemicals. Pyridaben, predicted as a strong pVDC, inhibited tubule formation in a concentration-dependent manner in the FICAM assay, first evident at 0.001 μM and complete at 0.01 μM. Other predicted pVDCs with different ToxCast activity profiles (BPA, oxytetracycline, fluazinam) inhibited endothelial tubulogenesis at concentrations ranging from 5- to 500 μM. PFOS was the one inactive pVDC tested; however, the ToxCast prediction was based on inhibition of Ang1/Tie2 signaling that controls later stages of vessel stabilization – a subtle outcome in the ABM simulation. Overall, concordance between the tubulogenesis assay and computer ABM simulation demonstrates the utility of these in vitro and in silico models for predictive modeling and mechanistic understanding of vascular disruption in higher-order biological tissues. This work does not reflect EPA policy.

1001 A Metabolite-Based Biomarker Approach to Predict Developmental Toxicity Using Human Embryonic Stem Cells.

Birth defects are the largest cause of infant morbidity and mortality in the United States. Teratogens, defined as substances that cause fetal abnormalities during development, are responsible for 5-10% of all birth defects. The application of more predictive developmental toxicity screens would reduce the prevalence of birth defects and increase pharmaceutical and chemical safety. Human embryonic stem cell (hESC) technology provides an innovative and robust alternative in vitro model system to predict developmental toxicity of chemicals. We have developed a targeted, rapid and highly predictive assay based on specific biomarker metabolites identified after analysis of metabolomics data obtained from hESCs exposed to 23 known human teratogens and non-teratogens. The new model predicts the concentration at which hESCs respond to treatment indicating the potential teratogenicity based on treatment dose. We have tested this approach in over 60 compounds with varying degrees of toxicity in animal tests. hESCs were exposed to a 9-point dose curve of each compound. Spent media was collected and analyzed by high resolution LC/MS using a targeted metabolomics approach to determine the relative abundance of the metabolites present in the hESC culture. We have built up a database of the expected teratogenicity of the tested compounds in vivo and in vitro tests. The results show excellent concordance with both human and animal teratogenicity data and compare well to other commonly used in vitro assays for developmental toxicity. This new targeted biomarker approach continues to utilize LC/MS analysis while allowing for an 8-fold increase in instrument throughput and simplified analysis. Our hESC biomarker assay is an attractive new quantitative model providing faster turn around and lower cost, while retaining high predictivity for early assessment of the developmental toxicity potential across a broad range of chemicals at multiple treatment levels in an all human derived system.

1002 Metformin-Induced Folate Deficiency-Like Malformations in Cultured Rat Embryos: Potential for Novel Species Sensitivity.

Metformin has been used alone or in combination with other drugs, including those recently the biopharmakers present in Th1 pathways. Even though there has not been metformin associated teratogenic outcomes, about 7% of patients treated with metformin present subnormal vitamin B12 levels, suggesting the drug may atenate folate metabolism. Some reports in rats indicated that metformin may have weak teratogenic properties resulting in a low incidence (~0.5-1%) of rare neural tube abnormalities, similar to those caused by folate deficiency. Mouse embryos cultured with metformin also presented delayed neural tube closure. Our objectives were to evaluate whether metformin causes adverse effects on neural tube development in rats (a standard test species for GLP teratology studies) using whole embryo culture, and metabolomics to determine whether the compound disrupts folate metabolism. Neuroretinoids were explored at 10 different concentrations observed in rats and humans. Embryos were evaluated for viability, growth, morphology, and metabolite profiles. Methotrexate was used as a positive control for adverse morphology and metabolite profiles induced by disrupted folate signaling. Metformin caused concentration-related neural tube malformations and embryo lethality occurring at human clinical concentrations. Co-administered folic acid with metformin completely rescued the malformations as well as altered metabolites at rat concentrations and partially rescued the adverse effect at the sub-lethal human exposure concentration. Together, the studies suggested that rat neurtulation may be sensitive to metformin, and the effects were related in part to folate signaling. Given the findings we have identified signaling pathways that only caused recoverable anomalies in cultured mouse embryos and no reported effects in human pregnancy, the study suggests that the rat embryo may present novel species-sensitivity to metformin.

1003 Placental Transfer of 125Iodinated Humanized Immunoglobulin G2Aa in the Sprague-Dawley Rat.
P. S. Coder1, J. A. Thomas2, D. B. Stedman2 and C. J. Bowman2. WIL Research, Ashland, OH; 2Pfizer Inc, Groton, CT.

Biopharmaceuticals are a growing segment of the health care therapeutic arsenal and indications for these agents are rapidly expanding into patient populations that include women of child bearing potential. The fetus is typically not a target of these drug therapies, and thus effects on the developing conceptus are generally undesirable. While small molecules generally cross the placenta via passive diffusion throughout gestation, transfer of large molecules is limited and may vary from species to species. Antibody-like biopharmaceuticals (Abs), that contain an Fc region, are unique and cross the placenta using active transport pathways normally reserved for maternal immunoglobulin G (IgG). Embryo/fetal, placental and maternal tissue concentrations of an Ab in Sprague Dawley rats were evaluated by 2 different biodistribution techniques following maternal injection of 125Iodinated IgG2Aa on different gestation days. Blood and tissue samples were collected for gamma counting or whole maternal carcasses were processed for quantitative whole body autoradiography. The results indicate the presence of maternal injected IgG in the conceptus as early as Gestation Day (GD) 11 and a >1000 fold increase in that amount at GD 21. Also, there is a general observation of a concentration generally remaining unchanged during gestation (within the same order of magnitude). In addition, fetal/maternal tissue concentration ratios remain stable during organogenesis with only a slight increase at the end of gestation. These data indicate that Abs with a target present in the developing conceptus have the potential to elicit an unintended biological response depending on the Ab affinity and potency. These data also demonstrate that maternally-administered Abs may be present during organogenesis and have the potential for adverse developmental outcomes in the rat based on direct embryo/fetal exposure.

1004 Evidence That Perfluorooctanoic Acid (PFOA) Does Not Activate Estrogen Receptor (ER) Activities In Vivo or In Vitro.
P. Yao1, D. J. Ehresman1, L. M. Caverly-Rae3, S. Chang2, S. R. Frame3, J. L. Burenhuff2, G. L. Kennedy1 and J. M. Peters3. 1The Pennsylvania State University, University Park, PA; 2EM Company, St. Paul, MN; 3Haskell Global Centers for Health and Environmental Sciences, Newark, DE.

We evaluated the potential of perfluoroctanoate to produce estrogenic activity in both an in vitro uroteratogenic assay and an in vitro estrogen receptor (ER) activation assay. In the in vivo study, pre-pubertal female CD-1 mice born to dams fed an estrogen-free diet from PND 14 through weaning on postnatal day (PND 18) were given daily oral doses of 0, 0.005, 0.01, 0.02, 0.05, 0.1 or 1 mg/kg PFOA on PND 18-20. In addition, a positive control received daily 17β-estradiol (E2, 0.5 mg/kg). On PND 21, the uterus and vagina were weighed and prepared for histology. Transcripts concentrations for the ER responsive genes pS2, progesterone receptor (PR), and trefoil factor (TFF) were quantitated in the uterine epithelial tissue using quantitative RT-PCR. Serum PFOA concentrations were determined by LC/MS/MS. PFOA caused no changes in body weights, uriner weights, transcripts for ER target genes, or in squamous hyperplasia and cornification of the vaginal epithelium. ERα administration produced increased relative uterine weight, increases in transcript concentrations for ER-responsive genes, and squamous hyperplasia and cornification of the vaginal epithelium. Mean serum PFOA ranged from 5 to 1200 ng/mL. In the in vitro study, PFOA at 0, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5 or 10 μg/mL in media failed to affect estrogen response element activity in a human ovarian carcinoma cell line (BG1-Luc/ERE) that carries an estrogen response element (ERE)-luciferase reporter construct; whereas, E2 exhibited a marked increase. Collectively, these data do not support an estrogenic effect of PFOA either in vivo or in vitro.
Effects of Di(2-Ethylhexyl)-Phthalate Exposure during the Peripubertal Period: An Analysis of the Evidence.

A. D. Kraft, D. Segal and S. Makris, National Center for Environmental Assessment, USEPA, Washington, DC.

Di(2-ethylhexyl)phthalate (DEHP) is a widely-used plasticizer and ubiquitous environmental contaminant. DEHP exposure during late gestation in rodents has been shown to cause a spectrum of adverse effects related to altered androgen function, collectively termed the ‘phthalate syndrome’. Thus, many studies on DEHP have focused on exposures during this critical period of organ development and outcome measures in male offspring. A more limited database exists for other end-points or following exposures that do not encompass fetal development. One such exposure paradigm involves DEHP treatment in young adult animals during the period of sexual maturation. Several of these peripubertal exposure studies suggest that the observed responses differ from those manifested following gestational DEHP exposure. In an effort to evaluate the consistency of these observations, data were collected from studies analyzing the effects of DEHP on adolescent humans or animals exposed during the peripubertal period. This evidence was cumulated by endpoint, the specific timing of DEHP exposure, and the age that the outcome was assessed. The observations were then compared to evidence from exposures during fetal development. The human evidence was difficult to interpret, as exposure timing could not be ascertained. Based on the animal data, several outcomes, including male reproductive system toxicity, showed evidence of differential effects following peripubertal exposure. Mechanisms that may explain these differences, such as proposed effects on postnatal androgen biosynthesis, were considered in light of biological plausibility to inform the interpretation of these data. Overall, our analysis suggests that the peripubertal period may be a stage of development sensitive to DEHP exposure; however, more comprehensive studies are needed to determine the impact of DEHP exposure on sexually immature adolescents.

Disclaimer: The views expressed are those of the author and they do not represent U.S. EPA policy or guidance.

Diet Acclimation of NZW Rabbits for Use in Embryo-Fetal Development Studies.

K. Robinson,1 A. I. Martin,1 M. Freke,1 I. Primakova,1 R. Perrax,1 E. Lewis3 and A. M. Hoberman,1 Reproductive & Juvenile Toxicology, Charles River, Memorial, QC, Canada;2Charles River, St. Constant, QC, Canada;3Charles River, Horsham, PA.

Poor food intake in pregnant rabbits can lead to adverse outcomes including abortion. Initial validation studies with a line of New Zealand White (NZW) rabbits, showed a high incidence of inappetence and adverse pregnancy outcomes. Several studies were conducted to optimize diet acclimation procedures at the breeding facility to match the certified diet used at the Testing Facility. Once the diet acclimation procedure was optimized, a study was conducted that met the ICH guideline for evaluation of embryo-fetal development (EFU). Naturally bred adult Female NZW (CD-KR[NZW]) rabbits were received from Charles River, Canada on Day 0 or 1 postcoitum (pc). For the prematting diet acclimation the does were fed standard vehicles from Days 7 to 19 pc by oral gavage, intravenous injection, or inhalation; in addition there was a room control. Food consumption was measured daily and body weights were collected twice weekly. Clinical observations and any signs of abortion or premature delivery were recorded twice daily. Terminal examinations on Day 29 pc included a necropsy, corpora lutea counts and evaluation of the uterine contents. Live fetuses were weighed and examined for external, visceral, and skeletal abnormalities. The does showed a high pregnancy rate and a low abortion rate. The occurrence of periods of inappetence during gestation was negligible. Ovarian, uterine and fetal parameters were comparable to other lines of NZW rabbits, but with slightly higher litter sizes and consequently slightly lower fetal weights noted. In conclusion, the diet acclimation procedure decreased the inappetence that was seen in previous rabbit reproductive toxicology studies and this line of NZW rabbit is considered suitable for use on EFU studies.

1007 Epigenetic and Physiologic Effects of Perinatal Lead Exposure.

A. K. Barks, C. Faulk, J. Goodrich, O. S. Anderson, K. E. Peterson and D. Dolinoy, Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI.

Epidemiological and animal data suggest that development of chronic conditions such as obesity in adulthood is influenced by early life exposures. A proposed mechanism for this link is epigenetic modification. This study investigates effects of perinatal lead exposure on DNA methylation and alterations in physiologic parameters, including body composition and spontaneous activity. Using the viable yellow agouti (Ayv) mouse, perinatal Pb exposure was modeled by a/a maternal exposure via drinking water supplemented with 0 ppm (control), 3.7 ppm (low), 27 ppm (medium), and 55 ppm (high) Pb two weeks prior to mating with an Ayv/a male. Pb exposure continued through gestation and lactation. Epigenetic effects were evaluated by scoring coat color of Ayv/a offspring (N=172), and physiologic parameters were evaluated in 3 month old wildtype a/a offspring (N=72) at the University of Michigan Nutrition and Obesity Research Center (MNORC). A statistically significant shift towards yellow coat color, indicative of DNA hypomethylation at the Ayv allele, was observed in high dose Ayv/a offspring, compared to controls (p<0.01). In a/a offspring, body weight was increased in high dose females, compared to controls (p=0.04). Females had increased % body fat and decreased % lean body mass across all exposure groups, compared to controls (p<0.05). Males showed significant differences in medium (decreased % lean mass) and high (increased % fat mass) Pb doses, compared to controls (p<0.05). Spontaneous activity was significantly decreased in females, but not males, in medium and high doses, compared to controls (p<0.05). There were no significant differences in food intake. Thus, perinatal Pb exposure resulted in both epigenetic and physiologic responses. Activity and body weight effects were more pronounced in females. Future work includes quantitation of methylation at specific target genes and life-course analysis of physiologic parameters of a/a offspring at 6 and 9 months of age. Funding: P20 ES018171/RC3480001 and P30 DK08950.

1008 Embryotoxic Potential of Epoxiconazole In Vitro and In Vivo.

B. Flick1, F. DiRenzo1, S. Schneider1, S. Stinchcombe1, E. Menegola2 and B. van Ravenzwaay1, Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany; 2Department of Biology, University of Milan, Milan, Italy.

Some triazoles cause CYP26 inhibition of all-trans retinoic acid (RA) metabolism during organogenesis known to cause cleft palate (CP), via a mode of action (MoA) where altered tissue RA concentrations disrupt neural crest cell (NCC) migration, impairing development of the branchial arches (BA). Since very high-dose epoxiconazole (EX) treatment induces clear maternal toxicity, causing CPs, we examined whether these are also caused by this MoA. Both whole embryo culture tests (WEC) and in vivo studies were performed where the development of the embryos was examined morphologically. NCCs were visualized using whole immunostaining (WIS) for cellular retinoic acid binding protein, and embryonic tissue levels of EX were analyzed with UPLC. In WEC, embryos were exposed to 0, 1, 3, 10, 20, 30 mg/l for 48 hours starting at gestation day (GD) 9.5. EX caused alterations in BA in 30% of the embryos at the LOAEC (3 mg/l) and dysmophogenes in 92% of embryos at 30 mg/l (embryonic tissue conc. = 8 mg/l). Embryos exposed to at least 10 mg/l exhibited an abnormal NCC distribution in the craniofacial region. In the in vivo study, embryos were harvested on GD 11 from dams gavaged since GD6 with 0, 50, 100, and 180 mg/kg bw/d (the maximal tolerated dose which also causes CP). EX caused maternal toxicity at 100 and 180 mg/kg; however, these embryos (embryonic tissue conc. = 6.4 mg/l) developed similarly to controls. No treatment-related increase in dysmophogenesis, no alterations of BA, and no disturbance of NCC distribution were found. The observed dysmophogenesis of BAs and the impaired migration of the NCCs in the in vitro study supports the thesis that EX alters CYP26-mediated RA metabolism, causing CP. But, despite comparable embryonic tissue levels in the in vivo study, neither the morphology nor the NCCs distribution was affected by EX. These data do not support the theory that EX-induced cleft palate in vivo is caused by alterations in RA metabolism.

1009 Perfluorooctanoic Acid-Induced Cytotoxicity in Primary Cardiomyocyte Culture.

D. Jiang and J. DeWitt, Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC.

Perfluorooctanoic acid (PFOA) is a perfluorinated compound (PFC) that is widely used as a polymerization aid in the production of fluoropolymers. PFOA is environmentally persistent and is now detected ubiquitously in biota. Numerous studies have shown that PFOA can induce developmental toxicity in laboratory animal models. Epidemiological studies have demonstrated that PFOA exposure is associated with increased cholesterol levels and cardiovascular disease risk. We have previously reported that PFOA induces developmental cardiotoxicity in chicken embryos and hatchlings. To investigate the mechanism, we developed primary
cardiomyocyte cultures from D10 chicken embryo hearts and evaluated cell viability and reactive oxygen species (ROS) generation after in vitro PFOA exposure. Primary cardiomyocytes were treated with vehicle (0.1% DMSO in medium) or 0.1, 1, 10, 50, 75 or 100 μg/ml of PFOA for 1 or 36h. No statistical differences were detected between untreated and vehicle-treated groups. Viability was decreased by 74.5% in cells treated with 100 μg/ml of PFOA relative to the vehicle group (n=6, P<0.05) at the 1h time point. At the 36h time point, viability was statistically decreased at 10, 50, 75 and 100μg/ml concentrations, relative to the vehicle group (18.1%, 18.7%, 36.6% and 70.0%, respectively; n=4-6, P<0.05). At the 1h time point, an increase in ROS generation was observed at all doses; however, only 50 μg/ml of PFOA statistically increased ROS generation relative to the vehicle group (316.8%; n=3, P<0.05). Our results indicate that direct PFOA exposure to primary cardiomyocytes can induce cytotoxicity and ROS generation. Although additional studies are necessary to verify this effect in vivo, induction of cell death and generation of ROS may partially contribute to developmental cardiotoxicity associated with in ovo PFOA exposure in an avian model.

1010 Estradiol Modulates Paraoxonase-2 Expression in Mouse Brain.
G. Giordano1, C. E. Furlong1, T. B. Cole2 and L. G. Costa1, 3; Department Environmental Occupational Health Sciences, University of Washington, Seattle, WA; 2Division of Medical Genetics and Department of Genome Sciences, University of Washington, Seattle, WA; 3Department of Neuroscience, University of Parma, Parma, Italy.
Paraoxonase 2 (PON2), a member of the PON gene family, is expressed in mouse brain; levels are highest in dopaminergic areas (e.g. striatum), and are higher in astrocytes than in neurons or microglia. As in other tissues, PON2 exerts a potent antioxidant effect in the CNS, and protects mouse neurons and astrocytes against oxidative stress. In all mouse tissues, including the brain, PON2 levels are higher in female than in male mice. In primary striatal astrocytes and neurons PON2 protein level in females is 2.3-fold higher than in males. Levels of PON2 mRNA and lactonase activity show similar gender differences. Male astrocytes and neurons are more sensitive (by 3-4-fold) than female cells to oxidative stress-induced toxicity, though GSH levels do not differ between cells isolated from the two genders. In contrast, no significant gender difference in susceptibility is seen in cells from PON2-/- mice, suggesting that PON2 is a major determinant of gender differences in susceptibility to oxidative-stress-mediated neurotoxicity. Estradiol induces a time-and-concentration-dependent increase in the levels of PON2 protein and mRNA in male (4.5-fold), and also in female (1.8-fold), astrocytes. Such effect is due to activation of estrogen receptors alpha. In ovariectomized mice serum estradiol levels are decreased to male levels; PON2 protein and mRNA are also decreased to male levels in brain areas and in liver. Neuroprotection by estradiol against oxidative-stress-induced neurotoxicity is seen only in astrocytes from wild type mice, but not in cells from PON2-/- mice, suggesting again that PON2 represents a major gender-dependent factor in protective CNS cells against neurotoxins. The lower expression of PON2 in males may have broad ramifications with regard to susceptibility to diseases involving oxidative stress, including neurodegenerative diseases (Supp. in part by ES04696).

1011 Suppression of H19 Methylation in Mouse Exposed to Chlorpyrifos Methyl during Organogenesis Period.
H. Shin1, J. Seo1, S. Kim2, S. Park1, Y. Park1, S. Son1 and H. Kang1; 1Toxicology & Residue Chemistry Division, QIA, Anyang, Republic of Korea; 2GLP Safety Assessment, Covance Laboratories Inc., Madison, WI; 3Nonclinical Safety Assessment, Covance Laboratories GmbH, Munster, Germany.
Chlorpyrifos-methyl (CPM) is widely used organophosphorus insecticide. In Korea, more than sixty-five tons per year are used in agriculture. In our previous study, CPM showed anti-androgenic endocrine disruption activity. Loss of EDC shows the alteration of methylation in imprinting gene, which inhibit to next generation. This study was performed to examine the effect of CPM on the H19 methylation in mouse. After mating CAST/Ei (C7) and B6 (Q), CPM was administered at dose of 4 (CPM4), 20 (CPM20) and 100 (CPM100) mg/kg bw/day from embryonic day (ED) 7 to ED 17. Anogenital distance (AGD) was measured at postnatal day (PND) 21. Clinical signs, body weights, feed and water consumption, organs weights, serum hormone values and H19 methylation level of organ and sperm were measured at PND60. Body weights were significantly (p value <0.01) lower than control until PND 6. AGD was significantly (p value <0.001) decreased at CPM100 group in male and increased at CPM20 group in female. The weight of thymus and epididymis were significantly (p value <0.01) increased at all of CPM treatment in male. In CPM20 group, kidney, liver, heart, lung, spleen, prostate gland and testes were significantly increased. Testosterone level in serum was significantly (p value <0.01) increased by CPM treatment in both male and female. H19 methylation level of liver and thymus showed decreased pattern by dose-dependent manner in male. The levels of H19 methylation in sperm were 73.6±7.6% (CPM4), 64.2±4.3% (CPM20) and 62.4±2.7% (CPM100), respectively. CPM can disturb the early development of offspring development and disrupt H19 methylation in organ and sperm. Those altered methylation pattern may pass down to next generation through sperms.

1012 In Utero Growth Restriction and Dibutyl Phthalate Exposure May Cooperatively Disrupt Steroidogenesis.
J. Pike1, E. McDowell1, A. Kisielewski2 and K. Johnson1; 1Biological Sciences, University of Delaware, Wilmington, DE; 2All Dupont Hospital for Children, Wilmington, DE.
Masculinization of the male reproductive tract occurs in human gestational weeks 10-22, and rat gestational days 16-21. Fetal testes produce a surge of testosterone causing reproductive masculinization. Disruption leads to reproductive abnormalities including cryptorchidism and hypospadias. In humans, in utero growth restriction (IUGR) is a risk factor for cryptorchidism and hypospadias. Rat work shows that fetal steroidogenesis is disrupted by exposure to the anti-androgen dibutyl phthalate (DBP). While these fetal circumstances increase the prevalence of the same birth defects individually, we examined a possible cooperative effect of these treatments on steroidogenesis. A maternal under-nutrition model was examined in the rat. Pregnant Wistar rats were restricted to 50% of the food eaten by ad libitum controls (n=8) beginning on gestational day (GD) 3. Restriction through GD17 caused a significant decrease in pup weight with no decrease in litter size. Fetal testes showed decreased testosterone production (40%) by radioimmunoassay. mRNA levels of steroidogenic genes including Scarb1 and Star were significantly decreased in the fetal testis after growth restriction. Food restriction (n=11) from GD3-18 caused no malformations at postnatal days 1, 14, or 28 as compared to controls (n=10). A coexposure study of IUGR and maternal dosing with the anti-androgen DBP was performed to observe a cooperative effect on steroidogenesis. Analysis of fetal testes (GD17) following 50% food restriction from GD3-17 (n=11) or exposure to DBP (250mg/kg/day) from GD15-17 (n=7) showed a significant decrease in the expression of the steroidogenic genes Cyp11a1, Cyp17a1, Scarb1, and Star as compared to controls (n=7). When 50% restriction was coupled with DBP exposure (n=10), further decreased steroidogenic gene expression. While IUGR and DBP lead to a decrease in steroidogenesis separately, they also appear to work cooperatively to cause further disruption.

1013 A Comparison of Social Housing Opportunities during Developmental Toxicity Evaluation in Cynomolagus Monkeys.
The demand for developmental toxicity studies in nonhuman primates (NHPs) has increased, mainly driven by biopharmaceutical drug development. Social housing of NHPs has become mandatory in many countries and this poses a specific challenge since NHPs with timed pregnancies cannot be obtained commercially. The cynomolagus fertility rate in a mating programme is typically 35-45% per mating cycle and 60% per female animal upon repeated mating trials. Hence, social housing of pregnant cynomolagus monkeys requires special approaches until a cage is populated by animals with confirmed pregnancy. Formation of new groups of sexually mature female cynomolagus monkeys has pronounced effects on ovarian cyclicity to the extent that some animals exhibit transient amenorhea. Concern has been raised that social housing of pregnant animals might interfere with maintenance of gestation due to rank order fights, incompatibility, and other group-related adverse effects. On the other hand, in a social setting, animals experience birth events and handling of neonates by watching cage mates, and infants have cage mates of comparable ages to interact with. In the present work, qualitative assessment in more than 200 hundred pregnant control animals under social housing indicated good compatibility with little aggression toward each other. Interestingly, a reduction of pre- and postnatal loss by 25-30% was encountered under social housing when compared to single housing. Conceivably, the delivery process and management of the newborn was facilitated by social maternal housing. Moreover, maternal and infant body weight gains were significantly increased under social housing.
1014 Feasibility of Mouse Continuous Intravenous Infusion for Fertility and Embryo-Fetal Development Studies.

The rat and rabbit are routinely used in pre-clinical reproductive and developmental toxicity (DART) studies. However, where the rat and/or rabbit are not suitable, the mouse is an alternative model. A model of continuous intravenous infusion using a surgically-implanted femoral vein catheter with tail cuff exteriorisation has been previously developed in the mouse. The reliability of this method decreased over time, with a success rate of only 74% after 28 days because of tail cuff constraints due to animal growth. This study aimed to (1) determine whether a larger diameter tail cuff (6 mm) could extend the continuous infusion duration, and (2) determine the feasibility of evaluating DART parameters in mice using this surgical model in a combined fertility and embryo-fetal development study. 33 CD-1 female mice (approximately 7-9 weeks old) were surgically implanted with a femoral vein catheter exteriorised with a 6 mm tail cuff. After 6 days of recovery, they were intravenously administered 0.9% sodium chloride, by continuous infusion (4 mL/kg/hr) for 2 weeks prior to pairing, during pairing (with uncatheterised males) and through Gestation Day (GD) 18 (42 days). On GD18, female mice were killed and uterine contents examined. Technical failure occurred in 9 females; this was attributed to the larger diameter of the tail cuff, which slipped down and allowed the catheter to be chewed. Of the 24 female mice remaining on study at the end of pairing, 23 (96%) were successfully mated and 22 (96%) were confirmed pregnant. Cather failure or poor tail conditions resulted in early removal of 5 additional mice. However, those surviving to necropsy, uterine and foetal data were within background ranges, indicating no effects on reproductive or developmental parameters.

It is concluded that continuous intravenous infusion via this surgical model is a viable method of dosing mice in DART studies. The larger tail cuff did not increase reliability of the infusion technique for a period greater than 28 days, therefore separate fertility and embryo foetal development studies are recommended for mice.

1015 Addressing the Mode of Action for Developmental PFOA-Induced Mammary Gland Delays.

M. B. Macon1, 2* and S. E. Fenton2. 1Curriculum in Toxicology, University of North Carolina, Durham, NC; 2NTP Labs, NIEHS, NIH, Research Triangle Park, NC.

Perfluorooctanoic acid (PFOA) exposure alters mammary gland (MG) development and function in mice. The mode of action (MOA) for these effects has not been elucidated, although activation of peroxisome proliferator activated receptor alpha (PPARα) has been implicated. To begin elucidation of a MOA, time pregnant CD-1 mice were gavaged with 0.0, 0.01, 0.1, or 1.0 mg PFOA/kg body weight on gestation days (GD) 10-17. Female offspring MGs were removed and prepared for RNA on multiple postnatal days (PND). A comparison of MG RNA from control and 1.0 mg/kg groups with Affymetrix 420.2 microarrays found differential regulation of several genes compared to controls, even at 0.01 mg/kg. When considering developmental scores, glands with higher scores or more normal growth had increased RNA expression of WIF1, ESR1 and PGR at PND 21 and FABP3 and UCP1 at PND 56. PND 56 MG sections stained for PPARα protein displayed robust expression in all glands regardless of treatment, yet there was higher expression in stromal tissues surrounding ducts in PFOA exposed mice compared to controls. Collectively, these findings suggest that PPAR pathway genes are altered in conjunction with PFOA-induced MG changes along with other pathways. Observed altered genes are involved in signaling of all PPAR isoforms including α, β/δ, and γ. Both up and down regulation of these genes were found which suggests that multiple PPAR isoforms may work together to regulate PFOA-induced MG aberrations. In addition, prenatal PFOA exposure at 0.01 mg/kg leads to mammary gene changes at human-relevant levels. Future investigations will examine related gene pathways and protein levels compared to observed morphological and hormone outcomes. This abstract does not necessarily reflect NIEHS policy.

1016 Evaluation of Reproductive and Developmental Toxicity of Multiwall Carbon Nanotubes in Pregnant Mice After Intratracheal Instillation.

N. Kobayashi1, M. Kawabe2, H. Nakashima2, T. Numano3, 5, R. Kobuota6, N. Sugimoto7 and A. Hirose7. 1National Institute of Health Sciences, Setagaya, Japan; 2DMS Institute of Medical Science Inc., Ichinomiya, Japan; 3Department of Molecular Toxicology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.

Some studies have reported that maternal exposure to nanoparticles may induce teratogenicity or transfer to their fetuses and affect the development and function of the central nervous systems. In order to evaluate the reproductive and developmental toxicity of multi-wall carbon nanotubes (MWNTs) via inhalation exposure, we conducted intratracheal instillation study of MWNTs dispersed in two different media (blood serum obtained from female mice and 2% of sodium carboxymethyl cellulose (CMC-Na) solution) in pregnant mice. MWNTs (MWNT-7) dispersions were prepared by ultrasonication using an ultrasonic bath for 30 min. The above MWNT dispersions were administered to pregnant C57/CD1(ICR) mice with gestation day 9 at dosage of 0.3, 3.0, and 5.0 mg/kg bw. Five mice per group were evaluated. The mice were dissected at 18 days of gestation period. MWNT dispersions in the tissues and the effect to embryos and fetuses were evaluated. The MWNTs were deposited in the lungs as the black spots. No statistically significant difference between the control group and MWNT-exposed groups in the number of corpora lutea, implantations, dead fetuses (early or late resorption site), live fetuses, and sex ratio. However, body weight of fetuses and placental weights were dose-dependently decreased in the both MWNT-exposed groups. Furthermore, external malformations (i.e., oligidactyly, extensive contrac- ture, cleft lip) were observed in the 3 mg/kg of CMC-Na treated MWNT-exposed group and 5 mg/kg of blood serum treated MWNT-exposed groups. Further information is needed to clarify the potential for the reproductive and developmental toxicity of MWNTs.

1017 Histology of Selected Organs from the Göttingen Minipig Fetuses from Days 60 (Midterm) and 110 (Term) of Gestation.

In a previous study, we demonstrated that chemically induced fetal abnormalities could be detected in the Göttingen Minipig shortly after mid term. At this time, it is possible to sex the minipig fetuses by observation of the external genital area, although at gross soft tissue examination, the location, size and shape of the male and female gonads are similar at this stage. The aims of the present study were to compare the histological features of selected organs in the Göttingen Minipig fetus at GD 60 and GD 110 and to validate histologically the method of sexing the fetuses by macroscopic observation of the external genital area. Four 7- to 13-month-old virgin Göttingen Minipig females were mated. Caesarean sections were performed on two females at mid term (GD 60) and on two others at term (GD110). The fetuses were weighed, sexed and submitted to standard gross external and visceral examinations. Selected organs (adrenal glands, heart, kidneys, liver, lungs, ovaries, thymus, thyroid gland, urinary bladder, uterus, vagina, epididymis and testes) were sampled and fixed in 10% formalin or modified Davidson’s fluid. Five male and 5 female fetuses obtained at GD 60, and 2 male and 6 female fetuses obtained at GD110 were available for histological examination. The microscopic appearances and the differences between the two timepoints were described for each organ.

The histological appearance of the organs at GD110 was similar to that of juvenile minipigs. At GD 60, however, although all organs were identifiable, maturation and growth were obviously still incomplete. In this study reported the histology of selected organs in minipig fetuses at GD 60 and GD 110. At GD 60, there was complete concordance in establishing the sex of each fetus by microscopic examination and evaluation of the external genitalia.

1018 Mono-Ethylhexyl Phthalate (MEHP) Exposure Reduces Embryonic Nutrition and Induces Structural Defects in Mouse Whole Embryo Culture.

K. E. Sant and C. Harris, Environmental Health Sciences, University of Michigan, Ann Arbor, MI.

Di-2-ethylhexyl phthalate (DEHP) is a highly lipophilic endocrine disruptor and is the most abundant phthalate plasticizer in the environment. Exposure to DEHP and its primary active metabolite, mono-ethylhexyl phthalate (MEHP), have been associated with several adverse health effects, ranging from obesity to reproductive...
dysfunction. The objective of this study was to determine whether MEHP can induce structural defects during embryonic development in vitro in whole embryo culture (WEC) and to assess whether decreased embryonic nutrition contributes to these defects. Gestational day (GD) 8 CD-1 mouse conceptuses were explanted into WEC. MEHP or DEHP at concentrations ranging from 100-1000 μg/mL were added directly to the culture media and conceptuses were exposed for 24 hours before complete morphological scoring and collection of visceral yolk sac (VYS) and embryo (EMB) tissues on GD 9. MEHP treatment significantly reduced total morphological scores at all doses, reaching a maximal decrease of 67% (p<0.03), while DEHP failed to produce any significant decreases in total morphology score. Morphological comparison of neural tube-specific endpoints revealed that MEHP produced a significant increase in incomplete neural tube closure (p<0.001). Clearance of FITC-albumin by the VYS was assessed after 3 h exposure to 100 or 250 μg/mL MEHP on GD 9 as a measure of histiotrophic nutritional activity. Treatment significantly reduced total clearance in a dose-dependent manner (p<0.0008) by 29% and 43% for 100 and 250 μg/mL treatment, respectively. This work demonstrates that MEHP treatment reduces embryonic nutrition, limiting the substrates essential for normal metabolic activities, and induces structural defects, especially preventing closure of the neural tube.

1019 Development and Validation of an Analytical Method for Monobutylphthalate, a Metabolite of Di-n-Butylphthalate, in Harlan Sprague-Dawley Rat Plasma and Amniotic Fluid by UPLC-MS/MS.

V. G. Robinson1, M. A. Silinski1, T. A. Freed1, R. A. Fernando1, C. S. Smith2 and S. Waidyanatha1. 1IRT International, Research Triangle Park, NC, 2Division of National Toxicology Program, NIEHS, Research Triangle Park, NC. Sponsor: K. Levine.

Di-n-butyl phthalate (DBP) is a common plasticizer used in a variety of consumer products. Its major metabolite is its monoester. Exposure to DBP is widespread, and its potential toxicity has been, and continues to be, investigated. The objective of this work was to develop, validate, and apply a method to quantitate mono-n-butylnaphthalate (MBP), the major metabolite of DBP, in rat plasma and amniotic fluid. Samples were extracted by spiking 25 μL of plasma or amniotic fluid with 25 μL of water, 25 μL of internal standard solution (MBP-d4 in water), and 425 μL of 0.1% formic acid in acetonitrile. After centrifugation, 5 μL of supernatant was injected onto an Acquity UPLC HSS T3 column, and separation was performed using gradient elution. MS/MS analysis was conducted using electrospray ionization in negative ion mode and multiple reaction monitoring. The method was successfully validated over the range 25-5000 ng/mL in plasma, with cross-validation for amniotic fluid. Validation parameters included linearity (r > 0.99), recovery, selectivity, sensitivity (LOD: 6.9 ng/mL), precision (%RSD < 15%), accuracy (%RE < 15%), and stability (% of Day = 100 ± ± 20%). It was also demonstrated that samples as high as 516,000 ng/mL could be accurately and precisely diluted into the calibration range. The method is being applied for the analysis of MBP in plasma and amniotic fluid samples from rats administered 0, 300, 1000, 3000, or 10,000 ppm DBP in feed.

1020 Developmental and Reproductive Studies in Sprague-Dawley Rats with Gevokizumab, a Novel Monoclonal Antibody Targeting IL-1 Beta.

C. A. Gaupe1, B. Thorsrud1, L. Cao1, J. Chen1, L. Wong1, K. Der1, J. Ma1, A. Aben1 and B. Myers1. 1Nonclinical Safety Evaluation, XOMA (US) LLC, Berkeley, CA; 2Developmental & Reproductive Toxicology, MPI Research, Mattawan, MI.

Gevokizumab, also coded XOMA 052 or 587/889, is a humanized IgG2 monoclonal antibody that binds with high affinity to human interleukin-1 (IL-1) beta. Gevokizumab inhibits the activation of the IL-1 receptor, thereby modulating the cellular signaling events producing inflammation. Currently, gevokizumab is in Phase 3 clinical trials for non-infectious uveitis and Behçet’s uveitis and in Phase 2 of development for inflammatory bowel disease, rheumatoid arthritis, and gout. The objective of this study was to evaluate the developmental and reproductive toxicity of gevozumab in nonhuman primates. Female rhesusMacaque (Macaca mulatta) were exposed to gevozumab from GD 6-20 either at 0.1 mg/kg/dose. The rat (usual rodent model for evaluating developmental and reproductive toxicity) was selected due to similar binding affinity and in vitro functional activity between human and rat IL-1 beta. Standard ICH S5(R2) study designs were followed. Observations included clinical signs, body weight, food consump-

1021 Weight of Evidence Considerations for Developmental Toxicity Classification of Boric Acid.

W. Ball and M. Harrass. Rio Tinto Minerals, Greenwood Village, CO.

Although reproductive and developmental effects have been demonstrated in laboratory animals exposed to high doses of boric acid (BA), similar effects have not been observed in highly exposed human populations or workers. Workers in boron (B) mining/processing industries represent the maximum possible human exposure. A weight of evidence approach was used in evaluating numerous independent studies on the determination of the hazard of BA to humans. Information that was considered together included results of in vitro tests, animal data, worker exposure data, epidemiological studies and mechanistic data. Extensive evaluations of sperm parameters in highly exposed workers in Turkey and China demonstrated no effects on male fertility. No evidence of developmental effects in humans attributable to B has been observed in studies of populations with high exposures to B. Collectively the epidemiological studies consistently show an absence of effects in highly exposed populations. A comparison of blood, semen and target organ B levels in studies of lab animals and B workers shows B industry worker exposures are lower than untreated control rats. Recent studies provide evidence that BA may act by similar mechanisms in causing developmental effects in mice as sodium selenolate (natural deacetylated form of aspirin) including effects on Hox gene expression and inhibition of embryonic histone deacetylases. Although aspirin is known to cause developmental effects in laboratory animals, similar effects have not been seen in controlled human studies. Similar mechanisms of action of BA and aspirin and the absence of effects in humans ingesting aspirin suggest that BA related developmental effects in humans are unlikely. Also, there is evidence that Zinc (Zn) interacts with B in the body reducing the toxicity of B. Zn levels in soft tissue in humans are over 2 x greater than in lab animals explaining in part the absence of fertility and developmental effects in humans. Based on the total weight of evidence, the data show that it is improbable that BA will cause reproductive or developmental effects in humans.

1022 Embryonic DNA Repair and Ethanol-Initiated Behavioural Deficits in Oxoguanine Glycosylase 1 (OGG1) Knockout Mice: A Role for Oxidatively-Damaged DNA and Protection by a Free Radical Spin Trapping Agent.

L. Miller1, D. J. Pinto2 and P. G. Wells2, 2Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; 2Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada.

A mother’s consumption of alcohol (ethanol, EtOH) during pregnancy can cause a spectrum of structural, cognitive and behavioural problems in the developing child termed Fetal Alcohol Spectrum Disorders (FASD). Reactive oxygen species (ROS) have been implicated in the mechanism of behavioural teratogenicity, although the role of embryonic DNA damage and repair are unclear. To determine the latter, DNA repair-deficient heterozygous (+/-) oxoguanine glycosylase 1 (OGG1) knockout mice were mated, and pregnant dams were treated once on gestational day 17 with EtOH (2 g/kg i.p.) or its saline vehicle, with or without pretreatment with the free radical spin trapping agent alpha-phenyl-N-tert-butylnitrone (PBN) (40 mg/kg i.p.). Saline-exposed progeny exhibited an ogg1 gene dose-dependent learning deficit in the passive avoidance test compared to wild-type (WT) littermates, demonstrating for the first time a phenotype in OGG1-deficient mice. EtOH-exposed progeny exhibited an enhanced learning deficit compared to saline controls at 6 and 9 weeks of age, also in an ogg1 gene dose-dependent fashion. PBN pretreatment significantly protected both WT and KO progeny, although this protection for EtOH was slightly less effective in +/- and -/- KO progeny. These results provide the first evidence to date that ROS-initiated embryonic DNA oxidation is involved in EtOH-initiated behavioural deficits, and embryonic DNA repair status may be a determinant of teratological risk. (Support: Canadian Institutes of Health Research)
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that may cause adverse health effects. Previous in vitro studies including ours have shown that various PCB congeners affect neurodevelopment through different mechanisms. However, behavioral alterations induced by lactational exposure to PCB and its neurochemical mechanisms have not yet been fully studied. In the present study, hydroxylated-PCB 106 (OH-PCB 106; 4-hydroxy-2,3,3',4',5'-pentachlorophenol) was administered to lactating rat and mouse dams via gavage every second day from day 3 to 13 after delivery. The exposure did not affect the body weight of the dams or the physical development of the newborn pups in both sexes. Male rats and mice exposed to OH-PCB 106 showed hyperactivity that was characterized by increased locomotor activity in open field and circadian period. OH-PCB 106-exposed rats displayed abnormally high levels of dopamine and D2 dopamine receptor (D2DR), but not D1DR and D5DR, in the striatum, an important center for the coordination of behavior. These findings indicate that OH-PCB 106 has a significant neurotoxic effect on rodent behavior, which may be associated with increased D2DR-mediated signals.

Di-isobutyl Phthalate (DIBP) Hazard Identification.

S. Y. Euling1, K. Hogan1, G. Cooper1, C. Cai1, K. Y. Christensen1, M. Lorber1, N. Shimokawa.

The hazard potential for DIBP is being evaluated as part of EPA’s Integrated Risk Information System (IRIS) Toxicological Review. DIBP is a plasticizer that confers flexibility and durability in industrial and consumer products. The epidemiology and animal toxicology databases are both relatively small. The small DIBP epidemiological database includes studies that assessed the relationship between urinary concentrations of the DIBP metabolite mono-isobutyl phthalate (MIBP) and developmental, neurodevelopmental, immunological or breast cancer outcomes. There is limited support for associations between MIBP and inflammatory biomarker levels, and decreased masculine play behavior. The animal toxicological database includes studies that assessed male reproductive developmental endpoints that constitute the phthalate syndrome after in utero DIBP exposure. The largest developmental study, Saillenfait et al. (2008), reported changes in anogenital distance, male reproductive organ weights, and litter incidence of phthalate syndrome endpoints in the lower dose range after early gestational exposure. Other studies observed increased fetal mortality, male postnatal and adult growth decrements, decreased fetal testicular testosterone and changes in expression of genes involved in androgen production pathways. The developmental reproductive effects observed in animal studies are consistent with the reduced testicular testosterone mode of action that is well-characterized for developmentally toxic phthalates. Effects on liver and kidney weight and function in both male and female adults were also reported. Research needs include epidemiologic studies that examine DIBP exposure, testosterone and related outcomes throughout development as well as multigenerational reproductive toxicity studies and cancer bioassays. The views expressed are those of the authors and do not necessarily reflect the views or policies of the US EPA.

Establishment of a Molecular Embryonic Stem Cell Developmental Toxicity Assay.

J. Panzica-Kelly1, K. Brannen2, Y. Ma2, C. Zhang1, O. Flint3, L. D. Lehman-McKeeman1 and K. Augustine1.1 Discovery Toxicology, Bristol-Myers Squibb, Princeton, NJ; 2Charles River, Horsham, PA.

Effects to reduce animal use for embryotoxicity testing of chemicals lead to the development of the embryonic stem cell test (EST), a 10-day low-throughput assay. The objective of this study was to shorten the assay’s duration and increase throughput by incorporating molecular endpoints to detect aberrant changes in embryonic stem cell differentiation. Monolayers of mouse D3 embryonic stem (ES) cells were used to identify IC50 values in a 3-day cytotoxicity assessment. ES D3 cells were grown for 4 days as embryoid bodies for transcriptional profiling of 12 developmentally regulated genes (nanog, fgf5, gsc, cd34, axin2, apln, chst7, lhx1, fgf8, sox17, foxa2, and cxc4). Embryoid bodies were exposed to a single compound concentration selected from the cytotoxicity assessment (0.1x IC50). A decision-tree model to classify compounds for teratogenicity potential was built with IC50 and relative expression values of the target genes after exposure to 65 compounds (33 teratogens, 32 non-teratogens) of known in vivo teratogenicity. Compounds with IC50 values < 22 μM were classified as teratogens without the use of transcriptional profiling. Compounds with IC50 values between 22 and 200 μM were categorized as teratogenic if ≥8 genes were deregulated by 10%. Compounds with IC50 values greater than 200 μM were categorized as positive for teratogenic potential if all 12 genes were deregulated by 10%. For teratogenic predictions of unknowns, the model was validated for 22 compounds (29 out of 33) with a true positive rate of 69% (25 out of 36) with a total concordance of 72% (47 out of 65) with a false positive error rate of 24%. The model was further tested with 12 additional compounds (5 positive, 7 negative) in which 10 were identified correctly (83% concordance) with a 0% false positive error rate. Increased throughput in combination with its low false positive error rate makes this assay ideal for first tier hazard identification screening of pharmaceutical compounds.

A Tiered Screening Platform for Optimizing Predictivity, Throughput and Cost Effectiveness of In Vitro Developmental Toxicity Assays.

In recent years, various laboratories have focused on generation and/or refinement of in vitro developmental toxicity assays for classification of teratogenic liability of small molecules. The impetus for this effort is multifaceted including increasing animal rights pressure, REACH legislation of chemicals and need for proactive safety optimization of pharmaceutical compounds. In response to these needs, our laboratory has developed three in vitro developmental toxicity assays: a molecular embryonic stem cell assay (MESCA), a developmental reproductive toxicity culture (ZEC) assay and a streamlined rat whole embryo culture (rWEC) assay. Individually, all three assays have demonstrated good utility for screening compounds for teratogenic liability, achieving ~80% overall concordance and relatively balanced error rates. This study describes the results of evaluating a test set of ~60 compounds across the 3 assays and generation of a tiered testing strategy. The cross-assay assessment identified the assays’ attributes and deficiencies. For instance, the MESCA and ZEC assays were found to have limited capabilities: compound solubility and high misclassification rates of compounds with H1 receptor or GABAergic activity. In contrast, solubility limitations were rarely encountered in the streamlined rWEC assay and it also presented <20% misclassification error rates of compounds with H1 and GABAergic activity. As such, the rWEC assay was found to be a cost effective stand alone assay for supporting poorly soluble compounds and/or ones with H1 or GABAergic activity. For all other compounds, using MESCA as a first tier and the dechorionated ZEC assay as a 2nd tier assay minimizes animal use and optimizes error rates, throughput and cost. To this end, compounds receive a final classification if found positive in the MESCA assay, and those that are negative are followed up in the ZEC assay resulting in overall error rates below 15%.

The DevonProject: A Comprehensive Source of Information on Developmental Abnormalities.

J. Buschmann1, I. Chahoud1, R. Kellner1 and R. Solecki2,1 Fraunhofer ITEM, Hannover, Germany; 2Federal Institute for Risk Assessment, Berlin, Germany; 3Institute of Clinical Pharmacology and Toxicology, Berlin, Germany. Sponsor: C. Dansenbrock.

The potential of a compound to cause adverse effects in the developing embryo or fetus is an important consideration in human health risk assessment. The terms and diagnostic criteria used to describe fetal anomalies in animal experiments must be consistent from one laboratory to another and must be harmonized between regulatory agencies. Consequently, the DevTox Project (www.devtox.org) has the main objectives to harmonize the nomenclature used to describe developmental anomalies in laboratory animals and to assist in the visual recognition of developmental anomalies with the aid of photographs. The use of a harmonized and internationally accepted nomenclature is a basic requirement for the operation of DevTox. A first approach of establishing such a harmonized terminology was made in 1997 by a publication of the International Federation of Teratology Societies IFTS (Teratology 55, 249-292, 1997). This terminology has recently been updated (Reproductive Toxicology 28, 371-434, 2009). In addition, a series of Berlin Workshops working definitions for the two classification categories “malformation” and “variation” were agreed. The results of all these activities were used to establish the DevTox data base. The easy-to-use Web interface allows different views of the nomenclature, images and data and a quick navigation throughout the complete site. DevTox currently contains more than 2,500 images, showing examples of external, skeletal, soft tissue and maternal-fetal anomalies in rats, mice, rabbits, hamsters, primates, Guinea
pigs, minipigs, dogs and birds. It provides short descriptions of each finding and in some cases synonyms and further diagnostic notes as well as a hierarchical structure for the localizations. The system is publicly accessible and allows the electronic download of the current version of the harmonized terminology.

1028 Reference Images for the Skeletal Examination of Cynomolgus Monkey Fetuses and Thalidomide-Induced Malformations.

O. Foulon, F. Specia, C. Dauzat, M. Da Silva, P. Barrow, B. Pulate and R. Forster. GIToxLAB, Evreux, France.

In this poster selected images are presented to illustrate the normal and (drug-induced) abnormal skeletal morphology of the cynomolgus monkey at 100 days post-coitum. Very limited data is available in the literature in terms of reference images for the skeletal examination of cynomolgus monkey (Macaca fascicularis) fetuses in teratology studies. This poster will present photographs of the fetal skeleton on day 100 post-coitum. Normal (control) fetuses will be presented and compared with fetuses showing thalidomide-induced malformations. A total of 20 control and 3 thalidomide-treated fetal specimens were photographed. Dams were 3 to 8 years old at mating and weighed 2.0 to 4.5 kg. Mating was confirmed by the presence of sperm in a vaginal smear during cohabitation with a male. Pregnancy was confirmed 18 or 19 days later by ultrasound examination. The control dams received a similar volume of water (10 mL/kg). The fetuses were removed by caesarean section on day 100 of gestation. Fetal and placental weights were recorded. Morphometric measurements (head circumference and crown-rump-length) were taken. Each fetus was then given a detailed necropsy examination prior to processing for skeletal examination by the Dawson method: the ossified skeletal structures were visualised following clearing of the soft tissues in potassium hydroxide and staining with Alizarin Red S. The normal variation in the degree of skeletal maturity and the corresponding patterns of ossification can be assessed using the control images.

A. Makin, T. K. Andreassen and J. Langelund. GIToxLAB, Lille Skensved, Denmark.

Rats and rabbits are traditionally the species of choice for developmental toxicity (embryofetal development) studies. If for any reason these species are found unsuitable (e.g. due to issues of metabolism) a non-rodent alternative choice of species is the minipig. In our facility we have several years of experience with EFD studies in the Gottingen minipig. When working with non-standard species for studies of this nature, a reliable study design producing robust data is imperative. Control data are presented from 9 preliminary studies and 4 main studies performed over the last 5 years and intended for regulatory submission. On the basis of this experience, study designs have been reviewed and refined to ensure reliable and consistent results. Consideration was given to factors such as efficient synchronisation of estrus with the use of Regumate® (altrenogest) to maximise mating success. Using this approach a success rate of close to 100% is attained. In this way the required number of pregnant sows for the study can be accurately provided, allowing precise scheduling of the number of sows mated per day according to the facility capacity to perform the caesarean sections on the required day of gestation. The data presented show that our methods give a mating success and an average litter size that are superior to the published literature, thus ensuring that there are sufficient fetuses for interpretation of findings. Estrus synchronisation is also useful for the provision of neonatal piglets for juvenile toxicity studies. The present poster presents background data for all of the fundamental litter-based parameters and demonstrates the robustness of the methods. Data for Pregnancy rate, Uterus Weight, Litter Size, Resorptions, Implantations, Corpora Lutea and Pre and Post-implantation Loss are also presented.

1030 Exploring the Role of the Mediator Gene ‘Med31’ in Proliferation and Limb Development during Mouse Embryogenesis.

K. Wolton2, J. Wright1, R. Doran1 and K. Henges2. 1Faculty of Life Sciences, Manchester University, Manchester, United Kingdom; 2Product Safety, Syngenta, Bracknell, United Kingdom. Sponsor: P. Bortham.

Birth defects are recognised as a common global human health concern and they may arise as a result of a multitude of factors. In terms of ameliorating such anomalies, it is important to gain a better understanding of the fundamental mechanisms controlling embryonic development. A role for the Mediator complex gene Med31 in developmental biology has been suggested for cell proliferation in mice. Developing embryos which lack the Med31 protein are substantially smaller than their wild type littermates, and show a delay in development. This is particularly noticeable in the developing limbs, which fail to grow to the same length as wild type, and demonstrate delays in normal ossification patterns. Analysis of embryonic fibroblast cultures has revealed a significant defect in cell proliferation in Med31 mutants, which is recapitulated in the Med31 mutant limb bud, at embryonic day E10.5. Med31 forms part of the mediator complex, which acts as a bridge between transcription factors and the RNA Polymerase II to initiate transcription. Mutant embryos lacking Med31 have a reduction in the expression of the cell cycle gene nTOR and Cyclin B. In situ hybridisation has demonstrated that the mutants do not express Sox9, a master regulator of chondrogenesis, and this is particularly evident in the limb bud at E10.5, while genes such as Fg8, a marker of limb patterning, retain a normal expression pattern. These findings are being further investigated by exploring the genes which are under the transcriptional regulation of Med31 in limb development. These experiments will provide new insights into the mechanisms by which Mediator complex proteins regulate developmental processes.

1031 Investigation of Methods for Anesthetization and Euthanization of Rat and Rabbit Fetuses in Developmental Toxicity Studies.

Japan Association for Laboratory Animal Medicine recommends humane handling of laboratory animal fetuses. However, it is a challenge to accept proposed euthanizing methods such as cervical dislocation, decapitation and/or intracardiac injection of potassium chloride, because these methods would damage fetal specimens for skeletal and visceral examinations in developmental toxicity studies. The present study aimed at finding better methodologies for rat and rabbit fetal euthanasia and anesthesia. We focused on, and evaluated, two parameters: fetal heart rate and response to touch stimulus. We were unable to accomplish fetal euthanasia directly in either species; however, we were able to euthanize fetuses under pain-controlled anesthesia.

Rat fetuses immersed in physiological saline at 10°C showed complete loss of reaction to touch stimulus within 10 minutes, and a mean heart rate of less than 20 bpm, suggesting that deep anesthesia had been achieved very rapidly. Therefore, it is recommended that hypothermia by immersion in cold physiological saline is an appropriate method for anesthetization of rat fetuses.

Rabbit fetuses intraperitoneally injected with pentobarbital sodium at 3.24 mg/kg and retained in filter paper impregnated with physiological saline at 18°C showed complete loss of reaction to touch stimulus within 30 minutes. Therefore, it is recommended that intraperitoneal injection of pentobarbital sodium and hypothermia induced by cold physiological saline form an appropriate method for anesthetization of rabbit fetuses.

We further recommend that the fetuses should be euthanized promptly upon reaching anesthesia by exanguination, removal of vital organs, or immersion in appropriate fixatives.

1032 Acute Intravenous Exposure to Silver Nanoparticles during Pregnancy Induces Platelet Size and Vehicle-Dependent Changes in Vascular Reactivity.

With increasing use of engineered silver nanoparticles (NP) in different settings there are concerns regarding their safety particularly in vulnerable life stages such as pregnancy. Effects of silver NP on maternal vascular and physiologival saline on 18°C showed complete loss of reaction to touch stimulus within 30 minutes. Therefore, it is recommended that intraperitoneal injection of pentobarbital sodium and hypothermia induced by cold physiological saline form an appropriate method for anesthetization of rabbit fetuses.

We further recommend that the fetuses should be euthanized promptly upon reaching anesthesia by exanguination, removal of vital organs, or immersion in appropriate fixatives.

With increasing use of engineered silver nanoparticles (NP) in different settings there are concerns regarding their safety particularly in vulnerable life stages such as pregnancy. Effects of silver NP on maternal vascular and physiologival saline on 18°C showed complete loss of reaction to touch stimulus within 30 minutes. Therefore, it is recommended that intraperitoneal injection of pentobarbital sodium and hypothermia induced by cold physiological saline form an appropriate method for anesthetization of rabbit fetuses.

We further recommend that the fetuses should be euthanized promptly upon reaching anesthesia by exanguination, removal of vital organs, or immersion in appropriate fixatives.
1 and Rho kinase inhibitor (HA1077). The response to phenylephrine was studied in the presence and absence of COX inhibitor, indomethacin. Dose-response curves, maximum stress and EC50 values were different for silver NP exposed animals when compared with vehicle controls. Reciprocal changes were seen between the aortic and uterine vessels: greater vasoconstriction in uterine artery and greater vasodilation in aorta following 110 nm silver exposure. Exposure to 20 nm silver NP increased the HA1077 mediated vasodilation in aorta suggesting a possible mechanism underlying the changes of agonist mediated vasodilator response following NP exposure. NP suspensions in citrate lead to higher stress generation in both vessels. IV exposure to silver NP during pregnancy induces particle size and vehicle dependent changes in vascular reactivity which can potentially influence blood supply to the fetus. This work is supported by NIJEHS U19 ES019525.

Flubendazole confirmed to be embryolethal and teratogenic through its cytostatic properties. At 6-32 mg/kg/day it initially induced a block of embryonic development through its cytostatic action, followed by cytotoxicity which led to 100% embryolethality within 48h while at 3.46 mg/kg/day, it markedly reduced embryonic development through its cytostatic action but did not show cytotoxic effects. Therefore, embryos still alive markedly retracted with consequent morphological alterations in specific areas namely brain vesicles, eye, maxillary structures and body axis.

In a previous study, we have demonstrated that fetal abnormalities associated with a known human and swine teratogen (Pyrimethamine) could be detected in the minipig with fetal examinations performed close to mid-term instead of at term. The principal objective of the present study was to validate a double staining method for bone and cartilage of minipig fetuses obtained by caesarean section close to gestation day (GD) 60 in order to support skeletal examinations. Two virgin Göttingen Minipig females were mated at the testing facility and subsequently submitted to caesarean section close to GD 60. Ten fetuses (5 in each litter) were available for the trials and the sexes were evenly split. The fetuses were used in a number of staining trials based on our own established methods for other species, including the rat and rabbit. In the first step, the fetuses were stained, without prior fixing, following eversion and skinning. Varying concentrations of ethanol, mixed together with Alizarin red S, Alcian blue and acetic acid, were tested to obtain the desired results. In order to establish the best conditions to fix the staining, the fetuses were then transferred to baths containing different concentrations of ethanol for varying durations. Following fixation, the specimens were transferred into potassium hydroxide solutions for maceration of the soft tissue. Finally, the soft tissues were cleared, firstly using Malls solution followed by glycerol at increasing concentrations. The fetuses from the successful trial were then ready for skeletal examination.

The technique is slightly more labour intensive than the single staining technique using Alizarin red S only. However, the time required to process the specimens for examination is approximately the same for both methods. Moreover, this new technique enhances the examination process for mid-term minipig fetal skeletons, at a time when ossification of the skeleton is obviously less advanced than at term. Our next step is to generate an atlas of the mid-term minipig fetal skeleton.

Flubendazole did not interfere with rat embryonic development, apart from a minimal reduction in fetal and placental weights, at 2 mg/kg/day (Cmax after single administration 0.389 µg/mL) with treatment restricted to two days during pregnancy and with a limited number of animals. In order to evaluate the embryotoxic nature of Flubendazole, embryos of dams treated as above, were evaluated on GD 11.5 and 12.5, as a window for observing the origin of alterations detected at term.

1033 Gamma Secretase Inhibition: Effects on Fertility and Embryo-Fetal Development in Rats.
L. Swaraman1, K. Thompson1, G. Pilcher1, T. Sanders2 and M. E. McNerney2
Bristol-Myers Squibb Co., New Brunswick, NJ; 2Bristol-Myers Squibb Co., Mt. Vernon, IN.

BMS-708163 (avagacestat) inhibits γ-secretase (GS), a protease that cleaves amyloid precursor protein to produce amyloid β (Aβ) and amyloid plaques that are prominent lesions in Alzheimer's disease (AD). As part of the nonclinical reproductive safety evaluation, studies of embryo-fetal development as well as fertility and early embryonic development were conducted in female Sprague-Dawley rats. In the embryo-fetal development study, BMS-708163 was administered (oral gavage) to pregnant rats at 3, 10 and 30 mg/kg/day from Gestation Day (GD) 6 through GD 15. Cessation sections were conducted on GD 21. Assessments of maternal well-being included clinical observations, body weight, and food consumption; evaluation of fetal viability, morphology and body weights comprised the assessment of developmental toxicity. BMS-708163 was a selective developmental toxicant at all doses tested, with dose-related increases in the incidence and severity of fetal malformations and variations in the absence of maternal toxicity. Malformations and variations included axial and appendicular skeletal anomalies. In the study of fertility and early embryonic development in female rats, BMS-708163 was administered for 14 days prior to cohabitation; then throughout co-habitation and early gestation, until presumed GD 7 at 1, 5, and 15 mg/kg/day. Male reductions in female fecundity at doses ≥ 5 mg/kg/day were attributed to impaired ovarian follicular development; this was reflected in dose-dependent reductions in implantation sites, litter size, and gravid uterine weights. These results occurred at exposures above those which lower brain Aβ in rats; are consistent with inhibition of GS-mediated Notch processing, a key signaling pathway in cell-fate determination and embryonic development; and are considered no risk to the intended AD (> 65 y) patient population.

1034 Flubendazole Embryotoxicity in Rat Embryos and Fetuses.
P.A. Colombo1, M. Longo1, S. Zanoncelli1, M. Messina1, R. Schnurbus1, I. Scandale2 and G. Mauze3
1Accelera, Nerviano MI, Italy; 2DNDi, Geneva, Switzerland; 3Consultant, Maternity, France.

Fetal malformations arise in millions in pregnancy-stricken areas. DNDi investigated Flubendazole Amorphous Solid Dispersion (ASD) as a possible drug candidate. Within its preclinical characteristics in particular potential embryotoxicity was evaluated. With this aim Flubendazole ASD was administered orally to Sprague-Dawley rats at 0, 2, 3.46, 6.32 and 13.5 mg/kg/day as flubendazole, during the recognized susceptible organogenetic period on GD (gestation day) 9.5 and 10.5 as identified in a previous whole embryo culture study. Fetuses were evaluated on GD 20. Flubendazole was embryolethal from 6.32 mg/kg/day (Cmax after single administration 0.801 ug/mL). In addition Flubendazole was teratogenic at 4.6 mg/kg/day (Cmax after single administration 0.539 ug/mL). No increase in resorptions was seen however 80% of fetuses showed malformations namely exencephaly, micro- /anophthalmia, small/absent kidneys, markedly enlarged renal pelvis/ureters, absent tail, anal atresia and disruption of skeletal ossification of head, spine and thoracic cage. Flubendazole did not interfere with rat embryonic development, apart from a minimal reduction in fetal and placental weights, at 2 mg/kg/day (Cmax after single administration 0.389 ug/mL) with treatment restricted to two days during pregnancy and with a limited number of animals. In order to evaluate the embryotoxic nature of Flubendazole, embryos of dams treated as above, were evaluated on GD 11.5 and 12.5, as a window for observing the origin of alterations detected at term.
1037 Influence of Acidic Extraction Conditions on Formazan Assay: Assessment of Test Substances Using In Vitro EpiSkin Skin Irritation Test Method by HPLC and Colorimetry.

The skin irritation potential of a test substance is typically determined by measuring cell viability in treated tissues by means of the colorimetric MTT reduction assay after topical application of a test substance. In the EpiSkin validated skin irritation test method, tetrazolium salt-based formazan assay is performed by using acidic isopropanol extraction conditions (ESAC 2007, OECD TG439 2010).

The current work evaluated the data obtained with the EpiSkin model for the 20 reference chemicals (listed in the OECD TG439) following formazan extraction with acidified (IPA) or non acidified (IP) isopropanol solutions to evaluate the influence of acidic extraction conditions. Therefore the objectives of this work was to establish the use of HPLC measurements as a complementary assay to standard photometry assay for detection of reduced MTT, a known limitation for test substances that are highly coloured.

The cell viability in EpiSkin quantitatively measured after acidified (IPA) or non acidified (IP) isopropanol extractions from tissues were equivalent ranging from 6.4 to 104% by colorimetry (reference method). Following HPLC measurement, formazan quantitative analyses were comprised between 7.9 to 99.2%. The standard deviation between those 2 conditions was +/- 18%. Therefore, within-laboratory variability assessed in 3 runs showed similar concordance of classification for each condition. The sensitivity (based on 10 GHS Cat.2 substances) was 90% and the specificity (based on 10 No-category substances) was 70%. The HPLC provides data comparable to those using standard photometry assays for 20 test substances indicative of the use of HPLC as a complementary assay to photometry in EpiSkin skin irritation test method. Therefore, those results suggest that acidic isopropanol extraction conditions did not affect the EpiSkin skin irritation outcomes.

1038 Cytotoxic Effects of Dicyclohexylamine and Three Metallworking Fluids on Human Epidermal Keratinocytes.

A. D. Linthicum1, A. O. Iman2, N. A. Monteiro-Riviere2 and R. E. Baynes3. 1Center for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, NC; 2Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS.

Many of the 1.2 million workers in the metal machining industry within the United States will be exposed to metalworking fluids via the dermal route, making it a major occupational health and safety concern. Dicyclohexylamine (DCHA), an anticorrosive agent used in the metalworking industry to prevent corrosion of fabricated materials, is known to permeate the skin and could potentially elicit a toxic response on human epidermal keratinocytes (HEK). HEK were exposed only to DCHA or one of the following three generic metalworking fluids: soluble oil, synthetic oil and semi-synthetic oil for 24h. Cells were dosed with solutions ranging from concentrations of 200-5000 μg/mL. The highest concentration of 5000 μg/mL is the relevant occupational exposure dose in the metal machining industry. Cells exposed to 200-5000 μg/mL of DCHA resulted in a 24-91% decrease in cell viability in comparison to the media control. The soluble oil and semi-synthetic oil dosed from 200-5000μg/ml resulted in an 80-83% and 81-85% decrease in cell viability, respectively, in comparison to the media control. For synthetic oil, there was a 52-85% decrease in cell viability in comparison to the media control. DCHA and all metalworking fluids treated cells showed a p=0.05 decrease in HEK viability. In conclusion, metalworking fluids and DCHA had a cytotoxic effect to HEK. This data suggests that the concentration of DCHA in metalworking fluid formulations should be reduced while safer metalworking fluid formulations are developed. (Supported by NIOSH R01-01-03669)

1039 Aryl Hydrocarbon Receptor Repressor (AhRR) Function Revisited: Repression of Cyp1 Activity in Human Skin Fibroblasts Is Not Related to AhR Expression.

J. Tiggeler1, H. Weidhardt1, G. Christine1, I. Foerster1, H. F. Merk2, T. Haarmann-Stemmann1, J. Krutmann1 and E. Frtishe3, 1Leibniz Institute for Environmental Medicine, Düsseldorf, Germany; 2Dermatology and Allergology, University Clinic RWTH, Aachen, Germany.

The skin reacts to environmental noxae by inducing cytochrome P450 (CYP)-catalyzed reactions via activation of the aryl hydrocarbon receptor (AhR). A drawback of this response is the generation of oxidative stress, which is especially dangerous for postmitotic cells such as dermal fibroblasts, in which damage may accumulate over time. Accordingly, in dermal fibroblasts, CYP1 expression is repressed and it has been proposed that this is due to the AhRR, which is supposedly overexpressed in fibroblasts as compared with other skin cells. Here, we revisited this “AhRR hypothesis”, which has been mainly based on ectopic overexpression studies and correlation analyses of high AhRR gene expression with CYP1A1 repression in certain cell types. In primary human skin fibroblasts (NHDFs) of 25 individuals, we found that (i) the AhRR was expressed only at moderate RNA copy numbers and (ii) the mRNA expression of CYP1A1 could be induced by AhRR activators. However, even the highest induction did not translate into measurable CYP1 enzyme activity, and neither basal expression nor mRNA inducibility correlated with AhRR expression. In addition, enhancement of CYP1A1 mRNA expression by trichostatin A, which inhibits AhRR recruit histone deacetylases at the CYP1A1 promoter, failed to induce measurable CYP1 activity. Finally, AhRR deficient mouse embryonic fibroblasts were not induced to beologically relevant CYP1 enzyme activity despite impressive mRNA induction. These data clearly indicate that repressed CYP1 activity in NHDFs is not causally related to AhRR expression, which may serve a different, yet unknown, biological function.

1040 Cytotoxic Effect of the Temporary Hair Dye Basic Red 51 on Human Keratinocytes (HaCaT): Development and Application on a Reconstructed (3D) Artificial Skin.

T. B. Zanoni1, M. T. dos Santos2, S. Barro2, S. Maria-Engler2 and D. de Oliveira1. 1Environmental Toxicology, University of São Paulo, Ribeirão Preto, Brazil; 2Laboratory of Pathology and Clinical Cytology, University of São Paulo, São Paulo, Brazil.

Nowadays, hair dyes are being commonly used for cosmetics purposes. However in 2001, the Scientific Committee on Cosmetic products and Non-Food Products intended for consumers (SCCNFP) of the European Union recommended that hair dye ingredients should be re-analyzed. Since 2006, 22 hair dyes have been banned for not being considered safe. On the present work, we evaluated the cytotoxicity of a temporary hair dye “Basic Red 51” (CAS: 77061-58-6), an azo dye (N-N) that is currently being revised by the EU. We tested the toxicity of the “Basic Red 51” in immortalized keratinocytes (HaCaT) that are the primary route of exposure. Moreover, we reconstructed a human (3D) epidermis using HaCaT cells and dermal fibroblasts in order to create a new approach that would better represent the real exposure. For HaCaT cells in monolayer, the Basic Red 51 IC50 was 12.9 μg/mL, determined by Tripin Blue assay. Besides, this concentration of the dye induced cell cycle arrest at G2 phase. Using the clonogenic assay, we observed that 2.5μg/mL of the dye was sufficient to inhibit completely cell growth after 48 hours of exposure. In the artificial skin model, we demonstrated that the exposure to Basic Red 51 at IC50 reduces the skin thickness, decreasing the number of cell layers. We also observed that the cells appear to be injured and undergoing apoptosis. It is important to point out that the IC50 used for these experiments (12.9 μg/mL) is much lower than the commercial concentration (2000μg/mL). We suggest that similar effects could be induced in humans after application of Basic Red 51, mainly considering the effects in artificial skin. So, we concluded that the use of Basic Red 51 for cosmetic purposes should be carefully evaluated.

1041 Skin and Eye Lesions in the Long Evans Rat Produced by Oral 8-Methoxy-Psoralen (8-MOP) Application and Subsequent UV-A Irradiation.

M. Sieber1, A. Simon1, K. Barro1, C. Maraschello2 and K. Weber2. 1Harlan Laboratories Ltd., Jüngling, Switzerland; 2AnaPath GmbH, Oberbuchstein, Switzerland. Sponsor: T. Assan.

For assessment of the dermal and ocular response to the model phototoxicant 8-MOP, 6 female HarbLuLE (SPF) Long Evans rats received a single dose of 5.0 mg/kg body weight 8-MOP by oral gavage. 6 control rats were treated with the vehicle only. One pigmented and one unpigmented skin site were clipped free of hair and irradiated with 15 J/cm2 UV-A (Bio-Spectra irradiation chamber, Vilber Lourmat Deutschland GmbH). Irradiation was performed 30 min after 8-MOP application under pentobarbital anesthesia. Visual assessment of the skin 4 h after irradiation showed erythema on the irradiated pigmented and non-pigmented skin of 8-MOP-treated rats and in control rats which increased in severity in 8-MOP-treated rats after 20 h and receded in control rats. Injection of Evans Blue showed moderate vascular leakage 24 h and 48 h after irradiation in all 8-MOP-treated rats, while only few of the control rats were affected at a lower severity. Histopathologically, corneal single cell necrosis was recorded in the irradiated eye of 2 of the 8-MOP-treated rats, but not in control rats. Dermal lesions in pigmented and unpigmented skin of 8-MOP-treated rats consisted of focal/multifocal epidermal hyperplasia, focal erosions/scab formation, ulceration, subcutaneous and/or dermal infiltration, follicular inflammation, focal/multifocal epidermal necrosis.
and subcutaneous and/or dermal inflammation, showing a slightly higher incidence and severity in non-pigmented than in pigmented skin. An identical experiment with a higher irradiation dose of 35 J/cm² UV-A led to erythema and correlating histopathological findings in the skin of both 8-MOP-treated and control rats; however, corneal affections consisting of focal or single corneal necrosis, corneal epithelial vacuolation and/or focal corneal keratosis were recorded in 8-MOP-treated rats only. The results of the experiment confirmed that the test system is appropriate for the assessment of systemic phototoxicity.

1042 13-Week Dermal Toxicity of Triclosan in B6C3F1 Mice.
M. M. Vanlandingham1, L. Fang1, F. A. Beland1, B. E. Juli1, G. R. Olson1, W. A. Harrouk2 and R. E. Patton1. 1National Center for Toxicological Research, US FDA, Jefferson, AR; 2Center for Drug Evaluation and Research, US FDA, Silver Spring, MD.

Triclosan [5-chloro-2-(2, 4-dichlorophenox)phenol] is widely used as an antimicrobial agent, and humans in all age groups have the potential to receive lifelong exposures. We recently demonstrated that the dermal application of triclosan to mice results in systemic distribution of the compound. The goal of the present study was to evaluate the toxicities of triclosan administered dermally to B6C3F1 mice for 13 weeks and provide a scientific basis for dose selection for a subsequent chronic dermal carcinogenicity study. Groups of 10 male and 10 female mice received dermal application of 0, 5.8, 12.5, 27, 58, or 125 mg triclosan in ethanol per kg bw daily for seven days per week for a period of 13 weeks. All mice survived the 13-week treatment. Body weights of female mice were not affected, while male mice administered 58 and 125 mg/kg weighed 91% and 83% of the control male mice. The mean weight of livers from females receiving 58 and 125 mg/kg was 11% and 40% greater than the controls; in males, the highest dose led to a higher mean liver weight (38% greater than the controls). Skin lesions (epidermal hyperplasia, inflammation, necrosis, ulceration, and parakeratosis; dermal fibrosis and inflammation) were observed in both sexes. The severity of the lesions was minimal at the 12.5 mg/kg dose, and both the severity and incidence of the lesions increased as the dose was increased. The highest dose of triclosan increased the percentage of reticulocytes in both sexes and the percentage of micronucleated normochromic erythrocytes in females; in addition, the 58 mg/kg dose increased the percentage of reticulocytes in females. A significant dose-dependent decrease in the levels of T4 and cholesterol was observed in both sexes. There were no differences between treated and control mice in sperm or vaginal cytology measurements. The NOAEL, under the conditions of this subchronic assay, was 5.8 mg/kg. (Supported by Interagency Agreement between NCTR/FAID IAG #224-12-0003 and NIH AES12013.)

1043 Dermal Toxicokinetic Studies of Triclosan in B6C3F1 Mice.
L. Fang1, M. M. Vanlandingham1, F. A. Beland1 and W. A. Harrouk2. 1Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, AR; 2Center for Drug Evaluation and Research, FDA, Silver Spring, MD.

Triclosan [5-chloro-2-(2, 4-dichlorophenox)phenol] is widely used as an antimicrobial agent in personal care products, household items, and clinical settings. Due to its extensive use, there is potential for humans in all age groups to receive lifelong exposures to triclosan; however, data on the chronic dermal toxicity/carcinogenicity of triclosan are still lacking. The goal of the present study was to determine the absorption, distribution, metabolism, and excetration of triclosan following dermal administration to B6C3F1 mice. A single dose of 14C(triclosan (10 or 100 mg per kg bw, 10 μCi per mouse) was administered to mice in two separate experiments: a vehicle selection experiment to compare the bioavailability of triclosan in male mice using propylene glycol, ethanol, and a generic lotion as vehicles; and a toxicokinetic experiment to evaluate sex differences in the absorption and distribution of triclosan and its metabolites. Three mice per sex in each group were killed at 0.5, 1, 2, 4, 6, 8, 12, 24, 48, and 72 h after administration, and excreta and tissues were collected and analyzed for radioactivity. Ethanol has the best properties of the vehicles evaluated. Maximum absorption of triclosan (80 - 86%) was obtained at 12 h after dermal application. There was some saturation of absorption at the 100 mg/kg dose. Radioactivity appeared in the excreta and in all tissues examined, with the highest level in gall bladder and the lowest level in brain. Triclosan was readily metabolized to triclosan sulfate and glucuronide conjugates, 2,4-dichlorophenol, and hydroxytriclosan. The metabolite profile was tissue-dependent and the predominant route of excretion was the feces (65 - 78%). There were no differences in bioavailability between males and females. Slightly lower absorption was observed with Elizabeths 255, suggesting some oral ingestion due to the normal behavior of the mice during grooming. (Supported by Interagency Agreement between NCTR/FAID IAG #224-12-0003 and NIH AES12013.)

1044 Confocal Raman Microscopy—The Future for Dermal Absorption Studies.
T. Patel1, A. Ghaemmaghami2, P. Williams1, J. Wright1, C. Roberts1 and F. Rose1. 1School of Pharmacy, University of Nottingham, Nottingham, United Kingdom; 2Syngenta Ltd, Bracknell, United Kingdom. Sponsor: B. Boham.

The activity and absorption of pesticides into the skin of the user is increasingly becoming a major problem within the Agrochemical industry. Fewer formulations are passing the regulatory process of pesticide approval as a result of unknown compound dermal accumulation and toxicity. Currently, 2 gold-standard methods are used to monitor dermal absorption and determine compound flux (μg/cm²/h) across the skin but limitations in measuring dermal accumulation most often result in compound failure. Confocal Raman Microscopy (CRM) is novel label free, rapid, optical method which allows compounds to be identified within dermal tissue at depths of ~300 μm. The aims of the investigations were to develop and establish CRM methods for in vitro dermal absorption investigations across ex vivo pig skin. A Lab Ra HR CRM was employed for the analysis of a range of concentrations (0.0 - 50.0 mg/mL) of benzoic acid, caffeine (both in 50% (v/v) ethanol (EtOH)) at the set following: IR laser at 785 nm a filter intensity of 100%, a hole 300 μm with a x50 objective. Depth profiling was also performed on fresh pig skin samples from the surface to a maximum depth of ~300 μm (~30 μm increments). CRM spectra for the pig skin investigations demonstrated good reproducibility with some spectral differences noticed. Intensity of the spectra decreased with increased depth as expected. It was observed that a concentration of 50% (v/v) EtOH appeared to mask the signal of prominent identifiable peaks for benzoic acid and caffeine solutions at and below a concentration of 6.25 mg/mL. Compound concentrations equal to or higher than 20.0 mg/mL within a 50% (v/v) EtOH solution could be detected. This data suggests that this masking effect by EtOH requires further exploration to better understand the limitations of the technique. The CRM method has the potential to qualitatively determine dermal compound accumulation within mixed media and solutions ultimately, providing a powerful tool in identifying toxic compounds early on.

1045 Development of an Alternative Model for Assessing Barrier Function and Permeability for Infant Skin.
T. L. McCarthy1, N. K. Tierney1, S. G. Raney2 and P. A. Lehman1. 1Johnson & Johnson, Skillman, NJ; 2PRAC Institute, Fargo, ND.

Recent publication of literature of non-invasive measures of skin barrier function of full-term human infants indicates a dynamic maturation process over the first year of life indicative of adaptation from in utero to the external environment. During this period, infant skin may be more vulnerable to penetration of topically applied ingredients; however, the magnitude of differences in non-invasive measures may not correlate to the magnitude of the difference in penetration of topical agents. While thriving demonstrates that a functional skin barrier exists at birth, differences in dermal permeability compared to adult skin could have an impact on the exposure assessment and safety of topically applied ingredients. The purpose of this study was to compare various indicators of skin barrier function (electrical impedance, TEWL, and permeability (tritiated water, 14C-octanol, and 24-h aqueous caffeine)) across skin from donors of different ages. Fresh neonatal and pubescent porcine skins (animals culled for other purposes) were collected from a breeding colony. Cryopreserved ex vivo adult human skins were purchased from a skin bank. All measures of skin barrier function and permeability were equally applied to all skin samples. The barrier functions in the porcine skin varied, depending upon the measure. Average impedance indicated parity across age. TEWL and tritiated water flux was lower through neonatal skin versus either mature species. Neonatal skin octanol flux showed parity versus pubescent porcine skin while immaturity versus human cadaver skin. Caffeine absorption ranged from 1.5x to 4.5x higher through neonate skin than seen in either mature species. These data demonstrate that non-invasive measures of barrier function may be indicative, but not definitive, for determining the absorption of topical compounds. The presence of the intra-species safety factor used in risk assessment adequately captures the difference in neonatal barrier function.

1046 Modelling Diffusion of Therapeutic Drugs through the Skin In Vitro Does the Model Need to Be Complicated?
J. Jenner1, O. Payne1, C. Dalton1, S. Graham1, J. Azeke2, E. Braue2 and J. S. Graham1. 1Biomedical Sciences, DSTL, Salisbury, United Kingdom; 2USAMRICD, Edgewood, MD.

A mathematical model accurately simulating diffusion of chemicals though the skin would be useful for predicting percutaneous absorption and aid understanding penetration mechanisms. Models of varying complexity have been validated using...
in vivo and in vitro data. In the present study data from the penetration of four drugs was used to test the output of a simple one compartment model based on Fick’s 1st law of diffusion.

Methods: Drugs, as off the shelf formulations, were applied to pig skin (500 μm dermatomed slice) in Franz type diffusion static cells using stirred ethanol-water (1:1) as a receptor; surface temperature 32°C. Penetration of hydrocortisone, capsaicin, dexamethasone, and sulfacetamide were measured in the receptor fluid using Ultra Performance Liquid Chromatography. The experimental permeability constant (Kp) was estimated from the maximum flux rate (assumed to be steady state; Jss) and the applied concentration of drug (C0) using the equation:

\[Kp = \frac{Jss}{C0} \]

A penetration profile was predicted using a model with the skin as a single compartment of a thickness approximating the stratum corneum and using the experimental Kp to calculate flux of drug from vehicle into the barrier layer and from barrier layer into receptor fluid. A best fit (determined by least squares) was then obtained by adjusting the experimental Kp by a factor which gave an estimate of the accuracy of the model in predicting the experimental data.

Results: Model predictions needed to be adjusted by factor of between 1.1 and 1.35 to fit the experimental data as judged by a least squares method and assuming a membrane thickness of between 0.025 and 0.04 mm.

Discussion: This work has demonstrated that a very simple model is able to predict quite closely the penetration of some non-volatile compounds applied to the skin in a vehicle.

This work is supported by the US Army Medical Research and Materiel Command under contract W81XWH-08-C-0070.

© Dsl Crown Copyright 2012

1047 Prediction of Skin Disposition After Topical Application of Drugs—Simcyp Platform As a Tool for Capturing System Information and Safety Assessment

S. Polak1, 2, N. Patel1, M. Jamei1 and A. Rostami Hodjegan1, 3
1Simcyp (a Certara Company), Sheffield, United Kingdom; 2Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland; 3School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom. Sponsor: B. Wetmore.

There are reports where topical application of drugs, which is generally considered safe, results in health threatening side effects or drug-drug interactions. Simcyp platform separates the system information from those of drug and uses in vitro in vivo extrapolation approach to predict disposition of the topically administered drugs (Polak 2012). Administration of a single 0.4 mg of erythromycin (topical - 2 cm² area of the forearm) with 40 mg simvastatin (oral) is used as a model scenario to assess anticipated interactions mimicking corresponding clinical study (van Hoogdalem 1996). Lotion formulation was simulated by modification of permeability/partition parameters (factor of 50 for stratum corneum and viable epidermis). Simulated residual amounts of erythromycin collected from the skin surface in vivo and in vitro data. In the present study data from the penetration of four drugs was used to test the output of a simple one compartment model based on Fick’s 1st law of diffusion.

Results: Model predictions needed to be adjusted by factor of between 1.1 and 1.35 to fit the experimental data as judged by a least squares method and assuming a membrane thickness of between 0.025 and 0.04 mm.

Discussion: This work has demonstrated that a very simple model is able to predict quite closely the penetration of some non-volatile compounds applied to the skin in a vehicle.

This work is supported by the US Army Medical Research and Materiel Command under contract W81XWH-08-C-0070.

© Dsl Crown Copyright 2012

1049 In Vitro Human Skin Penetration of Acetyl Hexapeptide-8 from a Cosmetic Formulation

O. A. Ogunsola1, W. Zhou2, P. G. Wang2 and M. E. Kraling3

Peptides are being incorporated into cosmetic creams marketed as anti-aging/anti-wrinkle products. Acetyl hexapeptide-8 may penetrate into the deep layers of the skin and potentially stimulate biological activity by interfering with neuromuscular signaling as its anti-wrinkle effect. The skin penetration of commercially available acetyl hexapeptide-8 (Ac-EEMQRR-amide) from a cosmetic formulation was determined in human cadaver skin assembled into in vitro diffusion cells. An oil-in-water emulsion containing 10% Ac-EEMQRR-amide was applied to skin at a dose of 2 mg/cm². After a 24 hour exposure, the skin surface was washed to remove unabsorbed peptide. Skin discs were tape stripped to determine the amount of peptide in the stratum corneum. Removal of the stratum corneum layers was verified by confocal microscopy. The epidermis was heat separated from the dermis and each skin fraction was homogenized. Skin penetration of Ac-EEMQRR-amide was measured in skin layers by hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS) using electron detection (ESI) in the positive mode. Stable isotopically labeled hexapeptides were used as internal standards for the quantitation of native hexapeptides to correct for matrix effects associated with ESI. Results (% of applied dose) found the majority of the Ac-EEMQRR-amide was not absorbed and removed by washing (87%). Stratum corneum peptide levels decreased as each layer was removed by tape stripping. Total Ac-EEMQRR-amide found in the stratum corneum was 0.22% and 0.01% in the epidermis. No peptide was detected in the dermis or receptor fluid. Hairless guinea pig skin penetration of Ac-EEMQRR-amide showed similar results where 0.51% remained in the stratum corneum and 0.01% penetrated into the viable epidermis. This skin penetration data will be useful for evaluating the safety of cosmetic products containing short-chain peptides.

1050 Nevirapine-Induced Skin Rash Is Caused by a Reactive Sulfate Metabolite Formed in the Skin

A. M. Sharma and J. Uetrecht. Pharmacy, University of Toronto, Toronto, ON, Canada.

Rationale: Nevirapine (NVP) treatment is associated with significant idiosyncratic immune-mediated skin rash and hepatotoxicity in humans. NVP causes a very similar rash in female Brown Norway rats, and we had previously shown that 12-hydroxylation of NVP is required to induce the rash. In this study we studied the further metabolism and covalent binding of NVP in the rat model and in human skin. Immune activation via IL-1β in the skin was also examined. Methods: An anti-NVP antibody was produced and used in immunohistochemistry studies to detect covalent binding of NVP, 12-OH-NVP, or NVP-sulfate to skin and liver proteins from humans, mice, or rats that were also performed. The ability of SULT1A1 to metabolize NVP was studied and cutaneous IL-1β levels were examined by ELISA. Results: Covalent binding was observed in the epidermis of NVP or 12-OH-NVP-treated rats. Major modified bands appeared between 40K-60K. Depletion of PAPs decreased blood levels of NVP-sulfate but did not prevent rash or covalent binding in skin. Topical administration of 1-phenyl-1-hexanol (sulfotransferase inhibitor) prevented rash and covalent binding where applied, and also prevented covalent binding of 12-OH to cytosolic skin fractions and SULT1A1. IL-1β levels were significantly upregulated in skin of rats with a rash as well as skin isolates. No skin rash or covalent binding was observed in the skin of NVP treated mice. Conclusions: In contrast to covalent
binding in the liver, which involves direct oxidation to a quinone methide, the re-
active metabolite that covalently binds in the skin is a sulfate. The sulfate is respon-
sible for the rash is formed in the skin of rats and in human skin incubations but not in mice which develop no rash. Further work is being done to confirm the role of IL-1β in NVP-induced skin rash. Funding: Canadian Institutes of Health Research.

1051 In Vitro Discrimination of Skin Sensitizing Hapten and Prohaptens in a Modified KeratinoSens Assay with an Added Metabolic Activation Step.

A. Natsch1, T. Haupt1 and G. Adamson2. 1Gisvanad Schweiz AG, Duendorf, Switzerland; 2Gisvanad US, East Hanover, NJ.

Prohaptens are chemicals which may cause skin sensitization after being converted into electrophilic molecules by skin enzymes. In vitro sensitization assays ideally should detect the potential of molecules to act as prohaptens. The metabolic activa-
tion system most commonly used in in vitro toxicology is Aroclor-induced rat liver S9 fraction. Even if this system contains higher enzyme activities as compared to those reported in skin, it may serve as a surrogate system to study the potential of chemicals to form reactive, skin sensitizing metabolites. To test this concept, the luciferase induction in KeratinoSens reporter cells treated with chemicals in presence and absence of S9 fractions was measured. Suspected prohaptens such as methyliosoeugenol, eugenol, trans-anethol or benzo(a)pyrene gave no, or weak, gene induction in absence of S9 fractions, and a strongly enhanced luciferase induction in presence of S9 proving their prohapten status. Haptens like DNCB or cinnamic aldehyde gave a reduced response in presence of S9. We then evaluated whether this metabolic activation assay might be implemented in a tiered screening strategy to screen negatives in the classical KeratinoSensTM assay to enhance sensitivity. To this aim all chemicals classified negative in the classical KeratinoSensTM assay were retested with this activation step. Among the 77 chemicals found as correct-nega-
tives, 74 were also negative in presence of metabolic activation, thus this counter-screen does only slightly reduce specificity. However, based on this comprehensive screening, we found that only a small fraction of the known skin sensitizers need ac-
tivation by the S9/P450 system, and thus the KeratinoSensTM-S9 assay may be useful for the in vitro evaluation of specific classes of potential prohaptens, rather than as a general screening approach. These results will be presented along with re-
results on the predictivity and reproducibility of the KeratinoSensTM assay as accumu-
lated during the prevailsation studies conducted for ECVAM.

1052 Toxicogenomic Characterization of Sensitizer and False-Positive Responses in the Local Lymph Node Assay (LLNA).

D. Adenuga1, I. Kimber2, R. Dearman2, M. Woolhiser1, M. Black1, R. S. Thomas1 and D. R. Boverh1. 1The Dow Chemical Company, Midland, MI; 2University of Manchester, Manchester, United Kingdom.

Recent publications have highlighted chemistries which yield false positive re-
 sponses in the LLNA when compared with guinea pig and human data. A toxicogenomic approach was applied to provide insight into the molecular and cellular mechanisms that may explain these differential responses. Auricular lymph node gene expression responses were evaluated in female CBA mice exposed to equipotent doses of 9 chemical sensitizers and 7 false positives per the standard LLNA dos-
ing regimen. Lymph nodes were analyzed for SHTJR incorporation on day 6 and gene expression responses on study days 4 and 6. Statistical analyses identified 779 and 473 differentially expressed genes (DEGs) between sensitizers and false posi-
tives on days 4 and 6. Class-based comparison of DEGs showed that the most en-
riched functional categories in the sensitizer-specific subsets were consistent with mechanisms involved in the acquisition of antigen-mediated skin sensitization. Key immune responses at the 4 day time point were restricted to genes involved in early T-cell development including pathways involved in IL2 regulation (IL2 and Egfr), Tbeta and the pre T-cell receptor alpha (Ptera). Day 6 responses were more consist-
tent with a mature T-cell response and included genes involved in the DC/T-cell maturation process such as Il21, Lg3 and Fxry. In contrast, false positives exhib-
ited a strong pro-inflammatory expression profile including markers for activated macrophages and neutrophils such as Cds1, Il12b, Mpo, Defa4 and class I steins. Expression of these genes in the absence of dermal irritation suggested these re-
sponses were not solely driven by skin irritation. These gene expression profiles sug-
gest a differential cellular recruitment to the lymph nodes following skin exposure to true sensitizers and false positives and provide a potential new endpoint that could be applied to address false positives and enhance the predictive value of the LLNA.

1053 Inductive Effects on Reactivity of the Contact Allergen Benzoquinone and Its Derivatives to Proteins.

W. Mlyniec1, J. Chipinda1, P. Seigel2 and R. Simoyi1. 1Chemistry, Portland State University, Portland, OR; 2Health Effects Laboratory Division, NIOSH, Morgantown, WV.

Benzoquinone (BQ) and substituted benzoquinones (SB) are used for dye and cos-
metics production. BQ is an electrophile known to covalently modify proteins via Michael Addition (MA) but the reactivity, reaction mechanistic domains and aller-
genicity of SB are unknown. Electron withdrawing and electron donating sub-
stituents on BQ were assessed for effects on BQ reactivity and allergenicity. Alternative potential protein binding mechanisms were explored. BQ binding to Cys34 on human serum albumin (HSA) was studied and for BQ and SB reactivity studiess, nitrobenzenethiol (NBT) was used as a model nucleophile. Hammert and Taft (HT) constants were used to evaluate the influence of these substituents on chemical reactivity. Both NBT and BQ binding studies and HT values demonstrated chlo-
rine SB to be more reactive than methyl and t-butyl SB. Production of semiquinone radicals from SB and characterization of SB-NBT adducts demonstrated that hap-
tenation may also occur via free radical mechanism which is pH dependent, and vinylic substitution mechanisms, in addition to the predominant MA. BQ and SB dermal allergenicity as evaluated in the murine local lymph node assay (LLNA) was consistent with that predicted by reactivity and HT data. These results demonstrate the effect of substituents on BQ reactivity and allergenicity while suggesting poten-
tial utility of chemical reactivity data and HT values for electrophilic allergen iden-
tification and potency ranking.

1054 Interaction of Para-Phenylenediamine with Human N-Acetyltransferases.

S. Schietza, D. Dierolf, J. Bonifas and B. Blümcke. Department of Environmental Toxidology, University Trier, Trier, Germany.

The contact allergen para-phenylenediamine (PPD) is known as a good substrate for N-acetyltransferase 1 (NAT1) but we also found that concentrations above 50 μM are accompanied by inhibition of NAT1 activity in human keratinocytes. Here, we investigated the substrate and inhibition characteristics of PPD on NAT enzymes. First we measured whether next to PPD and mono-acetylated PPD (MAPPD) the PPD oxidation product Bandrowski’s Base (BB) can also be acety-
lated. We therefore incubated PPD, MAPPD and BB with human recombinant NAT1 and NAT2 and found them to be good substrates for both enzymes.

NAT1 inhibition characteristic of PPD was further studied using the THP-1 cell line which served as model for antigen-presenting cells. Both PPD and MAPPD are N-acetylated by THP-1 and the acetylation is accompanied by NAT1 inhibition. Concentrations above 1 μM PPD clearly reduced enzyme activity already after 8h while 47% reduction was measured after 24h (200 μM). Independent of the sub-
strate-based enzyme inhibitors, certain compounds are known to oxidize the cat-
alytic cysteine or form adducts with NAT protein. Therefore we studied whether PPD, MAPPD and/or oxidized PPD including BB also interact with recombinant NAT protein itself in the absence of acetyl coenzyme A. All but MAPPD interact with the protein after 2h and the greatest inhibition was found for oxidized PPD (up to 50%). From these results we can conclude that the observed NAT inhibition may be caused by both substrate dependent and independent effects. NAT1 activ-
ity in PPD-treated THP-1 cells was completely restored after incubation in fresh culture medium for 24h, whereas inhibition caused by 24h treatment with MAPPD could be restored for only 10%.

In sum our data indicate that PPD and its oxidation products can inhibit NAT1 in two different ways. In addition we demonstrated that PPD and BB are acetylated by NAT1 and 2, suggesting that certain amounts of PPD and eventually formed BB inside the body may be detoxified by NAT1 in skin and additionally by NAT2 ex-
pressing organs.

1055 Pharmacodynamic Profiling of EGFR Inhibitors in HaCaT Cells.

Skin Rash is a serious adverse effect of EGFR inhibitors observed during anticancer therapy in the clinic and appears to be linked to inhibition of the target pathway. The EGFR inhibitors erlotinib and afatinib were investigated at increasing concen-
trations (0, 0.001, 0.01, 0.1 and 10 μM) in the human keratinocyte cell line

SOT 2013 ANNUAL MEETING 225
This project was supported by funding from the Long-Range Research Initiative immune-mediated chemical-induced hepatotoxicity. Co-culture of hepatocytes and represented by decreased ATP content and increased LDH leakage. This data sug-

1056 Cytokine-Induced Liver Hepatotoxicity of Trovafloxacin in Co-Culture of Hepatocytes and Kupffer Cells.
F. L. LeChene1, K. Rose2, K. Freeman2, S. S. Ferguson2 and R. P. Wituck2. 1The Hammer Institute for Health Sciences, Research Triangle Park, NC; 2Life Technologies, Durham, NC.

Immune-mediated chemical-induced hepatotoxicity, i.e. indirect hepatocellular toxicity resulting from immune cells activating liver inflammatory responses, is often overlooked as a potential mode of action due to unavailability of appropriate in vitro models. Kupffer cells are the largest population of resident macrophages in the liver and thus play a critical role in immune-mediated hepatotoxicity and liver injury. For this reason, we have established a co-culture system of rat primary hepatocytes and Kupffer cells that can be used to model chemical-induced immune re-

1057 Drugs Associated with Idiosyncratic Drug-Induced Liver Injury Synergize with Inflammatory Mediators to Produce Cytotoxicity in a Human Hepatoma Cell Line.
A. Maiuri1, R. Parkins1, P. E. Ganguly2 and R. Roth2.1,2Pharmacology and Toxicology, Michigan State University, East Lansing, MI; 2Center for Integrative Toxicology, Michigan State University, East Lansing, MI; 3College of Veterinary Medicine, Michigan State University, East Lansing, MI.

Idiosyncratic drug-induced liver injury (IDILI) typically occurs in a small fraction of patients and often results in removal of otherwise efficacious drugs from the pharmaceutical market. The mechanisms of IDILI are unknown, and animal models of IDILI are few. Several animal models have been developed that suggest that inflammation plays an important role in IDILI. Moreover, the inflammatory mediators tumor necrosis factor alpha (TNFα), interferon gamma (IFNγ), and neutrophil-derived elastase (EL) are essential to the pathogenesis of liver injury in these models. The goal of the present study was to determine if two non-steroidal anti-

1058 Serial Survival Liver Biopsies in Dogs and Monkeys.

The liver plays a key role in metabolism and excretion of endogenous compounds and xenobiotics and is an area of strong experimental focus. The liver may also be a target for efficacy (e.g. antiviral therapeutics) or toxicity. Animal models are critical for studying xenobiotic metabolism, biomarkers, and pharmacological/toxicological effects on the liver; however the ability to obtain adequate liver tissue samples for analyses in a survival model has been lacking. A surrogate matrix (e.g. blood, plasma, bile) is often used as an indirect measure of liver as its location within the body cavity makes it generally inaccessible for non-terminal sampling. In general, terminal sampling procedures have been needed when larger samples are required and survival procedures have typically been limited to a single collection per ani-

1059 Quantitative Relationship Between Intracellular Lithocholic Acid (LCA) and Toxicity in Rat Sandwich-Cultured Hepatocytes (SCH): Incorporation into a Mechanistic Model of Drug-Induced Liver Injury (DILI).
K. Yang1, J. L. Woolhead1, R. St. Claire1, P. B. Watkins2, S. Q. Siley2, B. A. Irwin2 and K. L. Breunig1. 1University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Hamner-UNC Institute for Drug Safety Sciences, Research Triangle Park, NC; 3Qualyst Transporter Solutions, Research Triangle Park, NC.

One proposed mechanism of DILI is inhibition of the bile salt export pump resulting in cellular accumulation of toxic bile acids (BAs). The purpose of this study was to establish the quantitative relationship between intracellular LCA concentrations and toxicity. This information is essential to link BA kinetics to toxicity in a BA transport inhibition model constructed within DILysim11,12, a mechanistic model of DILI. Day 7 rat SCH in 24-well plate were incubated with LCA (25–200μM) for 6, 12, and 24 hr. LCA toxicity was assessed by LDH release from damaged cells and intracellular ATP levels. Intracellular LCA/metabolites were measured by LC-

1060 Transformation of CO2 Evolution Assays into Multiwell Plate Format Assays to Assess Effects of Compounds on Substrate Oxidation in Rat Hepatoma H4IIIE Cells.

Perturbations of metabolic processes are involved in several pathologies including cardiac hypertrophy, hepatic vacuolation, and steatosis. Different substrates can be used to distinguish between electron transport chain, the citric acid cycle, β-oxidat-
and J. Studies were considered as the high dose for each molecule while low and middle doses were calculated from the ratios of the MTD. Several common upstream regulators of NAFLD, such as PPAR-α, were investigated in rat livers treated with two drugs. Sets of genes were detected to show a dose-response pattern from liver tissues treated with amiodarone and benzoindaron, respectively. We suspected that this alteration of genes may be important in the biological progression relating to the different liver injuries caused by the drug pair. Using these differentially expressed genes, biological pathways and networks were developed to categorize the correlation and interaction of each factor in relating to liver injuries and in differentiating hepatotoxicity induced by amiodarone and benzoindaron. The results of this study suggested that genomic profiles can be a good starting point in developing mechanism-based biomarkers for prediction and differentiation of liver injuries related to amiodarone benzoindaron in early stage of drug discovery and development.

1063 In Vitro Assessment of Drug Induced Liver Injury (DILI) Using a High Content Cellular Imaging System.

M. L. Wolfe1, S. Einhorn2, V. Ott3 and H. Ma1. 1 Cellular and Molecular Biology, MPR Research, Mattawan, MI; 2 Cellular Dynamics International, Madison, WI. Sponsor: T. Rogers.

Drug-induced liver injury (DILI) is a leading cause of drugs failing during clinical trials and being withdrawn from the market. In vivo safety testing in pre-clinical species is extremely time consuming. Hepatotoxicity is one of the major reasons leading to drug failure during clinical trials. Understanding the mode of injury and the molecular mechanism involved remains a challenge. In order to discover drug toxicity risk of a compound through the measurement of multiple toxicity biomarkers in individual cells. The compounds we investigated include a number of known hepatotoxic compounds (Ticlopidine, Troglitazone, Nadalidic acid, Mefenamic acid, Phenylbutazone and Aflatoxin B1) and non-hepatotoxic compounds (Aspirin, Fluoxetine and Melatonin). Each compound was tested at eight concentrations in triplicate. The DILI Assay Cartridge allows for the high sensitivity and specificity for predicting hepatotoxicity by simultaneously detecting five multiplexed cellular targets and properties associated with cell loss, cellular redox stress, and mitochondrial stress. The hepatotoxicity prediction using the multiparametric data generated for the test compounds demonstrates high specificity across the three hepatocyte models but varying sensitivity for each hepatocyte model system.

1064 Altered-Hepatic Catabolism of Branched Chain Amino Acids in Progressive Human Nonalcoholic Fatty Liver Disease.

A. D. Lake1, P. Novak1, P. Shipkova2, N. Aranibar2, D. Robertson3, M. D. Reily2, L. D. Lehman-McKeenam, B. R. Vaillancourt2 and N. J. Cherrington1. 1 Pharmacology & Toxicology, University of Arizona, Tucson, AZ; 2 Bristol-Myers Squibb Co., Princeton, NJ; 3 Institute of Plant Molecular Biology, Ceske Budjovice, Czech Republic.

Branching chain amino acids (BCAAs) and their catabolism have essential roles in metabolic homeostasis. BCAAs are capable of activating the mammalian target of rapamycin (mTOR) during states of over-nutrition resulting in an increased risk of insulin resistance and altered lipid homeostasis. Nonalcoholic fatty liver disease (NAFLD) is closely associated with features of the metabolic syndrome and over-nutrition. Approximately 30-40% of the United States population is afflicted with NAFLD while 5.7-17% is estimated to have severe nonalcoholic steatohepatitis (NASH). A two-hit model has been used to describe the pathological progression of NAFLD to steatosis and then NASH, although the exact mechanisms for disease progression are not known. The hypothesis of this study is that these two hit drive alterations in hepatic branched chain amino acid metabolism and catabolism while enhancing disease progression. Hepatocellular and metabolic data sets representing the entire spectrum of human NAFLD (healthy, steatosis, NASH Fatty, and NASH Not Fatty livers) were utilized to investigate the role of BCAAs in the mechanisms of NAFLD pathophysiology. An increased use of the BCAAs leucine (127% of normal), isoleucine (139%) and valine (147%) were observed in NASH samples. Increased BCAA catabolism through upregulated branched chain aminotransferase enzyme appears to drive increases of acylcarnitine products that include butyrylcarnitine (35% of normal) and laurylcarnitine (40% of normal). The hepatic overload of BCAAs also potentiates mTOR signaling thereby increasing metabolic dysfunction. Owing to these findings, the altered catabolism of BCAAs in NASH with important downstream signaling implications for lipotoxicity and insulin resistance in the progression of NAFLD.
Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in Western society representing a spectrum of liver disease ranging from simple steatosis to the more advanced nonalcoholic steatohepatitis (NASH). Experimental models of NASH include diet-induced models such as the methionine- and choline deficient (MCD) diet and genetically obese mice such as the lep-/leptin-deficient, ob/ob mice. Previous studies have demonstrated alterations in the expression and activity of multiple drug transporters in human NASH, but little information is known regarding the most appropriate animal models for predictive toxicology to extrapolate in vivo hepatic and renal drug disposition data to human NASH populations. The purpose of the current study was to determine which experimental NASH model best recapitulates human disease pathology as well as alterations in drug transporter expression. Both rat and mouse NASH models were utilized in this investigation and include: MCD diet, athogenic diet, ob/ob and db/db mice, and fa/fa rats. Histologic and pathological evaluations confirmed that the MCD and athogenic rats, MCD, ob/ob and db/db mice all developed NASH. In contrast, the fa/fa rats did not develop pathological NASH. Hepatic mRNA levels of drug transporters were lower than the rat and mouse MCD diet model and the ob/ob and db/db mouse models may be more useful preclinical models to determine the effect of NASH on drug disposition as well as determining extra-hepatic alterations in drug transporter expression.

Non-alcoholic fatty liver disease affects 30-40% of the United States population and can progress to non-alcoholic steatohepatitis (NASH) which is characterized by an accumulation of fat, oxidative stress, fibrosis and inflammation. It has been previously shown that NASH can have a significant effect on the disposition of many drugs and potentially contribute to the occurrence of adverse drug reactions. NASH-associated altered drug disposition has, in part, been linked to stress-induced alterations of the expression and function of hepatic transporters such as ABC2. ABC2 is located on the canalicular membrane and transports xenobiotic substrates into the bile for elimination from the body. By mechanisms that are not entirely understood, ABC2 has been shown to be internalized in rodent and human NASH livers, as well as in the in vitro conditions of acute oxidative stress and lipopolysaccharide exposure. Previous reports have suggested that the activation and cellular localization of radixin, protein phosphatase 1, phosphoinositide-3-kinase, protein kinase A, and protein kinase C (PKC) may be involved in the internalization of ABC2. The purpose of this study is to identify potential mechanisms for ABC2 internalization in NASH. Sprague-Dawley rats were fed a control methionine and choline supplemented diet or a methionine choline deficient diet (MCD) to model NASH. It was found that in NASH livers there was an increase in the membrane association of the PKC ε isoform compared to control livers, but not PKCθ or PKCζ, implicating PKC ε as a potential regulator of ABC2 internalization. Additionally, the cellular localization of radixin was not found to change in NASH livers. Further insight into the mechanisms behind functional perturbations of hepatic drug transporters such as ABC2 has implications for improved understanding and identification of targets for alleviating adverse drug reactions in clinical NASH.
was isolated from frozen samples, and library constructs for NGS were generated (TrueSeq Small RNA kit, Illumina). Bioinformatic was used to identify gene targets of deregulated miRNAs, and qPCR to validate expression of miRNA families and potential gene targets. Consistent with our previous report, miR200 family was induced by 28 days of treatment with PB at 1000 ppm, but not by 50 ppm. There was a dose-dependent reduction in the zeb1 and zeb2 transcription factors, with a known validated target of the miR200 family. The zeb1 and zeb2 transcription factors regulate the epithelial to mesenchymal transition, thus PB-mediated miR200 family induction appears to be a homeostatic response to protect the epithelial nature of hepatocytes. NGS permits a more detailed exploration of the response of the miRNAome to hepatotoxicants such as PB, thereby aiding an understanding of the underlying pathways.

1070 High-Content Imaging of Rat Hepatocytes Long-Term Cultures to Predict Specific Drug-Induced Liver Toxicity.

Primary rat hepatocytes were investigated for liver-specific functional changes after repetitive treatments with model liver toxicants at low concentrations for two weeks. Cells were cultured in the Collagen I/Matrigel™ sandwich configuration. High content imaging (HCI) was performed by using the Cellomics™ Arrayscan®. The liver-specific pathologies cholestasis/hyper-bilirubinemia, steatosis and phospholipidosis were investigated by means of fluorescence dyes. Mrp2-mediated canalicular transport, intraacellular accumulation of neutral lipids and phospholipids were assessed by carboxy-DCFDA, BODIPY or LipidTOX™ Red, respectively. Unspecific cytotoxicity was measured by ATP contents and LDH releases. Cyclosporin A (CsA), Amiodarone (AMD), Rosiglitazone (RGGZ), Chlorpromazine (CPZ), Troglitazone (TGZ), Metformin (MET), Fenofibrate (FFB), Ibuprofen (IBU), Acetaminophen (ACT), Valproic Acid (VPA) and EMD335823 (EMD) were evaluated at four different concentrations and at five time points (day 1, 3, 7, 10, 14). The results showed that inhibition of canalicular transport, induction of phospholipidosis and steatosis occurred after multiple treatments at clinical relevant times in absence cytotoxicity in the hepatocytes. CsA, CPZ and TGZ treatment caused time- and concentration-dependent inhibition of Mrp2-mediated transport, while AMD and CPZ induced dose-dependent accumulation of phospholipids. CsA was also associated with intracellular accumulation of lipids, whereas VPA did not induce steatosis. Taken together, the current data suggest that the current testing strategy has a high predictive value for compounds inducing hyper-bilirubinemia/cholestasis and phospholipidosis, but not for drug-induced steatosis. In addition, the present work illustrates that HCI is a sensitive and reproducible tool for the evaluations of specific cellular functions and that HCI can be applied in safety profiling of drug candidates. Study is part of the European FP7 PREDICT-IV consortium (grant no 202222).

1071 Gene Expression Profiling Identifies Molecular Mechanisms of Tamoxifen-Induced Hepatotoxicity in Mice.

Tamoxifen is an anti-estrogenic drug widely used for the treatment and prevention of estrogen receptor-positive breast cancer. However, despite the many beneficial properties of tamoxifen, its use has been associated with the induction of hepatic steatosis. The goal of this study was to investigate the underlying molecular mechanisms associated with tamoxifen-induced hepatotoxicity. Female and male WSB/EiJ mice were fed a diet containing 420 ppm tamoxifen for 12 weeks. The livers of tamoxifen-fed mice exhibited moderate pathological morphological changes, as evidenced by glycogen depletion, despite having preserved genotoxicity and non-genotoxic alterations. Specifically, the livers of tamoxifen-fed mice were characterized by extensive sex-independent accumulation of tamoxifen-DNA adducts and marked changes in the gene expression. To identify tamoxifen-responsive genes that were differentially expressed between the control and tamoxifen-exposed mice, a t-test, p < 0.01, coupled with a fold-change cut-off > 1.5 was applied. A total of 1245 and 2100 genes were found to be differentially expressed in the livers of tamoxifen-exposed female and male mice, respectively. Interestingly, 361 of the genes were differentially expressed in both female and male mice treated with tamoxifen. Most of these genes were associated with altered lipid metabolism, inflammation, cell death and proliferation, and development of liver fibrosis. These results demonstrate the importance of gene-expression profiling in identifying early hepatic molecular events associated with the chronic administration of tamoxifen.

1072 A 3D Co-Culture Model-Based Assay to Assess Liver Kupffer-Cell Activation and Functionality.

S. Shetty1, K. Adkins2, M. Roy3, I. Agarokova1, J. M. Kelm1 and S. Messner1. *1InSphero AG, Zurich, Switzerland; 2Drug-Safety R&D, Investigative Toxicology, Pfizer, Groton, MA. Sponsor: A. Wall.*

Adverse drug reactions in the liver are one of the major causes of attrition in drug development with both small and large molecules. Novel therapeutic modalities such as antibodies and other biologics can be taken up by non-parenchymal cells, such as phagocytic cells in the liver (mainly Kupffer cells) and can limit drug exposure and cause liver toxicity. Therefore, evaluating Kupffer-cell uptake can serve as an indirect screen for liver toxicity. However, due to lack of suitable organotypic in vitro models, Kupffer cell uptake has been difficult to study. Here, the use of primary heterotypic 3D rat liver microtissues for assessment of drug-induced Kupffer-cell activation is demonstrated. Morphological characterization of rat liver microtissues demonstrated the presence of ED1 and ED2-positive Kupffer cells within the hepatospheres. Electron-microscopy confirmed Layering of Kupffer cells between hepatocytes in the rat liver microtissues. Lipopolysaccharide (LPS) treatment of the rat liver microtissues resulted in increased uptake of acetylated LDL (ac-LDL), whereas incorporation of ac-LDL was reduced when the phagocytosis inhibitor gadolinium chloride was applied, indicating ac-LDL uptake by Kupffer cells is dependent on phagocytosis. An increase in IL-6 secretion was also observed at 48 and 120 hrs post-treatment with LPS, indicating Kupffer cell activation. Together these data demonstrate the suitability of heterotypic rat liver microtissues for assessing Kupffer cell activation and functionality by external stimuli, and highlight the potential of 3D rat liver models for evaluating liver toxicity.

1073 Organic Solute Transporter Osto-Ostβ as A Potential Therapeutic Target for the Metabolic Syndrome.

S. Gorman, C. Hammond, P. Hinkle and N. Ballatori. *Environmental Medicine, University of Rochester, Rochester, NY.*

The metabolic syndrome has increased in occurrence in recent decades, and as a result has become a major health concern. Environmental contaminants have been linked to this, as common toxics have been found to increase susceptibility to weight gain and/or insulin resistance, key features of the metabolic syndrome. This has resulted in a need for pharmaceuticals that lower fat accumulation and improve insulin sensitivity, and this study identifies a novel potential therapeutic target, the bile acid transporter Ostβ-Ostβ. Our laboratory has generated an Ostβ mouse in the C57Bl6 background, a strain susceptible to age-related weight gain. Interestingly, Ostβ mice have a significant reduction in bile acid pool size. The major purpose of bile acids is to emulsify dietary lipids in the small intestine and facilitate their absorption, but they have also recently been shown to function as signalling molecules that affect lipid and glucose homeostasis. This study aimed to explore the mechanisms of lipids and glucose homeostasis in Ostβ mice. A comparison of whole body and fat pad weights of Ostβ and wild type mice at 5 and 12 months of age revealed no differences in these parameters at 5 months, but at 12 months, Ostβ mice had accumulated less fat and had lower total body weights. Similarly, extraction of liver lipids indicated less accumulation of total lipid and cholesterol in hepatocytes with age. At both ages, increased steatosis and altered expression of genes involved in bile acid and lipid homeostasis were noted, and glucose and insulin tolerance tests also revealed significant improvement in glucose tolerance and insulin sensitivity at both ages. These studies indicate that Ostβ mice excrete more lipids in feces, are resistant to age related weight gain and have improved insulin sensitivity and glucose tolerance, suggesting that inhibitors of Ostβ may be useful in treating the metabolic syndrome, (NIH Grant DK067214, NIEHS Training Grant ES07026 and Center Grant ES01247).

1074 Predicitivity of Drug-Induced Liver Toxicity Using High-Content Screening in 384-Well Cultures of HepG2 Cells and Primary Human Hepatocytes.

Drug-induced liver injury (DILI) is a major cause of failed drug development and drug withdrawal. Predictive toxicology screening assays are therefore required for early detection of compounds causing DILI. In recent years, several investigators have reported several potentially promising in vitro approaches, it is unclear which cell systems and endpoints can provide the greatest predictive power. In this
study we used multiplexed high content screening, with automated fluorescence microscopy and image analysis, to assess the in vitro toxicity of 122 drugs associated with DILI in man and 22 drugs not reported to cause DILI. Studies were undertaken in HepG2 cells with and without rat S9 fraction and in cryopreserved primary human hepatocytes. Toxicity was determined at 4, 24 or 48 h. The parameters assessed were: cell proliferation (nuclei dye); apoptosis (anti-apoptotic caspase 3); cell cycle (anti-PCNA/anti-PHH3); reactive oxygen species generation (H2DDFDA dye); mitochondrial damage (TMRE dye); phospholipid and neutral lipid accumulation. All cell systems provided highly specific discrimination (>90%) between those that caused DILI and non-hepatotoxic drugs. The highest sensitivity was observed in HepG2 cells without S9, using the apoptotic (29%) and phospholipidosis (22%) endpoints. Addition of S9 did not increase the sensitivity of any of the parameters studied. In human hepatocytes, the 24 h H2DDFDA assay had a sensitivity of 20%, whereas the other endpoints had sensitivities of <11%. We conclude that toxicity studies in HepG2 cells enabled detection of compounds which may cause DILI in humans with high specificity but low sensitivity and that neither the addition of S9 nor the use of human primary hepatocytes provided improved predictivity.

1075 Studying Drug-Induced Cholestasis with a Novel Cellular Model Coexpressing Major Bile Salt Transporters in the Liver.

Drug induced cholestasis and hepatocellular injury are two major manifestations of drug induced liver disease (DILI). Research has shown such injuries are often attributed to inhibition of bile salt transporters in the liver. NTCP, OATP1B1, BSEP and MRP2 have been identified as the major transporters modulating hepatic clearance of bile salts and their conjugates. We recently demonstrated that canalicular excretion and intracellular retention of bile salts can be studied with a polarized MDCK cell model concomitantly expressing three major bile salt transporters in the liver, i.e., OATP1B1, NTCP, and BSEP. To evaluate the utility of this model in studying drug-induced cholestasis, we tested 20 drugs and their major metabolites that have been reported to cause cholestasis in the human. More than half of the drugs or their metabolites, including trtaglozone, benzamorone and bosentan, significantly inhibited B-A canalicular transport (canalicular excretion) of [3H]Taurocholate at clinically relevant concentrations, suggesting that blocking transporter mediated canalicular excretion of bile salts is a major mechanism of drug induced-cholestasis in vivo. Furthermore, a few drugs, such as Rifampicin, remarkably elevated intracellular concentration of Taurocholate (which has been suggested to lead to hepatocellular damage), suggesting that at high concentrations, these drugs are more likely to cause hepatocellular hepatitis than the others. Other agents, such as estradiol-17-beta-glucuronide, tamoxifen and pinazinamide, did not exhibit significant inhibitory effect on Taurocholate transporter under the test conditions, which suggests there may be other mechanisms involved.

In summary, our study demonstrates that the novel OATP1B1/NTCP/BSEP triple transporter expression model can be a useful economical tool for early-stage screening and for mechanistic study of compounds with cholestasis liability.

1076 Use of a Multiplexed Endpoint Assay Strategy to Assess Model Bioactivated Compounds in Sandwich-Cultured Hepatocytes.

K. Wille1, A. L. Nikles1, J. J. Cali1 and E. L. LeChaple1. 1The Hamner Institutes for Health Sciences, Research Triangle Park, NC; 2Promega Corporation, Madison, WI.

Sandwich-cultured rat hepatocytes (SCRH) represent a metabolically competent in vitro model for screening and identifying potentially hepatotoxic compounds that correlate well with in vivo results. In this study, we employ a novel strategy for multiplexing a broad complement of metabolic plate reader assays using SCRH to measure hepatotoxicity of model bioactivated compounds, such as acetylamphen (APAP). This approach yields a profile of early toxicity indicators that provides greater mechanistic insight from fewer experimental replicates. SCRH in 24- or 48-well plates were exposed to 8 concentrations of APAP in the presence or absence of S9. Non-hepatotoxic compounds showed drug-related increases of APAP activity, including glutathione synthesis (Promega Glutathione-Glo assay). The APAP microsomes were cotreated with LPS and TNF and 24 hr. TNF was detected in the culture medium of spheroids treated with LPS and TVX, but not with either agent alone, and no TNF was detected in cultured HepG2 cells treated similarly. Cytotoxicity, as assessed by decreases in intracellular ATP content, was evident only in spheroids treated with LPS and TVX. In contrast, treatment of either spheroids or HepG2 cells with TNF did not result in consistent cytotoxicity. Levofloxacin (LIVX) is in the same pharmacological class as TVX, but has had far less IDILI liability; interestingly, there was no cytotoxic interaction with LIVX and LPS or TVX. These results show that LPS-stimulated inflammatory mediator production and cytotoxicity occurred in 3D spheroid cultures containing cultured spheroids. These results support the idea that a 3D cellular model is important for early-stage screening to predict in vivo toxicity from the TVX-inflammation interaction, suggesting that spheroids may afford advantages in evaluating interactions between drugs and inflammatory mediators.

1077 Cytotoxic Interaction of Inflammagens with Trovafloxacin in Spheroic Cultures of Rat Liver Cells.

R. A. Roth1, J. W. C. Wilkej, K. L. Poulsen2, K. M. Begg1, J. Prezergen2, A. Mauser1, P. E. Ganev2 and J. McKern2. 1Pharmacology and Toxicology, Michigan State University, East Lansing, MI; 2CeeFox Inc., Kalamazoo, MI.

Idiosyncratic, drug-induced liver injury (IDILI) typically escapes detection in preclinical safety evaluation of drug candidates due to paucity of predictive models. Recent models have arisen in which liver injury occurs in rodents treated with trovafloxacin (TVX) or other IDILI-associated drugs and coexposed to an inflamagen such as bacterial lipopolysaccharide (LPS). The hepatocellular injury depends on tumor necrosis factor-alpha (TNF) and possibly other cytokines released by nonparenchymal cells (NPCs) and therefore cannot be reproduced in monocultures of hepatic parenchymal cells (HPCs). Accordingly, the cytotoxicity of TVX in the presence and absence of LPS was evaluated in 3-dimensional (3D) spheroid cultures (inSphero) containing equal numbers of HPCs and NPCs and compared to data obtained from HPCs in standard sandwich culture. Spheroids or standard HPC cultures were exposed to various concentrations of TVX (10-100 μM) alone or with LPS (10 μg/ml) or TNF (10 ng/ml) for 24 hr. TNF was detected in the culture medium of spheroids cotreated with LPS and TVX, but not with either agent alone, and no TNF was detected in cultured HPCs treated similarly. Cytotoxicity, as assessed by decreases in intracellular ATP content, was evident only in spheroids treated with LPS and TVX. In contrast, treatment of either spheroids or HPC cultures with TNF in the absence or presence of TVX did not result in consistent cytotoxicity. Levofloxacin (LIVX) is in the same pharmacological class as TVX, but has far less IDILI liability; interestingly, there was no cytotoxic interaction with LIVX and LPS or TNF. These results show that LPS-stimulated inflammatory mediator production and cytotoxicity occurred in 3D spheroid cultures containing LIVX treated with TVX. 2D-sandwich HPC cultures were less sensitive to cytotoxicity from the TVX-inflammation interaction, suggesting that spheroids may afford advantages in evaluating interactions between drugs and inflammatory mediators.

1078 Trovafloxacin Induces Cell Cycle Arrest and Sensitizes HepG2 Cells to TNF-Induced Cytotoxicity by an ATR-Dependent Mechanism.

K. M. Begg1, 2, K. Miyakawa1, 3, A. M. Scott2, P. E. Ganev1, 3 and R. A. Roth1, 2, 3. 1Pharmacology and Toxicology, Michigan State University, East Lansing, MI; 2Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI; 3Center for Integrative Toxicology, Michigan State University, East Lansing, MI.

Trovafloxacin (TVX) is an antibiotic associated with idiosyncratic hepatotoxicity in humans, though the mechanism for this toxicity is unknown. In mice, TVX is not hepatotoxic by itself but synergizes with tumor necrosis factor-alpha (TNF) to produce liver injury. Moreover, treatment with combinations of TVX and TNF were cytotoxic to HepG2 human hepatoma cells, whereas neither TVX nor TNF alone caused cytotoxicity. It was demonstrated previously that TVX is a weak inhibitor of eukaryotic topoisomerase-II alpha activity and inhibits HepG2 cell proliferation. These results led to the hypothesis that signaling mechanisms important in cell cycle regulation contribute to cytotoxicity from TVX/TNF interaction. In HepG2 cells treated with both TVX and TNF, activities of caspase 9 and 3 were increased starting 8 hr after treatment, which is a time before the onset of cell death. Cytologic evaluation revealed that cells treated with TVX or TVX/TNF were arrested in the prophase of mitosis compared to vehicle or TNF-treated cells, which appeared in all stages of the cell cycle. The PI3K-like kinases, ataxia telangiectasia mutated (ATM), ataxia telangiectasia and Rad3-related (ATR), and DNA protein kinase (DNAKAP), as well as the tumor suppressor protein p53, all play a role in regulating cell cycle. Pharmacologic inhibitors of ATM, DNAKAP, and p53 had no significant effect on the cytotoxicity caused by TVX/TNF treatment, whereas an inhibitor of ATR attenuated cytotoxicity. Taken together, these data suggest that involvement of caspase 9 and 3 and ATR in TVX/TNF-induced cytotoxicity of HepG2 cells and that ATR plays a role in this cell death response. (Supported by NIH grant R01DK061315.)
1079 MicroRNA Regulation of Alcoholic and Nonalcoholic Fatty Liver Disease.

S. Kondraganti1, T. K. Varma2, B. S. Kaphalia1 and G. Ansari1, 1Pathology, The University of Texas Medical Branch, Galveston, TX; 2Anesthesiology, The University of Texas Medical Branch, Galveston, TX.

Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are histologically similar diseases as both induce fatty liver (hepatosteatosis) through mechanisms not yet fully understood. MicroRNAs (miRNAs), small non-coding RNAs are involved in regulation of various biological processes and dysregulated microRNA expression is observed in various diseases including fatty liver. To understand the role of miRNAs in inducing hepatosteatosis, miRNAs were analysed in the livers of both ALD and NAFLD models. Male Fisher-344 rats were fed with or without 5% alcohol via Lieber-DeCarli diet for one, two or three months or L-a-aminoacid rodent diet with or without methionine-choline for one week. We observed differential expression of eleven miRNAs in both treatment models. Increased expression of miR-122 and miR-34a was observed in ethanol treated rat livers as time progressed while miR-122 expression decreased and no change in miR-34a expression was observed in rat livers fed with methionine-choline deficient (MCD) diet. Contrary, expression of miR-451 was increased in both ethanol fed rats with time as well as MCD diet fed rats. However, the increase in miR-451 expression was more pronounced in MCD diet fed rats. miR-122 is known to be involved in hepatic lipid metabolism and sterol synthesis, miR-34a is involved in lipid metabolism, cell cycle and apoptosis while miR-451 is involved in regulation of insulin dependent (glucocorticoid) pathway. Our miRNA expression data also supported the differential regulation of genes involved in lipid metabolism such as sterol regulatory element-binding protein (SREBP), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor alpha (PPAR-α), sirtuin-1 and acyl-CoA synthetase long-chain family member 1 (ACSL-1). In conclusion, our study shows that differential expression of miRNAs results in steatosis in both models but could be via different mechanisms.

1080 Characterization of HepaRG-EP Cells As a Surrogate for Primary Human Hepatocytes.

J. J. Call1, M. Sobol1, D. Ma1 and D. Steen2. 1Research, Promega Corporation, Madison, WI; 2Biopredic International, Overland Park, KS. Sponsor: T. Bis.

HepaRG-EP (EP) cells are a next generation version of HepaRG (HRG), a human hepatoma cell line with substantial similarity to primary human hepatocytes (HH). We characterized cryopreserved EP from Biopredic International to evaluate their suitability as a HH surrogate for in vitro toxicity and ADME studies, and for comparison to HRG (Biopredic). The DMSO content of the EP cryopreservation medium was low enough for compatibility with a no spin thaw/recovery protocol that yielded about 90% viable cells (HRG required DMSO removal). One cryopreserved vial of EP provided for two full confluent 96 well plates of cells, which exceeded the yield from typical commercially sourced vials of HH. EP cell viability was relatively constant over a period of 7 days in culture. Like HRG, EP established an adherent co-culture of hepatocytes and cholangiocytes but EP had a higher hepatocyte/cholangiocyte ratio. Consistent with this hepatocyte enrichment, EP also had higher activity for CYP1A2, 2-6D, 2B6 but similar CYP3A4 activity, and these activities were within the range typically observed in HH. The initial EP CYP1A2 activity remained elevated for the first 24 hours, but then declined to a lower yet still robust level that averaged about 25% of the initial activity over the next 6 days. As a marker of metabolic capacity, the sustained CYP3A4 activity suggests EP will provide a good model for acute or extended drug metabolism studies. Omeprazole, phenobarbital and rifampin respectively caused substantial inductions of CYP1A2, 2B6 and 3A4 activities with a more pronounced CYP1A2 response in EP compared to HRG. In common with HH, dose-dependent aflatoxin-B1 toxicity was observed with HRG and EP, indicating their competence for detecting metabolism-based toxicities. In summary, EP provides a convenient model for hepatotoxicity, metabolism and CYP induction studies with the reproducibility inherent to a cell line. For the procedures tested EP is a valuable HH surrogate with enhanced metabolic capacity and convenience over HRG.

1081 Use of a Multiparametric Assay on Isolated Mouse Liver Mitochondria to Predict Drug-Induced Liver Injury in Human.

A. Borgne-Sanchez1, M. Porceddu1, N. Buron1, C. Roussel1 and B. Fromenty2. 1Mitoligics Research Laboratory, Mitoligics SAS, Paris, France; 2INSERM U991, Faculté de Pharmacie, Reims, France. Sponsor: N. Claude.

Drug-induced liver injury (DILI) is difficult to predict using classical in vitro assays and regulatory animal studies leading to interruption of clinical trials or even to market withdrawal after commercialisation. Consequently, drug-induced mitochondrial dysfunction should be detected early, ideally during pre-clinical screening of potential candidates that could be used to mitigate drug-induced mitochondrial dysfunction which appears as a major mechanism of DILI. To achieve this detection, we have developed a dedicated high-throughput screening platform using isolated mouse liver mitochondria to measure several parameters related to mitochondrial function and integrity. Indeed, this multiparametric assay measures isolated mouse liver mitochondria: 1) mitochondrial membrane permeabilization (swelling), 2) transmembrane potential, 3) outer membrane permeabilization (cytochrome c release) and 4) oxygen consumption through respiratory chain complex 1 and complex II. A pool of 124 drugs was tested revealing a highly significant relationship between drug-induced mitochondrial toxicity and DILI occurrence in patients (P<0.001) with an excellent sensitivity (94 or 92% depending on cut-off) and a high positive predictive value (89 or 82%) [1]. Moreover, our study disclosed for the first time the identification of several drugs triggering mitochondrial toxicity. Investigation of drug-induced loss of mitochondrial integrity and function with this assay should be considered for integration into basic screening processes at each stage to select drug candidates with lower risk of DILI in human. This multiparametric assay is also a valuable tool for assessing the mitochondrial toxicity profile and investigating the mechanism of action of new compounds and marketed drugs.

1082 CAR Activation Increases Bile Flow, Excretion of Major Bile Acids, and Bile Acid Synthesis, As Well As Transport Genes in Mice.

A. L. Lickteig, J. L. Csanaky, M. Pratt-Hyatt and C. D. Klaassen, Internal Medicine (Division Gastroenterology), University of Kansas Medical Center, Kansas City, KS.

Activation of Constitutive Androstane Receptor (CAR) has been shown to protect against bile acid (BA)-induced liver injury. However, the effect of CAR activation on bile flow, BA profile, and BA synthesis and transport genes in liver is not well understood. Therefore, the purpose of the present study was to determine the effect of CAR activation on BA homeostasis. The CAR ligand 1,4-Bis-[3-(3,5- dichlorophenyl)-4-oxo] benzene (TCPOBOP) was administered intraperitoneally (3 mg/kg body weight) to male C57BL/6N mice 4 days after collection of serum, liver, and bile. BAs of serum and bile were quantified by UPLC-MS/MS. TCPOBOP induced a CAR-dependent increase in bile flow by 67%. TCPOBOP increased biliary excretion of two of the three quantitatively major bile acids in mice, TauriMCA (3.5-fold) and TauriMCA (80%), as well as the quantitatively minor bile acids TUDCA (38%) and TCDA (224%). Additionally, TCPOBOP increased biliary excretion of unconjugated bile acids by 74%. These increases in biliary excretion correlated with increased liver mRNA of the two major canicular efflux transporters Mrp2 (3.2-fold) and Bsep (2.4-fold). Interestingly, TCPOBOP induced BA synthesis genes Cyp7a1 (4.3-fold) and Cyp7a1 (110%). Also in livers of TCPOBOP-treated mice, the sinusoidal efflux transporters Mrp3 (17-fold) and Mrp4 (14-fold) were markedly increased. Surprisingly, there were no changes in serum concentrations of total BAs, taurine-conjugated BAs, unconjugated BAs, or primary BAs, but the serum secondary BAs were decreased 61%. In summary, while CAR activation has relatively minor effects on serum BA profile, CAR activation increases bile flow and biliary excretion of TauriMCA, TauriMCA and total unconjugated BAs. R01ES009649, R01DK081461, F32DK092069.

1083 Role of Aryl Hydrocarbon Receptor (AhR) in Maintaining Plasma Concentrations and Biliary Excretion of Bile Acids.

J. L. Csanaky, A. J. Lickteig, M. Pratt-Hyatt and C. D. Klaassen, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS.

Failure in regulation of bile acid (BA) homeostasis contributes to several liver diseases. It is generally accepted that hepatic FXR-SHP and intestinal Fgf15/19 regulate bile acid (BA) homeostasis. However, the contribution of other hepatic transcription factors to BA homeostasis is not clear. The adaptive role of the aryl hydrocarbon receptor (AhR) in protecting against BA related liver damage is unknown. The AhR may be critical for mediating an adaptive response that involves induction of genes responsible for the metabolism or transport of BAs. To study the role of the AhR in BA homeostasis, sera, livers, and bile of 12-week-old male wild-type and AhR-null mice were collected, and BA concentrations in serum and bile, as well as the mRNA expression of hepatic BA synthesis and transport genes were quantified. Surprisingly the lack of AhR increased serum total BAs (62-fold), taurine conjugated-BAs (52-fold), and unconjugated-BAs (113-fold). Similarly the biliary excretion of total BAs (2.3-fold), taurine conjugated-BAs (2.3-fold), and unconjugated-BAs (3.8-fold) increased in AhR-null mice compared with controls. In livers of...
AMPK is a key sensor and regulator of glucose, lipid, and energy metabolism throughout the body. Activation of AMPK improves metabolic abnormalities associated with metabolic diseases including obesity and type-2 diabetes. AMPK phosphorylation inhibits sterol regulatory element-binding protein-1 (SREBP-1) activity which plays an important role in lipid metabolism. In this study, we established in vitro screening methods for potential activators of AMPK from herbal extracts to develop the inhibitor of hepatic steatosis. First, the phosphorylation of AMPK and its substrate ACC-1 were screened using an in-cell western assay which is an immunocytochemical assay performed in 48 well-microplate format and then confirmed using Western blot in HepG2 cells. Oil Red O staining is performed to observe the accumulation of lipid droplets in cell and then tested the expression of genes related lipid synthesis and metabolism. When we screened over 50 herbal extracts, we found three extracts which were significantly increased the phosphorylation of AMPK and its substrate ACC-1 in a dose-dependent manner. They also reduced the palmitic acid induced lipid droplets accumulation determined by Oil Red O staining. Among them, one extract was selected and observed SREBP-1 transcriptional activity using a firefly luciferase reporter gene assay and SREBP-1 target genes expression using RT-PCR. In this study, we could identify the natural extracts for the development of AMPK activator for diabetes and the metabolic syndrome.

Oleanolic acid (OA) is a triterpenoid that exists widely in fruits and medicinal herbs. OA is effective in protecting against hepatotoxins. However, we recently found that whereas a low dose of OA is hepatoprotective, higher doses and long-term use of OA produce cholestasis. This study characterized OA-induced cholestatic liver injury. Adult C57BL/6 mice were given OA at doses of 0, 50, 100, 200, and 300 μmol/kg, sc (suspended in 2% Tween-80 saline) for 5 days, and cholestatic liver injury was observed at doses of 200 μmol/kg and above, as evidenced by increases in serum total bilirubin, serum activities of alanine aminotransferase and alkaline phosphatase, as well as by histopathology with feathering-like degeneration indicative of cholestasis. Serum bile acid (BA) concentrations were dramatically increased not only for unconjugated bile acids (CA, CDCA, DCA, α-MCA and β-MCA), but also for tauro conjugated bile acids (TCA, TCDCA, TDCDA, TUDCA, and Totor-MCA) as determined by UPLC-MS/MS. The mRNA of hepatic bile acid uptake transporter for unconjugated BAs Oatp1b2 and conjugated BAs Ntcp, as well as canicular exfluss transporter Bsep were decreased in a dose-dependent manner. OA decreased Oster but increased OSTβ. Hepatic uptake transporter Oatpal1, 1a4, and 2b1 were suppressed, while the exfluss transporters Abca1, Abt1, and Bcp were increased. OA decreased the mRNA of the nuclear receptors CAR, FXR, PPARα, and PPARγ, but had no effects on AHR and PXR. The mRNA of the BA biosynthesis limiting enzyme Cyp7a1 was decreased. Taken together, higher doses of OA produces cholestatic liver in mice and this effect appears to be associated with the alteration of liver transporters resulting in disruption of BA homestasis.

The diagnosis of drug-induced liver disease is an intriguing question often accompanied by insufficient clinical data and the difficulty in interpreting histopathology after exposure to toxins. This study investigated the histopathological changes induced by several different bioactivation-dependent hepatotoxins, such as acetaminophen (an analgesic; 500mg/Kg, ip), carbon tetrachloride (a potent hepatotoxin), dimethylfurosine (DMN; a potent carcinogen), doxorubicin (DOX; an antineoplastic agent), furasemic (FUR; a loop diuretic) and streptozotocin (STZ;
an inducer of hyperglycemia) to characterize most common and most uncommon pathological traits in order to hypothesize whether a subset of lesions can be used to diagnose toxicity profile of a particular toxin. Mice were administered CCl4 (1mL/Kg, po), DMN (50 mg/Kg, ip), DOX (60 mg/Kg, ip), Fur (500 mg/Kg, ip) and STZ (100 mg/Kg, ip 2 consecutive doses) and sacrificed 24-72 hours later. Blood was collected for serum chemistry and liver sections for histopathology. PAS or H&E stained liver sections were examined under a brightfield microscope to determine similarities concerning: sinusoidal dilation, centrilobular necrosis, excessive vacuolization, cells with apoptotic morphology, microvesicular steatosis, ballooning degeneration, pericentral or periportal or indiscriminate necrosis, glycogen depletion trend, inflammation, and formation of ground glass hepatocytes. Results indicated that all the toxins caused massive liver injury with limited overlapping profiles. The most common features were indiscriminate glycogen depletion and ballooning of hepatocytes. Results also indicated various other characteristic morphological changes such as macrovesicular steatosis, bridging necrosis, portal tract fibrosis and some unique but yet to be reported feature induced by DOX, i.e., prominent sinusoidal dilation. Thus, our study made a serious effort in differentiating and profiling the varied patho-morphological changes induced by diverse hepatotoxicants. [Suppo. by Dept. of PScs, AMS Coll of Pharm & HScs]

1091 Ethyl Tertiary-Butyl Ether Induces Oxidative Stress and 8-OHdG Formation in the Liver of F344 Rats via Activation of CAR, PXR and PPAR Nuclear Receptors.

A. Kakehashi1, A. Hagwara2, N. Imai2, Y. Doi1, K. Nagano1, M. Banton1, F. Nishimaki1, H. Wainbuchi1 and S. Fukushima1, 1Department Pathology, Okayama City University Graduate School of Medicine, Okayama, Japan; 2DIMS Institute of Medical Science, Ichinomiya, Japan; 1Nagano Toxicologic-Pathology Consulting, Kanagawa, Japan; 1Toxicology and Risk Assessment, LyondellBasell Corporate HSE, Houston, TX; 2Japan Petroleum Energy Center, Tokyo, Japan; 3Japan Biosassy Research Center, JISHA, Kanagawa, Japan. To elucidate the mode of action (MOA) of hepatomatogenicity in rats for non-genotoxic chemical ethyl tertiary-butyl ether (ETBE), male F344 rats were treated with ETBE at doses of 300 and 2000 mg/kg/day by gavage and 500 ppm pheno-barbital (PB) in diet for the comparison analysis for 1 and 2 weeks. Significant increases of hydroxyl radicals (DPPH) and P450 total content (P450) were observed in liver tissue in both 300, 2000 mg/kg/day ETBE and PB groups accompanied the accumulation of 8-isozymes CYP2B1/2, CYP3A1/2 and CYP2C6 in the cytoplasm of hepatocytes. Specific up-regulation of CYP2E1 and CYP1A1 was obvious in the high dose ETBE group. Conspicuous elevation of 8-hydroxydeoxyguanosine (8-OHdG) and apoptosis in the liver tissue observed in 2000 mg/kg/day ETBE and PB groups was associated with suppression of Ki-67-positive cell index, cyclin D1 mRNA expression and down-regulation of 8-OHdG repair enzyme, DNA glycosylase 1 (Ogg1) after 2 weeks of application. Results of QSTAR LC/MS/MS and IPA analyses indicated that upstream regulators of gene expression altered by ETBE included CAR, PXR and PPAR. High dose ETBE induced peroxisome proliferation in hepatocytes at week 2 detected by TEM. These results indicated that MOA of ETBE hepatomatogenicity in rats is due to induction of oxidative stress and 8-OHdG formation, subsequent cell cycle arrest and apoptosis, suggesting regenerative cell proliferation, predominantly induced by activation of CAR and PXR nuclear receptors by a mechanism similar to that of PB, and furthermore peroxisome proliferation by specific activation of PPAR. The MOA of ETBE hepatomatogenicity in rats is indicated to be not relevant to human.

1092 Expression Profiles of Hematopoietic Stem Cell, Endothelial Cell, and Myeloid Cell Antigens in Spontaneous and Chemically Induced Hemangiommas and Hemangiosarcomas in Mice.

S. Kakizuchi-Kiyona1,2, C. A. Torrie1, L. J. Arnold1, K. L. Pennington1, I. C. Cook2, D. Malarkey3 and S. M. Cohen3, 1Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE; 2Drug Safety Research & Development, Pfizer Inc., Groton, CT; 3Experimental Pathology Laboratories, Research Triangle Park, NC; 4National Toxicology Program, NIEHS, Research Triangle Park, NC. It is unclear whether the process of spontaneous and chemically induced hemangiommas (HA) and hemangiosarcoma (HS) formation in mice involves the transformation of differentiated endothelial cells (ECs) or recruitment of multipotent bone marrow-derived hematopoietic stem cells or endothelial progenitor cells (EPCs) which show some degree of endothelial differentiation. In the present study, immunohistochemical staining for hematopoietic stem cell markers (CD45 and CD34), EC markers [VEGF-R2, CD31, and Factor VIII-related antigen (FVIII RAg)], and a myeloid lineage marker (CD14) was used to assess the origin of HA and HS in mice and compare with results of canine and human EC tumors reported in previous literature. We showed that the staining for CD45, FVIII R Ag, and CD14 was negative in spontaneous and chemically induced HA and HS, whereas cells stained positive for CD34, VEGF-R2, and CD31 in these tumors. These results indicate that mouse HA and HS are composed of cells derived from EPCs expressing CD34, VEGF-R2, and CD31, but not FVIII R Ag. The lack of

1089 Cholesteryamine Liver Effects in Healthy Human Subjects.

R. Singhal1, A. H. Harrill1, F. Menguy-Vacheron2, Z. Jayyosi1, H. Benzerdjeb2 and P. Watkins1, 1Sanofi, Inc., Framingham, MA; 2Sanofi, Chilly-Mazarin, France; 3The Hammer Institute, Research Triangle Park, NC. Cholesteryamine is an orally administered, an ion exchange non-absorbable resin with a high affinity for biliary acids used as a cholesterol lowering agent as well as to accelerate clearance from the body of xenobiotics and to treat itching in patients with advanced cholestatic liver disease. This treatment has been associated with elevations in serum alanine aminotransferase (ALT), a sensitive biomarker of liver injury, but has never been associated with clinically important liver injury. A recent clinical trial in healthy adults receiving cholesteryamine provided an opportunity to use current serum biomarkers to investigate mechanisms underlying this phenomenon. After a double blind, placebo controlled study cholesteryamine (8 gm/tid X 11 days) was administered to healthy adult subjects to accelerate clearance of the new drug candidate given in the active arm. During the treatment, eleven subjects previously treated with placebo experienced elevations in serum ALT levels exceeding three-fold the upper limit of normal (>3x ULN; mean 6.9 fold; range 3-28 fold). Serum samples from those subjects were assayed for additional mechanistic biomarkers. Compared to predose baseline values, there was a significant (p<0.05) 13-fold mean increase in mtR-122 confirming a liver source for the serum ALT. Mean serum levels of GLDH (8-fold), cytokeratin 18, and HMGB1 (1.7 fold) were elevated supporting ongoing necrosis. Caspase-cleaved cytokeratin 18 was also increased (1.7 fold) supporting apoptosis. Serum ALT elevations observed during cholesteryamine treatment reflect both hepatocellular necrosis and apoptosis. The wealth of clinical data available with cholesteryamine indicate that this effect on the liver is self-limited and not a significant safety concern.
Disruption of circadian rhythm is associated with increased risk of breast cancer incidence and malignancy. DNA damage responsive and repair pathways are controlled by and also modulate the molecular circadian oscillators. In order to investigate the role of the circadian clock on the susceptibility to mammary tumor, we compared circadian expression patterns of genes involved in circadian rhythm and DNA damage responsive and repair pathways in mammary glands of susceptible Fisher 344 (F344) and resistant Copenhagen (COP) rats. The mammary tissue of susceptible F344 rats showed a 4-h delay in the rhythmic expression of clock genes (e.g., Per2 and Bmal1) and much higher amplitude on Rev-ErbA expression compared to resistant COP rats. In mammary glands of COP rats, 45% of DNA responsive and repair genes (total 82 genes) were up-regulated in a circadian pattern with peak expression levels over 2 folds at Zeitgeber Time (ZT)12 (lights off) compared to ZT0 (lights on). By contrast, in the susceptible F344 rats, 30.5% of these genes showed a circadian pattern of down-regulation, with only one gene being up-regulated in the active phase. Exposure to a single carcinogenic dose of N-nitrosourea (N-methyl-N-nitrosourea) (NNU) disrupted the rhythmic expression of Per2 in mammary gland of F344 rats after two days and further abolished after 30 days. In contrast, NNU induced a significant increase in the rhythmic expression of Per2 gene in the COP rats in 2 days, and the increase was sustained for at least 30 days post exposure. Moreover, the ratios of NAD+/NADH and NAD+-dependent Sirt1 activity; were also significantly increased in NNU-treated COP, but were dramatically decreased in treated F344 rats. Taken together, we speculate that the genetic block to tumor progression in COP is, at least in part, due to the ability to maintain or enhance circadian pathway. Furthermore, we also found that the ratio of NAD+/NADH and NAD+-dependent Sirt1 activity, were also significantly increased in NMU-treated COP, but were dramatically decreased in NMU-treated resistant COP. Taken together, we speculate that the genetic block to tumor progression in COP is, at least in part, due to the ability to maintain or enhance circadian pathway.

Methylation of the cytosine C-5 position in the promoter region of tumor suppressor genes is an important mechanism of carcinogenesis in addition to gene mutation. However, the actual mechanisms of de novo methylation are not clear. We have reported the formation of 5-methylcytosine from cytosine in vitro, with methyl radicals generated from methionine sulfoxide (MetO). To confirm this reaction in vivo, MetO was added to the drinking water and administered to non-alcoholic steatohepatitis (NASH) mice, which develop hepatocysts by endogenous oxidative stress. All of the animal experimental procedures were performed in accordance with the guidelines for the care and use of laboratory animals at Univ. Occup. Environ. Health. Histopathological examinations revealed incidences of hepatocellular carcinoma of 16.7% and 90% in the 0% and 3% MetO groups, respectively. Higher DNA methylation was detected in the promoter region of the p16 gene isolated from the livers of MetO-treated mice. The higher incidence of liver tumors may be due to the methyl radical-mediated formation of 5-methylcytosine in DNA, which triggers epigenetic changes.

Differential Activation of Mitogenic Signaling through the Insulin Receptor or the Insulin-Like Growth Factor 1 Receptor of Various Clinical Relevant Insulin Analogues.

B. ter Braak1, K. Siezen1, B. van der Water1 and J. van der Laan1, 2, Toxicology, LACDR, Leiden University, Leiden, Netherlands; 3National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands; 4Medicines Evaluation Board (MEB), Utrecht, Netherlands.

Several epidemiological studies suggest an association between the use of some insulin analogues and cancer incidence in diabetic patients. Different insulin analogues might affect the affinity and activation of these analogues towards the insulin receptor (INSR) and the insulin-like growth factor 1 receptor (IGF1R). A switch towards higher IGF1R affinity is likely to emphasize cellular signalling pathways that promote mitogenesis rather than glucose metabolism.

To investigate this hypothesis we have performed in vitro exposure experiments with several insulin analogues including glargine, AspB10, aspart, glulisine, lispro and detemir. To separate INSR versus IGF1R activation motifs of these analogues, we used human breast cancer cell lines (MCF7) that either ectopically express the INSR (A or B isoform) in conjunction with a stable knockdown of the IGF1R, or the IGF1R in conjunction with a stable knockdown of the INSR. Using Western blots we measured the activation of INSR and IGF1R as well as downstream mitogenic signalling cascades including ERK and Akt. We revealed differences in activation patterns between the different insulin analogues tested. While insulin primarily acted through the INSR, the mitogenic signalling activation pattern of the long-acting insulin glargine was highly similar to that of known mitogenic compounds like insulin AspB10 or insulin like growth factor 1 (IGF1). This switch towards higher IGF1R affinity is likely to emphasize cellular signalling pathways that promote mitogenesis rather than glucose metabolism.

Several studies have suggested that a possible role of free radical-mediated DNA methylation in the development of liver tumors may be due to the methyl radical-mediated formation of 5-methylcytosine in DNA, which triggers epigenetic changes.

1097 Deletion of Hepatocyte Nuclear Factor 4 Alpha Promotes Diethylnitrosamine-Induced Hepatocellular Carcinoma.

1Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS; 2Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS.

HNF4α is known as the master regulator of hepatocyte differentiation. However, role of HNF4α in regulation of hepatocyte proliferation is not known. We investigated role of HNF4α in regulation of hepatocyte proliferation using a novel ta-moxifen-inducible hepatocyte specific HNF4α knockdown mouse model. Hepatocyte specific deletion of HNF4α in adult mice resulted in increased hepatocyte proliferation with a significant increase in liver/body weight ratio. RNA sequencing-mediated global gene expression analysis revealed that a significant number of the 500+ up-regulated genes are associated with cell proliferation and cancer. Further, a combined bioinformatics analysis of ChIP-sequencing and RNA-sequencing-mediated global gene expression analysis revealed that a significant number of up-regulated genes are putative HNF4α targets. IPA-mediated functional analysis revealed the most significantly activated gene network after HNF4α deletion is regulated by c-Myc. To determine role of HNF4α in pathogenesis of HCC, we performed the classic initiation-promotion experiment using diethylnitrosamine (DEN). Deletion of HNF4α resulted in extensive promotion of DEN-induced hepatic tumors. HNF4α deletion resulted in 4-fold higher hepatic tumors, which were highly proliferative and less differentiated. Further, the HCC observed in HNF4α deleted mice exhibited significant up regulation of c-Myc and its target genes. These data indicate that HNF4α inhibits hepatocyte proliferation, is a potential tumor suppressor in the liver and plays a critical role in chemical carcinogenesis.

1098 EGCG Elicits Stage-Specific Sensitivity in a Novel Prostate Cancer Progression Model.

M. A. Moses1, W. A. Rieck2 and T. A. Gaywesick3. 1Department of Pathology, University of Rochester, Rochester, NY; 2Department of Urology, University of Wisconsin-Madison, Madison, WI; 3Department of Environmental Medicine, University of Rochester, Rochester, NY.

Epigallocatechin gallate (EGCG), a major tea catechin, has been shown to have protective effects in a mouse model of PRCA, however, the relevance to human PRCA and the mechanism of action are less understood. We made the novel discovery that EGCG is a heat shock protein 90 (hsp90) inhibitor. Therefore, we utilized non-tumorigenic, tumorigenic, and metastatic PRCA cells from a human PRCA progression model to test the hypothesis that malignant cells are more sensitive to EGCG in a stage-specific manner and that sensitivity is related to the ability of EGCG to act as a hsp90 inhibitor. Treatment of cells with EGCG (25-50µM) in vitro decreased the viability and proliferation, and induced apoptosis selectively in PRCA cells compared to non-tumorigenic cells. EGCG also led to a decrease in the motility of tumorigenic PRCA cells, as analyzed by scratch assay, at the same concentrations tested. Moreover, when tumorigenic or metastatic cells were grown in vivo, mice supplemented with 0.06% EGCG in drinking water had significantly smaller tumors than those of the untreated group. To elucidate the mechanism of EGCG sensitivity, we performed affinity chromatography with EGCG-Sepharose. Binding assays revealed that hsp90 from metastatic cells had a higher affinity for EGCG than non-tumorigenic cells. Furthermore, EGCG disrupted hsp90 complex formation, as analyzed by Native PAGE, leading to an accumulation of dimeric hsp90, and promoted the degradation of hsp90-client proteins such as HER2, p-Akt, and Raf1 in metastatic cells at concentrations that affected viability. These data suggest that EGCG may be an efficacious small molecule for the treatment of PRCA because it selectively targets PRCA cells and inhibits a molecular chaperone involved in many pro-cancer signaling cascades. Future studies will test if analogs of EGCG may be more stable/available, and therefore more potent, hsp90 inhibitors, for the treatment of PRCA. Funded by NIH Grant AT006366.

1099 Fluopyram: Mechanistic Investigations to Elucidate the Moa for Thyroid Tumor Formation in the Mouse.

D. Rouquier1, O. Blank1, H. Tinwell1, P. Maliver1, F. Schorsch1, S. Wason1, D. Goett2 and R. Bar1. 1Bayer CropScience, Sophia Antipolis, France; 2Bayer CropScience, Research Triangle Park, NC.

Fluopyram, a broad spectrum fungicide, caused an increased incidence of thyroid follicular cell (TFC) adenomas in males at the highest dose evaluated (750 ppm equating to 105 mg/kg/d) in the mouse oncogenicity study. Mechanistic studies were conducted in the male mouse to characterize the mode of action (MoA) for the thyroid tumor formation and to determine if thresholds exist for each key event. The proposed MoA consists of an initial effect on the liver by activating the constitutive androstane (CAR) and pregnane X (PXR) nuclear receptors causing increased elimination of thyroid hormones followed by an increased secretion of thyroid stimulating hormone (TSH). This change in TSH secretion results in an increase of TFC proliferation which leads to hyperplasia and eventually adenomas after chronic exposure. CAR/PXR nuclear receptors were shown to be activated from as early as 3 days of treatment as indicated by increased activity of specific PXR and CAR promoters (PROD and 19BROD respectively). Furthermore, evidence of increased T4 metabolism was provided by the induction of phase II enzymes known to preferentially use T4 as a substrate. Additional support for the proposed Moa was given by an increase of Tsh transcripts in the pituitary gland. Finally, increased TFC proliferation (BrDU incorporation) was observed after 28 days of treatment. In these dose response studies, clear thresholds were established for liver enzyme activities, T4 and TSH changes and TFC proliferation. Furthermore, each early change was shown to be reversible following fluopyram withdrawal. In conclusion, these studies indicate that fluopyram is a threshold carcinogen and the resultant increased incidence of TFC adenoma in the male mouse is mediated by CAR/PXR activation, with subsequent TFC proliferation. Since liver mediated thyroid toxicity has been reported to be rodent specific, it is unlikely that fluopyram would induce thyroid changes and tumors in humans.
primarily upon >10-fold more LH receptors per cell in rats vs. humans. This difference in sensitivity is supported by the >10,000-fold difference between the incidence of human LCT vs. the rat. Overall, the weight-of-evidence for pronamide-induced rat LCT supports a threshold-response (i.e., nonlinear) approach for risk assessment due to the lack of genotoxicity, absence of direct endocrine effects, clear NOAEL for the LCT response (200 ppm), and an adequate margin of exposure for an effect in a uniquely sensitive animal model.

1102 Hepatic Nongenotoxic Carcinogenic-Induced Temporal Changes in the Hepatic miRNAome.
K. Chen1, 2, W. Jayne2, R. Currie2, C. Koufaris3 and N. L. Gooderham4.
1Biomolecular Medicine, Imperial College London, London, United Kingdom; 2Safety Assessment, Syngenta, Jealotts Hill, United Kingdom.

Non-genotoxic carcinogens are capable of inducing carcinogenesis via means other than direct modification of DNA structure. While there are many tests readily available for detecting genotoxic substances, methods for detecting and screening non-genotoxic chemical carcinogens are limited. Here we explore the potential of miRNA dysregulation as an indicator of non-genotoxic carcinogens by assessing the temporal-dependent changes in the miRNAome of Fisher rats. Ten chemical compounds, including Phenobarbital (PB, 1000ppm), Chloroacetic Acid (ChaAc, 1250ppm), Diethylylthylphosphate (DEHP, 1200ppm), Monuron (Mon, 1500ppm), Methapyrilene Hydrochloride (MP HCI, 250ppm), 2-Aminoacetylfluorenone (genotoxic, 2-AAF, 40ppm), cinnamon antranilate (CA, 300,000ppm), Diethlyxyadipate (DEHA, 25,000ppm), Benzo(b)phenone (BP, 1250ppm) and Dithiethylthiorea (DETU, 250ppm), were fed in the diet to Fisher rats for a period of up to three months and liver samples were harvested at 7, 28 and 90 days. The total RNA was purified and analysed with Agilent Rat miRNA Microarrays Kit (Release 16.0). The expression of multiple hepatic miRNAs was found to be altered in response to chemical treatment in a temporally-dependent manner. Chemicals with a similar mode of action (e.g. DEHP and DEHA) induced similar responses on the hepatic miRNAome, confirmed by hierarchical clustering analysis qPCR. In the case of DEHA and DEHA, miR-101 family and miR-212 were transiently elevated (at least 3 fold) at 7 days of treatment. In contrast MiR-200 family expression was unaffected at 7 days but was significantly induced at 90 days of treatment. MiR-101 family and miR-212 family are predicted to regulate MAPK3 pathway and target myc gene in the p53 feedback pathway, whereas the miR-200 family are involved in regulating the epithelial-mesenchymal transition and metastasis. These data suggest that miRNAs are potential biomarkers of non-genotoxic hepatocarcinogenesis and understanding the consequences of miRNA dysregulation aids the understanding of the mechanisms of carcinogenesis.

1103 Dietary Carcinogen PhIP Induces Early DNA Damage and p53 Pathway Activation in CYP1A1-Humanized Transgenic Mice.
J. Chen1, 2, G. Li1, H. Wang2, A. Liu2 and C. S. Yang2.
1Joint Graduate Program in Toxicology, UMDNJ-Rutgers University, Piscataway, NJ; 2Department of Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ.

2-Amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) is a dietary carcinogen and the most abundant heterocyclic amine generated from high temperature cooking of meat and fish. PhIP is activated via N2-hydroxylation to a proximate carcinogen primarily by cytochrome IA2, CYP1A1-humanized (hCYP1A1) mice, which replaced the murine Cyp1a1 and Cyp1a2 with human CYP1A1 and CYP1A2, mimic human metabolism of PhIP. Previous study in our lab demonstrated that in hCYP1A1 mice, a single oral administration of PhIP induces high-grade prostatic intraepithelial neoplasia, mainly in the dorsal-lateral glands (DLGs). Because murine DLGs correspond to the human prostate peripheral zone, the most common site of prostate cancer. PhIP-induced carcinogenesis in hCYP1A1 mice is a relevant mouse model for studying early stage prostate carcinogenesis. Herein, we investigated the early cellular and molecular events induced by PhIP in the dorsal-lateral prostate of hCYP1A1 mice. Using immunohistochemistry, we detected strong positive staining of 8-Oxo-2'-deoxyguanosine as well as γ-H2AX in the DLGs on Days 1 and 3 after PhIP treatment, suggesting DNA damage and DNA strand breaks. Through gene expression profiling analysis and RT-qPCR, we found changes in expression of numerous p53-associated genes, including p21 and cyclin D1, indicating p53 activation and likely cell cycle arrest in PhIP-treated hCYP1A1 mice. Similar gene alterations were not observed in the PhIP-treated wild-type C57BL/6j mice. Altogether, these results suggest PhIP-induced DNA damage causing activation of the p53 pathways that may be involved in the early stage of carcinogenesis in the prostate. (Supported by NIEHS training grant ST53ES007148-25 and NIH grant RO1CA133021 as well as shared facilities funded by CA72720 and ES05022).

1104 Reexamination of Initiator Dose in Ultra-Short-Term Carcinogenicity Study in RASH2 Mice.
1Testing department, Central Institute for Experimental Animals, Kawasaki, Japan; 2DDM Institute of Medical Science, Inc., Ichinomiya, Japan; 3Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.

We have established an ultra-short-term carcinogenicity study in which the target organ was the skin, one of the common targets in rash2 mice. Although we previously reported that the suitable dose of 7,12-dimethylbenz(a)anthracene (DMBA) as an initiator was 50 mg at SOT 2010, several tumors were induced in DMBA treated groups without promotion, suggesting the dose of DMBA as an initiator was too high. In this study, we reexamined the suitable dose of DMBA as an initiator. Several compounds were applied to shaved dorsal skin of female rash2 mice one week after 12.5 or 25 μg DMBA application: oleic acid diethanolamine conjugate (OADC, 30 mg/kg, 7 times/week) or benzethonium chloride (BC, 1.5 mg/kg, 5 times/week), known to have no promoting effect, 99.5 % ethanol (7 times/week) or anhydrous ethanol (5 times/week) as vehicles, or benzo[c]phenylperoxide (BPO, 20 mg/head, 5 times/week) as a positive tumor promoter. Applied skin was studied histopathologically at eight weeks after DMBA application. Although no tumors were induced in OADC, BC or vehicle treated groups, skin tumors were induced at five weeks after DMBA application in BPO treated groups, and the incidence of skin tumors reached 100 % by seven weeks after DMBA application. The number of skin tumors, which were diagnosed as hyperplasia and/or papilloma, at necropsy were 29.2 and 35.6 in 12.5 μg and 25 μg DMBA treated groups, respectively. Therefore, we concluded that 12.5 μg DMBA was suitable to initiate the skin of rash2 mice in an ultra-short-term skin carcinogenicity study.

1105 Modulation of Cocarcinogenic Effect of Aflatoxin B1 and Fumonisin B1 in a Short-Term Bioassay by Uniform Particle Size NovaSil Clay.
1University of Georgia, Athens, GA; 2Texas A&M University, College Station, TX; 3Medical Research Council, Tygerberg, South Africa; 4USDA ARS, Athens, GA.

Co-contamination of AFB1 and FB1 in corn-based food and feed is a health concern for their combinatorial toxic effects as well as potential co-carcinogenic effect. Uniform particle size NovaSil (USP) clay has been used as an enterosorbent to reduce AFB1 and FB1 exposure in animals and humans. In this study male F344 rats (150g) were randomly divided into five groups: negative control group, AFB1+FB1 group, AFB1+FB1-low USP (0.25%) group, AFB1+FB1-high USP (0.5%) group, and positive control group treated with diethylnitrosamine and 2-acetylaminofluorene. All treated animals were sacrificed after their last exposure. Liver were dissected and processed with regular H&E staining for examination of histological alterations. Liver tissue slides were also immunohistochemically stained for examination of formation of placental form glutathione S transferase positive (GST-P+) foci. No detectable lesions were found in the negative control group, while the positive control group showed significant high rates of dysplasia (262 ± 29), proliferic foci (53 ± 16), and nodules (15 ± 10), as well as high rate of GST-P positive liver foci (58 ± 11), which demonstrates the success of the experiments. Co-exposure to AFB1 and FB1 induced comparable rate of dysplasia (258 ± 40) to the positive control group and a higher rate of apoptosis (26 ± 8) than the positive control group (4 ± 4). USP in both low and high groups significantly inhibited formation of preneoleison in liver: For dysplasia, reduction of 46% (140 ± 29) and 56% (115 ± 20); for apoptosis, reduction of 42% (15 ± 4) and 57% (11 ± 4); for proliferic foci, reduction of 74% and 94%; for GST-P positive foci numbers, areas, and mean diameter of reduction of 83% and 93% and 94% and 31% and 53% were found, respectively. These results demonstrate significant modulation of USP on reducing potential co-carcinogenic effect in this short-term bioassay.

1106 Validation of Cocarcinogenic Effects of Aflatoxin B1 and Fumonisin B1 in a Short-Term Bioassay.
1University of Georgia, Athens, GA; 2Texas A&M University, College Station, TX; 3Medical Research Council, Tygerberg, South Africa; 4USDA ARS, Athens, GA.

A short-term animal assay using Aflatoxin B1 (AFB1) as the initiator and fumonisin B1 (FB1) as the promoter demonstrated dramatic increase in formation of placental form glutathione S transferase positive (GST-P+) foci in rat liver. In this

P.C. Zeidler-Endely, T. G. Meighan, A. Endely, L. A. Battelli, M. L. Kashon, M. Keane and J. M. Antonini, HELD, NIOSH, Morgantown, WV.

Epidemiology studies show that occupational exposure to metal-rich welding particulate matter (PM) increases lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased cancer risk. PM derived from stainless steel (SS) welding practices, in particular, contains carcinogenic metals such as hexavalent chromium and nickel. Previously, we found that PM derived from gas metal arc (GMA) welding of SS caused a borderline increase in lung tumor incidence and a significant, chronic immune response in the lungs of mice. Thus, we hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity. In this study, the capacity of GMA-SS welding PM to promote lung tumors was evaluated using a 2-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Age and weight-matched male mice (n=26-29/group) were treated either with the initiator 3-methylcholanthrene (MCA; 10 μg/gi/p) or vehicle (corn oil; CO) followed by weekly pharyngeal aspirations of GMA-SS (540 or 680 μg) or PBS. Lung tumors were enumerated at 30 weeks following initiation with MCA. Body weights were recorded at 2-week intervals and no effect of treatment was found. MCA initiation followed by GMA-SS exposure promoted lung tumor multiplicity in both the lower dose (12.0 ± 1.5 tumors/mouse; p=0.0001) and high dose (14.0 ± 1.8 tumors/mouse; p=0.0001) groups significantly above that of MCA/PBS (4.77 ± 0.7 tumors/mouse). Not only was this highly significant for the average total number per mouse, multiplicity was also increased (p<0.0004) across all live individual lung regions of GMA-SS-exposed mice. No treatment effects were found in the corn oil groups at 30 weeks and also, as expected, tumor incidence was greater than 93% in the MCA-treated groups which verified tumorigenicity. In conclusion, GMA-SS feeding is a lung tumor promoter in vivo. These novel findings implicate that susceptible individuals may be at greater risk for lung cancer development after exposure to welding PM.

1108 Induction of 1, 3-Dichloropropene Rat Liver Tumors through a Nongenotoxic Mode of Action.

S. C. Gehren, R. Billington, Z. Wang, P. J. Klein and J. E. Klaujup, Dow AgroSciences LLC, Indianapolis, IN; Dow AgroSciences LLC, Abingdon, United Kingdom; Indiana University Bloomington, IN.

1,3-Dichloropropene (1,3-D) is a soil fumigant used for control of parasitic nematodes. It was previously shown that dietary exposure to 1,3-D was associated with an increased incidence of benign hepatocellular adenomas in male rats in one of two rat cancer studies. In in vivo genotoxicity studies, 1,3-D was shown consistently to be non-mutagenic in studies where physiologic levels of glutathione and glutathione S-transferases were present and genotoxic stabilizers were not present, thus supporting liver tumorigenesis through a non-genotoxic mode of action (MoA). The present study was undertaken to investigate the hypothesis that 1,3-D induces rat liver tumors by acting as a tumor promoter in the liver carcinogenesis process. To assess genotoxic potential, 1,3-D treatment was administered directly to Fischer 344 rats. Fischer 344 rats were treated by gavage with 25 mg/kg/day 1,3-D or 80 mg/kg/day phenobarbital (PB) for either 30 or 60 days, or for 30 days followed by 30 days recovery. Staining for the placental form of glutathione S-transferase (GSTP) was conducted post-exposure as a phenotypic marker of preneoplastic foci. While having no effect on GSTP positive foci, 1,3-D significantly enhanced the number and size of GSTP negative lesions at 30 and 60 days. Importantly, after 30 days recovery, the number and size of GSTP negative lesions in 1,3-D treated animals returned to control levels thus demonstrating 1,3-D promotion of foci and not tumor initiation. Also supportive of tumor promotion, the hepatocyte labeling index (Ki-67) in GSTP negative foci was increased in 1,3-D treated rats at 30 and 60 days and returned to control levels after 30 days recovery. PB, a well recognized non-genotoxic rodent liver carcinogen, produced an expected reversible increase in number and size of the GSTP positive lesions. The results presented are consistent with 1,3-D inducing liver carcinogenesis through a non-genotoxic MoA by induction of reversible proliferation of non-GSTP staining local populations of hepatocytes.

1109 Effects of Long-Term Administration of the Tissue-Selective Estrogen Receptor Modulator Bazedoxifene on Survival and Tumor Formation in Rats.

D. J. Wright, R. Perry, C. A. Thompson, N. J. Earnhardt, S. Bailey, B. Komm, D. R. Minck and M. A. Cukierski, Drug Safety, Pfizer, Groton, CT; Abbot Laboratories, Abbott Park, IL; Pharmokinetics, Dynamics, and Metabolism, Pfizer, La Jolla, CA; Medical Affairs, Pfizer, Collegeville, PA; Division of Metabolism and Endocrinology, US FDA, Silver Spring, MD.

Bazedoxifene acetate (BZA) is a selective estrogen receptor modulator that is approved in a number of countries for the prevention and/or treatment of osteoporosis in postmenopausal women. To assess for carcinogenic potential, BZA was administered ad libitum in the diet to male and female rats for 2 years. BZA resulted in a reduction and a delayed onset in total tumor burden in both male and female rats. Survival rates were increased due to decreased pituitary (males and females) and mammary tumors (females) and decreased body weight gain in BZA-treated animals compared to controls. BZA caused an increased incidence of benign ovarian tumors and renal tubular tumors (males). Results from separate studies suggested that BZA caused an increase in LH, which stimulated formation and persistence of ovarian cysts, which eventually progressed into benign ovarian granulosa cell tumors. The reduction in pituitary and mammary gland tumors were attributed to BZA-related antagonism of endogenous estrogens at the estrogen receptors. The greater increase in renal tumor incidence in male rats given BZA was associated with the increased survival and increased time for development of late onset tumors. These findings are consistent with a non-genotoxic mechanism, unique to male rats, that involves test article-induced corticomedullary mineralization, renal tubular injury, and exacerbation of naturally occurring chronic progressive nephropathy in aged male rats that leads to proliferative changes and tumor formation. In conclusion, BZA elicited agonistic or antagonistic effects in a tissue-selective manner which was generally consistent with expression and/or activity of estrogen receptors in those tissues.

PS 1110 Resveratrol Exposure Reduces Benzo(a)pyrene-DNA Adduct Concentrations in ApcMin Mouse Model of Colon Cancer.

A. C. Huderson, P. V. Rekhadevi, M. S. Niaz, S. E. Adunyah and A. Ramesh, Biochemistry & Cancer Biology, Meharry Medical College, Nashville, TN.

Colon cancer is the third leading cause of cancer cases and related deaths as per the statistics provided by the American Cancer Society. Exposure to toxicants such as benzo(a)pyrene (BP) is one of the contributing factors to the development of sporadic colon cancer. Our studies have shown a decrease in the size, and number of adenomas in the colon of mice exposed to BaP and resveratrol (RVT), compared to BaP exposure alone. We have also shown that RVT exposure caused a decrease in the expression and activity of CYP1A1/1B1 enzymes and BaP metabolite concentrations both in liver and colon. Since DNA damage is one of the key events in carcinogenesis, the objective of this study was to investigate whether RVT exposure simultaneously or prior to BaP treatment alters BaP-DNA adduct concentrations in ApcMin mouse. The treatment consisted of BaP only administration (in peanut oil) at a dose of 100 μg/kg bw via oral gavage over a 60 day period (group I); BaP (100 μg/kg bw) co-administered with RVT (in 10% ethanol + 90% deionized water) at a dose of 45 μg/kg bw (group II); RVT administered for 1 week prior to BaP dosing (group III). Post exposure, DNA was isolated from colon and liver samples, and analyzed for BaP-DNA adducts by the 32P-Postlabeling method using a four-directional TLC system. The adduct concentrations showed a trend that mirrored the concentrations of BaP metabolites in the organs studied with low concentrations in RVT-treated mice compared to BaP-treated mice. Between the two RVT-treatment strategies, concurrent administration of RVT appeared to affect the BaP bioactivation compared to RVT treatment prior to BaP exposure as reflected by the low adduct concentrations in the former group III compared to groups I & II. Overall, our results suggest that RVT provides a preventive effect against BaP-induced colon cancer progression in ApcMin mice (funded by NIH grants 1F31ES019432-01A1, 5R01CA142845-02, 5T32HL007735-12, and 5R25GM059994-11).
1111 Triclosan Promotes the Development of Hepatocellular Carcinoma in Mice.

M. Yuch, V. Jiang and R. H. Tukey, Laboratory of Environmental Toxicology, Departments of Chemistry & Biochemistry and Pharmacology, University of California San Diego, La Jolla, CA.

Triclosan (TCS), a chlorophenol, is used in a large number of personal care products as an antibacterial agent. TCS has endocrine disruption properties, has been detected in microgram per liter levels in various water ways in the US, and is considered to be a major environmental contaminant in aquatic ecosystems. Daily exposure to TCS has resulted in its detection in humans with studies showing its presence in plasma, breast milk, and urine. Studies have increasingly linked TCS to a range of health and environmental effects; however, there are no mechanism-based studies that directly address TCS exposure to negative health effects in humans. Using wild type and Car-/- mice, TCS has been shown to effectively induce hepatic CyP2b10 in a CAR-dependent manner. However, transient transfection experiments revealed that TCS is not a direct CAR agonist but behaves as a phenobarbital-like inducer that indirectly activates CAR and facilitates its translocation to the nucleus. Using the chemical procarcinogen diethylstilbestrol (DEN) to initiate tumorigenic episodes in mice, TCS exposure through drinking water promotes the development of hepatocellular carcinoma (HCC). The development and promotion of HCC by TCS compared to DEN-only treated mice proceeds in a CAR-dependent fashion. This finding stands in contrast to CAR-dependent tumor induction with the liver tumor promoter phenobarbital. HCC tumors produced by DEN-TCS exposure lead to a number of changes in the liver including histological alteration in hepatocytes, increases in liver-to-body weights, elevated levels of α-fetoprotein, and enhanced levels of tumor-promoting cytokines IL-6 and TNFα. In addition, tumor-bearing livers significantly alter the expression profile for genes associated with drug metabolism. The identification of TCS as a liver tumor promoter may be significant because of its abundance and long term use in consumer products and its propensity for rapid absorption into the systemic circulation. (Supported by USPHS grant ES010357)

1112 Kupffer Cells Modulate Wyeth-14, 643 and Phenobarbital-Induced Hepatocyte Proliferation in Naïve and Diethylnitrosamine (DEN)-Initiated Mice.

T. Peat, Z. Wang, S. Zhou and I. E. Klaunig, Indiana University, Bloomington, IN.

Kupffer cells (KC) play an important role in liver homeostasis. Upon activation, KC release inflammatory and growth regulatory mediators that have been linked to acute and chronic liver responses including hepatic cancer. Wyeth 14,643 (WY) and Phenobarbital (PB) are non DNA reactive hepatic carcinogens in rodents. The present study was conducted to investigate the role of KC in liver cell proliferation in naïve and focal lesion containing mice. In our initial study, KCs in male C3H mice were depleted using liposome encapsulated clodronate (Lip-cld, 0.1 ml/10 g, i.p.). LPS, a known KC activator, was used as a positive control (1 mg/kg, ip). Additionally, tumor-bearing livers significantly alter the expression profile for genes associated with drug metabolism. The identification of TCS as a liver tumor promoter may be significant because of its abundance and long term use in consumer products and its propensity for rapid absorption into the systemic circulation. (Supported by USPHS grant ES010357)

1113 Bioassay-Directed Fractionation of Diesel and Biodiesel Emissions.

E. Murtha1, 2, S. H. Warren1, C. King1, W. P. Linak1, D. G. Nash1, 3, I. Gelmon1 and D. M. DeMarini1. 1US EPA, Research Triangle Park, Durham, NC; 2University of North Carolina at Chapel Hill, Chapel Hill, NC; 3ORISE, Oak Ridge, TN.

Biofuels are being developed as alternatives to petroleum-derived products, but published research is contradictory regarding the mutagenic activity of such emissions relative to those from petroleum diesel. We performed bioassay-directed fractionation and analyzed the polycyclic aromatic hydrocarbon (PAH) levels of particles generated using petroleum diesel (B0) and those from soy-based biodiesel where the soy accounted for 20, 50 or 100% of the fuel (B20, B50, B100) from a Yanmar L70 diesel engine. We also evaluated a composite sample of diesel-exhaust particles (C-DEP) generated from petroleum diesel with a 30-kW 4-cylinder Deutz BF4M1008 diesel engine connected to an air compressor. The biodiesel and C-DEP particles were extracted with dichloromethane (DCM), and the percentage of extractable organic material of these complex environmental mixtures were determined. The extracts were then solvent exchanged into dimethyl sulfoxide and evaluated for mutagenicity in various Salmonella strains +/-S9. We calculated the mutagenic emission factors (revertants/mgjugule, rev/MJ) from data from strain TA100 +/- S9, which responds to PAH-type mutagenicity. These mutagenic emission factors for the biodiesels were 3X less (B20), 6X less (B50), and 8X less (B100) that of petroleum diesel (B0). The whole extract of C-DEP (petroleum diesel) was sequentially fractionated with solvents of increasing polarity, and >50% of the mass eluted in fraction 1; this fraction was not mutagenic. The 2nd fraction had 60% of the TA98-59 activity, indicative of nitroarenes. We conclude that under these experimental conditions, emissions from biodiesel were less mutagenic than those from petroleum diesel, and based on the fractionation of the C-DEP, most of the activity is associated with PAHs. (Abstract does not necessarily reflect the views or policies of the U.S. EPA.)

L. T. Barrett1, X. Zhang1, L. Richardson1, 2, M. Fang1, 2 and H. Zarth3, 2, 3, 1Environmental and Occupational Medicine, Robert Wood Johnson Medical School, UMDNJ, Piscataway, NJ; 2Environmental and Occupational Health Sciences Institute, Robert Wood Johnson Medical School, Piscataway, NJ; 3Environmental and Occupational Health Sciences, Robert Wood Johnson Medical School, Seattle, WA.

CBF-G-box binding factor-A is a member of the heterogenous nuclear ribonucleoprotein (hnRNPs) family of RNA-binding proteins involved in a wide variety of cellular functions, including transcriptional regulation. We showed that CBF-A (hnRNP A/B) regulates the expression of the Ha-ras oncogene by binding to enhancer elements (ets-like) in the promoter region. Deregulated expression of CBF-A isoforms is associated with mammary carcinogenesis in NMu-tREATED rats. CBF-A is a regulator of epithelial-mesenchymal transition (EMT), an important process in the cancer progression. To evaluate the role of CBF-A, we generated knock-out mice. Behavioral evaluation in the elevated plus maze showed that CBF-A-null mice spent -300% more time in the open arms of the maze compared to the wild-type, suggesting that loss of CBF-A results in a low-anxiety behavioral phenotype. This behavioral abnormality may be related to the role of CBF-A in regulating the expression of vasopressin in the brain. To further study the role of CBF-A in tumorigenesis, we exposed wild-type mice, as well as CBF-A null and heterozygous mice to UVB (20% of the maximum dose of the mutagen DNA-alkylation agent ENU (100 μg/ml at 9-10 weeks of age). While administration of ENU decreased the survival rate in all genotypes compared to vehicle control mice, CBF-A null mice had a decreased survival rate and tumor-free survival rate compared to the wild-type. Taken in concert, these data suggest that CBF-A plays an important role in maintaining both normal growth control and behavior.

1115 Inhibition of Hepatocyte Nuclear Factor 1 and 4 Alpha (HNF1α and HNF4α) as a Mechanism of Arsenic Carcinogenesis.

A. Hernandez1, 2, A. Pastore2 and R. Marcos1, 2, 1Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain; 2CIBER-ESP, ISCIII, Madrid, Spain. Sponsor: A. Sampayo-Reyes.

Inorganic arsenic (i-As) is a naturally occurring toxic metalloid affecting millions of people worldwide. It is known to be carcinogenic, liver being a potential target, and related to the prevalence of diabetes in arseniasis-endemic areas. Hepatocyte nuclear factor 1 and 4 alpha (HNF1α and HNF4α) are key members of a transcriptional network essential for normal liver architecture. Changes in HNF1α and HNF4α expression are clearly associated with the development of liver malignancies and diabetes in humans. In this work, hepatic HepG2 cells and Golden Syrian hamsters were exposed to sub-toxic, environmentally relevant doses of sodium arsenite (SA; up to 10 μM in vitro, 15 mg/L in vivo) in order to evaluate whether arsenic is able to compromise the expression of hepatocyte nuclear factors (HNFs). Also, liver histo pathological examination was carried out and several markers of hepatocyte dys-
ferentiation and glucose metabolism status were determined as a measure of i-As-induced hepatocarcinogenesis. The first key event is activation of the CAR signaling pathway, which is often measured via the empirically observable biomarker of Cyp2b10 induction (transcript, protein, and/or enzyme activity). The agrochemicals promamide (herbicide) and nitrapyrin (nitrification inhibitor) inhibited hepato-cellular tumors in mice as a result of high-dose, long-term dietary administration. Subsequent MoA studies for each chemical were consistent with a role for CAR activation in the mouse liver tumorigenesis. With both chemicals significant increases in Cyp2b10 transcript as well as protein were observed; however, there was no associated change in the activity of the enzyme as measured by PROD. To investigate the role for suicide inhibition in this paradoxical finding, in *in vitro* experiments were conducted on phenobarbital (PB)-induced microsomes. These microsomes were treated with PB (negative control), curcumin (positive control), nitrapyrin, or pronamide. In this system, nitrapyrin and pronamide inhibited PROD activity in a dose-dependent manner and up to 97% and 56% at 500 μM, respectively. While PB had no effect on PROD activity, curcumin had a dose-related inhibition of Cyp2b-mediated PROD activity of up to 63% at 40 μM. These results indicate that the two agrochemicals and their metabolites irreversibly inhibited Cyp2b10-mediated PROD activity and elucidate the apparent inconsistency between protein levels and enzyme activity of treated livers while supporting the CAR-mediated MoA for liver tumorigenesis. Further, these data indicate that measurement of transcript levels as biomarkers for CAR activation is more appropriate than traditional enzyme activity (e.g., PROD) measurements.

1116 Carcinogenicity of Diesel (DEE) and Gasoline Engine Exhausts (GEE)

Recently, an IARC Monographs Working Group (WG) reevaluated the carcino- genic hazards to humans of DEE and GEE. DEE was classified as “carcinogenic to humans” (Group 1) and GEE as “possibly carcinogenic to humans” (Group 2B). A US study in non-metal miners included a cohort analysis and a nested case-control analysis adjusted for tobacco smoking. Both showed positive trends in lung cancer risk with increasing exposure, with a 2-3-fold increased risk in the highest categories of cumulative or average exposure. A 40% increased risk for lung cancer was observed in U.S. railroad workers exposed to DEE. Indirect adjustment for smoking and a more accurate exposure assessment strengthened the validity of the results. A large cohort study reported a 15–40% increased lung cancer risk in US truck drivers and dockworkers with exposure to DEE, with a significant trend of increasing risks with longer duration of employment, adjusted for tobacco smoking. Findings in other occupational groups and case-control studies including various occupations with similar exposures supported the WG’s conclusion of “sufficient evidence” in humans for the carcinogenicity of DEE. The WG concluded that there was “sufficient evidence” in experimental animals for the carcinogenicity of whole DEE, DEE particles, and extracts of the particles, which also induced, in vitro and in vivo, various forms of DNA damage. Positive genotoxicity biomarkers of exposure and effect were also observed in humans exposed to DEE. The WG concluded that there is “strong evidence” for the ability of whole DEE to induce cancer in humans through genotoxicity. GEE and cancer risk was investigated in only a few epidemiological studies and, because of the difficulty to separate the effect of DEE and GEE, evidence for carcinogenicity was evaluated as “inadequate”. Organic extracts of GEE condensates induced a cancer in rats, GEE condensate and effect were also observed in humans exposed to DEE. The WG concluded that there was “sufficient evidence” in experimental animals for the carcinogenicity of whole DEE, DEE particles, and extracts of the particles, which also induced, in vitro and in vivo, various forms of DNA damage. Positive genotoxicity biomarkers of exposure and effect were also observed in GEE condensates as well as in humans exposed to GEE.

1117 Suicide Inhibition is Responsible for the Paradoxical Absence of CYP2B10 Enzyme Activity in Mouse Liver following Nitrapyrin- or Pronamide-Induced CAR Activation.

M. J. LeBaron, H. L. Kan, M. R. Schisler, S. Papinetti, D. L. Eisenbrand, and B. Collapodi. *The Dow Chemical Company, Midland, MI; Dow AgroSciences, Indianapolis, IN.*

Establishing a model of action (MoA) for a toxicological finding requires the identification of key events (both causal and associative) that progress to the apical point of interest. In the case of constitutive androstane receptor (CAR)-mediated rodent hepatocarcinogenesis, the first key event is activation of the CAR signaling pathway, which is often measured via the empirically observable biomarker of Cyp2b10 induction (transcript, protein, and/or enzyme activity). The agrochemicals promamide (herbicide) and nitrapyrin (nitrification inhibitor) inhibited hepatocellular tumors in mice as a result of high-dose, long-term dietary administration. Subsequent MoA studies for each chemical were consistent with a role for CAR activation in the mouse liver tumorigenesis. With both chemicals significant increases in Cyp2b10 transcript as well as protein were observed; however, there was no associated change in the activity of the enzyme as measured by PROD. To investigate the role for suicide inhibition in this paradoxical finding, *in vitro* experiments were conducted on phenobarbital (PB)-induced microsomes. These microsomes were treated with PB (negative control), curcumin (positive control), nitrapyrin, or pronamide. In this system, nitrapyrin and pronamide inhibited PROD activity in a dose-related manner and up to 97% and 56% at 500 μM, respectively. While PB had no effect on PROD activity, curcumin had a dose-related inhibition of Cyp2b-mediated PROD activity of up to 63% at 40 μM. These results indicate that the two agrochemicals and their metabolites irreversibly inhibited Cyp2b10-mediated PROD activity and elucidate the apparent inconsistency between protein levels and enzyme activity of treated livers while supporting the CAR-mediated MoA for liver tumorigenesis. Further, these data indicate that measurement of transcript levels as biomarkers for CAR activation is more appropriate than traditional enzyme activity (e.g., PROD) measurements.

1118 Structure-Dependent Effect of Diindolylmethane Derivatives on Inactivation of the Oncogenic NR4A1/NR4A2 Receptor in Colon Cancer Cells.

X. Li1, S. Lee1 and S. H. Salafczyk1,2,3. *College of Medicine, Texas A&M Health Science Center, College Station, TX; *Institute of Biosciences & Technology, Texas A&M Health Science Center, College Station, TX; *Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX.*

The nuclear receptor 4A (NR4A) subfamily members TR3 (NR4A1) and Nur1 (NR4A2) have been investigated in this laboratory as novel drug targets for clinical treatment of pancreatic cancer. Inactivating of these oncogenic transcription factors by analogs derived from the chemopreventive phytochemical diindolylmethane (DIM) exhibit promising in vitro and in vivo chemotherapeutic effects. Knockdown of NR4A1 and NR4A2 by RNA interference in colon cancer cells decreased cell proliferation, induced apoptosis and inhibited colon cancer cell invasion. Using NR4A4-responsive promoter elements (monomer-binding NBR and dimer-binding NurRE) linked to a luciferase reporter gene, we investigated the structure-dependent activity of over forty 1,1-bis(3-indolyl)-1-(substituted phenyl)methane (DIM-C-Ph) and 1,1-bis(3-indolyl)-1-(heteroaromatic)methane (DIM-C-heteroaromatic) analogs as inactivators of NR4A1, NR4A2 or both receptors. In colon cancer cells we identified DIM-C-Ph analogs containing para-hydroxy, chloro, methyl, or trifluoromethoxy groups that inactivated NR4A1 and the 3-pyridine analog (DIM-C-Py-3) inactivated NR4A2-mediated transactivation. In contrast, several other p-substituted phenyl analogs containing fluoro, iodo or cyano groups were potent inactivators of both receptors. The mechanisms of NR4A inactivation by C-DIMs were investigated and the possible role of site-specific phosphorylation was determined using several protein kinase inhibitors including LY294002, PD98059 and SP600125. The results show that in RKO colon cancer cells transfected with NBR-luciferase construct and treated with DIM-C-PhCN, NR4A inactivation was inhibited by PD98059. These results indicate that the chemotherapeutic properties of C-DIMs are outcomes of NR4A inactivation and the NR4A1/NR4A2-dependent pathways and role of kinases are currently being investigated.

1119 Evaluation of microRNAs in Blood for Detection of Chemical-Induced Carcinogenesis.

T. Chen1, F. Meng1, J. Yan1 and K. L. Thompson1. *National Center for Toxicological Research, US FDA, Jefferson, AR; Center for Drug Evaluation and Research, US FDA, Silver Spring, MD.*

MicroRNAs (miRNAs) are emerging as a valuable tool in toxicological applications due to their role in regulation of gene expression in different biological pathways. Multiple studies have revealed that miRNAs are present and relatively stable in clinically accessible biofluids such as blood. miRNAs in biofluids may provide a non-invasive way of detecting chemical carcinogenicity. In this study, we evaluated whether microRNA profiling and individual miRNAs in mouse blood can predict carcinogenesis induced by N-butyl-N-(2-fluorobenzyl)nitrosamine (ENU). Male B6C3F1 mice were treated with either a single dose of 140 mg/kg ENU or vehicle alone. Blood was collected on post-treatment days (PTDs) 1, 2, 3, 7, 14, 28, and 42. Profiling of total miRNAs in the blood showed that a number of miRNAs associated with carcinogenesis were altered by the ENU treatment. The temporal alteration of one of these miRNAs, miR-34a, a tumor suppressor, by ENU was characterized further. The level of miR-34a expression was significantly increased by ENU as early as PTD 1, reached a maximum level of about 10-fold over controls at PTD 7, and then decreased to control levels at PTD 42. Serum levels of miR-34a were also examined to assess the contribution of blood cells to miR-34a levels in whole blood. The results suggest that miRNAs have potential use as early sensitive circulating biomarkers of carcinogenic exposure.

1120 Hemodynamic Changes, Arrhythmias, and Sudden Death in Dogs following Repeated Dosing of AKT/pp70S6K Inhibitor.

E. Blasi1, P. Harris1, M. Engelwall1, S. Ralston1 and L. Burns Naas1,2. *Drug Safety, Pfizer, San Diego, CA; *Drug Safety, Amben, Thousand Oaks, CA; *Drug Safety, Abbott, Abbott Park, IL; **Drug Safety, Gilead, San Francisco, CA.*

PF-0476340 (PF) is an inhibitor of AKT & pp70S6K. Target organs in GLP repeat dose studies in dogs included eye, GI, liver, testes. In addition, unexpected deaths were observed. In a 10d dose range-finding study (3, 10, 30 mpk/d), mor-
tality occurred in 1/4 male dogs at 30 mpk/d on d4 with no preceding signs. Similar observations were noted on d2 & d6 in a long-term chronic study in 2/5 male dogs at 20 mpk/d. In a SP study in telemetered male dogs (n=4), 30 & 15 mpk caused a significant increase in BP & dp/dt. Peak effect & duration were not related to expected exposure profile. An early study was conducted to investigate if the unexplained deaths were related to CV events as there was no evidence of direct cardiac toxicity in those animals. Conscious, unrestrained telemetered male dogs (n=4) were treated with VH or 20 mpk/d PF-04176340 continuously for 5d. Serum drug concentrations, glucose, insulin, troponin, clin chem, & electrolytes were measured predose & 5h postdose daily. Clinical signs were assessed by visual monitoring. PF produced transient cardiac arrhythmias (isolated PVC, polymorphic tachyarrhythmias) on d2 (Dog 3) & d3 (Dog 2) after postdose, and were associated with significant changes in IVP & dramatic drops in BP, and spontaneously resolved. Arrhythmias repeated multiple times on the days they were observed but were not on any other day. Arrhythmias were prolonged in Dog 3. Arrhythmic events did not appear to be correlated with plasma drug levels. During arrhythmias, dogs were observed to be sleeping. Remaining telemetry data were consistent with the prior SP study. Treatment with PF also produced marked increases in glucose & insulin. No changes were noted in troponin, clinical chemistry, or electrolytes. It was concluded that the cardiovascular events observed in Dog 3 may explain the mortality in the repeat dose studies since without spontaneous resolution, prolonged arrhythmias may instigate a fatal decrease in cardiac output.

1121 The Role of Endothelial Cell-Specific Nitric Oxide Synthase in Causing Drug-Induced Vascular Injury.
G. A. Tobi1, D. G. Goodwin1, C. González1, J. Zhang1, L. Xu1, S. Stewart1, A. Knapton1, M. P. Lawton2, B. E. Enerston3 and J. L. Weaver1, 1Division of Drug Safety Research, US FDA, Silver Spring, MD, 2Drug Safety Research and Development, Pfizer, Inc., Groton, CT.

The finding of drug-induced vascular injury (DIVI) in preclinical toxicity studies is a major cause of attrition in the development of many classes of drugs. In previous studies with the phosphodiesterase-4 inhibitor, CI-1044, we found the elevation of serum Nitric Oxide (NO) levels through endothelial cell-specific Nitric Oxide Synthase (eNOS) was critical for producing mesenteric vascular lesions in a rat model of DIVI. Furthermore, phosphorylation of key regulatory amino acids in eNOS such as S615, S1177, and S633 was significantly altered in response to CI-1044. The aim of the current study was to examine if other classes of drugs would produce similar lesions and whether these effects are mediated through eNOS activity. We examined the effect of a phosphodiesterase-3 inhibitor (SK&F 95654), a vasopressor (midodrine), and a vasodilator (nicorandil), in causing mesenteric vascular lesions in the rat. We also used SIN-1 or L-NNAME to determine if levels of NO production, as measured by serum nitrate levels, correlated with vascular lesions. The combination of SK&F 95654 and SIN-1 led to a 2-fold increase in serum nitrate and vascular injury over controls, while SK&F 95654 in combination with L-NNAME caused a complete inhibition of vascular injury, with a three-fold inhibition of serum nitrate production, suggesting that this drug acts in a similar way to CI-1044. Interestingly, phosphorylation at S1177 was increased in response to SK&F 95654, in contrast to CI-1044. Although SIN-1 caused a 2-fold increase in serum nitrate by midodrine, this led to a 4-fold inhibition of DIVI. Nicorandil, an NO donor, caused a 300-fold increase in serum nitrate, either alone or in combination with SIN-1 or L-NNAME. Our results illustrate that among the wide variety of drugs that can cause DIVI, modulation of eNOS activity may be a common feature of the mechanism leading to vascular injury.

1122 Soluble Components of Ultrafine Particles Induce Cellular Procoagulant Activity through Oxidant Signaling.
S. J. Snow1, A. Wolberg2 and M. Carraway3, 1Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 2Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 3NHEERL, US EPA, Chapel Hill, NC.

Mechanisms that underlie the strong association between air pollution exposure and adverse cardiovascular health remain unknown. We hypothesize that soluble components of ultrafine particles (sUF) initiate procoagulant activities in endothelial cells through tissue factor (TF) induction via reactive oxygen species (ROS) production. Human coronary artery endothelial cells (HCAEC) were exposed to soluble UF and assessed for their ability to trigger procoagulant activity in platelet free plasma. HCAEC triggered faster thrombin generation and fibrin clot formation following exposure, which was abolished by an anti-TF antibody, indicating that the effects are TF-dependent. We found that TF mRNA expression was increased following soluble UF exposure without significant compensatory changes in mRNA levels of key anti-coagulant proteins, confirming that TF upregulation plays an important role in this imbalance in the coagulation system. To study early events, we observed to be sleep-related expression, we measured H2O2 production in HCAEC following exposure to soluble UF. There was an immediate induction of extra- and intracellular H2O2 production following soluble UF exposure, and pretreatment with antioxidants attenuated the UF-induced upregulation of TF, linking the procoagulant response to ROS formation. Multiple chemical inhibitors indicated NOX-4 as the source of ROS induced by the UF exposure. By the finding that NOX-4 siRNA prevented UF-induced upregulation of TF mRNA. These data show that exposure to soluble UF induces endothelial procoagulant activity, which requires new TF synthesis through ROS production and by NOX-4. These novel findings provide mechanistic insight into the enhanced thrombosis and endothelial dysfunction associated with air pollution exposure and increased risk for CV morbidity and mortality.

1123 Evaluation of Age and Sex Effects on Mitochondria-Related Gene Expression in Rat Heart.
V. Vijay, T. Han, C. Moland, J. C. Kwekel, J. L. Fuscone and V. Desai, Systems Biology, National Center for Toxological Research, US FDA, Jefferson, AR.

Age-related susceptibilities and sex-based differences in cardiovascular diseases are known and the underlying mechanisms need further investigation. Mitochondria are critical for normal cardiac function so alterations in such different ages and sexes may affect the way the heart responds to drugs. To understand the role of mitochondria in age- and sex-related differences in the heart, we investigated the expression levels of mitochondria-related genes. Gene expression in the heart of male and female Fischer 344 rats at 8 (young), 21 (adult) and 78 (old) weeks of age was measured using Agilent whole genome rat arrays. Out of 18,435 unique genes on the Agilent rat microarray, 869 unique genes were determined to be mitochondria-related. Age effect was evaluated by usingANOVA coupled with pair-wise t-test (p<0.05) between each age group, and sex difference was evaluated at each age using t-test (p<0.05). The expression levels of genes involved in oxidative phosphorylation (Ox Phos), membrane transporters, and fatty acid (FA) metabolism were the highest at 21 wks compared to 8 or 78 wks in both males and females. A significant age-related effect was observed in 21% and 7% of Ox Phos genes and 15% and 7% of membrane transporter genes in males and females, respectively, at all age groups. Only male rats showed significant age-related effects on the expression levels of genes (21%) involved in FA metabolism. Significant sex-based differences were observed in the expression levels of genes involved in Ox Phos at 78 wks (19%); higher expression levels were noted in female rats compared to males. Membrane transporters showed significant sex differences at 8 wks (21%), 78 wks (40%) and 78 wks (13%). Genes involved in FA metabolism also showed sex-based differences at 8 (34%), 21 wks (29%) and 78 wks (10%); most of the genes had higher expression in females than males. These findings may provide important insights into understanding the role of mitochondria in cardiovascular diseases in terms of sex-based differences or altered susceptibility with age.

1124 Assessment of Postmarket Cardiac Adverse Events in Patients Treated with Antipsychotic Drugs.
D. Bi, R. Benz, J. Kernet, J. Willard and T. Colatsky, Center for Drug Evaluation and Research, US FDA, Silver Spring, MD.

This study assessed the cardiac adverse events (cAEs) induced by antipsychotic drugs, and evaluated their relationship to hERG affinities, clinical drug exposure and the magnitude of clinical QTc prolongation. Data were collected from public regulatory documents (e.g. Summary Basis for Approvals) and supplemented with published literature data. The incidence of each cardiac toxicity endpoint was calculated using the total number of all adverse events reported for each drug as a denominator. The incidence of QT prolongation was 5.1, 3.4, 0.5, 1.0, 0.9 and 1.9% for thioridazine, ziprasidone, quetiapine, risperidone, olanzapine, and haloperidol, respectively, which were correlated to the magnitude of QTc change from baseline (dQTc) of 0.7, 26.4, 19.5, 15.8, 12.7 and 11.3 msec, respectively. The incidence of Torsade de pointes (TdP) were 0.9, 0.7, 0.1, 0.2 and 0.1% for thioridazine, ziprasidone, quetiapine, risperidone, olanzapine, and haloperidol, respectively, which were highly correlated to the dQTc. Furthermore, the incidence of QT prolongation was correlated to the ratio of total plasma Cmax/hERG IC50 for the same group of drugs. Pimozide, one of the most potent hERG blockers (hERG IC50 = 18 nM), had the highest incidences in causing QT prolongation (7.2%), TdP (3.4%), long QT syndrome (0.7%), syncope (3.4%) and sudden cardiac death (0.3%). The incidences of QT prolongation and cardiac arrest were greater than equal to 5% in patients receiving diazepam, imipramine, thioridazine, haloperidol, amitriptyline, pimozide, or trazodone. The incidences of sudden death were more than 1% in pa-
tients treated with desipramine, thioridazine, ziprasidone or pimozide. In conclu-
sion, relatively high incidences of potentially serious cardiac side effects, including QT prolongation, TdP, and lethal outcomes occurred in patients treated with the antipsychotics. The hERG affinities combined with the levels of clinical drug expo-
sure may serve as one of the predictors for drug-induced cardiac toxicity by antipsychotics.

1125 Ozone Coexposure Modifies Cardiac Function Responses to Fine and Ultrafine Particulate Matter in Mice.
R. McIntosh-Kastrinsky1, H. Tong2, N. Kurhanewicz1, L. Walsh3, A. K. Farzad4 and M. S. Hazari4,1. University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Environmental Public Health Division, US EPA, Research Triangle Park, NC.

There is growing evidence from epidemiological studies that show acute exposure to particulate matter (PM) increases the risk of cardiovascular morbidity and mor-
tality. Although the data supporting these findings are increasingly more convinc-
ing, the immediate impact of PM inhalation on cardiac function needs to be fur-
ther clarified; this is particularly true of multipollutant exposures. Thus, this study was designed to evaluate the cardiac effects of concentrated ambient fine (PM2.5) and ultrafine (UFP) particles with and without ozone (O3) co-exposure. Based on previous findings, we hypothesized that UFP would cause the greatest decrement in cardiac function and that O3 co-exposure would worsen the response. Mice were exposed by whole-body inhalation to either 200 μg/m3 PM2.5 or 100 μg/m3 UFP with or without 0.3 ppm O3; separate groups were exposed to either filtered air or O3 only. Twenty-four hours after exposure, cardiac function was assessed using a Langendorff cardiac perfusion preparation. Coronary flow, left ventricular develop-
ized pressure (LVDP) and contractility were measured before and after cardiac ischemia/reperfusion (I/R) injury. PM2.5 or O3 alone, or co-exposure to UFP+O3
caused a significant decrease in baseline LVDP and contractility. Interestingly, UFP alone or PM2.5+O3 did not cause significant decrements in cardiac function when compared to controls, nor were there significant differences in recovery LVDP or contractility between any group after I/R injury. These data suggest that the cardiac effects of PM inhalation are dependent on particle size and that O3 interacts with PM2.5 and UFP differently, resulting in varied cardiac impacts. Thus, these find-
ings indicate that the cardiovascular effects of particles and gas co-exposures are not simply additive or generalizable, which increases the complexity of risk assessment.

Vitamin D deficiency has been linked to an increased risk of hypertension, myocar-
dial infarction and stroke. Recently, the Tolerable Upper Intake Level of 1, 25-di-
hydroxyvitamin D (D3) has been increased to 4000 IU/d, but levels of 10,000 IU/d for treatment of inflammatory conditions and 50,000 IU/week for short-term supplementation in deficient individuals have been suggested. High doses of D3 may cause arterial calcification and cardioneurosis, but the velocity of the adverse events related to regular D3 intake in doses higher than 10,000 IU/d, threshold for these changes and links to arterial calcification or hypertension are unclear. The ob-
jective of this study was to examine the effect of dietary doses of D3 equivalent to
to human doses after 1 month in male rats (n = 4/group): 0 IU/d (defi-
ciency), 600 (recommended daily intake; control), 10,000 (upper therapeutic dose), 30,000 & 150,000 IU/d on cardiovascular function. Blood pressure teleme-
try and carotid artery Doppler ultrasonography were done at the baseline and weekly during diet testing. After 4 weeks, both sytoic and diastolic blood pressure increased significantly (~15 mmHg increase; p<0.05, 1-way ANOVA, Duncan’s Post-hoc test) in both D3 deficiency and groups receiving ≥30,000 IU/d compared to the 10,000 IU/d group. Carotid artery luminal diameter was significantly smaller in 0 and ≥30,000 IU/d D3 compared to control, which could indicate either increased arterial wall thickness or contractility. Pulse wave velocity and peak acceleration de-
creased over time in control and D3 deficiency, but increased in groups receiving ≥30,000 IU/d D3 indicating increased arterial stiffness. In conclusion, based on in-
creased blood pressure, caution needs to be taken with D3 supplementation ≥30,000 IU/d. Future studies will be directed at confirming the dose threshold and examining mechanisms for D3-induced arterial stiffness and hypertension.

1126 An Integrative Approach to Identify Functional, Structural and Pathological Biomarkers of Doxorubicin-Induced Cardiotoxicity.
H. R. Mellor1, L. Cove-Smith2, J. Kirk1, A. Hargreaves1, S. Price1, C. Betts1, C. Dive1, P. Hocking1 and N. Woodhouse1. Global Safety Assessment/PhB Imaging Group, Astazeneca Re&D, Macclesfield, United Kingdom; 2The Patterson Institute For Cancer Research, University of Manchester, Manchester, United Kingdom. Sponsor: R. Roberts.

Doxorubicin is an anthracycline antibiotic commonly used in treatment regimens for a wide range of malignancies, including hematological cancers, many types of carcinoma and soft tissue sarcomas. Cardiotoxicity is a major safety complication associated with the clinical use of doxorubicin, several other marketed anti-cancer drugs and with many pre-clinical drug candidates. There is a need for novel, trans-
lational biomarkers to aid cardiac structural and functional monitoring in both pa-
tients at risk of cardiotoxicity and in pre-clinical species administered early drug candidates. In the present study, a detailed characterization of the effects of chronic doxorubicin treatment on rat heart structure and function has been performed using a range of approaches. A rat model of doxorubicin-induced cardiomyopathy was developed, involving weekly intravenous boluses of doxorubicin hydrochloride followed by a 4 week ‘washout’ period. A timecourse assessment of cardiac function using multiple MRI biomarkers was performed under recovery anaesthe-
tia, prior to dosing, on days 1 (baseline), 15, 29, 43, 57 and under terminal anaes-
thesia prior to necropsy on day 78. Reductions in cardiac output and ejection frac-
tion were observed in treated animals from day 15. Peak myocardial enhancement was observed at day 57 onwards and correlated with serum cardiac troponin I ele-
vations. A detailed immunohistochemical cardiac assessment is currently being per-
formed to provide an understanding of the relationship between the development of pathological and functional MRI changes, serological biomarker elevations and cardiac pathological lesions. The ultimate aim is to apply the learning to pre-clinical drug discovery and in order to support safety validation of drug targets, to optimize chemical design and to ultimately progress the safest molecules into later pre-cli-
cinical and clinical testing.

Adipose tissue is not merely a storage depot for the fat, but has emerged as a vital organ capable of synthesizing and releasing adipokines which act as regulators of di-
verse physiological functions. Adiponecin (50 kDa) protein, an important member of the adipokine family is known to regulate insulin action, NADPH oxidase activ-
ity, and lipid mobilization. Adiposity, release of free fatty acids from the adipose fat, and adiponectin secretion by the adipocyte are interconnected. These phenomena appear as crucial factors in cardiovascular and sleep disorders. Reports have been made on decreased circulating adiponectin levels in obese individuals, suggesting a link between fat load in adipose tissue and decrease in adiponectin release by adi-
pose tissue. However, polyunsaturated fatty acids (PUFA) have been established as essential dietary fats and recently n-3 fatty acids (Omega-3) have gained impor-
tance in health, nutrition and disease. Having this as the premise, here, we hypoth-
thesized that PUFA load would modulate adiponectin secretion by adipocytes. To test
our hypothesis, we loaded the 3T3 differentiated adipocytes with different PUFA including linoleic (C18:2), linolenic (C18:3), arachidonic (C20:4), eicosapentaenoi

20:5; EPA), and docosahexaenoiic (22:6; DHA) acids for 24 h and then an-
alyzed the secreted adiponecin, intracellular adiponecin, fatty acid composition, triglyceride accumulation, cytotoxicity, and extent of lipid peroxidation (formation of 4-hydroxy-2-nenal, 4-HNE) in the cells. Our results revealed that PUFA load-
ing suppressed both adiponecin release by the cells and intracellular adiponecin, increased cellular PUFA content and triglyceride accumulation, and induced lipid peroxidation (intracellular formation of 4-HNE). Overall, our results suggested that the essential PUFA suppressed secretion and synthesis of adiponecin in adipocytes through elevated lipid peroxidation and oxidative stress.

1128 Fatty Acids Down Regulate and Inhibit Secretion of Adiponecin in Adipocytes through Oxidative Stress.
S. B. Korhu, T. D. Gunney, A. B. Shelton, S. I. Sherwani, U. J. Maglant and N. L. Parmandi. Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Ohio State University College of Medicine, Columbus, OH.

Adiponecin in Adipocytes through Oxidative Stress.
N. Z. Mirhosseini1, K. Bohaychuk1, H. Varanaparast2, G. George3 and L. P. Weibel5. 1Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada; 2Nutrition and Pharmacy, University of Saskatchewan, Saskatoon, SK, Canada; 3Geology Department, University of Saskatchewan, Saskatoon, SK, Canada.

This abstract does not reflect EPA policy

SOT 2013 ANNUAL MEETING 241
1129 Diesel Exhaust-Induced Cardiac Dysfunction Is Mediated by Sympathetic Dominance in Heart Failure-Prone Rats.
A. P. Carlin1, 2, M. S. Hazari1, C. M. Perez5, 3, Q. Kramer2, C. King2, D. W. Winslet1, D. L. Costa1 and A. K. Farraj2, 1Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC; 2Environmental Public Health Division, US EPA, Research Triangle Park, NC; 3Curriculum in Toxicology, University of North Carolina Chapel Hill, Chapel Hill, NC; 4ORD, US EPA, Research Triangle Park, NC.

Short-term exposure to vehicular emissions is associated with adverse cardiac events. Diesel exhaust (DE) may provoke cardiac events through defective co-ordination of the two main autonomic nervous system (ANS) branches. We exposed heart failure-prone rats once to DE (500 μg/m3 PM2.5, 4 h, whole-body inhalation) and tested for ANS-mediation of cardiotoxicity by several interventions, including post-DE sympathetic agonist (dobutamine) before and after parasympathetic ablation (vagotomy) and, separately, sympathetic or parasympathetic inhibition (atenolol or atropine) during treadmill exercise after–DE exposure. Left ventricular pressure (LVP), heart rate (HR), HR variability (HRV), and blood pressure (BP) were measured to determine cardiac function and autonomic balance. During exposure hour 2, DE markedly increased HR, BP and contractility in saline-pre-treated rats, and atenolol entirely inhibited these effects, indicating DE caused mid-exposure sympathetic excitation. DE increased body temperature regardless of pretreatment. Upon exercise recovery at 4 h post-exposure, HRV and HR indicated no treatment differences in exercise recovery. DE increased body temperature regardless of pre-treatment. Upon exercise recovery at 4 h post-exposure, HRV and HR indicated that DE increased parasympathetic influence. Conversely, during exercise recovery at 21 h post-exposure, DE increased sympathetic influence in saline-pre-treated rats, while it impaired contractility and decreased systolic BP in saline- and atropine-pre-treated rats. Atenolol inhibited all of these effects. LVP at 1 h post-DE indicated a sympathoexcitatory response to dobutamine mediated partly through sympathetic dominance. Thus, DE-induced autonomic dysregulation of the heart involves time-dependent oscillations between sympathetic and parasympathetic influence, with the former mediating DE’s cardiotoxic effects. (Does not reflect EPA policy. Funded by EPA/UNC CR-83515201-0)

1131 Acute Silver Nanoparticle Exposure Increases Cardiac Ischemic/Reperfusion Injury in Sprague-Dawley Rats.
C. I. Wingard1, R. Urzainqui1, J. Shanahan1, A. K. Vidanaparthi1, L. C. Thompson1, S. Sumner3, T. Fennell1, J. M. Brown2 and R. M. Lust1, 1Pharmacology, East Carolina University, Greenville, NC; 2Pharmacology & Toxicology, East Carolina University, Greenville, NC; 3RTI International, Research Triangle Park, NC.

The expanding use and production of silver nanoparticles (AgNP) as anti-bacterial/fungal agents is raising concerns regarding their safety to human health. The diversity of nanosized silver (AgNP) and coatings for dispersion may produce combinations that minimize potential toxic effects on the cardiovascular system. We hypothesized that acute intratracheal (IT) exposure to 20 nm (S; small) or 110 nm (L; Large) AgNP coated with either polyvinylpyrrolidone (P) or citrate (C) would increase the susceptibility of cardiac tissue to a regional ischemic reperfusion (I/R) injury. Young male Sprague Dawley rats were exposed to 200 μg of AgNP 24 hrs post-exposure, cardiac ischemia was induced for 20 mins followed by 2 hrs of reperfusion in situ. Hearts were sectioned stained with Evans blue to demarcate Area at Risk (AAR) and counter stained with TTC to determine % of AAR infarcted. Bronchoalveolar lavage fluid (BALF) and serum was collected post I/R injury to evaluate pulmonary injury and circulating markers of injury. Neither P (22 ± 2% Infarct/AAR) nor C (24 ± 1% Infarct/AAR) altered the extent of infarcted cardiac tissue as compared to naive (22 ± 2% Infarct/AAR). However, the installation of all forms of AgNP significantly increased the extent of cardiac I/R injury. As a group the P-coated AgNP developed larger infarcts than C-coated. The 20 nm were more effective at enhancing I/R Injury (SP 43 ± 2.0 % Infarct/AAR; SC 37 ± 3 % Infarct/AAR) than the 110 nm size (LP 37 ± 3 % Infarct/AAR; LC 31 ± 2 % Infarct/AAR). The opposite pattern was observed in the BALF endpoints with P and L AgNP having greater effects. Our results suggest IT exposure AgNP have differential effects on pulmonary and cardiac tissues following the application of I/R injury. This work is supported by NIEHS U19 ES019525.

1132 Effect of Pulmonary Exposure to Welding Fumes on Cardiomyocyte Contractility.
H. Kan1, J. M. Antonini1, M. Ye1, W. Zheng1, R. Salmen1, R. Poptopoijanov2 and V. Castranova2, 1PPRB, NIOSH, Morgantown, WV; 2West Virginia University, Morgantown, WV.

Studies have found that pulmonary exposure to welding fumes is positively associated with a higher incidence of cardiovascular events. We reported previously that pulmonary exposure to welding fumes, manual metal arc-hard welding (MMA-HS), has a negative impact on cardiac function as evidenced by reduced heart contractility. However, the mechanisms underlying MMA-HS-induced depression of cardiac contractility remain unclear. To study the mechanisms, rats were given an intratracheal instillation of MMA-HS welding fumes (2 mg/rat) or saline once a week for seven weeks. Cardiomyocytes were isolated at 1 and 7 days post-exposure. Cardiomyocyte contractility and intracellular calcium level in response to increasing concentrations of adrenoreceptor agonist isoprenaline and extracellular calcium were assessed using a Myocyte Calcium Imaging/Cell Length System. Pulmonary exposure to MMA-HS blunted contractile function in response to both isoprenaline and calcium at 1 day post-exposure (P < 0.01; P < 0.05, respectively). A blunted contractile response was also observed with welding fume treated rats at 7 days post-exposure in response to isoprenaline and calcium (P < 0.01). Intracellular calcium level in response to extracellular calcium stimulation was reduced at 7 days post-exposure (P < 0.05). These findings suggest that pulmonary exposure to welding fumes impairs cardiac function by decreasing cardiomyocyte contractility through a defect in the adrenergic signaling pathway and intracellular calcium handling.

1133 Silver Nanoparticle Exposure Increases Vasoconstrictor Response in Nonpregnant Female Sprague-Dawley Rats.
J. O. Dawkins1, A. K. Vidanaparthi1, L. C. Thompson1, S. I. Sumner1, T. Fennell1, J. M. Brown2 and C. I. Wingard1, 1Pharmacology, East Carolina University, Greenville, NC; 2Pharmacology & Toxicology, East Carolina University, Greenville, NC; 3RTI International, Research Triangle Park, NC.

The use and production of silver nanoparticles (AgNP) is growing rapidly raising concerns regarding their safety to human health, particularly following translocation to the circulatory system. Previous findings from our lab have shown intravenous (IV) exposure to AgNP changes the vasoconstrictor response in both pregnant and male Sprague Dawley (SD) rats. We hypothesized, acute IV exposure to AgNP in non-pregnant females will increase vascular reactivity of arterial vessels
from mesenteric and uterine vascular beds and aortas and these changes will be influenced by NP size and coating. Female Sprague-Dawley, SD rats were intratracheally exposed to 200 μg of 20 or 110 nm AgNP coated with polyvinylpyrrolidone (PVP) or citrate and suspended in water. 24 hrs. post-exposure, wire myography tested the vasomotor responses in aortic, first order mesenteric and main uterine artery vessel segments. Cumulative dose response curves were created for phenylephrine (PE), angiotensin II (ANGII), and endothelin 1 (ET1). Segments of uterine artery and aorta from AgNP exposed animals generated larger stress when compared to vehicle controls. No significant differences were observed in the mesenteric artery responses. Maximum stress values in the uterine artery were greater (p < 0.05) in response to ET1 and ANGII stimulation following exposure to 110 nm PVP AgNP (16.4 ± 2.7 and 14.5 ± 2.2 mN/mm2, respectively) as compared to 110 nm citrate AgNP (8.0 ± 1.0 and 6.9 ± 0.8 mN/mm2, respectively). Conversely, maximum stress in response to PE in aortic segments was greater (p < 0.01) following exposure to 20 nm PVP AgNP (1.3 ± 0.2 mN/mm2) as compared to 20 citrate nm AgNP (2.8 ± 0.3 mN/mm2). Our results suggest IV exposure to AgNP has differential effects on increasing the vasoconstrictor responses that are dependent on the vascular bed, size of the NP and type of coating. This work is supported by NIEHS U19 ES019525.

1134 Intratracheal Administration of C60 Differentially Promotes Constriction or Impairs Relaxation of the Isolated Coronary Artery.

N. A. Holland1, L. C. Thompson1, A. K. Vidanapathirana1, J. O. Dawkins1, S. J. Summer1, A. Lewin1, T. Fennell1, J. M. Brown1 and C. J. Wingard1

1Physiology, East Carolina University, Greenville, NC; 2Pharmacology & Toxicology, East Carolina University, Greenville, NC; 3Southwest Research and Information Center, Abilene, TX

The potential uses of C60 fullerene have grown to include roles in both commercial industry and medicine, but the impact on human health are not completely understood. Data from our lab suggests that C60 may exacerbate cardiac ischemia/reperfusion injury. We hypothesized that exposure to C60 would promote enhanced vasoconstriction and impaired endothelium-dependent relaxation responses of the coronary artery. Male Sprague-Dawley rats were exposed to a single 93.3 μg/kg dose of intravenous (IV) or intratracheal (IT) C60 or polyvinylpyrrolidone (PVP) vehicle. Twenty-four hours following exposures, coronary artery segments were isolated and evaluated using wire myography. Cumulative dose responses to serotonin (5-HT), acetylcholine (ACh), or sodium nitroprusside (SNP) were constructed. We found that IT exposure to C60 resulted in a leftward shift (P = 0.05) of the 5-HT EC50 (558.4 ± 104.5 μM) compared to vehicle (870.7 ± 129.7 μM), but that IV exposure to C60 did not significantly shift the 5-HT EC50 values (C60: 762 ± 112.3 μM; vehicle: 669.3 ± 59.4 μM). Conversely, IV exposure to C60 led to a rightward shift (P = 0.09) in the EC50 for ACh (232.5 ± 68.9 μM) compared to vehicle (100.9 ± 48.8 μM), but IV C60 exposure did not produce any differences in ACh EC50 (C60: 245.7 ± 57.4 μM compared to vehicle: 222.4 ± 31.6 μM). The relaxation responses to SNP were not different between any treatment groups. The route of exposure to C60 appears to influence an enhancement of smooth muscle contraction by IT and impaired endothelial relaxation by IV administration. Based on these data we conclude that C60 exposure could enhance coronary vascular tone, possibly compromising dilatory flow during reperfusion, and thus exacerbating myocardial infarction. This work is supported by NIEHS U19 ES019525.

1135 Intratracheal Exposure to Silver Nanoparticles Promotes Enhanced Coronary Vascular Tone.

L. C. Thompson1, A. K. Vidanapathirana1, J. O. Dawkins1, S. J. Summer1, T. Fennell1, J. M. Brown1 and C. J. Wingard1

1Physiology, East Carolina University, Greenville, NC; 2Pharmacology & Toxicology, East Carolina University, Greenville, NC; 3RTI International, Research Triangle Park, NC

Silver nanoparticles (AgNP) have physicochemical and antimicrobial properties that make them useful in both industrial and biomedical applications. In regard to human exposures, little is known about the way AgNP may impact physiological systems. We tested the hypothesis that coronary responsiveness to serotonin (5-HT) and acetylcholine (ACh) would be augmented 24 hrs following exposure to AgNP, and be dependent on particle sizes and the dispersants used to coat the particles. We used male Sprague-Dawley rats (10-12 weeks old) and delivered AgNP (1 mg/kg), of either 20 nm (SSP) or 110 nm (LS) diameters, and suspended in either polyvinylpyrrolidone (PVP) or citrate (Cit), by intratracheal (IT) instillation or intravenous (IV) injection. After 24 hrs we isolated segments of the left anterior descending coronary artery for wire myography analysis of 5-HT and ACh dose-responses. Our data indicate no differences in coronary responses from AgNP groups compared to their vehicle groups. We did observe some unique disperrant- and AgNP size-dependent responses in the coronary responses. Maximal 5-HT stresses were higher (P < 0.05) in the SSSP-IT group (4.3 ± 0.5 mN/mm2) compared to the SSPVP-IT group (2.9 ± 0.3 mN/mm2) or the SCCit-IT group (3.2 ± 0.4 mN/mm2). ACh responses were impacted in a disperrant-dependent manner, shifting the EC50 from 106.6 ± 16.6 mN in the LSPVP-IT group to 50.4 ± 19.9 mN in the SCCit-IT group. Our results suggest that differences in coronary responses from rats exposed intravenously to AgNP or their vehicles. We conclude that pulmonary exposure to AgNP activates biological response pathways that are sensitive both the disperrant and AgNP size. This work is supported by NIH U19 ES019525.

1136 Environmental Predictors of Oxidized LDL Cholesterol (oxLDL) in Navajo Populations Exposed to Uranium-Contaminated Mining Sites.

M. E. Harmon1, C. Miller1, M. J. Campen1, C. Shuey2, M. Cajero1, B. Pacheco1, E. Edeko1, J. DeGraaf2, G. Stack3, S. Henio-Adeky1, S. Ramone1, T. Nez2 and J. Lewis3

1College of Pharmacy, University of New Mexico, Albuquerque, NM; 2Community Environmental Health Program, University of New Mexico, Albuquerque, NM; 3Southwest Research and Information Center, Albuquerque, NM

Numerous abandoned mines within the Navajo Nation contribute uranium, arsenic and other heavy metals to the soil and groundwater. Environmental exposure to heavy metal contaminants may promote or exacerbate cardiovascular disease. The prevalence of type 2 diabetes, a risk factor for cardiovascular disease, has increased among the Navajo community. Evidence is emerging that pre-existing metabolic disease may increase an individual’s susceptibility to vascular toxicity from heavy metal contaminants. To assess the potential impact of these contaminants on cardiovascular health of exposed individuals, we examined traditional (IL-6, CRP) and novel (oxLDL, LOX-1 receptor) plasma biomarkers in a large community of the Navajo Nation. Samples and data were obtained through a culturally appropriate community-based participatory approach, incorporating data collection and outreach by Navajo community staff. Biomarker data were linked to geospatial data on contamination sites using traditional linear regression and Bayesian models. When we used a binary model for uranium and arsenic drinking water levels, we observed that the estimated annual intake of arsenic was a significant predictor of oxLDL: age, the occupational exposure score, and the distance-environmental exposure score were also significant predictors. Diabetes, based on glycated hemoglobin, was a significant predictor of oxLDL. No environmental factors were correlated with LOX-1, CRP or IL6. In summary, oxLDL does not seem to trend with environmental exposure to abandoned uranium mines or their heavy metal contaminants, but oxLDL does seem to trend with arsenic in drinking water. While still preliminary, these results indicate that arsenic intake may increase markers of cardiovascular risk.

1137 Pulmonary Nanoparticle Exposure Enhances Cardiac Parasympathetic Signaling.

T. L. Knuckles1, Y. Yi2 and T. R. Narkiewicz1

1Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, WV

Pulmonary nanoparticle exposure has been associated with alterations in autonomic signaling in the heart following particle exposure. We have recently reported that nanoparticle exposure alters microvascular responses to sympathetic nerve stimuli. Thus, we developed a model of baroreceptor function reflexes to determine the relative autonomic contributions. Rats were exposed to titanium dioxide (nano-TiO2) for 4 hr for 1 day at 9 mg/m3, 24-hours post-exposure, baroreflex sensitivity was determined by i.v. infusion of sodium nitroprusside (SNP; 5-20 μg/kg) or phenylephrine (PE; 1-16 μg/kg), with or without atropine (1 mg/kg) to diminish parasympathetic signaling. Nano-TiO2 exposure did not alter PE-induced (4 μg/kg) changes in mean arterial pressure (ΔMAP, 25.6±5 mm Hg Sham, 27.2±3 mm Hg Exposed). However, nano-TiO2 exposure increased the magnitude of Ahear rate in beats per minute (ΔBPM -26±2 control vs. -26±3 exposed), suggesting an enhanced parasympathetic response. When these experiments were repeated in the presence of atropine, PE-induced ABPM was diminished in both groups; however, atropine significantly altered ABPM in nano-TiO2 compared to sham (-18±1 Sham, -12±2 Exposed), suggesting an enhanced sensitivity to muscarinic receptor blockade. Atropine treatment did not significantly alter ΔMAP in either group. Nano-TiO2 exposure did not significantly alter SNP-induced changes in ΔMAP (-36±5 mm Hg control vs. -40±1 mm Hg Exposed), or heart rate (ABPM ΔBPM control vs. -26±5 exposed). Because parasympathetic projections in cardiovascular system are largely confined to the heart, these data suggest that nano-TiO2 exposure
1138 Cigarette Smoke Induces Ventricular Remodeling through Activation of the Aryl Hydrocarbon Receptor.

J. Bradley, M. C. El Hajj and J. D. Gardner, Louisiana State University, Health Science Center, New Orleans, LA.

Cigarette smoking is the major cause of preventable morbidity and mortality, with 5 million deaths annually worldwide. Cigarette smoke (CS) increases the risk of cardiovascular disease, including myocardial infarction and coronary artery disease. Of the 4700 identified components in CS, 60 are known carcinogens with polycyclic aromatic hydrocarbons (PAH) the most abundant carcinogenic agent. Chronic exposure to PAH can lead to ventricular dilation and dysfunction. Previously, we found the 5s exposure to diesel exhaust particulates (DEP), which contain a high level of PAH similar to that in CS, induced ventricular dilation and dysfunction. DEP exposure impaired ventricular remodeling through activation of the aryl hydrocarbon receptor (AHR). Because of the similarities in chemical composition, we hypothesized that chronic exposure to CS would activate the AHR pathway inducing ventricular extracellular (ECM) remodeling. Male Sprague Dawley rats were exposed to six cigarettes per day (Kentucky 2R4F) for 12 wks using a modified version of the Griffith snout exposure method. CS exposure resulted in increased expression of AHR in the left ventricle. Furthermore, these animals had increased cardiac expression of cytochrome P450 1A1, an enzyme upregulated by AHR activation. CS exposure reduced cardiac collagen as assessed through decreased levels of hydroxyproline. In addition, CS increased the expression of MMP-9, a key regulator in collagen turnover. These in vivo findings were confirmed in isolated cardiac fibroblasts, where 10% CS extract reduced the secretion of collagen by cardiac fibroblasts. In all, our findings indicate that CS alters ventricular ECM remodeling through the reduction of myocardial collagen by an AHR dependent mechanism.

1139 The Association of Vascular Disease with Exposure to Diesel Exhaust.

M. Peterson1, P. Valberg2 and C. Long2, 1Gradient, Seattle, WA; 2Gradient, Cambridge, MA.

Cardiovascular disease (CVD) includes numerous heart- and circulatory-system-related conditions, many of which are related to the buildup of plaque in the walls of coronary (heart) arteries, in which case the disease is coronary artery disease (CAD). CVD is the leading cause of mortality in the US, with about 25% of all deaths related to some form of this disease. While the majority of research on the health effects of exposure to diesel exhaust (DE) has focused on pulmonary end-points, there is a growing body of research on the cardiovascular effects of DE particulate inhalation, because DE exposure in the US is widespread, both occupationally and regionally, possible cardiovascular effects from DE could have significant public health implications. We performed a weight-of-evidence evaluation of the potential for DE to cause CAD, considering the mechanic, toxicologic, and epidemiologic aspects of DE. Based on our research and analysis, we find little evidence to support an association of DE exposure with CAD at low (ambient) exposure levels. In particular, the occupational epidemiology studies fail to provide consistent evidence of increased risk. We identified twelve studies of diesel-exposed worker populations in which cardiovascular health endpoints were studied. Several of the studies found significantly increased risks of one or two endpoints (or in one or two subpopulations), while other studies reported significantly decreased risks for some endpoints/subpopulations. Overall, there was not a consistent effect observed across the literature. Moreover, because of a lack of dose-response between DE particulate levels and CVD mortality, the results of our evaluation also have implications for assigning cardiovascular mortality risk to ambient air PM2.5, as is often done in assessing monetary value of PM2.5 reductions.

1140 FGF21 Expresses in Diabetic Hearts and Protects from Palmitate- and Diabetes-Induced Cardiac Cell Death In Vitro and In Vivo via Erk1/2-Dependent p38 MAPK AMPK Signaling Pathway.

C. Zhang1, 2, X. Li1, 2 and L. Cai1, 2, 1University of Louisville, Louisville, KY; 2Wenzhou Medical College, Wenzhou, China.

The present study examined whether fibroblast growth factor (FGF) 21 expresses in the heart of diabetic mice and also protects from fatty acid (palmitate)- and diabetes-induced cardiac apoptosis. Streptoxotocin (STZ) induced type 1 diabetes increased FGF21 expression about 40 fold at 2 months and 1.5 fold at 6 months. To define if the up-regulated cardiac FGF21 expression offers a protective effect on fatty acid- or diabetes-induced cardiac damage, H9C2 cells were exposed to palmitate at 62.5 μM for 15 h, which significantly increased apoptosis. Pre-incubation of palmitate-treated cells with FGF21 significantly reduced the apoptosis, examined by DNA fragmentation and cleaved capase-3. Mechanistically FGF21 inhibited palmitate down-regulated phosphorylation levels of Erk1/2, p38 MAPK and AMPK. Via application of inhibitor of each kinase and Erk1/2 siRNA, FGF21 was found to prevent palmitate-induced cardiac apoptosis via up-regulating Erk1/2-dependent p38 MAPK/AMPK signaling pathway. To confirm these in vivo, STZ-induced diabetic mice were treated with FGF21 for 10 days, which significantly prevented diabetes-induced cardiac apoptosis along with up-regulation of Erk1/2, p38 MAPK and AMPK phosphorylation. The cardiac protection of FGF21 was completely blocked by Erk1/2 inhibitor. FGF21 also protected cardiac apoptosis in acute fatty acid-treated mice via the same signaling pathway. More importantly, compared to wild-type mice, FGF21 gene knock-out mice are highly susceptible to diabetes-induced cardiac cell death and inhibition of Erk1/2, p38 MAPK and AMPK phosphorylation, which could be prevented by FGF21 treatment. These results strongly suggest that the early stage increase in FGF21 mRNA expression may represent an early protective mechanism: Application of FGF21 to diabetic mice or acute fatty acid-treated mice can prevent cardiac cell death via Erk1/2-dependent p38 MAPK and AMPK signaling pathway.

1142 Metallothionein Preservation of Akt2 Function by Down-Regulating TRBAD Restores Diabetic Inhibition of Cardiac Insulin Signaling.

Y. Tan1, 2, Y. Wang1, 3, X. Li1, 2 and L. Cai1, 2, 1Pediatrics, University Louisville, Louisville, KY; 2CARIDC, Wenzhou Medical College, Wenzhou, China; 3Jilin University, Changchun, China.

Cardiac insulin resistance is a key pathogenic factor for diabetic cardiomyopathy, but its mechanism still remains largely unclear. Here we demonstrated that streptozocin-induced diabetes significantly inhibited protein kinase B (Akt) Ser473 and Thr308 phosphorylation from 2 weeks to 2 months. In cardiac-specific metallothionein-transgenic (MT-TG) diabetic mice, both Akt phosphorylation sites were preserved normally at all time-points. Analysis of Akt isoforms revealed that Akt2, but not Akt1, expression and phosphorylation were decreased at all time-points in wide-type (WT) mice, but not MT-TG mice. Diabetes also increased Akt negative regulator tribbles (TRB3) expression only in WT mice, suggesting possible contribution of MT prevention of diabetic up-regulation of Akt negative regulator to prevention of diabetic cardiac remodeling through activation of the aryl hydrocarbon receptor (AHR). Because of the similarities in chemical composition, we hypothesized that chronic exposure to CS would activate the AHR pathway inducing ventricular extracellular (ECM) remodeling. Male Sprague Dawley rats were exposed to six cigarettes per day (Kentucky 2R4F) for 12 wks using a modified version of the Griffith snout exposure method. CS exposure resulted in increased expression of AHR in the left ventricle. Furthermore, these animals had increased cardiac expression of cytochrome P450 1A1, an enzyme upregulated by AHR activation. CS exposure reduced cardiac collagen as assessed through decreased levels of hydroxyproline. In addition, CS increased the expression of MMP-9, a key regulator in collagen turnover. These in vivo findings were confirmed in isolated cardiac fibroblasts, where 10% CS extract reduced the secretion of collagen by cardiac fibroblasts. In all, our findings indicate that CS alters ventricular ECM remodeling through the reduction of myocardial collagen by an AHR dependent mechanism.

Effects of Nicotine on Cardiovascular Remodeling in a Mouse Model of Systemic Hypertension.

E. S. Colombi1, 2, J. Davies1, M. Malakandi1, M. Aragon1, M. Paffett1 and M. J. Campen1, 1College of Pharmacy & Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM; 2Internal Medicine, University of New Mexico, Albuquerque, NM.

The association of cigarette smoking and hypertension with the development of heart disease and aortic aneurysms is clear. The use of nicotine-alone formulations, such as the nicotine patch, gum or ‘smokeless’ electric cigarettes is increasing, as they are perceived as healthier alternatives to traditional cigarettes. Unfortunately, there is little data available on the effect of isolated nicotine on myocardial and aortic remodeling in healthy subjects or in the setting of hypertension. We hypothesized that nicotine would exacerbate the effects angiotensin-induced hypertension, as evidenced by reduced left ventricular wall thickness and aortic wall remodeling. For this study we utilized subcutaneous osmotic minipumps to administer angiotensin II, nicotine, nicotine plus angiotensin II (Ang-II) or saline to C57/B6j (n=6) mice for a total of 4 weeks. Ventricular wall thickness, activity of matrix metalloproteinase 2 and 9 (MMP2/9) and presence of type 1 collagen was assessed as evidence of cardiac remodeling. Heart weights were increased by treatments, with controlnicotine-ang-II-nicotine-ang-II, but a statistical interaction of nicotine x ang-II was not noted. Activity levels of MMP-2 mirrored these changes and demonstrated selectivity between nicotine and ang-II. Additionally, histopathological analysis of aortas revealed that combined nicotine and ang-II treatment induced significant hypertrophy compared to all other groups. This pilot project reveals possible cardiotoxic interactions between nicotine and angiotensin-II induced hypertension. These data indicate that in the presence of hypertension, nicotine increases the risk of death, but it is unclear how nicotine affects the risk of death in the setting of hypertension. We define if the up-regulated cardiac FGF21 expression offers a protective effect on fatty acid- or diabetes-induced cardiac damage, H9C2 cells were exposed to palmitate at 62.5 μM for 15 h, which significantly increased apoptosis. Pre-incubation of palmitate-treated cells with FGF21 significantly reduced the apoptosis, examined by DNA fragmentation and cleaved caspase-3. Mechanistically FGF21 inhibited palmitate down-regulated phosphorylation levels of Erk1/2, p38 MAPK and AMPK. Via application of inhibitor of each kinase and Erk1/2 siRNA, FGF21 was found to prevent palmitate-induced cardiac apoptosis via up-regulating Erk1/2-dependent p38 MAPK/AMPK signaling pathway. To confirm these in vivo, STZ-induced diabetic mice were treated with FGF21 for 10 days, which significantly prevented diabetes-induced cardiac apoptosis along with up-regulation of Erk1/2, p38 MAPK and AMPK phosphorylation. The cardiac protection of FGF21 was completely blocked by Erk1/2 inhibitor. FGF21 also protected cardiac apoptosis in acute fatty acid-treated mice via the same signaling pathway. More importantly, compared to wild-type mice, FGF21 gene knock-out mice are highly susceptible to diabetes-induced cardiac cell death and inhibition of Erk1/2, p38 MAPK and AMPK phosphorylation, which could be prevented by FGF21 treatment. These results strongly suggest that the early stage increase in FGF21 mRNA expression may represent an early protective mechanism: Application of FGF21 to diabetic mice or acute fatty acid-treated mice can prevent cardiac cell death via Erk1/2-dependent p38 MAPK and AMPK signaling pathway.
Akt2 function preservation. For mechanistic study, cardiac H9c2 cells with and without forced MT overexpression (MT-H9c2) were treated with tert-butyl hydroperoxide (tBHP, an organic oxidant). tBHP did not affect basal Akt phosphorylation, but significantly inhibited insulin-stimulated total Akt phosphorylation and increased TRB3 expression only in H9c2 cells. Furthermore, tBHP reduced Akt2 phosphorylation in the basal and insulin-stimulating conditions, which were significant, but not completely, attenuated in MT-H9c2 cells. Silencing TRB3 expression with its siRNA completely blocked tBHP-induced inhibition of insulin-stimulated Akt2 phosphorylation, while overexpression of TRB3 in MT-H9c2 cells transfected with recombinant TRB3 plasmid completely abolished MT preservation of insulin-stimulated Akt2 phosphorylation in response to tBHP. These results suggest that oxidative stress-attenuated cardiac Akt, especially Akt2, function via up-regulating Akt negative regulator plays a critical role in diabetic inhibition of insulin signaling in the heart. MT preservation of Akt2 function by inhibition of Akt negative regulator prevents diabetic inhibition of cardiac insulin signaling.

1143 Development of an Ultrasound Imaging Biomarker of Drug-Induced Vascular Injury.

T. A. Swanson1, M. P. Lawton2, S. Portugal1, L. Oberst1, J. Kreeger2 and B. E. Enerson1, 2Comparative Medicine, Pfizer Worldwide Research, Groton, CT; 2Drug Safety Research, Pfizer Worldwide Research, Groton, CT.

Acute drug-induced vascular injury (DIVI) is caused by several classes of drugs, including Phosphodiesterase (PDE) inhibitors and dopamine agonists. The finding of DIVI in preclinical toxicity studies presents a significant challenge for pharmaceutical companies, with many compounds terminated from development because of the inability to monitor DIVI in the clinic. Ultrasound imaging is a non-invasive technique that can be used to measure blood flow and vessel diameter in multiple tissues and across species, and therefore has the potential to be a translatable biomarker of DIVI. Our objective was to demonstrate the utility of high-frequency ultrasound imaging for measuring hemodynamic changes in mesenteric arteries of male Sprague Dawley rats treated with fenoldopam and CI-1044 (PDE4 inhibitor). Blood flow and vessel diameter were measured in the superior mesenteric arteries and right renal arteries at 4, 8 and 24 hours after dosing and the rats were subsequently necropsied at each time point. Microscopic observations consistent with DIVI were found in animals treated with fenoldopam at 24 hours and included mild to moderate perivascular accumulations of mononuclear cells, neutrophils in tunica adventitia and superficial tunica media as well as multifocal hemorrhage and necrosis in the tunica media. Animals dosed with both drugs showed marked increases in flow and shear stress as early as 4 hours after dosing, with the fenoldopam-treated rats exhibiting the largest changes in these parameters. Vessel diameter and blood flow were used to calculate shear stress and regression analysis was used to model the relationship between the presence of lesions and various hemodynamic parameters and indicated that peak blood flow velocity was the best predictor of lesion formation. This data suggests that ultrasound imaging may provide a translatable and non-invasive functional biomarker for localized hemodynamic changes that may correlate with acute vascular lesion formation in specific target tissues.

1144 Environmentally-Persistent Free Radicals (EPFRs) Exacerbate Cardiac Dysfunction during Ischemia-Reperfusion (I-R) Injury.

B. Burn, S. Mahne, V. Subramaniam and K. Varner, Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA.

EPFRs have been identified in the particulate matter (PM) milieu at Superfund sites. These EPFRs, capable of redox cycling and the continual generation of radical species, form during combustion processes as halogenated hydrocarbons chemisorb to transition metal oxide-containing particles. We showed that short-term nose-only inhalation of EPFRs decreased stroke volume (SV) and cardiac output (CO) in rats secondary to increased pulmonary resistance and decreased ventricular filling. EPFRs also increased markers of oxidative stress and inflammation both systematically and in the left ventricle. Epidemiological studies link PM exposure to increased cardiac morbidity and mortality from ischemic events. Therefore, the current study sought to determine if prior exposure to EPFRs would increase cardiac vulnerability to I-R injury. The EPFRs (0.2 μm diameter) tested were surrogates consisting of 1,2-dichlorobenzene chemisorbed to a silica/CaO particle at 230°C (DCB230). Rats were exposed via nose-only inhalation to DCB230 (171 μg) silica particles or vehicle for 20 min/day for 7 days. Ventricular function was measured in vivo using pressure-volume catheters. I-R injury was induced by ligating the left anterior descending coronary artery for 20 min followed by 60 min of reperfusion.

1145 The Role of Nickel in Systemic Inflammation and Blood Coagulative Effects Induced by PM2.5.

F. Deng, P. Xia and X. Guo, Occupational & Environmental Health Sciences, Peking University School of Public Health, Beijing, China.

Exposure to fine particles (PM2.5) is associated with adverse cardiopulmonary health effects; however, the causative components in PM2.5 are limited. Nickel is one of the major elements of ambient particulate matters. This study was designed to investigate the acute cardiovascular systemic toxicity induced by PM2.5 on Wistar rats and the role of nickel sulfate in it. Male Wistar rats were exposed by intratracheal instillation to blank membrane (control), fine particles with the doses of 7.5, 15 and 30mg/kg body weight and balanced saline (control), Nickel sulfate dosages of 7.5, 75 and 750μg/kg Ni; The rats were sacrificed after 24h, blood samples were collected and parameters of inflammation, cytokines, coagulative effects and the nickel levels in serum were measured to estimate the cardiovascular injury. The results showed that both of PM2.5 and Nickel sulfateinduced a significant increase of serum C-reactive protein, IL-6 and TNF-α, PT levels in the plasma decreased significantly in PM2.5-treated rats compared with the control group. Plasma fibrinogen increased significantly at 15 mg/kg and 30 mg/kg PM2.5 groups. The PT and APTT showed no changes in NiSO4-treated rats. Plasma fibrinogen levels increased significantly at ≈ 75 μgNi/kg / L NiSO4-treated rats. The TF concentrations in plasma increased significantly at 75 μgNi/kg and 750 μgNi/kg dosage groups (P<0.05), there was a slight increase at low dosage (7.5 μgNi/kg) group. To be compared with the corresponding concentration of NiSO4, the acute effects of PM2.5 were more stronger. Our results suggest that water-soluble nickel in PM2.5 may play an important role in PM2.5 toxic effects on animal cardiovascular system. Key words: PM2.5; Nickel sulfate; Cardiovascular Toxicity Note: This experiment was carried out in accordance with the Peking University Society's criteria for the care and use of animals in research.

1146 Involvement of Shear Stress in Fenoldopam and Dopamine-Induced Mesenteric Medial Arterial Necrosis.

D. Dalmas, K. Frazier, H. Thomas and M. Siccitchano, Safety Assessment, GlassSmithKliné, King of Prussia, PA.

Extrapulmonary and relevance of drug-induced rat vascular injury to humans has hampered drug development due to lack of understanding of the pathologic mechanisms involved. Although vasodilatation and increased shear stress (SS) have been hypothesized to be involved in the pathogenesis of these lesions, the exact role of SS on primary target cells, vascular smooth muscle (VSMC) and endothelial cells (EC) in vivo remain unclear. Dopaminergic DA1 agonists such as Fenoldopam and Dopamine reproducibly induce mesenteric medial arterial necrosis (MAN) in rats following single vasotoxic doses. To investigate the involvement of SS in the development of MAN, rats were given vehicle, Dopamine or Fenoldopam for 4 days. Yohimbine, a alpha-2 adrenoreceptor antagonist, also vasoactive but lacking MAN was given to rats for 4 days for comparison. To evaluate the timecourse of lesion development, rats were also given vehicle or a single vasotoxic dose of Fenoldopam and necropsied 1, 4-, 6-, 12- or 24-hours post-dose. Mesentry from each rat was collected and frozen in OCT, then EC and VSMC were microdissected from rat mesenteric arteries, and RNA was amplified and analyzed. Regulations of 37 shear stress responsive genes were evaluated using TaqMan® gene expression profiling. Many of the genes evaluated were confirmed to be differentially expressed by Dopamine and Fenoldopam in EC- and/or SMC-enriched samples as compared to controls and Yohimbine following 4 daily doses. A number of SS responsive genes were also shown to be differentially regulated beginning 1- and/or 4-hours post-Fenoldopam treatment and prior to histological evidence of MAN (which was initially observed beginning at 12-hours). Evaluation of this panel of genes has provided evidence of the involvement and regulation of SS responsive genes in both EC and VSMC during the development of Dopamine and Fenoldopam-induced vascular injury.
and E.

The continued excessive parasympathetic tone appears to be the major etiopathological changes in cardio-pulmonary hemodynamics. In the absence of any successful intervention, these data were complemented by time-course analyses of nitric oxide synthase (NOS) nitric oxide (NO) metabolite production in rats. Phosgene gas is a lower respiratory tract irritant. As such, it stimulates nociceptive vagal afferents leading to a parasympathetic outflow, with adrenoreceptors and flow-mediated autoregulation pathways. These alterations, in combination with previous findings, indicate that the microvascular impairments that follow MWCNT injection are more severe than those observed after ingestion or inhalation exposure. Studies are currently underway to further evaluate mechanistic differences between these routes of exposure.

NIH-RO1-ES015022 and RC1-ES018274 (TRN)

1147 Direct Interaction between Multiwalled Carbon Nanotubes and the Coronary Microcirculation.

T. R. Nurtkiewicz1, B. T. Chen2, D. Frazer3, R. R. Mercere2, J. F. Sccoli2, V. Castranova2 and P. G. Stapleton1. 1Physiology and Pharmacology, West Virginia University, Morgantown, WV; 2National Institute for Occupational Safety and Health, Morgantown, WV.

Recently our collaborative group identified multi-walled carbon nanotube (MWCNT) translocation from the lung to the heart, liver, and kidneys within 24 hours after pulmonary exposure. From this finding, we continued to examine the microvascular ramifications associated with this direct interaction. To model drug delivery platforms, as well as lung migration, MWCNT were injected into the tail vein of rats (25-90 μg, suspended in 900 μl of normal saline). 24-hours later, coronary arteries (<170 μm in diameter) from the left anterior descending artery distribution were isolated for reactivity assessments based on responses to transmural pressure (myogenic responsiveness), intraluminal flow (shear stress), phenylephrine (10-9-10-4 M), acetylcholine (10-9-10-4 M), A23187 (10-9-10-5 M), and spermine NONOate (10-9-10-4 M). Myogenic responsiveness was not altered after MWCNT injection. However, MWCNT injection at all concentrations robustly attenuated reactivity. The coronary microvascular dysfunction associated with MWCNT injection is significant, impacting endothelium-dependent, -independent, adrenergic, and flow-mediated dilation pathways. These alterations, in combination with previous findings, indicate that the microvascular impairments that follow MWCNT injection are more severe than those observed after ingestion or inhalation exposure. Studies are currently underway to further evaluate mechanistic differences between these routes of exposure.

NIH-RO1-ES015022 and RC1-ES018274 (TRN)

1148 Phosgene-Induced Lethal Lung Edema Correlate with Persistent Stimulation of Cardiopulmonary Reflexes.

W. Li1 and J. Pauluhn2. 1Department of Toxicology, Fourth Military Medical University, Xi’an, China; 2Toxicology, Bayer Pharma AG, Wuppertal, Germany.

Phosgene gas is a lower respiratory tract irritant. As such, it stimulates nociceptive vagal C-fiber related reflexes in a dose-rate and concentration exposure duration (Cxt)-dependent manner. In rats this reflex is characterized by extended apnea time periods, bradycardia, and hypothermia. While inhalation exposures at non-lethal Cxt products show rapid reversibility of reflexively induced changes in respiratory patterns, lethal Cxt products seem to cause their prolonged stimulation after discontinuation exposure to phosgene. This observation has been taken as indirect evidence that phosgene-induced lethal lung edema is likely to be caused by dysfunctional neurogenic control of cardiopulmonary and microvascular physiology. In order to verify this hypothesis, data from respiratory function measurements during and after the inhalation exposure to phosgene gas were compared with time-course measurements of respiratory and cardiac function over 24 hours post-exposure. These data were complemented by time-course analyses of nitric oxide (NOx) and carbon dioxide in exhaled breath, including time-dependent changes of extravasated protein in bronchoalveolar lavage fluid (BALF) and hemoglobin in blood. The nitric oxide synthase inhibitors L-NAMe and L-NIL were used to further elucidate the role of NOx in this type of acute lung injury and whether its analysis can serve as an early biomarker of pulmonary injury. Collectively, the sequence and time-course of pathological events in phosgene-induced lung edema appear to suggest that over-stimulated, continued sensorimotor vagal reflexes trigger changes in cardio-pulmonary hemodynamics. In the absence of any successful intervention, this imbalance progresses eventually to a refractory, self-perpetuating and self-amplifying acute lung edema within 24 hours post-phosgene exposure. The continued excessive parasympathetic tone appears to be the major etiopathological mechanism in this type of high permeability lung edema following acute high-level exposures to phosgene gas.

1149 Role of Nr2f2 Antioxidant Defense in Mitigating Cadmium-Induced Oxidative Stress in the Offfatory System of Zebrafish.

L. Wang and E. P. Gallagher. Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA.

Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant defenses. At a critical level of the nuclear factor erythroid-derived 2-like 2 (Nr2f2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nr2f2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A genetic screen forCd-resistant zebrafish identified a novel antioxidant gene associated with cellular responses to oxidative stress was observed in theolfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst p), glutamate-cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmx1) and peroxiredoxin 1 (prodx1) mRNA levels indicative of Nr2f2 activation, and which were blocked by morpholino-mediated Nr2f2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nr2f2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nr2f2 morphants also exhibited a downregulation of OSN-specific gene expression, suggesting that Cd-induced oxidative stress partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nr2f2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. This work was supported by the University of Washington Superfund Research Program (NIH P42ES004696).

1150 Cadmium Enhances Instability of Lysyl Oxidase Messenger RNA.

Y. Zhao, S. Gao, P. Toselli and W. Li. Biochemistry, Boston University School of Medicine, Boston, MA.

Lysyl oxidase (LO), a copper-dependent enzyme, catalyzes crosslinking of collagen and elastin essential for tissue and organ morphogenesis and repair. Our previous studies have shown the critical role of downregulation of LO mRNA -induced emphysema pathogenesis in vitro and in vivo. The present studies further investigate Cd effects on posttranscriptional modification of the LO gene in rat fetal lung fibroblasts (RFL6). Treatment of cells with Cd (1-5 μM) inhibited levels of LO steady-state mRNAs in a dose-dependent manner. RFL6 cells displayed a relatively stable LO mRNA stability as assessed by the actinomycin D (an inhibitor of mRNA synthesis, 5 μg/ml) chase assay with the t1/2 = 24 h. In contrast, in cells treated with 5 μM Cd plus actinomycin D, the t1/2 for LO mRNA decay was reduced to 0.75 h (45 min). Thus, Cd facilitates the LO mRNA decay. Rat LO mRNA contains two AU-rich elements (ARE, AUAUA), the stability determinant, at 174/178 and 200/204 downstream of the translation stop codon in the 3'-UTR. We cloned the entire LO 3'-UTR (1/229) and the ARE fragment (152/229) into the PGL3-Promoter vector after the coding region of the SV40 promoter-driven luciferase gene. The LO 3'-UTR or the ARE fragment strongly stabilized the reporter mRNAs manifested by increased luciferase activities in transfected cells. Mutation of two AREs abolished the enhancement of reporter mRNA stability. RNA immunoprecipitation (RIP) assay indicated that Cd effectively blocked the binding of HuR into the LO mRNA AREs. Thus, Cd targeting the HuR may be a critical mechanism for LO mRNA instability by this metal ion (supported by the grant of NIH 011340).

1151 Involvement of Inhibition of UBE2D Family Gene Expressions on Cadmium-Induced p53 Dependent Apoptosis in Human Proximal Tubular Cells.

M. Tokumoto1, 2, J. Lee2, Y. Fujiwara2 and M. Satoh2. 1Showa Pharmaceutical University, Machida, Japan; 2School of Pharmacy, Aichi Gakuin University, Nagoya, Japan.

Cadmium (Cd), known to be a causative agent of Itai-itai disease, produces severe toxic effects in the kidney, liver, lung and bone. Particularly, chronic exposure to Cd causes renal dysfunction. Recently, we have found that overaccumulation of p53 may relate to Cd-induced apoptosis and may be due to the suppression of p53 degradation through the inhibition of gene expressions of Ubc2d family in rat proximal tubular cells (NRK-52E cells). In this study, we examined the effects of Cd on the expressions of UBE2D family, accumulation of p53 and apoptosis in human proximal tubular cells (HK-2 cells). TUNEL positive cells, indicators of apoptosis, were increased by treatment with 20 μM Cd for 18 h. Moreover, using real-time RT-PCR, we demonstrated that Cd caused significant decrease of UBE2D2 mRNA levels from 6-h treatment, and UBE2D4 mRNA levels from 12-h treatment. Western blot analysis showed that Cd drastically increased p53 protein levels in HK-2 cells, even though the mRNA levels of p53 were decreased by Cd. Additionally, knockdown of UBE2D2 family genes by siRNA increased cellular protein levels of p53. These results indicate that Cd induces apoptosis through p53 accumulation by suppressing expressions of UBE2D family gene expressions, in human proximal tubular cells as well as in rat proximal tubular cells.
After metal administration, Cd\(^{2+}\) in rat livers showed an accumulation of 21 times higher than non-exposed rats as determined by western-blot and ELISA assays. Protein alkaline phosphatase did not show changes between non-exposed and metal-exposed rats. Protein alkaline phosphatase did not show changes between non-exposed and metal-exposed rats as determined by western-blot and ELISA assays. Results of this work suggest that chronic Cd-exposure has an inhibitory effect on serum and hepatic alkaline phosphatase activity, and the mechanism of inhibition can involve the substitution of native zinc in the enzyme by the Cd progressively accumulated in the tissue.

Long-term exposure to cadmium (Cd) affects adversely to renal tubules. We have recently demonstrated that Cd induces p53-dependent apoptosis through the inhibition of gene expression of Ube2d family in rat proximal tubule cells (NRK-52E cells). In this study, we examined the effect of chronic exposure to Cd on the localization of p53-dependent apoptosis in kidney of mice. Five weeks old female C57BL/6J mice were fed diet containing 300 ppm Cd without restraint for 12 months. After 6- and 12-month feeding, we evaluated renal toxicities, and measured mRNA levels of Ube2d family and protein levels of p53 in kidney. In order to examine the localization of p53, we used immunostaining with anti-p53 antibody. Localization of apoptosis was examined by TUNEL staining. Although exposure of mice to Cd induced mild renal toxicity, significant decreases of mRNA levels of Ube2d family and accumulation of p53 were detected in kidney. Interestingly, not only overaccumulation of p53 proteins but also induction of apoptosis was triggered specifically in renal tubules of mice by Cd exposure. These results indicate that Cd may induce apoptosis through p53 accumulated by suppressions of Ube2d family expressions, specifically in renal tubules.
Cadmium Exposure Affects Insulin Signaling in Caenorhabditis elegans.

Y. Sun and J. H. Freedman, BSB, DNTP NIEHS, Research Triangle Park, NC.

Diabetes mellitus (DM) and diabetes-related kidney disease are serious, worldwide-wide health problems. Although there is no direct evidence linking cadmium (Cd) to DM, Cd exposure alters blood glucose levels and potentiates diabetic nephropathy. The insulin/insulin-like growth factor signaling (IIS) pathway regulates multiple biological functions including glucose metabolism and longevity. The model organism, C. elegans, which has an IIS pathway homologous to that of mammalian species, was used to investigate mechanistic links among Cd, transcription, and insulin signaling. The focus of this investigation was the C. elegans Cd-responsive gene ced-1, whose transcription is up-regulated almost 800-fold exclusively by Cd. To identify regulatory factors and pathways that control ced-1 transcription, an integrated transgenic strain of C. elegans containing GFP under the control of the 5′-regulatory region of ced-1 was constructed. Following cadmium exposure (10 μM, 24 h) in the transgenic strain, GFP expression increases in intestinal cells. In a candidate screen, genes involved in various stress response pathways were tested for their potential role in controlling ced-1 expression. Genes were knocked out either by genetic crosses to known loss-of-function C. elegans mutants or by RNAi. Changes in ced-1 transcription were then determined by measuring GFP expression or qRT-PCR. The expression of ced-1, in both the absence and presence of Cd (100 μM, 5 h) was suppressed when genes in the IIS pathway; daf-16, age-2, daf-18, pdk-1, akt-1, akt-2, skn-1, hsf-1, pha-4, pop-1, lin-14, were knocked down of IIS pathway-related genes; skn-1, hsf-1, pha-4, pop-1, lin-14, or qRT-PCR. The expression of cdr-1, in both the absence and presence of Cd (100 μM, 24 h) was suppressed when genes in the IIS pathway; daf-2, age-2, daf-18, pdk-1, akt-1, akt-2, skn-1 and daf-16 were knocked down. Statistically significant interactions between Cd and IIS pathway genes were observed. Furthermore, knocked-down of IIS pathway-related genes; skn-1, hsf-1, pha-4, pop-1, lin-14, tor-2, ras-1, wnk-1; also inhibited ced-1 expression in response to Cd. These results suggest that the IIS pathway mediates Cd-inducible transcription. In addition, they support a model where Cd exposure could induce elevated blood glucose levels by directly affecting the IIS pathway. The mechanism by which Cd activates the IIS pathway is currently being investigated.

Investigating a Protective Role of the Antioxidant N-Acetylcysteine against Cadmium-Induced Damage to Bone Extracellular Matrix.

D. D. Wright, W. S. Wright and S. J. Hegeland, Biology, The College of Idaho, Caldwell, ID.

Environmental pollution of cadmium, a heavy metal commonly utilized in electronics, is a global human health concern. Bone is a known target site for cadmium. One mechanism to protect against cadmium-induced osteotoxicity and bone loss is by reducing oxidative stress. Our lab previously demonstrated that n-acetylcysteine (NAC) rescues osteoblasts from cadmium-induced apoptosis. Others have shown that reactive oxygen species generated through oxidative stress decreases bone mineral density, in part, through targeting the collagen component of the extracellular matrix (ECM). We hypothesize that the antioxidant NAC will protect against cadmium-induced damage to ECM produced by osteoblasts. Saos-2 cells were incubated in mineralize and treated with 1 mM NAC or 5 μM CdCl2 only or in combination for 6 or more days. Upon termination cell viability, phosphate ECM deposition, and collagen secretion and distribution in the ECM were evaluated using MTT, von Kossa, SircolTM matrix assay, and immunofluorescence, respectively. Treatment with CdCl2 for 6 days resulted in increased phosphate deposition, which was restored to that of control in the presence of NAC. We also examined collagen, the main organic component of the ECM. When osteoblasts were induced to form an ECM, treatment with CdCl2 led to significantly less collagen secretion which was reflected in less collagen deposition into the ECM; these effects were reversed in the presence of NAC. Further, NAC and NAC combined with CdCl2 significantly increased cell viability compared to control, leading us to also investigate cell cycle progression. These studies provide further evidence that antioxidants promote bone health by reducing the toxic effects of cadmium. Research funded by NIH-INBRE P20 RR016454 and P20 GM103408 and NIH R15ES015866 grants.

Cadmium Causes Injury to Pancreatic Islets That Is Associated with Caspase-3 Labeling.

J. Edwards and Y. Bahrami, Pharmacology, Midwestern University, Downers Grove, IL.

Diabetes is a growing worldwide epidemic. There is increasing interest in how environmental contaminants can contribute to the onset of type II diabetes. Impaired insulin release is a hallmark of type I diabetes and is key in the progression of type II diabetes. Multiple epidemiological and experimental studies show that exposure to the metal cadmium (Cd), is associated with diabetes and reduced serum insulin. To examine the cytotoxic effects of Cd within pancreatic islets, male Sprague Dawley rats were injected subcutaneously with either saline (control) or Cd (0.6 mg Cd/kg/day, 5 days per week). After 6, 9, and 12 weeks of Cd treatment, pancreatic tissue samples were removed then fixed in formalin. Pancreata were sectioned and H&E stained to identify islets then examined for changes in islet histology. A trained veterinary pathologist scored each sample for cytological degeneration and signs of necrosis and apoptosis. All pancreata from Cd treated animals had elevated scores for signs of vacuolization, apoptosis and necrosis. However, these changes in cell viability did not appear to change with longer Cd exposure times. In another study using the same pancreas samples, tissue was labeled for the apoptosis indicator, active caspase 3. In this study, pancreatic samples were counter stained with hematoxylin so that immuno-labeled islets could be identified. This study resulted in similar findings. Islets from Cd-treated animals had greater caspase-3 labeling and as before, the intensity of labeling appeared to be time independent. These preliminary results show that Cd acts to injure pancreatic islets which may result in diminished insulin release.

Regulation of Glutathione Synthesis in Cadmium-Treated Cultured Choroid Plexus.

S. Francis Stuart, R. Young and A. Villalobos, Interdisciplinary Faculty of Toxicology and Nutrition & Food Science, Texas A&M University, College Station, TX.

In primary cultures of rat choroid plexus we have shown that exposure to cadmium (Cd) induces oxidative stress, stimulates apical choline uptake, and alters glutathione (GSH) synthesis. Our aim is to characterize the regulation of GSH availability and synthesis in response to low-dose exposure to Cd and assess the significance of GSH in cellular adaptation to Cd. We treated choroid plexus primary cultures with 0 or 500 nM CdCl2, in serum free medium (SFM) for 12 h and collected samples at 3, 6, 9, and 12 h. Induction of heme oxygenase-1 (HO-1), heat shock protein 70 (HSP70), and metallothionein-1 (MT-1) in Cd-treated cells was compared to time-matched controls by immunoblot and qRT-PCR analyses. HO-1 protein was induced at 3 h and gradually increased through 12 h. HO-1 gene expression was maximally induced by 70-fold at 6 h and was sustained through 12 h. HSP70 protein was maximally induced by 5-fold at 12 h. MT-1 gene expression was induced by 50-fold at 12 h. Cd induced the catalytic and modifier subunits of glutamate-cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis. GCLC protein levels peaked at 6 h while GCLM peaked at 9 h. Gene expression of GCLC and GCLM increased by 5-fold and 4-fold at 12 h. To elucidate the effects of Cd on GSH concentration, cells were pretreated (12 h) without or with buthionine sulfoximine (BSO, 100 μM) then treated with 0 or 250 nM CdCl2 ± BSO in SFM for 12 h. Intracellular GSH and oxidized glutathione (GSSG) concentrations were assayed and compared to control. Cd increased GSH by 2-fold and increased GSSG by 30-fold. In Cd-treated cells, BSO reduced GSH concentrations by 92% but increased GSSG concentrations by 15-fold above controls. Inhibiting GSH synthesis with BSO augmented induction of HO-1, HSP70, and MT-1 and enhanced stimulation of apical choline uptake in Cd-treated cells. These data indicate that Cd stimulates GSH synthesis at transcription and translation, and the inhibition of GSH synthesis accentuates cellular stress.

Stable Expression of FRET-Based Cd(2+) Biosensor for Advanced Research of Cytoxic Cd(2+).

D. Yang 1,2 and T. Chiou 1,2, 1Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan; 2Institute of Biophotonics & Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan.

Cadmium ion (Cd2+) causes lots of human tissue damages. Several ion channels and transporter proteins as the molecular gateway of different ions have been previously proposed to be the cytotoxic entry mechanism(s) of Cd2+. However, the solid conclusions have not been made. Here we tried to explore this issue through establishing human cell line stably expressing the fluorescent resonance energy transfer (FRET)-based Cd2+ biosensor for monitoring content of intracellular Cd2+. This newly constructed Cd2+ sensor Met-cad 1.57 contains part of Cd2+-binding protein CadR originated from bacteria Pseudomonas putida as the Cd2+ sensing key. Through G418 selection, the HEK293 line stable expressing Met-cad 1.57 HEK-MCD157 cells have been archived. The spectral patterns and sensing ranges of Met-cad 1.57 for intracellular Cd2+ sensing were characterized in vivo under 96-well plate. Under both a fluorescence spectroscopy and a FRET microscopic ratio imaging, the contents of Cd2+ were than monitored within living HEK-MCD157 cells. The dynamic range of Met-cad 1.57 from 0 to 100 μM of Cd2+ is 2–4.4 (2.2
Blood Cadmium Level of Residents Living near the Abandoned Metal Mines in Korea.

D. Kim1, S. Ahn1, J. Ryu1, S. Yu1 and D. Park2.
1Environmental Health, National Institute of Environmental Research, Incheon, Republic of Korea; 2Environmental Health, Korea National Open University, Seoul, Republic of Korea.

Introduction: Preliminary biological exposure monitoring study selected 38 among 906 metal mines abandoned in Korea as the relative high risk areas for national surveillance subjects. They were surveyed from 2008 to 2011 under the environmental health policy by Ministry of Environment. The purpose of this study is to assess the blood cadmium levels from people living around a total of 38 abandoned metal mines area and to determine if those areas have influenced exposure to cadmium among residents.

Methods: Blood cadmium levels were quantified using graphite furnace atomic absorption spectrometry (AAS) through appropriate blood collection, storage and pretreatment procedure. People living less than 3 km from the abandoned mines area were classified as the exposure group (n=6,687). Control group (n=2,643) was selected from people living in non-mining areas.

Results: Blood cadmium level from exposure group was found to be 1.59 μg/L as geometric mean (GM)(95 %CI: 1.56 - 1.62 μg/L) and 1.91 μg/L as arithmetic mean and standard deviation (SD) 0.32 μg/L. Those levels were significantly higher than those from control group (GM=1.28 μg/L, 95 % CI=1.25-1.31 μg/L, AM=1.52 μg/L, 95 % CI = 1.49-1.56 μg/L)(p=0.0001). In addition, 79.5% (n=3,728) of exposure group and 69.6% (n=1,840) of control group exceeded the reference value (1.0 μg/L) derived by German human biomonitoring commission. Multiple regression model found that exposure group was significantly higher than that of control group after age, gender and smoking status were all adjusted (adjusted R= 16.5 %, p<0.0001)

Conclusions: We found that blood cadmium level of people residing near abandoned metal mine area was significantly high, compared with those of control group. Our findings suggested that the abandoned mine areas may have elevated blood cadmium level of people in the vicinity of those areas.

One-Week and Four-Week Inhalation Toxicity Studies of Nickel Sulfate and Nickel Subsulfide in Rats.

1The Hammer Institutes for Health Sciences, Research Triangle Park, NC; 2Experimental Pathology Laboratories, Inc., Research Triangle Park, NC; 3NiPERA, Inc., Durham, NC.

Inhalation toxicity studies of nickel sulfate (NiSO4) and Ni subsulfide (NiS2) were conducted in F344 rats to evaluate cellular pathway responses in lung distal airways using gene expression analysis. Supportive data included lung histopathology, bronchoalveolar lavage (BAL) fluid analysis, and total Ni lung burden analysis. Groups of 5 to 8 male F344 rats were exposed to 0 (control), 0.125, 0.25, 0.5, or 1.0 mg/m3 NiSO4 hexahydrate aerosol (0.8-1.2 μm MMAD) or 0.04, 0.08, 0.15, or 0.6 mg/m3 NiS2 aerosol (2.2-3.2 μm MMAD) for one or four weeks duration (6 hr/day, 5 days/week). NiSO4-exposed rats showed the following BAL results at 4 weeks: decrease in macrophage percentage, increase in neutrophil and lymphocyte percentages (±0.5 mg/m3); increases in LDH, total protein, and NAG, with a decrease in ALP levels (1.0 mg/m3). Minimal to slight/mild bronchial epithelial degeneration/hyperplasia and slight/mild alveolus inflammation were observed in the 1.0 mg/m3 rats. Total Ni in lungs of exposed rats could not be directly measured due to interference with RINAlater solution. Ni concentrations were estimated at 0.7 to 1.0 μg Ni per g lung following 0.5 or 1.0 mg/m3 NiSO4. In the NiS2 study, BAL results were similar to those for NiSO4. Macrophage percentage was decreased, neutrophil and lymphocyte percentages were increased (±0.15 mg/m3), and increases in LDH, total protein, and NAG, with a decrease in ALP were observed. Minimal peribronchiolar/perivascular inflammation and alveolus inflammation were observed in the 0.6 mg/m3 rats following one week exposure. Minimal to slight/mild alveolus inflammation was observed at 4 weeks (±0.15 mg/m3). Quantitative results of total Ni in lung indicated a range of 1.6 to 14.4 μg Ni per g lung following 4 weeks NiS2 exposure (0.04 to 0.6 mg/m3). These data will be integrated with results of gene expression analysis to evaluate mode of action pathways of Ni toxicity.
trivalent Cr, Cr(III), and potentially harmful hexavalent Cr, Cr(VI), in these patients. However, it is known that Cr(VI) preferentially accumulates in red blood cells (RBCs), while Cr(III) remains largely confined to the serum compartment of the blood. Hence, the relative distribution of Cr into RBCs and serum is often used as an indirect measure of Cr valence. We reviewed 231 blood samples from six different studies involving patients with Cr-containing hip implants. Samples were generally taken at pre-implant and then at three or six month intervals post-implant for up to two years. The ratio of serum to RBC Cr concentrations was highly consistent. Post-implant serum Cr concentrations (median values of 0.17-2.39 μg/L) typically increased by several fold over pre-implant concentrations (median value of approximately 0.2 μg/L), but the RBC concentrations did not increase over time. Specifically, the RBC Cr concentrations did not change pre-vs. post-implant (median values of 0.26 to 2.5 μg/L). These data indicate that the Cr released from the implants is in the form of Cr(III).

1167 E162 Protects against Chromium (VI)-Induced Cytotoxicity and Genotoxicity in Human Lung Fibroblast Cells.

M. Braun1, 2, J. Lechner2 and J. Wise2, 1, 2, 3
1Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME; 2Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, ME; 3Department of Applied Medical Science, University of Southern Maine, Portland, ME.

Hexavalent chromium [Cr(Ⅵ)] is a ubiquitous environmental toxicant. Studies show that Cr(Ⅵ) induces many forms of DNA damage that may lead to cancer if they are not repaired. Nutraceuticals, because of their antioxidant properties, have the potential to decrease toxicity. The purpose of this study was to assess the protective effect of E162, a soluble powder made from Trichoderma reesei, on chromium-induced toxicity. We compared the levels of damage generated after co-treatment with Cr(Ⅵ) and E162 in human lung fibroblasts to those after Cr(Ⅵ) treatment alone for both acute and chronic exposures. Sodium chromate was used as a representative soluble Cr(Ⅵ) compound. After a short-term exposure, there was no protective effect of E162. After chronic exposure, however, E162 had a noticeably protective effect on sodium chromate-induced cytotoxicity and genotoxicity. For example, at 1 μM sodium chromate, only 19 percent of cell colonies survived compared to control, while E162 co-exposure increased that number to 35. 1 μM sodium chromate generated 23 total chromosomal aberrations, while E162 co-exposure decreased the number of lesions to 6. There were 49 percent of aneuploid metaphases at 1 μM sodium chromate but only 35 percent after the addition of E162. Uptake studies were performed, indicating that the protective effect of E162 was not a result of decreasing Cr(Ⅵ) uptake. Therefore, E162 may have a direct protective effect on cells against sodium chromate-induced toxicity. This work was funded by the NIEHS grant ES016893 (J.P.W.) and the Maine Center for Toxicology and Environmental Health (IPW), and the Maine Space Grant Consortium (MB).

1168 Method: Measuring Protein-Bound and Free Cobalt(II) in Human Serum—Size Exclusion Liquid Chromatography with ICP-MS.

B. D. Kerger1, L. B. Finley2 and D. J. Paustenbach2
1ChemRisk, LLC, Aliso Viejo, CA; 2ChemRisk, LLC, San Francisco, CA.

Cobalt (Co) ions are known to have a strong affinity for sulfhydryl proteins and amino acids in the blood and tissues, and sufficiently high concentrations of free ionic Co(II) can lead to adverse health effects in humans and animals. We describe a method using size exclusion liquid chromatography (SEC) to resolve protein-bound Co fractions from cyanocobalamin and free Co(II) after direct injection of serum samples stabilized with 0.1M acetic acid. Highly sensitive detection using bound Co fractions from cyanocobalamin and free Co(II) after direct injection of a method using size exclusion liquid chromatography (SEC) to resolve protein-ionic Co(II) can lead to adverse health effects in humans and animals. We describe for industry bioanalytical method validation. These measurements focusing on identifying protein-bound and free Co(II) concentrations are likely to be more informative with respect to understanding the biological effects associated with adverse health effects in people with workplace Co exposures, dietary Co supplement users, and patients with elevated Co blood levels due to cobalt-chromium alloy prosthetic devices.

1169 Chronic Exposure to Particulate Chromate Induces Persistent DNA Double-Strand Breaks in Human Lung Cells.

O. Qin1, 2, 3, H. Xie1, 2, 3, A. Holmes2, 3, S. Wise2, 1, 2, 3 and J. Wise2, 1, 2, 3
1Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME; 2Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, ME; 3Department of Applied Medical Science, University of Southern Maine, Portland, ME.

DNA double strand breaks (DSB) are one of the most deleterious lesions that are induced by particulate chromium. If left unrepaired or misrepaired, DSB can cause mutations or chromosomal aberrations leading to genomic instability. The aim of this study is to determine the genotoxicity of particulate chromate and investigate cellular responses of repair proteins after chronic exposure. We found chromate exposure induced concentration-dependent increases in DSB and with longer exposure time, the amount of breaks remained constant. To address whether this reflected a cycle of breakage and repair or deficient repair, we developed a human lung cell line that stably express GFP-53BP1 and generated time-lapse videos of chromate treated cells. 53BP1 forms discrete nuclear foci at sites of DSB. By monitoring foci kinetics of these cells treated with chromate, we observed residual foci after 24 h, indicating some breaks persist presumably due to deficient repair. Therefore, we investigated the repair proteins involved in homologous recombination (HR) and non-homologous end joining (NHEJ) repair. We found that the nuclear fraction of phosphorylated ATM and Rad51 increased in 24 hours indicating HR is active. However, it largely decreased over time. We also observed concentrations-time- and distance-dependent decrease in Rad51 foci formation, which confirms that HR was inhibited. In contrast, protein expression of Ku80 and DNA-PKcs increased during chronic exposure to chromate. These results suggest that there is a signaling switch between HR and NHEJ during chronic exposure to chromate. Future work will focus on identifying key proteins that regulate the transitions between two repair pathways. This work was supported by NIEHS grant ES016893 (J.P.W.) and the Maine Center for Toxicology and Environmental.

1170 Repeated Particulate Chromate Exposure Induces Chromosome Instability, a DNA Double-Strand Break Repair-Deficient Phenotype, and Neoplastic Transformation in Human Lung Cells.

S. Wise2, 1, 2, 3, A. Holmes2, 1, 2, 3, H. Xie1, 2, 3, W. Thompson3 and J. Wise2, 1, 2, 3
1Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME; 2Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, ME; 3Department of Applied Medical Science, University of Southern Maine, Portland, ME.

One leading hypothesis for the carcinogenicity of hexavalent chromium (Cr(VI)) posits that Cr(VI) causes a DNA double strand break (DSB) repair deficiency which leads to chromosome instability and neoplastic transformation. However, no studies have been done to determine if Cr(VI) can cause DSB deficiency in human lung cells. To begin to test this possibility, we exposed human lung cells to lead chromate for three sequential 24 h periods, each separated by about a month. After each treatment, cells were seeded at colony forming density, cloned, expanded and retreated. Each generation of clones was tested for chromium sensitivity, chromosome complement, DNA repair capacity and ability to grow in soft agar. We found that after the first treatment, lead chromate-treated cells exhibited a normal chromosome complement though a few clones showed a repair deficient phenotype. After the second exposure, more than half of the clones acquired an abnormal karyotype including structural and numerical abnormalities and many showed deficient DNA DSB repair. The third treatment resulted in more abnormal clones, previously abnormal clones acquiring additional abnormalities, and most clones were repair deficient. Further investigation revealed that some clones were unable to form Rad51 foci in response to radiation, suggesting a defect in the homologous recombination repair pathway. Finally, clones from the third generation were able to form colonies in soft agar suggesting that Cr(VI) treatment had not induced a lethal chromosomal aberration. This work was supported by NIEHS grant ES016893 (J.P.W.) and the Maine Center for Toxicology and Environmental Health.
Hexavalent chromium (Cr(VI)) is present in the marine environment and is a known human carcinogen and skin irritant. Cr(VI) is the form of chromium that is well absorbed through the cell membrane. It is also the most prevalent form in seawater. We compared the cytotoxicity of Cr(VI) in fin whale and human skin cells. Our data show that particulate chromium is cytotoxic to human and fin whale cells in a concentration-dependent manner. Specifically, data show that Cr(VI) is less cytotoxic to fin whale skin cells than human skin cells. For fin whale cells, we found that concentrations of 0.1, 0.5, 1.0, 5, 10 and 20 μg/cm² lead chromium induced 91, 72, 55, 40 and 38 percent relative survival, respectively. In human cells we found that concentrations of 0.1, 0.5, 1.0, 5, 10 and 20 μg/cm² lead chromium induced 64, 28, 10, 0 and 0 percent relative survival, respectively. These data indicate that fin whale skin cells were 7.2 times more resistant to Cr(VI) than human skin cells. When corrected for intracellular ion uptake fin whale skin cells remained more resistant. We considered whether the effect was solely to the chromium ion. Our data show that soluble chromium was also cytotoxic to human and fin whale cells in a concentration-dependent manner. They also indicate that fin whale skin cells were more resistant to soluble Cr(VI) than human skin cells. However, these soluble Cr(VI) differences were accounted for by intracellular ion uptake, which indicates that the difference cytotoxic effects are due to something other than the chromium ion by itself. Further investigations will look into the genotoxic effects of hexavalent chromium on these two species. This research is supported by The Environmental Protection Agency’s Undergraduate Research Opportunities Fellowship (CFWF), NIEHS grant ES016893 (JFW) and the Maine Center for Toxicology and Environmental Health (JFW).

Cellular Defense against Telomere Dysfunction Induced by Hexavalent Chromium.

Dysfunctional telomeres, the protective caps at chromosome ends, contribute to a variety of pulmonary diseases. Our previous work established that DNA replication stress induced by the environmental pollutant hexavalent chromium Cr(VI) causes telomere loss and aberrations. Chronic inhalation of Cr(VI) leads to a variety of lung diseases, including fibrosis and cancers. Cr(VI) forms DNA lesions that impede DNA replication and can cause collapse of the replication fork and chromosomal breakage. Telomeres are fragile DNA sites prone to breakage during replication stress. Cells have mechanisms for bypassing lesions that block replication forks called translesion synthesis (TLS). We hypothesize that Cr(VI)-induced DNA replication stress activates TLS DNA polymerase (polη) that suppress Cr(VI)-induced mutagenesis and telomere dysfunction. Our research is investigating several endpoints of telomere dysfunction in human cells proficient and deficient in polη. We observe that cells deficient in polη are 53 fold more sensitive to low levels of Cr(VI) compared to isogenic controls. Using a combination of immunofluorescence and telomere fluorescence in situ hybridization (IF-teloFISH), quantification of replication stress at genomic and telomeric DNA show a severely reduced recovery from Cr(VI)-induced replication stress in cells lacking functional polη. Moreover, we observe that Cr(VI) induces polη mobilization to stalled DNA replication sites at genomic and telomeric regions in human cells. Post Cr(VI) exposure, we identify telomeric aberrations in senescent cells, a critical endpoint of cell damage. The cells were exposed to 0 - 100 μmol/l AgNO₃ for 0 - 24 h and cytotoxicity was assayed with a modified MTt method. The cell viability was decreased by AgNO₃ in a dose-dependent manner (IC₅₀ ~ 2.5 μmol/l). Concentration of Ag in culture media decreased with time and stabilized at 12 h after exposure. Concentrations of Ag and Ag-bound MT in the soluble fraction of cells were sharply increased up to 3 h and then decreased, indicating that cystolic Ag relocated to the insoluble fraction of cells shortly after Ag exposure. mRNA levels of major human MT isoforms, MT-IA and MT-IIA, paralleled concentrations of Ag as well as Cu and Zn-MT. The ROS-derived fluorescence intensity appeared to be elevated at mitochondria after treatment of the cells with Ag. To evaluate effects of Ag on mitochondrial respiration and activities of electron transport chain complex, mitochondria were obtained from rat liver tissues. The electron transport activities of all mitochondrial complexes (I to IV) were inhibited by Ag. We observed that a concentration of cystolicic H₂O₂ was increased up to 11.6 pmol per 1.0 x 10⁹ cells. Ag as well as Cu and Zn were released from isolated MT by H₂O₂ at concentrations as low as 2 μmol/l. Inhibitors of intracellular H₂O₂ synthesis and Ag was segregated immediately by MT. 3 h after exposure, MT was decomposed by cystolicic H₂O₂. Ag released from MT relocated to insoluble cellular fractions and inhibited electron chain transfer of mitochondrial complexes, which eventually led to cell damage.

Development and Optimization of a Procedure for the Determination of Indium-Tin Oxide Particle Size and Concentration in Cellular Media.

K. Levine*, L. Han², W. M. Gwinn², D. L. Morgan, A. S. Esasser*, R. A. Fernando¹, C. S. Smith³ and Y. G. Robinson¹. ¹RTI International, Research Triangle Park, NC; ²Division of National Toxicology Program, NIEHS, Research Triangle Park, NC.

Indium-tin oxide (ITO) is a solid mixture often comprised of approximately 90% indium oxide (In₂O₃) and 10% tin oxide (SnO₂) by weight. ITO is employed as a transparent conductive coating for flat panels, liquid crystal, and plasma displays and is typically deposited after sintering as a thin film on the desired substrate through a variety of technologies. Fatal cases of interstitial pneumonia and alveolar proteinosis have been reported for workers exposed to ITO particles. In vitro studies of ITO are planned in order to better understand the toxicity of this compound. Comprehensive characterization of ITO test materials is required prior to toxicity testing. Characterization of ITO particle size under the conditions of laboratory testing is important because this physicochemical parameter can significantly impact bioavailability and cellular toxicity.
In these studies we developed, optimized, and applied a dynamic light scattering (DLS) sample preparation and measurement protocol for determining hydrodynamic particle size in a suite of sintered/non-sintered ITO samples. ITO samples were prepared in cellular growth media at doses ranging from 0.3 – 0.4 mg/mL. Sonication times of particle suspensions were evaluated from 15 – 90 minutes. Times ranging from 30 – 60 minutes yielded the most stable suspensions with respect to hydrodynamic particle size over a 24-hour period. Resulting suspensions from samples with 30 – 60 minute sonication times were stable for 10 – 24 hours after sonication, with respect to hydrodynamic particle size. Throughout the 24-hour DLS measurement period, suspensions were analyzed for indium content by inductively coupled plasma mass spectrometry (ICP-MS) to confirm ITO concentrations. The developed protocol enabled investigators to use ITO suspensions of known particle size and concentration in their in vitro cellular studies.

Iron is an essential trace element associated with toxicities when present in excess, as is the case in conditions such as hemochromatosis. We have developed and validated a reliable and rapid quantitative method for the exploration of endogenous levels of total iron in rat plasma, heart, liver, spleen, kidney, stomach, lung and bone marrow. The analysis by ICP-MS (Inductively Coupled Plasma Mass Spectrometry) was selected among all other techniques, because of its easy handling of simple or complex matrixes requiring very little sample preparation. The method was validated for accuracy, precision, linearity, matrix effect and instability derived from adsorption on container walls. Precision and accuracy for all matrices ranged from >4.3% to <7.9% and >1.5% to <12.2% respectively. Matrix effect was negligible and the assays for the evaluation of instability showed no adsorption of iron on container walls, either in glass, polypropylene or polyethylene. Iron levels were determined over a 28-day period, on 145 rats aged 7 to 8 weeks at the beginning of the study. In general a low to moderate inter-animal variability of endogenous iron levels was observed. The levels of total iron in plasma, heart, liver, stomach and bone marrow were stable over time with concentrations <5000 ng/mL in plasma and <10.0 μg/g in liver, <70.0 μg/g in bone and <18.0 μg/g (heart), <70.0 μg/g (bone marrow) respectively. In spleen and kidney, the concentrations increased over time, from <8.00 μg/g <400 μg/g in spleen and <15.0 μg/g to <30.0 μg/g in kidney and this was attributed to the ageing of the animals. A moderate to marked inter-animal variability was observed in lung, ranging from 5.00 μg/g to 40.0 μg/g. In conclusion, a reliable and rapid quantitative ICP-MS method was used to determine endogenous levels of total iron in rat plasma and tissues. This method can readily be adapted for the study of endogenous iron levels in other laboratory animal species.

Tungsten is a strong, flexible metal that until recently had been thought to be an “inert” metal. These properties led to its incorporation into the manufacturing of medical devices. In a recent clinical trial, a tungsten-based shield was used in the treatment of breast cancer patients undergoing intraoperative radiotherapy. Following the procedure, the women were left with residual tungsten in their breasts. Elevated tungsten levels in the blood and urine indicate that tungsten is not remaining in the breast tissue. Tungsten was detected in the urine of patients even 8 months after mastectomy, indicating another reservoir has been created. Based on previous data, we hypothesize this reservoir to be the bone. Animal studies suggest that tungsten may contribute to carcinogenesis and can alter development and increase DNA damage in the immune system. In order to evaluate the effect of tungsten on breast cancer, female Balb/C mice were exposed to 1 ppm of sodium tungstate for 1 month followed by injection of 66°C cancer cells into the mammary fat pad. The size of primary tumor, the extent of lung metatases and immune parameters were evaluated. Tungsten did not alter the growth of the primary tumor. However, the number and average size of lung metastases was significantly greater in the tungsten-exposed animals. This model is not known to metastatize to the bone, but we found that tumor-bearing mice had 3-fold more tungsten in the bone than non-tumor bearing mice. Tungsten increased the peripheral blood leukocyte count in non-tumor bearing mice, but decreased the massive granulocytosis associated with tumor growth. These data suggest that tungsten increases the extent of breast cancer metastasis to the lung, which could have a significant impact on individuals who have cancer and are also exposed to tungsten. The levels of tungsten deposition within the bone and immune cell parameters were also altered, which could also impact metastasis in this model.

Iron deficiency is the most common disease in the world with an estimated 4.5 billion affected persons. Debilitating fatigue, altered immune function, decreased work capacity and anemia are among the deleterious consequences of this pervasive disorder. Similarly, liver iron overload is a significant health concern. Multiple genetic disorders of iron metabolism in man, rodents and other vertebrates suggest the multiple loci can contribute to the susceptibility of iron deficiency and severity of iron overload. Previous studies have shown genetic variation in iron metabolism between inbred strains of mice. We hypothesize that this genetic variation underlies the differences seen in iron metabolism between inbred mice. Our aim is to map the quantitative trait loci responsible for the strain-specific differences in iron metabolism. To do this we will use high resolution SNP analysis to “in silico” map the genetic loci responsible for the divergent iron related phenotypes using the hybrid mouse diversity panel (HMDP) [1]. Here we show the phenotypic analysis of the variation in iron metabolism for these mice, and how the overall population changes for each strain.

References
develop analytical means to measure each isoform of this diverse protein family. The two human MT-3 isoforms share 70 to 90% amino acid sequence identity which hampers antibody-based methods of isoform-specific quantification at the protein level. Trypsin digestion yields an N-terminal MT peptide that has a unique mass for each MT isoform. Each of these peptides contains five Cys residues, is N-terminally acetylated, and once allylated is relatively hydrophilic.

The human kidney HK-2 epithelial cell line expressing stably transfected MT-3 was used as a model system. Cytosol was prepared from control cells and cells exposed to 9 μM cadmium for 3 days. The cytosome was then denatured with urea, reduced with DTT, and alkylated with either 14N- or 15N- iodoacetic acid. For absolute quantification, ~145 pmols of MT isoform-specific 15N-labeled N-terminal acetylated peptidome was added to the samples. The light and heavy-labeled samples were combined and digested with trypsin. Strong cation exchange (SCX) and C18 reverse-phase liquid chromatography (p-HPLC) successively enriched the N-terminal MT peptides followed by MALDI-TOF/TOF MS and MS/MS. The ratio of light (control) vs. heavy (induced) MT peak intensities were calculated for each MT isoform detectable in both the control and Cd-induced samples. Seven MT isoforms were detected and quantified in the HK-2, MT-3 cells. MT-1F showed the largest induction (10-fold) from 9 μM Cd treatment. Metallothionein 3 was induced 2-fold. This study describes an iodoacetoamide stable isotope-labeling mass spectrometry-based method for simultaneous relative and absolute quantification of human metallothionein isoforms.

1181 Identification of Metallothionein-3 Interacting Proteins in the Human Proximal Tubule Cells.
A. Slusser1, 2, C. Bathula1, J. B. Shabb1, D. A. Sens1, S. Somji1
1, 2, C. Bathula1, J. B. Shabb1, D. A. Sens1, S. Somji1
1, 2C. Bathula1, J. B. Shabb1, D. A. Sens1, S. Somji1
1, 2Pathology, University of North Dakota, Grand Forks, ND;
2Biology, University of North Dakota, Grand Forks, ND.

Metallothionein 3 (MT-3) is a small, cysteine-rich protein that binds to essential metal ions required for normal cellular processes, as well as heavy metals that have the potential to exert toxic effects on cells. MT-3 is expressed by epithelial cells of the human kidney, including the cells of the proximal tubule. This study has previously shown that the mortal cultures of human proximal tubule (HPT) cells express MT-3 and could form domes in the cell monolayer, a morphological feature indicative of vectorial active transport. However the immortalized proximal tubular cell line HK-2 lacked the expression of MT-3 and failed to form domes. Transfection of the HK-2 cells with the MT-3 gene restored dome formation in the cells suggesting that MT-3 may have a role in vectorial active transport. Recent in vivo and in vitro studies have reported that MT-3 is interacting with other proteins and these interactions are thought to be an important role in execution of some of its functions. Thus the goal of this study was to identify the binding partners of MT-3, which would allow us to understand the mechanism through which MT-3 is regulating vectorial active transport and cell differentiation in HPT cells. For this purpose cell extracts were prepared using the immortalized human proximal tubule (HPT) MT-3 expressing cells were then digested by trypsin digestion followed by SDS-PAGE and mass spectrometry analysis. Data analysis revealed an interaction between MT-3 and myosin 9, gelsolin, beta-actin, and tropomyosin 3. Immunofluorescence studies further confirmed that MT-3 co-localizes with these proteins. These studies demonstrate that MT-3 is interacting with proteins that are involved in cytoskeletal reorganization of the cell and thereby regulating vectorial active transport and cell differentiation.

1182 The Unique N and C-Terminal Domains of Metallothionein-3 Influence the Growth and Differentiation of MCF-7 Breast Cancer Cells.
B. Voels, D. A. Sens, S. H. Garrett and S. Somji, Pathology, University of North Dakota, Grand Forks, ND.

Toxic insult from the heavy metal cadmium (Cd2+) is known to induce the expression metallothioneins (MT) which are heavy metal binding proteins. Previous work from our laboratory has shown that over-expression of MT-3 in breast cancers is associated with poor patient outcome. Furthermore, MT-3 has shown to inhibit the growth of breast cancer and prostate cancer cell lines. Studies have shown that the MT-3 protein contains 7 MT-terminal amino acids that are present in the other member of the MT gene family, a 6 amino acid C-terminal sequence and a Thr in the N-terminal region. The unique N-terminal sequence is responsible for the growth inhibitory activity of MT-3 in the neuronal system. The goal of this study was to characterize the function of the N and C-terminal domains of MT-3 in the breast cancer cell line, MCF-7. For this purpose the different constructs of MTs were prepared which were as follows: wild type (WT) MT-3, MT-3 N-terminal deletion (MT-3 NT), MT-3 C-terminal deletion (MT-3 CT), WT MT-1E, and MT-1E mutated to contain the N-terminal of MT-3 or the C-terminal or both the N- and the C-terminal of MT-3. Each of these constructs was transfected into MCF-7 cells and the growth rates and the transepithelial resistance (TER) was measured. The data obtained suggests that the N-terminal region of MT-3 is involved in growth inhibitory activity whereas the C-terminal region is involved in vectorial active transport which is indicated by the formation of domes in cell culture and an increase in TER. In conclusion, this study further characterizes the unique properties of MT-3 on the N- and C-terminal domain and the potential role that it may play in the differentiation of certain breast cancers.

1183 Fluoride, Aluminum, and Mixtures: Histological Changes in the Liver of Mouse, Mus norvegicus albinus.

Fluoride is one of the chemical contaminants of water causing several health problems in man and animals. Aluminum is one of the most abundant metals in the environment. Although aluminum has been historically considered as a non toxic metal, which is toxic in its trivalent (Al3+) form. Earlier studies exhibited fluorosis and aluminosis when fluoride and aluminum exposed individually. However, it is important to study two different toxicants in combination to know whether they can act as synergistic or antagonistic.

In this study the toxic effects exerted by the accumulation of fluoride, aluminum and their mixtures were studied in the liver of mice. Six different doses were tested for a period of 30 days and 60 days for their toxic effect in the liver. Microscopic study of liver tissue revealed interesting pathological changes in all the fluoride treated mice. The damage to the tissue was dose and time dependent. The aluminum treated mice showed conspicuous histopathological changes in higher dose, which was more significant with the increase in period of exposure. Whereas, the histopathological changes, were not much conspicuous in lower dose groups, and also decreased with period of exposure. In the mixture of fluoride and aluminum treated mice, mild to severe changes were observed in the higher dose of fluoride with aluminum, whereas very mild and insignificant changes were observed in the mice exposed to lower dose of fluoride with aluminum.

1184 Both the Metal Moiety and the Organic Backbone of Ethylene Bisdithiocarbamate Fungicides Maneb and Mancozeb Contribute to Toxicity in Human Colon Cells.
L. Hoffman and D. Hardej, Pharmaceutical Sciences, St. John’s University, Queens, NY.

Ethylene bisdithiocarbamate (EBDC) pesticides are used primarily as broad range contact fungicides on a wide variety of crops. A subset of the metal containing EBDC pesticides include Maneb (MB), Mancozeb (MZ), and Zineb (ZB), which are complexed with the transition metals manganese, zinc, or in the case of MZ, both manganese and zinc. While these agents are reported to possess low human toxicity; previous testing in our laboratory has established the toxicity of these compounds to transformed colon cells, HT-29 and Caco2, and to normal colon cells, CCD-18Co. Significant decreases in viability were observed with MB and MZ in HT-29 and CCD-18Co (80-260μM), and Caco2 cells (40-180μM). ZB exposure however, produced no significant decrease in cell viability in all cell types up to 800μM. Therefore, the purpose of this study was to determine if the metal moieties of MB and MZ contribute to the generation of toxicity. To determine if the manganese and zinc can accumulate within HT-29 and Caco2 cells and initiate toxicity, inductively coupled plasma-optical emission spectroscopy was performed. MB exposure resulted in a dose dependent increase in intracellular manganese levels within HT-29 and Caco2 cells (20-200μM). MZ exposure also resulted in a significant accumulation of zinc within HT-29 and Caco2 cells (40-200μM). To investigate whether manganese and/or zinc was a critical factor in the cytotoxic process, HT-29, Caco2, and CCD-18Co cells were treated with manganese chloride (MnCl2) and zinc chloride (ZnCl2). MnCl2 and ZnCl2 exposure produced no significant loss of viability in all cell types up to 400μM. Therefore, the purpose of this study was to determine if the metal moieties of MB and MZ contribute to the generation of toxicity. To determine if the manganese and zinc can accumulate within HT-29 and Caco2 cells and initiate toxicity, inductively coupled plasma-optical emission spectroscopy was performed. MB exposure resulted in a dose dependent increase in intracellular manganese levels within HT-29 and Caco2 cells (20-200μM). MZ exposure also resulted in a significant accumulation of zinc within HT-29 and Caco2 cells (40-200μM). To investigate whether manganese and/or zinc was a critical factor in the cytotoxic process, HT-29, Caco2, and CCD-18Co cells were treated with manganese chloride (MnCl2) and zinc chloride (ZnCl2). MnCl2 and ZnCl2 exposure produced no significant loss of viability in all cell types up to 400μM. Therefore, the lack of toxicity observed following treatment with ZB within the same concentration range as MB and MZ suggests that the manganese portion of these agents may play a key role in generating the effects seen upon exposure. However, the lack of differences in the cytotoxicity of MnCl2 and ZnCl2 treated cells indicates that the EBDC backbone may act in conjunction with the metal moiety to cause toxicity.
Hexavalent chromium (Cr(VI)) induced a concentration- and time-dependent increase in chromosome damage with the hTERT-immortalized cells exhibiting more than the control cells. When we corrected for uptake, Cr(VI) induced a similar amount of chromosome damage and aneuploidy suggesting that the higher in the hTERT-immortalized cells. Therefore, the hTERT-immortalized cell line had a similar response to metal uptake. Numerous metals are well-known human bladder carcinogens. Despite the significant occupational and public health concern of metals and bladder cancer, the carcinogenic mechanisms remain largely unknown. In order to fully understand how metals transform a normal urothelial cell into a cancerous cell, it is important to study the process in a normal human urothelial cell line. Primary urothelial cells are insufficient for this purpose because of their very short lifespan, but currently, the undifferentiated human embryonic stem cells (hESCs) offer a unique vantage point to measure the effect of toxicants on the very early human development and cell repair system.

From our earlier metabolomics work examining the secretome of hESCs following exposure to MP, there is incomplete toxicological data in humans. Most of the reports are epidemiological studies, adult and juvenile animal studies, or in vitro studies using transformed cell lines. Since undifferentiated human embryonic stem cells (hESCs) maintain the ability to differentiate into any somatic cell in the body, they offer a unique vantage point to measure the effect of toxicants on the very early human development and cell repair system.

From our earlier metabolomics work examining the secretome of hESCs following exposure to MP, we hypothesized that ROS is generated during the toxic response to MP. In this follow-on work, we chose to visualize and quantitate: 1) the presence of ROS during the toxic response to MP, and 2) the expression of genes involved in the response to ROS. To better understand the role of MT in cadmium-associated cellular responses, regulatory factors and pathways that control the expression of the MT gene, mtl-1, were identified through genetic screens. A mutagenesis screen identified a mutant, JF99 that harbored a mutation affecting atf-7, a negative transcription factor involved in the JNK/p38 pathway. In both JF99 and an atf-7 deletion mutant, steady-state mtl-1 mRNA levels were identical but significantly greater than levels in wild type nematodes in the absence of cadmium. In addition to atf-7, mutations in pmk-1 caused a decrease in mtl-1 expression, suggesting that PMK-1 regulates ATF-7 activity. A candidate gene screen identified three insulin signaling pathway genes (PDF-1 and the AKT-1/AKT-2 complex) that functioned independently of this pathway. Further genetic analysis confirmed that these genes act upstream of PMK-1 and ATF-7 to regulate mtl-1 transcription. Based on our genetic pathway data and previous work, we propose that ATF-7 resides on the promoter region of mtl-1 to inhibit the constitutively active transcription factor ELT-2, which is important for intestinal cell specific transcription. In the presence of cadmium, upstream factors signal PDF-1 and the AKT-1/2 complex to phosphorylate PMK-1 causing it to translocate to the nucleus and phosphorylate ATF-7, allowing ELT-2 to initiate transcription. The activation of this pathway results in an increase in MT, which scavenges cadmium and free radicals. In mammalian cells, knockdown of PDF1 and ATF7 resulted in changes in MT-1 expression, suggesting that this pathway was not unique to C. elegans. The insulin signaling pathway affects the aging process, thus an association between cadmium exposure and the activation of portions of the insulin signaling pathway provides a mechanistic link between metal homeostasis, ROS and aging.

The transcription factor fos related antigen-1 (fosl1) is an AP-1 protein whose expression is often elevated in tumors and transformed cells. Previous studies show that fosl1 is transcriptionally regulated through the activity of the fos transcription factor and the MAPK pathway. In addition, fosl1 is induced after exposure to cadmium; however, the mechanism by which this induction occurs has not been elucidated. Metals, such as cadmium, are able to induce the expression of a wide variety of genes though the activation of metal-regulatory transcription factor 1 (MTF-1). Upon activation, MTF-1 translocates to the nucleus and binds to metal responsive elements (MREs) in the promoters of metal-inducible genes. To determine if MTF-1 participates in cadmium-inducible fosl1 regulation, a five kilobase region upstream of the transcript start site and the coding region of fosl1 were analyzed for MRE sequences. Seven MREs were identified and chromatin immunoprecipitation (ChiP) analysis performed to determine if MTF-1 had the ability to bind the fosl1 promoter after metal exposure. ChiP assays showed that MTF-1 localized to the fosl1 promoter and bound each MRE sequence to varying degrees. To assess the biological impact of this binding, MTF-1 null (dko7) cells and dko7 cells transformed with MTF-1 (dko7 + MTF-1) were exposed to cadmium and RNA was isolated at various time periods to evaluate steady state mRNA levels of fosl1 by real-time PCR (RT-PCR). These studies showed a biphasic increase in fosl1 mRNA in dko7 + MTF-1 cells up to 12 hours after exposure to 5 µM cadmium after which the mRNA levels declined to background levels at 24 h. In contrast, dko7 cells showed a steady increase in fosl1 mRNA expression for the duration of the study. These data suggest that MTF-1 is recruited to the fosl1 promoter and may be a negative regulator of fosl1 mRNA expression.
and location of ROS, and 2) cell and nuclear morphology in MP-exposed WA09 hESC using the Cellomics Oxidative Stress I Assay on a Thermo Scientific Cellomics® ArrayScan® HCA System. While low levels of oxidative stress are necessary for normal cell metabolism, high levels are associated with cellular dysregulation and pathologies such as cancer. As expected, our imaging data indicated that the cells did not change structurally, nor did they exhibit senescence or apoptosis in response to the MP exposures we examined. While we were able to measure cellular oxidative stress (fluorescent conversion of dihydroethidium, DHE), the amount measured in the nuclei was much less than we had predicted. All other DHE was scattered and punctuate throughout the cell. These data, combined with other studies suggesting that hESC lose their robust ROS-clearing protection mechanism as they become more differentiated, opens up a new avenue of investigation to define the point in embryonic differentiation when cells become more vulnerable to the ROS-induced toxic effects of MP.

1190 Pluripotency Factors Silence Expression of the Aryl Hydrocarbon Receptor in Embryonic Stem Cells.

C. Ko, Q. Wang and A. Pupa. Environmental Health, University of Cincinnati, Cincinnati, OH.

OCT4, Sox2, and Nanog are transcription factors that maintain pluripotency and self-renewal of embryonic stem cells (ESC) in culture: on the one hand, they activate expression of self-renewal genes, and on the other hand they prevent differentiation by silencing the expression of developmental genes. Unlike DNA methylation, polycomb group (PcG) proteins are chromatin modifiers that repress the expression of developmentally important genes, such as those in the Hox family. PcG-mediated repression represents a plastic and dynamic way to keep genes poised to be reactivated during development. Promoters of developmental genes in ESC are often bivalently marked by trimethylation on lysine-4 (H3K4me3) and lysine-27 (H3K27me3) of histone H3, with PcG-mediated repression allowing these genes to be ready for reactivation upon differentiation. Thearyl hydrocarbon receptor (AHR) has long been believed to mediate xenobiotic toxicity; increasing evidence suggests that it also plays a role during embryogenesis. To study AHR functions during early development, we have analyzed the regulation of AHR expression in C57Bl/6 mouse ESC and their in vitro differentiated progeny. In ESC, Ahr expression is silenced through bivalent marks in its promoter. Specifically, H3K27 is trimethylated in both distal and proximal promoter regions (dp/r and ppr) and H3K4 is trimethylated in the ppr. We also detected the specific binding of pluripotency factors and PcG proteins in the dp/r DNA polymerase II appears to be paused in the ppr, producing short aborted Ahr transcripts. Upon differentiation, the Ahr promoter resolves into a H3K4me3 monovalent state and recruits Sp factors, leading to transcription activation. These results define an ESC-specific silencer domain located 2kb upstream of the Ahr gene transcription start site, responsible for the low, if any, Ahr expression in ES cells. Directed silencing, resulting from cooperation between pluripotency and PcG-repressive factors suggests that the Ahr may play a significant role in maintenance of pluripotency. Supported by NIH Grant SR01ES036273

1191 Hypersensitivity of Stem Cells and Cancer Stem Cells to Cadmium Toxicity.

E. I. Tokar, M. Rogers and M. P. Waalkes. NTP, NIEHS, NIH, Research Triangle Park, NC.

Stem cells (SCs) generally are resistant to toxins compared to mature cellular counterparts. Normal SCs (NSCs) can be malignantly transformed to cancer SCs (CSCs) which then likely drive the carcinogenic process. Cadmium (Cd), a known human carcinogen, can also be an effective anti-tumor agent in rodents, selectively destroying advanced tumors but leaving normal tissue intact, implying cancer cell sensitivity. CSCs likely are key to cancer maintenance, propagation, metastasis and repopulation. Thus, to help explain this paradox with Cd, we examined the effects of Cd on the human prostate NSC line, WPE-stem (to As-CSC cells) and its isogenic normal human prostate epithelial cell line, RWPE-1 (to CAE-PE cells) and a derivate windowcell stem (SC) line, WPE-stem (to As-CSC cells) by unclear mechanisms. MicroRNAs (miRNA) are non-coding but exert negative control on expression by degradation or translational repression of target mRNAs. Aberrant miRNA expression is likely a key factor in carcinogenesis. By miRNA array of 84 miRNAs in CAE-PE and As-CSC cells, for 29 and 13 miRNAs respectively, expression changed by >1.5 fold of control, and 7 were common in both cell types with Cd-MEC co-culture but not with MNU-MECs. Analysis showed Cd-MECs secreted high levels of the tumor microenvironmental related factor, TGFB-1. Direct TGFB-1 treatment of NSCs duplicated most responses from CAE-MEC co-culture. Since recruitment of NSCs into CSCs can also occur with arsenic-transformed CSCs, we conclude that the effects of nearby MECs on NSCs are not carcinogen specific but apply to some, but not all, carcinogens. This phenomenon may be important in chemically-induced tumor extension and dissemination.

1192 Recruitment of Normal Stem Cells into an Oncogenic Phenotype by Noncontiguous Carcinogenic-Transformed Malignant Epithelia Is Dependent on the Transforming Carcinogen.

Y. Xu, E. I. Tokar, B. L. Person, R. Orihuela and M. P. Waalkes. NTP, NIEHS, NIH, Research Triangle Park, NC.

Cancer stem cells (CSCs) are likely key to carcinogenesis. In prior work we found that arsenic-transformed malignant epithelial cells (MCCs) recruit nearby, but non-contiguous normal stem cells (NSCs) into a CSC-like phenotype. Here, we tested if this recruiting effect on NSCs occurs with MECs transformed by other carcinogens. Normal human prostate epithelial SCs (WPE-stem) were co-cultured via transwell dishes that separate cells but do not secreted factors with isogenic MECs derived from normal human prostate epithelial RWPE-1 cells by cadmium or N-methyl-N-nitrosourea (MNU) exposure (called Cd-MECs or MNU-MECs, respectively). SCs co-cultured with normal RWPE-1 cells served as control. After 2 weeks of Cd-MEC co-culture, SCs showed high secretion of metalloproteinase-9 (MMP-9, 3.6-fold of control) and MMP-2 (2.2-fold), increased colony formation (1.8-fold) and invasion (2.5-fold), formation of aggressive ductal structures in MNU-MECs and loss of tumor suppressor gene, PTEN, expression (62% of control), all indicative of cancer phenotype. MNU-MEC co-culture had no such effects on SCs. Epithelial-to-mesenchymal transition occurred in Cd-MEC co-cultured SCs, as shown by cell morphology and VIMENTIN over-expression, but not in MNU-MEC co-cultured SCs. During Cd-MEC co-culture, loss and regain of SC-related gene expression (ABC2-1, OCT-4 and WNT7B) occurred, likely as a key to MEC recruitment of NSCs into CSCs. Overall, the data indicate SCs gain a cancer phenotype with Cd-MEC co-culture but not with MNU-MECs. Analysis showed Cd-MECs secreted high levels of the tumor microenvironmental related factor, TGFB-1. Direct TGFB-1 treatment of NSCs duplicated most responses from Cd-MEC co-culture. Since recruitment of NSCs into CSCs can also occur with arsenic-transformed MECs, we conclude that the effects of nearby MECs on NSCs are not carcinogen specific but apply to some, but not all, carcinogens. This phenomenon may be important in chemically-induced tumor extension and dissemination.

1193 Aberrant microRNA Expression Correlates with RAS Activation in Malignant Transformation of Human Prostate Epithelial and Stem Cells by Arsenic.

N. N. Nezlande, E. I. Tokar and M. P. Waalkes. NTP, NIEHS, NIH, Research Triangle Park, NC.

Inorganic arsenic (iAs) is a human carcinogen probably targeting the prostate and can malignantly transform the human prostate epithelial cell line, RWPE-1 (to CAE-PE cells) and a derivate windowcell stem (SC) line, WPE-stem (to As-CSC cells) by unclear mechanisms. MicroRNAs (miRNA) are non-coding but exert negative control on expression by degradation or translational repression of target mRNAs. Aberrant miRNA expression is likely a key factor in carcinogenesis. By miRNA array of 84 miRNA in CAE-PE and As-CSC cells, for 29 and 13 miRNAs respectively, expression changed by >1.5 fold of control, and 7 were common in both cell types with Cd-MEC co-culture but not with MNU-MECs. Analysis showed Cd-MECs secreted high levels of the tumor microenvironmental related factor, TGFB-1. Direct TGFB-1 treatment of NSCs duplicated most responses from CAE-MEC co-culture. Since recruitment of NSCs into CSCs can also occur with arsenic-transformed MECs, we conclude that the effects of nearby MECs on NSCs are not carcinogen specific but apply to some, but not all, carcinogens. This phenomenon may be important in chemically-induced tumor extension and dissemination.
dysregulated promotes a cancer phenotype. Within the RAS/ERK pathway iAs transforms, increased expression of RAS kinase protein mRNA in CaeE-PE cells, and MEK1/2, ERK and MAP4K4 kinase mRNAs in AsCSC cells. Thus, dysregulated miRNA expression appears to impact RAS activation in both iAs transformants, and appears key to iAs-induced acquired cancer phenotype in these human prostate cells.

2,3,7,8-tetrachlorodibenzofuran-p-dioxin (TCDD) is a ubiquitous toxicant persistent in the environment. It is a prototypic ligand for the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor whose activation upon ligand binding regulates the expression of many xenobiotic detoxification genes. Besides being a critical mediator of gene-environment interactions, AHR has functions beyond those of a xenobiotic interacting protein. Studies in Ahr−/− mice have shown that AHR has physiological roles in hematopoiesis and heart development. To characterize these roles and the consequences of TCDD exposure in cardiomyocyte specification, we studied the effects of TCDD exposure during mouse embryonic stem cells (mESCs) differentiation into cardiomyocytes. mESCs were allowed to spontaneously differentiate via embryo-like aggregates (embryoid bodies, EB) into contracting cardiomyocytes. Immunocytochemistry on contracting EBs indicated that AHR colocalizes with the cardiac markers cardiac troponins T and I and Nkx2.5. ShRNA knockdown of AHR during differentiation or TCDD treatment significantly decreased the percentage of contracting EBs. A time series of TCDD treatment revealed that the time between day 0 and day 3 of mESC differentiation was the most critical window for TCDD toxicity. An ESC clone containing a stably integrated plasmid bearing a Cyp1a1 promoter-driven puromycin-IRES2-eGFP was allowed to differentiate in the presence of TCDD followed by puromycin selection. Real-time PCR analyses of the puromycin resistant selected cells showed that many mesoderm marker genes were up-regulated while both endoderm and ectoderm mesoderm marker genes were down-regulated, indicating that early AHR activation might be committed to mesodermal lineages. Our data suggest that AHR is involved in the regulation of cardiomyocyte differentiation during embryonic development and that TCDD exposure during early differentiation is toxic to cardiomyocyte development. Supported by NIH Grant 5R01ES06273.

PS

1194 Aryl Hydrocarbon Receptor Contributes to Mouse Embryonic Stem Cell-Derived Cardiomyocyte Differentiation.
Q. Wang, C. Ko, Y. Fan, Y. Wang and A. Pugs. University of Cincinnati, Cincinnati, OH.

Results from several epidemiological and laboratory studies suggest that exposure to airborne particulate matter (PM) is associated with an increase in cardiovascular disease (CVD) risk. While acute PM exposures have been linked to arrhythmias, thrombosis, inflammation, endothelial dysfunction, myocardial infarction and stroke, long term exposures increase the risk of mortality due to heart failure, cardiac arrest, and ischemic heart disease arrhythmias. Despite these associations however, relatively little is known about the molecular mechanisms linking exposures to CVD risk. In previous studies we have shown that circulating endothelial progenitor cells (EPCs) were depleted in humans exposed to natural variations in fine particulate matter (PM2.5) and in mice exposed to concentrated air particles (CAPS). However the effects of exposure on other progenitor cell types remains unknown. Hence, to examine how PM affects other stem cell populations we exposed mice to CAPS generated from downtown Louisville, Kentucky containing a versatile aerosol concentration enrichment system (VACES) for 9 days and examined levels of bone marrow-derived hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) using colony forming assays. In CAPS-exposed mice we observed an approximate 35% decrease in CFU-GM (colony forming unit-granulocyte, macrophage) colonies compared to filtered air-exposed, control mice. However the absolute number of colonies and the relative decrease versus air controls varied directly with CAPS levels. Flow cytometry-based phenotypic analysis of these colonies suggested a uniform decrease of multiple hematopoietic lineages rather than a decrease in a specific subset. In contrast no change was observed in BFU-E (burst forming unit-erythroid) colonies between the filtered air and CAPS treated mice, or in the number of bone marrow-derived MSCs. These results suggest that HSC depletion may contribute to the cardiovascular complications resulting from chronic PM exposure by affecting immune responses to injury and dysfunction.

1195 Exposure to Concentrated Air Particles Depletes Bone Marrow Hematopoietic Stem Cells.
T. O’Toole, W. Abplanalp, J. Lee, D. J. Conklin and A. Bhatnagar. Diabetes and Obesity Center, University of Louisville, Louisville, KY.

Cadmium (Cd) alters gene expression and increases cell proliferation, but the exact mechanism of its nongenotoxic effect has yet to be elucidated. Previously we reported that exposure to low concentrations of Cd (80 nM to 5 μM) causes a toxicologically relevant increase in cell proliferation, as determined by [μM]-thymidine incorporation, in undifferentiated murine embryonic stem cells (mESCs). Since epigenetic mechanisms are important during early embryonic development, we evaluated the potential of Cd to disrupt normal epigenetic processes in these cells. Using trypsin blue exclusion, exposure of cells to Cd (up to 75 μM for 24 hours) resulted in inhibitory concentrations 50% (IC50) and 25% (IC25) of 40 and 20 μM, respectively. Real-time PCR analysis of genes associated with epigenetic chromatin modification during early embryonic development indicates that treatment of cells with IC50 and IC25 concentrations results in a greater than 2-fold up-regulation of Atrx, Setd1b, and Smyd1. Atrx, a member of the Aurora kinase family, has a significant influence on cell proliferation of the pre-implantation blastocyst. Setd1b is a component of the histone methyltransferase complex that trimethylates H3K4 (histone 3, a core histone protein, at position lysine 4), resulting in downstream expression of Oct-4. Smyd1 is involved early in embryonic development of cardiac progenitor cells. The results suggest that Cd up-regulates genes that are important in early mitosis and blastocyst formation, methyltransferase activity, and cellular differentiation, the consequences of which implicate the potential role of the metal to alter the normal processes that are coupled with embryonic development in vitro.

1196 Cadmium Concurrently Affects Cell Cycle, Total Histone Protein Production (THP) and H3 Histone Modification Pathways in Mouse Embryonic Stem Cells.
S. R. Gadhib and E. A. Barile. Pharmaceutical Sciences, St. John’s University College of Pharmacy and Health Sciences, Queens, NY.

The fetal basis of adult disease (FEBAD) theorizes that embryonic challenges initiate pathologies in adult life through epigenetic modification of gene expression. We previously reported (2012) that cadmium (Cd) exerts differential toxicity in mouse embryonic stem cells (mESCs) by targeting THP production and H3 (a core histone protein) early in stem cell development, while H3K27 mono-methylation (H3K27me1), associated with transcriptional activation is affected in later stages of differentiation. Thus, low dose acute Cd exposure selectively disrupts chromatin structure, an effect not seen in differentially mature cells. In this study we tested the effects of Cd on cell cycle progression (flow cytometry), chromatin structure and epigenetic pathways (THP and H3K27me1 analysis, respectively) in undifferentiated mESCs after 1-h and 24-h exposures plus recovery. The data suggest that mESC do not recover from Cd insult at 0.032 mM (IC50 for MTT assay), whereas cells recovered from 1-h exposure at 0.01 mM (IC25 for MTT assay). This confirms our previous results that maximum cytotoxicity is seen during the first few hours of exposure at low concentrations. Additionally, THP production is suppressed to a greater extent than cell proliferation at 0.01 mM (24-h). Interestingly, 1-h exposure plus recovery resulted in a significant increase in THP production. Furthermore, 24-h exposure (with recovery) suppressed both cell proliferation and THP production, indicating that Cd targets THP production at longer exposure times and disrupts repair mechanisms. Flow cytometry data demonstrates that 0.01 mM Cd, for 24- and 48-h, increases DNA synthesis and percent of cells in G1 phase as well as percent of cells in mitosis; differentiation is affected at 72-h only. Thus presently we report that low dose acute Cd toxicity is cumulative and disrupts DNA repair, while concurrently affecting cell cycle progression, repair mechanisms, chromatin structure and transcriptional state in mESCs.

1197 Cadmium Induces Up-Regulation of Genes Associated with Early Embryonic Development in Mouse Embryonic Stem Cells.
A. Alberi and F. A. Barile. Pharmaceutical Sciences, St. John’s University College of Pharmacy and Health Sciences, Queens, NY.

Cadmium (Cd) alters gene expression and increases cell proliferation, but the exact mechanism of its nongenotoxic effect has yet to be elucidated. Previously we reported that exposure to low concentrations of Cd (80 nM to 5 μM) causes a toxicologically relevant increase in cell proliferation, as determined by [μM]-thymidine incorporation, in undifferentiated pluripotent mouse embryonic stem cells (mESCs). Since epigenetic mechanisms are important during early embryonic development, we evaluated the potential of Cd to disrupt normal epigenetic processes in these cells. Using trypsin blue exclusion, exposure of cells to Cd (up to 75 μM for 24 hours) resulted in inhibitory concentrations 50% (IC50) and 25% (IC25) of 40 and 20 μM, respectively. Real-time PCR analysis of genes associated with epigenetic chromatin modification during early embryonic development indicates that treatment of cells with IC50 and IC25 concentrations results in a greater than 2-fold up-regulation of Atrx, Setd1b, and Smyd1. Atrx, a member of the Aurora kinase family, has a significant influence on cell proliferation of the pre-implantation blastocyst. Setd1b is a component of the histone methyltransferase complex that trimethylates H3K4 (histone 3, a core histone protein, at position lysine 4), resulting in downstream expression of Oct-4. Smyd1 is involved early in embryonic development of cardiac progenitor cells. The results suggest that Cd up-regulates genes that are important in early mitosis and blastocyst formation, methyltransferase activity, and cellular differentiation, the consequences of which implicate the potential role of the metal to alter the normal processes that are coupled with embryonic development in vitro.

1198 Colony-Forming Cell (CFC) Assays Predict for Increased Clinical Neutropenia Resulting from Combination Therapies.
E. Clarke, A. Mergaert and G. Dos Santos. ReachBio LLC, Seattle, WA.

Combination therapy can be more efficacious than monotherapy in preventing progression of certain diseases. Unfortunately, this increased therapeutic efficacy often comes with increased hematotoxicity. In a randomized study of 646 patients with Multiple Myeloma, Orlowski et al. (2007) saw clinical neutropenia in 20% of patients receiving Bortezomib alone as compared to 35% of patients receiving Bortezomib and Doxorubicin. Shah et al. (2007) reported clinical neutropenia in
25% of patients receiving Imatinib and Hydroxyurea in patients with recurrent malignant glioma. Some myelotoxic combinations may be unintentional: Hachem et al. (2003) reported myelosuppression in bone marrow transplant patients treated with Linezolid that also happened to be on selective serotonin reuptake inhibitors (SSRIs). To see if in vitro CFC assays could predict the clinical neutropenia observed with these combinations, we tested the compounds alone and in combination on CFU-GM inhibition. Normal bone marrow cells and single compounds (range of concentrations) were mixed in methylcellulose-based media (ColonyGel 1102) and plated in 35 mm dishes (3 replicates/concentration). CFU-GM were enumerated on day 14. Compound IC50 values were: Bortezomib (B) 12 nM; Doxorubicin (D) 28 μM; Imatinib (I) 2.6 μM; Hydroxyurea (H) 31 μM; Linezolid (L) 109 μM; and the SSRI Fluoxetine (F) 27 μM.

Drug pairs (B+D; I+H; and L+F) were then tested using a matrix design. When compounds were combined at their IC50 equivalent values, there was an additional inhibition of CFU-GM: 69% with B+D, 84% with I+H and 75% with F+L. These data suggest that the CFU-GM assay may be a useful tool to evaluate drug combinations and predict for clinical neutropenia in a variety of circumstances: when concern of increased hemotoxicity with a strategic therapeutic combination exists; when there is limited information on the drug combinations to be employed; when a drug is to be used on pre-treated patient populations. CFC assays may also be useful in evaluating compounds with potential myeloprotective effects in combination with myelotoxic compounds.

The thin-layer cardiomyocytes have shown to be the preferred format giving rise to robust electrophysiological output similar to that seen with beating cardiomyocyte clumps especially the dose response to DQITIP causing compounds such as E-4031 and Cisapride. In fact, the results were similar to that obtained in the clinical. The thin-layer cardiomyocytes have shown to be the preferred format giving rise to robust and sustainable platform for measuring prolonged QT-interval and other cardiotoxic parameters such as calcium flux, and in turn will produce a more predictive format for toxicity assays in drug discovery.
Mouse embryonic stem cells (mESCs) recapitate developmental signals that occur in vivo and are amenable to high-throughput profiling of chemical-induced effects. In silico models of impaired mESC differentiation identified 19 Toxicast™ assays that distinguished chemical effects on cardiomyocyte differentiation versus cytotoxicity (Wilcoxon rank sum, p=0.03). Taken together, these assays connote a redox-sensitive pathway(s) as a likely target of a chemical set that impaired mESC differentiation. To evaluate this predictive model, a custom quantitative nucleic acid protection assay (qNPA) array (HTG Molecular Diagnostics) of 41 redox-sensitive targets and differentiation markers was designed. The concentration-dependent effects of twelve Toxicast chemicals were evaluated using the qNPA array. The highest concentration produced AC 20 cytotoxicity in mESCs and the remaining were either cytotoxic or had minimal effects on markers for endoderm, ectoderm and mesoderm differentiation on day 4 of culture (decreased Fgf5, Otx2, and Fgf8 expression and increased Tbx3 expression) without producing a 50% decrease in cardiomyogenesis in the standard assay on day 9. Preliminary data evaluated the redox status (glutathione/glutathione disulfide) of mESCs at 3, 6, 9 and 24 hours following chemical exposure and indicated a unique pattern of redox status for predicted redox disrupting chemicals. These experiments document the importance of using multiple differentiation endpoints and support the linkage of our predictive model to altered differentiation in chemical profiling. This abstract does not reflect EPA policy.

1203 Conditions for Isolation and Maintenance of Rat Hepatic Stem/Progenitor Cell Colonies.
J. A. Harrell1, J. Rowlands2, R. S. Thomas1 and L. M. Reid1.1CSS, The Hamner Institutes for Health Sciences, Research Triangle Park, NC; 2TCRC, The Dow Chemical Company, Midland, MI; 3University of North Carolina at Chapel Hill, Chapel Hill, NC.

Hepatic stem cells, hepatoblasts, and committed hepatobiliary and biliary progenitors constitute a stepwise maturational lineage which produces all mature cells of the liver. Hepatic stem/progenitors are localized to the Canals of Hering: perilobular ductular structures derived from ductal plates in fetal and neonatal livers. These perilobular cell niches are enriched in a variety of extracellular matrix molecules including certain types of collagens (III, IV and V) and hyaluronans, non-sulfated polymers of D-gluronic acid + D-N-acetylglucosamine. We have compared the ability of hyaluronans, as well as type III and type IV collagens, to support the proliferation of hepatic stem/progenitors isolated from neonatal and adult rat livers. Cell lines were isolated either by suspension digestion (neonates) or perfusion digestion with collagenase (adult) and cultured in a serum-free medium (Kubota's Medium) designed to culture-select endodermal stem/progenitors. Cells from either age seeded onto collagen III or IV (5 μg/cm2) yielded hepatic stem/progenitor cell colonies which expanded for 5–7 days of culture, at which time the mesenchymal cell components overgrew the plating surface. By contrast, a substratum of hyaluronans (5–100 μg/cm2), in combination with Kubota's Medium, promoted coordinated attachment and growth of discrete hepatic stem/progenitors and their mesenchymal cell progenitor partners. Colonies consisted of hepatic stem/progenitors growing on top of mesenchymal cell progenitors. Neonatal liver-derived colonies had large expansion potential, increasing in area by more than 100-fold by 10 days in culture. It is hypothesized that the expansion potential of adult-derived cells was more limited due to the need for an alternate method of isolation or addition of exogenous growth factors. This novel culture system provides an opportunity to study the effects of hepatotoxins on early lineage stages consisting of rat hepatic stem/progenitor cells.

1204 The In Vitro Human CFU Assay Combined with Automated Image Analysis of Colony Morphology Markedly Improves Assessment of Hematopoietic Toxicity of AZT and Other Nucleoside Inhibitors.
M. Huber1, D. Raj3, C. Grande1, J. Parrott1, O. Egeler1, K. Tse1, C. Farzim1, A. Eaves2,3 and J. Dembs1.1STEMCELL Technologies Inc, Vancouver, BC, Canada; 2Terry Fox Research Institute, BC Cancer Agency, Vancouver, BC, Canada.

Antiviral nucleoside analogs target viral polymerases but can also inhibit cellular polymerases, leading to a decrease in cell proliferation and ultimately suppression of hematopoiesis, resulting in anemia and neutropenia. For assessment of hematotoxicity in this compound class, the FDA’s Guidance for Industry: Antiviral Product Development—Conducting and Submitting Virology Studies to the Agency recommends the use of the colony-forming unit (CFU) assay, which utilizes primary hematopoietic stem and progenitor cells. In 2003, the European Centre for the Validation of Alternative Methods (ECVAM) published a standardized CFU assay methodology that is validated for the prediction of the maximum tolerated dose (MTD) of myelosuppressive compounds (Pessa et al., Tox Sci. 2003, 75:355-367). This in vitro assay is a key tool for assessing toxicity prior to initiation of costly in vivo studies and human clinical trials. Unfortunately, in these standardized CFU assays, nucleoside inhibitors such as azidothymidine (AZT) do not exhibit high toxicity (IC50 = 100–200 μM), despite the fact that they are well-known to perturb hematopoiesis in patients. Although AZT does not significantly reduce the number of hematopoietic colonies in the CFU assay, it does have a dramatic effect on their morphology. To quantitate changes in colony morphology, we utilized the STEMvision® platform for automated advanced image analysis in conjunction with the CFU assay. Our results indicate that IC50 values for AZT based on the quantitation of morphological changes such as colony size were ~20-fold lower (5–10 μM) than the IC50 based on colony numbers (100–200 μM). These data suggest that quantitation of colony morphology is a key parameter to predict drug potency and in vivo toxicity in this drug class.

1205 Investigation of a Redox-Sensitive Predictive Model of Mouse Embryonic Stem Cell Differentiation via Quantitative Nucleic Acid Protection Assays and Glutathione Redox Status.
K. J. Chandler1, J. M. Hansen2, E. S. Hunter2 and T. B. Knudsen1.
1NIEHS/NCT, US EPA, Research Triangle Park, NC; 2Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.

Mouse embryonic stem cells (mESCs) recapitate developmental signals that occur in vivo and are amenable to high-throughput profiling of chemical-induced effects. In silico models of impaired mESC differentiation identified 19 Toxicast™ assays that distinguished chemical effects on cardiomyocyte differentiation versus cytotoxicity (Wilcoxon rank sum, p=0.03). Taken together, these assays connote a redox-sensitive pathway(s) as a likely target of a chemical set that impaired mESC differentiation. To evaluate this predictive model, a custom quantitative nucleic acid protection assay (qNPA) array (HTG Molecular Diagnostics) of 41 redox-sensitive targets and differentiation markers was designed. The concentration-dependent effects of twelve Toxicast chemicals were evaluated using the qNPA array. The highest concentration produced AC 20 cytotoxicity in mESCs and the remaining were either cytotoxic or had minimal effects on markers for endoderm, ectoderm and mesoderm differentiation on day 4 of culture (decreased Fgf5, Otx2, and Fgf8 expression and increased Tbx3 expression) without producing a 50% decrease in cardiomyogenesis in the standard assay on day 9. Preliminary data evaluated the redox status (glutathione/glutathione disulfide) of mESCs at 3, 6, 9 and 24 hours following chemical exposure and indicated a unique pattern of redox status for predicted redox disrupting chemicals. These experiments document the importance of using multiple differentiation endpoints and support the linkage of our predictive model to altered differentiation in chemical profiling. This abstract does not reflect EPA policy.

1206 Arsenic Trioxide Alters Regulation of Differentiation in Mouse Embryonic Stem Cells.
T. Lee and E. A. Ballie, Pharmaceutical Sciences, St. John’s University College of Pharmacy and Health Sciences, Queens, NY.

Arsenic trioxide (As2O3) is a known human carcinogen yet it is currently approved by the Food and Drug Administration as a chemotherapeutic agent for the treatment of acute promyelocytic leukemia. As2O3 alters cellular differentiation by mechanisms of which are yet not clearly understood. Thus, in the current study, we investigated the influence of As2O3 on differentiation of mouse embryonic stem cells (mESC). These pluripotent stem cells are derived from the inner cell mass of the blastocyst, and are capable of continuous proliferation, self-renewal and differentiation into all three germ layers. Undifferentiated cells express early specific stem cell markers including Oct-3/4, Nanog, and Sox-2 which have an important role in developmental regulation and differentiation. In our initial studies, 1.0 μM to 6 μM As2O3 reduced cell viability over 24-h with increasing concentrations, whereas significant reductions were observed at or below 1 μM only with 48-h exposures, a concentration which is equivalent to therapeutic administration. End point PCR analysis revealed that increasing concentrations of As2O3 reduced gene expression of stem cell markers. This supports the western blot results, protein levels decreased with decreased in gene expression. Western blot analysis for Oct-3/4 and Sox-2 protein expression levels are crucial for maintaining mESC in their undifferentiated state, the reductions in the presence of arsenic imply the loss of “stemness”. Consequently, it appears that As2O3 exposure reduces the ability of the stem cells to maintain proper state of differentiation.

1207 Vascular Endothelial Cells Exposed to PCB 153 Show Increased Expression of Stem Cell Markers.
J. K. Das and O. H. Efey, Environmental & Occupational Health, Florida International University, Miami, FL.

The contribution of PCB exposure to the development of vascular disease is an area of research that has received little attention. The stability of these chemicals has allowed them to persist in the environment and consequently continues to expose the general population to PCBs. Since PCBs have been reported in human blood, vascular toxicity from PCB exposure is a public health concern. Vascular lesions from the lung of patients with severe PAH have been characterized with excessive EC proliferation and markers of angiogenesis. The exact cell type from where vascular...
lesions originate from is not clear. However, our studies have focused on ECs as the origin of vascular injury because EC stem cells have been reported to be involved in vascular injury. The theory that malignancies depend on stem-like cells for proliferation has received much attention, but there have been few studies which support a pathogenic role for stem cells in vascular disease. Thus, the objective of this study was to determine whether exposure to the PCB congener 153 can increase the level of stem cell markers in vascular ECs. ECs overexpressing ID3 were used to study the effects of PCB153 in 3D spheroid cultures. Co-culture model of EC with SMCs and fibroblasts was used to study the expression of stem cell markers in a monolayer by confocal microscopy. The effect that PCB153 had on cell cycle progression was also determined by flow cytometry. We observed PCB153 significantly increased expression of stem cell markers CD34+, CD133+, VEGFR-3 in spheroids overexpressing ID3. ECs exposed to PCB153 showed stable spheroid formation in B27 medium at 10 days. ECs exposed to PCB153 in co-cultures showed increased expression of stem markers CD34+ and Nanog as well as increased angiogenic phenotype. Cell cycle analysis confirmed that more stem like cells expressed to PCB153 in co-cultures were in G1 phase. Our results show that PCB153 exposure increased expression of stem cell markers and may be related to mechanisms by which vascular disease depends on stem-like cells for proliferation.

Evaluation of Ionotropic and Chronotropic Compounds In Vitro Using Human iPS-Derived Cardiomyocytes and Impedance-Based Contractility Assay

X. Zhang, B. Xi, X. Wang, X. Xu and Y. A. Abass, Aest Bionicsen, San Diego, CA.

The β-adrenergic receptor (βAR) signaling system is one of the most powerful regulators of cardiac ionotropic and chronotropic function, βAR antagonists, commonly known as β-blockers (β-blockers) have been used for decades to treat hypertension, ischemic heart disease, some arrhythmias, and more recently to treat congestive heart failure. Up to date, 3 types of β-blocker drugs have been developed for therapeutic purpose. In order to better understand the cardiac effects of different types of β-blockers, we have developed an in vitro assay using human iPS-derived cardiomyocytes in conjunction with impedance measurement. We evaluated the activities of six β-blocker drugs and compounds including (1) non-selective β-blockers; (2) cardioselective β-blockers; and (3) nonselective α and β-blockers. The data as measured by impedance readout revealed that the β-blockers from different classes displayed subtle but unique profile of acute impedance changes post compound addition. With the exception of atenolol and metoprolol, pindolol, alpranolol, propanolol and carvedilol significantly decreased the cell beating rate (BR) and even temporally led to beating arrest at the highest tested concentration (5 μM). In addition, the 1 hour pretreatment with all these four compounds at higher doses abolished the isoproterenol-induced positive chronotropic effects on BR. Carvedilol was the only drug that appeared to profoundly reduce cell beating amplitude (CA) in a dose-dependent manner. The in vitro assay used here indicates that human iPS-derived cardiomyocytes respond similarly to the β-blockers from the same group. However, each type of β-blockers generates distinct profiles and do have different chronicotropic and ionotropic effects which we will summarize in the current poster.

Selection of CYP3A4+ hESC-Derived Hepatocytes for Drug Metabolism and Toxicity Assays

K. Bonham1, R. Rodriguez1, S. Ogawa2, C. Blanco1, H. Xian1, R. Stull3, G. Keller2 and R. McEwen1, Aest Bionicsen, Toronto, ON, Canada; 2McEwen Centre for Regenerative Medicine, Toronto, ON, Canada; 3Stem CellRes, South San Francisco, CA.

The ability to produce human hepatocytes that express adult levels of drug metabolizing enzymes including CYP3A4 in a stable and reproducible system will greatly benefit the drug development process by decreasing costs, reducing animal studies, and increasing drug safety. Many groups are trying to develop hepatocytes from human stem cells to address the lack of availability, quality, and reproducibility of primary hepatocytes, however, most protocols produce immature hepatocytes with minimal expression of the adult enzymes related to drug metabolism. Since CYP3A4 is the most abundant P450 expressed in adult liver and metabolizes 50% of drugs on the market, it is imperative that any system expressing very early human development.

Differential Regulation of Pluripotency Maintenance and Differentiation Genes in Undifferentiated Human Embryonic Stem Cells (hESC)

Given their wide spread use, ease of procurement, and potential for serious health consequences if deployed by terrorists, toxic industrial chemicals (TICs) represent a real threat to warfighters and civilians at home and abroad. Unfortunately, for a vast number of TICs, including the widely-used organophosphate insecticide, MP, there is incomplete knowledge regarding the basic molecular consequences of exposure in humans. Although the literature suggests diverse toxicological consequences for MP exposure during early fetal development, it is primarily based on human epidemiological studies, in vivo animal studies, or in vitro studies using immortal, transformed cell lines. Furthermore, the relative contribution and the molecular mechanism(s) of action of the parent compound, MP, versus the active metabolite, MPO, has not yet been elucidated in an early developmental system. In an in vivo model, the MP is converted by hepatic and extra hepatic phase I and II metabolism to MPO, and the relative ratios can vary depending on the in vivo system. Given that undifferentiated hESCs do not produce the enzymes necessary to carry out the conversion of MP to MPO, they provide a unique opportunity to examine the individual influence of the parent and active metabolite on molecular pathways influencing very early human development.

In this study we compared the expression of 84 genes known to be important in the maintenance of pluripotency and differentiation in hESCs cells following a 24 hour exposure of cells to either MP or MPO. These RT-PCR data indicate several key differences in the expression of genes following exposure to MP and MPO. The results of this study have opened a new avenue toward understanding how MP and its active metabolite MPO specifically interfere with some of the earliest steps in human embryonic development.

Adapting the MTT Assay for Use with Human Embryonic Stem Cells (hESC)

R. Z. Behar, Y. Bahl, Y. Wang, J. Weng, S. Lin and P. Talbot, University of California Riverside, Riverside, CA.

hESC are difficult to adapt to 96-well plate assays because they survive best when plated as colonies, which are difficult to count and plate accurately. To address this problem, two protocols were developed to perform the MTT assay using hESC. In the first protocol, plating was done with Rho-associated kinase inhibitor (ROCKi), which allows accurate counting and plating of single hESC. The second protocol involved plating hESC as small colonies without ROCKi but with adaptations to allow accurate counting and plating of small colonies. In the ROCKi protocol, 5,000 cells/well are counted using a hemocytometer then plated and incubated for 96-hours, while the small colony method calls for 20,000–30,000 cells/well followed by 72-hours of incubation. To enable rapid and uniform plating of small hESC colonies, we developed a spectrophotometric method to accurately determine hESC concentration. The percent transmittance for multiple readings of the same sample produced a coefficient of variation (COV) of 1.5%. Next, we determined the cell concentration needed to carry out an experiment in a 96-well plate by plating various cell concentrations and determining the optimal concentration needed for a 72-hour experiment. Finally, to confirm that the correct cell number was pipetted accurately into each well, control wells were subjected to the MTT assay and used to calculate the COV, which ranged from 0.7 to 8.5%, showing that pipetting of small colonies was uniform. The small colony protocol was validated using the NIH Plate Uniformity and Signal Variability Assessment, which test for signal separation, drift and edge effects. When comparing the ROCKi protocol to the small colony protocol, it was found ROCKi caused a shift in the IC50 from 1.34e-3 to 1.45e-4 M. In addition, hESC morphology was altered with ROCKi treatment, which appeared to stress the cells, while cells in the small colony protocol appeared healthier, tightly packed, and cobblestone-like. Both protocols allow the MTT assay to be carried out rapidly and accurately with high reproducibility between replicate experiments using hESC.
1212 IQ-PSLG Nonclinical to Clinical Translational Safety Database Initiative.

The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) is a science-focused organization of pharmaceutical and biotechnology companies. The mission of the Preclinical Safety Leadership Group (PSLG) of the IQ is to advance science-based standards for nonclinical development of pharmaceutical products and to promote high quality and effective nonclinical safety testing and human risk assessment. The IQ-PSLG is creating an industry-wide database to determine accuracy with which the interpretation of nonclinical safety assessments in animal models correctly predicts human risk in the early clinical development of biopharmaceuticals. This initiative aligns with the 2011 FDA strategic plan to advance regulatory science and modernize toxicology to enhance product safety. Eighteen member companies will contribute datasets from over 150 molecules. Though similar in concept to the initial industry-wide concordance dataset conducted by HESI/ILSI (Olson et al. 2000 Reg. Tox Pharmacol Dev), the IQ-PSLG database will include both large and small molecules, be contemporary (circa 2005-2011) and will proactively track concordance from recently completed Phase I clinical studies. Database details, preliminary dataset results and the individual queries to be mined from the dataset will be presented. In summary, the output from this work will help identify actual human and animal adverse event data to define both the reliability and potential limitations of nonclinical data and testing paradigms in predicting human safety in Phase 1 clinical trials.

1213 Target Organ Toxicities in Studies Conducted to Support First Time in Human Dosing: An Analysis across Species and Therapy Areas.

Before a new chemical entity can enter human clinical trials, safety and tolerability must be assessed in non-clinical and non-rodent toxicology studies. We conducted an analysis of target organ toxicities identified for 77 AstraZeneca candidate drugs (CDs) in these studies across a range of therapy areas and targets. Our analysis showed that in the rodent, the most frequently affected organ was the liver followed by the adrenal glands, kidney, spleen, bone marrow and thymus. In the non-rodent, the liver and thymus were the most frequently affected organs, followed closely by the testis and GI tract. This pattern was largely similar across intended therapy areas with the exception of oncology and infection where a larger range of organs was affected with higher incidences for adrenal glands, femur, spleen and thymus. Of those CDs for which no target organ toxicity was seen in one or both pre-clinical species, the majority were from the CNS/pain therapy area. Another important consideration is the need for a second species in toxicology testing. For the 75 CDs where both rodent and non-rodent studies were conducted, 1 or more new target organs were identified in rodents for 52 CDs (69%) and 1 or more new target organs were identified in non-rodents for 40 CDs (53%). Notably, the changes seen in non-rodents included tissues of high relevance for human risk assessment such as the male reproductive tissues. There was only a single CD in our data set for which the target organ profile was identical in both preclinical species. In summary, our data show that liver, thymus, adrenal gland, spleen, kidney, bone marrow and lymph nodes are the most frequent target organs in preclinical studies. This profile is largely similar across therapy areas except for oncology and infection CDs, where a higher incidence of target organ toxicities across a wider range of organs was seen. The data additionally demonstrate the value of a second species in toxicity testing to support human safety.

1214 Quantitative Protein Expression Profiling of HepG2 Cells Treated with Compounds Implicated in Drug-Induced Liver Injury (DILI).

Drug induced liver injury (DILI) is the single most common reason for removing approved drugs from the market, or issuing warnings and modifications of use. However, there is little knowledge of the key cellular mechanisms at the molecular level that underlie DILI. Insight into these mechanisms and the cellular pathways involved will enable the design of predictive assays to remove compounds that pose a toxicity risk early on in the drug discovery and development process. In this study, we used a “toxicoproteomics” approach and SILAC (Stable Isotope Labeling with Amino acids in Cell culture) to study the changes in the proteome of the human hepatocellular carcinoma cell line HepG2 following treatment with a set of seven compounds (Labelatol, Nicotinic Acid, Diclofenac, Amoxicillin, Cefaclor, Rifampin and Tetracyne) previously reported to be involved in DILI. We identified over 4,000 proteins by high-resolution mass spectrometry with a false discovery rate of 1%. We used MaxQuant software for protein identification and the quantitative analysis of data from mass spectrometry and DAVID Bioinformatics - GO (gene ontology) analysis tools to determine protein changes and biological processes/pathways affected by the treatment of cells with the drugs. Our results indicate that the levels of some enzymes with potential effects in drug toxicity were reduced when treated with the compounds. These include carinbine O-acetyltransferase activity (involved in the metabolism of fatty acids), nucleotide-excision repair (DNA repair function) and Glutathione S-transferase A1 (detoxification of electrophilic compounds). Biological processes generally affected as determined by the GO analysis include the response to metal ion and nitrogen compound biosynthetic processes. These results provide further insight into possible cellular mechanisms linked to the toxic activities of the drugs analysed. Undoubtedly, quantitative proteomics could play a pivotal role in deciphering toxicity mechanisms at the molecular level.

1215 Demonstration of a Unique In Vitro to In Vivo to Clinical Correlation of Drug-Induced Phototoxicity.

Drug-induced phototoxicity, which occurs when undesirable effects are elicited after exposure of the skin or eyes to ultraviolet (UV) light, has been an impediment to therapeutic use of a variety of drugs and can negatively impact pharmaceutical research and development. Moreover, proposed screening strategies often over predict in vivo hazards. Herein we report an example where in vitro data not only predict in vivo animal effects but these effects are further translated to humans. As part of the toxicologic evaluation of a drug candidate for obesity, BMS-819881 (‘881) absorbed UV light in the 290-310 nm range and was thus screened in an in vitro mouse fibroblast 3T3 cell assay. The compound had a phototoxicity factor ≥ 18 (≥5 indicates phototoxic potential). In a subsequent rat tissue distribution assay, ‘881 and its metabolites were found to distribute to the skin. In a definitive single-dose study in pigmented Long-Evans rats, ‘881 (given as a prodrug) induced various degrees of erythema, edema and/or flaking of the skin in a dose-dependent fashion after exposure to UV light at ≥ 150 mg/kg [AUC0-24h ≥ 327 μg/mL, Cmax ≥ 217 μg/mL; 5x margin to clinical exposures at 600 mg in a multiple ascending dose (MAD) study]. To investigate its potential mechanism of phototoxicity, ‘881 was tested for photostability and reactive oxygen species (ROS) production using a common causative factor for phototoxicity. BMS-819881 and its ketone metabolite were photolabile (≥ 85% degraded) resulting in substantial production of singlet oxygen after exposure to UV light. Furthermore, in a 4-week MAD trial with ‘881 (given as a prodrug at ≥ 600 mg) in obese subjects, symptoms consistent with photosensitivity reactions (eg, sustained redness and itching) were reported in a dose-dependent manner. These data support a unique nonclinical prediction of clinical photosensitivity and suggest the potential added utility of photostability and ROS production assays in phototoxicity testing, at least in some circumstances.

1216 Preclinical Profiling and Computational Differentiation of Human Vascular Response to 95 Drugs Using Next-Gen RNAseq Transcriptomics.

BACKGROUND: The ability to de-risk and validate preclinical compounds for on- or off-target vascular response is critical for drug development. Animal models and static cell culture systems are poor predictors of the human response. METH-ODS: We have established a human primary vascular endothelial and smooth muscle cell co-culture system which recapitulates hemodynamic forces and restores cell biology and responsiveness to drugs at physiologically relevant levels. We assayed 95 clinically relevant drugs at concentrations consistent with plasma levels following therapeutic dosing. Therapeutic areas included: dyslipidemia, inflammation, depression, diabetes, hypertension, thrombosis, and obesity, among others. Using RNAseq, we profiled the transcriptional responses observed in both cell types, across 5 biological replicates, to each drug versus its vehicle control. RESULTS:
Our analysis detected and corrected for small but persistent batch effects related to sample processing and employed multi-dimensional methods for differential statistics in >1000 samples. Each transcriptomic drug response profile differentiates drug-specific on- and off-target activities between cell types, within drug classes, and between drug classes, as well as estimating relative molecular pathway activity between drugs within a class. For example, preliminary analysis of T2D-class responses ranked the on-target "insulin receptors" signaling pathway for pioglitazone at 6th, but rosiglitazone at 159th, and troglitazone at 259th, while off-target "cancer" and "cell remodeling" pathways dominated the top 10 signaling pathways for troglitazone and rosiglitazone, consistent with clinical history of these drugs. CONCLUSIONS: Methods combining human-relevant systems with mining drug-specific profiles in conjunction with external drug information databases (FDAs AERS, Altman’s OFFSIDES, EPAs ToxCast, Broads Connectivity Map) serves to enhance ability to make broader human vascular drug response predictions.

1217 Towards a Platform of BAC-GFP Transgenomics-Based Pathway of Toxicity Reporters for Automated High-Content Imaging-Based Chemical Safety Assessment.

S. Wink, B. Herpers, S. Hiemstra and B. van de Water, Toxicology LACDR, Leiden, Netherlands.

Adaptive cellular stress responses are paramount in the healthy control of cell and tissue homeostasis after cell injury during hypoxia, oxidative stress or unanticipated side-effect of medications and other chemical exposures. Genome-wide transcriptomics analysis has revealed the detailed cellular stress response landscape and thereby the diversities of organelles and cell functions that are being affected upon exposure to diverse chemicals. Individual translational relevant stress responses have also been termed pathways of toxicity (PoT). We find that activation of PoT occur well before the typical ultimate outcome of chemical cell injury: cell death by necrosis or apoptosis. Understanding the activation of PoT caused by chemicals is complex because many simultaneous biochemical cellular perturbations may occur thereby affecting different PoT in parallel or a defined order. To increase our understanding of chemically-induced PoT activation and its contribution to safety assessment we believe that a time-resolved, sensitive and multiplex readout of chemical-induced toxicological relevant PoT will be essential.

For that purpose, we are currently developing a automated live-cell high-content imaging-based platform containing a panel of distinct PoT reporter cell lines. To conserve the endogenous regulation we tag selected target genes with GFP using imaging-based platform containing a panel of distinct PoT reporter cell lines. To increase our understanding of chemically-induced PoT activation and its contribution to safety assessment we believe that a time-resolved, sensitive and multiplex readout of chemical-induced toxicological relevant PoT will be essential.

Here we report the current status of our BAC-GFP PoT reporter platform and demonstrate that individual reporter cell lines are sensitive to their corresponding model stress responses. We anticipate that ultimate development of a phenotypic PoT profiling platform will allow a high throughput and time-resolved classification of chemical-induced stress responses in the safety assessment of chemicals.

1219 Nonclinical Toxicology Profiling of the First-In-Class Sodium-Glucose Co-Transporter 2 (SGLT2) Inhibitor Dapagliflozin.

M. Timmenstein1, A. Bergholm1, E. Janovitz2, D. Hagan1, J. Whaley1 and T. Reilly1, 2Bristol-Myers Squibb Research & Development, Princeton, NJ; 3AstraZeneca Research & Development, Mölndal, Sweden.

Dapagliflozin (Dapa) is a novel SGLT2 inhibitor that directly increases urinary glucose excretion as a mechanism for treating diabetes. To support its safe use during clinical development, Dapa was evaluated in a rigorous battery of in vitro and in vivo nonclinical safety studies. In vitro screening of >300 diverse targets indicated no significant off-target activities for Dapa or its primary metabolite. The complete set of in vivo safety studies included dosing up to 12-months in dogs and a lifetime (~2 years) in mice and rats. As expected, most of the effects were related to Dapa-induced pharmacology (i.e. SGLT2 inhibition) such as glucosuria with osmotic diuresis and mild loss of electrolytes, and limited body-weight gains despite increased food consumption. At extremely high doses, Dapa also caused intestinal glucose malabsorption. This effect only occurred in rats at extremely high doses (>2000x clinical exposures) and was related to increased intestinal calcium absorption, a consequence of exacerbated carbohydrate fermentation in the rodent gut related to SGLT1 inhibition, which ultimately contributed to thickened trabeculae in long bones and soft tissue mineralization. Of particular importance, chronic Dapa treat-ment at >600x clinical exposures did not result in hyperplasia or any adverse effect on the kidneys or urinary tract nor at >100x clinical exposures any increases in the incidence of or shortening in the latency period for tumor development. There was also no indication that SGLT2/- mice had adverse urinary tract morphology or function when compared to their wild type counterparts in a 15-month observational study. Thus, the pharmacologic activity of Dapa in nonclinical species and the rigorous attempts to test supra- and off-target pharmacology allowed us to thoroughly evaluate its potential toxicity profile, providing us with confidence in its safety in patients with diabetes.
Characterization of Batracylin-Induced Renal and Bladder Toxicity in Rats.

L. Raussch1, D. Bunin1, K. Altera1, S. Samuelsson1, R. Kinders2, M. Davis1 and T. Parman1.1 SRI International, Menlo Park, CA; 2SAIC-Frederick, Frederick, MD; 1National Cancer Institute, Bethesda, MD.

Batracylin (NSC-320846; BAT) is an investigational anticancer agent that reached Phase I clinical trials. BAT is a dual inhibitor of DNA topoisomerase I and II and induces histone gamma-H2AX, a biomarker of DNA damage in vitro. Hemorrhagic cystitis was one of the dose limiting toxicities observed during clinical trials, and bladder and kidney were postulated to be responsible for the hematuria observed in the clinic. We investigated the mechanism of bladder and renal toxicity in Fisher 344 rats, a physiologically relevant model. The studies were designed to 1) examine the effect of BAT administration on rat bladder histology, 2) further characterize the previously reported renal toxicity of BAT, and 3) measure DNA damage in the kidney and bone marrow after BAT administration in rats using gamma-H2AX immunofluorescence. Once daily oral administration of 16 or 32 mg/kg BAT to Fisher 344 rats for 4 days caused overt toxicity. Abnormal clinical observations, adverse effects in clinical pathology, urinalysis, kidney and bladder were seen. Gamma-H2AX immunofluorescence indicated DNA damage in kidney and bone marrow. Furthermore, after administration of BAT, defects in the superficial and intermediate urothelial layers were observed using scanning electron microscopy. The maximum tolerated dose is estimated to be <16 mg/kg/day. MesnexTM is known to reduce the incidence of hemorrhagic cystitis induced by ifosfamide or cyclophosphamide, but BAT toxicity in rats was not alleviated by twice daily intraperitoneal administrations of 80 mg/kg mesna. Thus, the mechanism of BAT-induced bladder and renal toxicity was not mediated by urotoxic mechanisms similar to those of ifosfamide or cyclophosphamide. These studies show that BAT causes renal and urothelial damage in rats that may be related to DNA damage, a previously identified mechanism of action for BAT. Work supported by NCI Contract N01-CM-42203 and N0-CM-2011-00028.

Safety Assessment of NU100 in a 6-Month Cynomolgus Monkey Study.

H. Hu1, V. Tammarza1, D. Hobson1, E. Shaw2, D. Zeng1 and A. M. Brooks3. 1Covance Laboratories Inc., Madison, WI; 2Narun Biotech Inc., Easton, PA; 3LeneStar PharmTox LLC, Boone, TX.

NU100 is recombinant human interferon beta-1b (IFN beta-1b) being developed for treating multiple sclerosis. NU100 has a better purity profile (aggregate-free and has free) compared to other marketed products. A GLP monkey study for NU100 safety assessment was conducted which was originally planned as a 6-month subcutaneous injection study with a 3-day recovery. Male and female cynomolgus monkeys were assigned to 5 groups (4 or 6 animals/sex/group), and were dosed once daily or every other day with NU100, Betaseron and placebo at dose levels of 0, 0.01, 0.06, or 0.28 mg/kg/dose. Animals were monitored clinically, and blood samples were collected for evaluation of serum levels of IFN beta-1b, neopterin (a biomarker for IFN beta-1b pharmacodynamics), and anti-drug antibodies (ADA). No NU-100-related adverse clinical findings were noted during the study. IFN-beta-1b serum concentration peaked in circulation within 2 to 4 hours after administration of NU100 on Days 1 and 15 with a higher level on Day 15; however, by Weeks 18 and 22, IFN beta-1b level returned to the baseline levels. Similarly, neopterin concentrations increased on Day 1 following administration of NU100 in a dose-dependent manner. Mean predose neopterin concentrations remained slightly elevated on Day 15 compared with Day 1 baseline levels. Nevertheless, no further induction of neopterin was noted on Day 15. By Weeks 18 and 22, neopterin concentrations returned to predose levels. At week 2, 12.5% animals treated with NU100 and 37.5% treated with Betaseron were confirmed positive for ADA. All NU100 treated primates were confirmed positive for ADA at weeks 2, 4, 8, 12, and 18 during the study. Due to the loss of IFN-beta-1b activity resulting from the generation of anti-IFN beta-1b antibodies, the dosing phase of the monkey study was terminated one month earlier than planned, following discussion with and approval from the FDA. In conclusion, NU100 was well tolerated by monkeys in this chronic toxicology study.

BPM31510 is a Novel Regulator of Mitochondrial Function That Mitigates/Rescues Drug-Induced Toxicity—Evidence in Drug-Induced Cardiotoxicity and Cancer Chemotherapy Using In Vitro and In Vivo Models.

S. Sarangapani1,2,3, T. Walde2, A. Lee2, R. Oujo-djou2, L. M. Mauro4, V. Vishnuva1,2, J. J. Jimenez5 and N. R. Narain5,1,2,3. 1Berg Pharma LLC, Natick, MA; 2Berg Biosystems, Natick, MA; 3Berg Diagnostics, Natick, MA; 4University of Miami, Miller School of Medicine, Miami, FL.

In a large cohort of drugs routinely used in clinical practice, disruption of mitochondrial function represents a common thread associated with incidence of organ specific toxicities. An example is the incidence of cardiotoxicity associated with anti-diabetic drugs, cancer chemotherapeutics and anti-retroviral agents. Ubidocenearene is a mitochondrial resident molecule with multiple functionalities including electron transport and generation of ATP. The delivery of ubidecarenone to the mitochondria is a challenge due to its physicochemical properties. BPM31510 is a nanodispersion formulation containing ubidecarenone incorporated into a novel lipid mixture with improved ability to deliver ubidecarenone with ability to influence mitochondrial function. The effect of BPM31510 on the toxicity profiles of several cancer chemotherapeutic agents was tested in cell cultures and animal models of cancer and on the cardiotoxicity potential of an anti-diabetic drug in primary cultures of normal human cardiomyocytes. BPM31510 significantly enhanced the efficacy of multiple chemotherapeutic agents used for treatment of cancers of the pancreas, prostate, breast and colon in in-vitro and in-vivo models. In addition, BPM31510 mitigated chemotherapy induced toxicity in primary cultures of normal human liver, fibroblast and prostate cells. Furthermore, BPM31510 reversed mitochondrial dysfunction resulting from exposure to an anti-diabetic drug. BPM31510 represents a novel technology effectuating a multimodal physiological response in which it does not interfere with the normal therapeutic mechanism of action of chemotherapy drugs, yet confers protection to normal tissues. BPM31510 is currently in clinical trial as a mono-therapy for solid-tumors with no reported adverse effects.

Etrinotecan Pegol Nonclinical Toxicology Studies Establish a Margin of Safety to Support an Every Three-Week Clinical Dosing Schedule.

Background: Etrinotecan pegol, formerly NKTR-102, is a unique targeted topoisomerase I inhibitor designed for prolonged tumor cell exposure. Etrinotecan pegol demonstrated a favorable tolerability profile in nonclinical and clinical studies with improved safety over irinotecan. Toxicology studies were conducted in dogs to further evaluate etinotecan pegol safety and establish dose-related toxicities. Methods: Etrinotecan pegol was administered as an IV infusion to dogs for 3 months using a q14d schedule at doses up to 30 mg/kg (600 mg/m²) irinotecan equivalents. Direct comparison to irinotecan was evaluated in dogs using a q7d4x schedule (Persson et al, 2008). Clinical observations, clinical chemistry, and histopathology were performed and toxicokinetic samples were collected and assayed by LC-MS/MS for etinotecan pegol, irinotecan, SN38, SN38-Gluconuride, enterochelones, and betaferon. In the 6-month study, NU100 was well tolerated by monkeys in this chronic toxicology study.
and APC. Results: Eritinotecan pegol-treated dogs (25 mg/kg, 500 mg/m²) had re-duced levels of reticulocytes and diarrhea and no mortality compared to ritinotecan-treated animals at the same dose when given q3d4. When given q14d for 3 months, eritinotecan pegol-treated dogs (30 mg/kg, 600 mg/m²) had no neutropenia and minimal diarrhea at SN38 exposure levels up to 5-fold above those in patients given 145 mg/m² eritinotecan pegol on a q21d schedule. Body weight gain suppression and decreased food intake were the primary side effects observed at this eritinotecan pegol dose and schedule. No test-article related alopecia was noted in animals treated with eritinotecan pegol in any of the toxicology studies in contrast to literature reports of alopecia in both humans and in animals treated with irinotecan. Conclusions: Nonclinical toxicology studies show that eritinotecan pegol produces markedly less neutropenia and diarrhea with no mortality when compared to irinotecan. Eritinotecan pegol is well-tolerated for 3 months at doses that provide a good safety margin (based on SN38 exposure) to support a clinical regimen of 145 mg/m² given every 3 weeks.

1226 Transient Thrombocytopenia without Coagulopathy in Rats following Single IV Bolus of Oxycyte®, a Perfluorocarbon (Pfc) Based Oxygen Carrier.

S. Anderson1, L. Bernard2, J. Szabo2 and T. Bradshaw1.1 Oxygen Biotherapeutics, Morrisville, NC; 2Ricerca Biosciences, Concord, OH.

Oxycyte®, a 60% w/v perfluoro(2-butylcyclohexane)FrBu® intravenous emulsion, is being developed for treatment of traumatic brain injury (TBI). Transient thrombocytopenia (TTP), a known class effect of PFCs, may pose a risk for TBI patients. A rat model of intracranial hemorrhage (ICH) is under development to ascertain whether TTP subsequent to Oxycyte administration exacerbates ICH and whether platelet transfusion will ameliorate TTP associated ICH. As part of model development, studies were conducted to determine hematology, coagulation, cytokine, and PK profiles following Oxycyte administration. Male rats received a single IV bolus of Oxycyte at 3, 6, or 12 mL/kg. Blood was collected via jugular cannula (n=3/group) at 10 post administration time points and analyzed for FrBu® concentration. Additional rats (n=5/group/time point) were sacrificed on Study Days (SD) 2, 3, 4, 5, 7, 10, 14, and 30 for hematology and blood cytokine analyses. Blood T1/2 following 3, 6, or 12 mL/kg was 4.2-3.9, and 6.3 hours respectively. AUC was 12- and 48-fold higher for rats receiving 6 and 12 mL/kg compared to 3 mL/kg. There was a 30-40% decrease in PLT counts on SD3-5 in rats receiving 6 or 12 mL/kg suggesting Oxycyte-induced PLT sequestration (TTP) rather than PLT destruction. Mean platelet volumes were increased in all Oxycyte groups through SD7 with a decrease in reticulocyte (RTC) counts and elevated fibrinogen levels through SD5. Except for elevated fibrinogen concentrations, there were no significant changes in coagulation parameters. No elevations in IL-6, TNF-α, and IL-1β levels were detected. LIVER spleen weights were elevated at all time points. RTC changes were considered a pharmacologic response to Oxycyte with no concurrent changes in erythrocyte counts. Increased liver and spleen weights were expected effects due to removal of Oxycyte by the reticuloendothelial system, the known mechanism for clearing PFC particles.

1227 Immunomodulatory Activity of Orphan Drug Elmiron® in Female B6C3F1/N Mice.

S. Thakur1, N. Abraham1, K. L. White3, M. J. Smith1, W. Auttachote2 and D. R. Germolec1.1 Division of National Toxicology Program, NIEHS, NIH, Research Triangle Park, NC; 2Integrated Laboratory Systems, Research Triangle Park, NC; 3Virginia Commonwealth University, Richmond, VA.

Intestinal cystitis/painful bladder syndrome (IC/PBS) is a chronic disorder charac-terized by bladder discomfort and urinary urgency in absence of identifiable infec-tion. Elmiron® (EMR; sodium pentosan polysulfate) is the only approved oral therapy for treatment of IC/PBS. Based on the lack of chronic toxicity data and po-tential for long term use in the treatment of IC/PBS, NTP conducted 90-day and 2-year toxicity studies for EMR. The results suggested that EMR could potentially modulate the immune system. Therefore, this study was conducted to evaluate the immunomodulatory effects of EMR when administered for 28-days via oral gavage to female B6C3F1/N mice, at doses of 63, 125, 250, 500 and 1000 mg/kg. Mice treated with EMR had a significant increase in absolute liver weights (500 and 1000 mg/kg). The absolute numbers of splenic macrophages (63, 500 and 1000 mg/kg) and natural killer (NK) cells (250 and 1000 mg/kg) were significantly increased. EMR treatment did not affect the humoral immune response (antigen spec-ific antibody response to sheep red blood cells [SRBC] or cell-mediated immu-nity [mixed leukocyte response response). However, innate immune responses such as phagocytosis of radiolabelled SRBC by liver macrophages (1000 mg/kg) and NK cell activity were enhanced (500 and 1000 mg/kg). Further analysis using a disease resistance model showed that EMR-treated mice demonstrated significantly in-creased anti-tumor activity against B16F10 melanoma cells at the 500 and 1000 mg/kg doses, where the numbers of tumor nodules were decreased by 55% and 68%, respectively. Collectively, we conclude that EMR administration stimulates the immune system, increasing numbers of specific cell populations and enhancing phagocytosis and NK cell activity in female B6C3F1/N mice.

1228 Assessment of Long-Term Preclinical Safety of Inhaled Technosphere® Particles and Afrezza® Inhalation Powder.

S. Greene1, K. Nikula2, D. Poulin1, K. McNally1 and J. Reynolds3.1 MannKind Corp, Valencia, CA; 2Seventh Wave Laboratories, Chesterfield, MO; 3Charles River Laboratories, Montréal, QC, Canada; 4ITR Laboratories, Montréal, QC, Canada; 5J.A. Reynolds & Associates, Madison, CT.

The inhalable insulin, AFREZZA® inhalation powder and novel excipient, FDNP (fumaryl diketopiperazine which self assembles into Technosphere® Particles), were evaluated in nonclinical safety studies for the treatment of diabetes. Daily doses of either Technosphere particles or AFREZZA inhalation powder were ad-ministered by nose-only route in chronic repeat dose and carcinogenicity studies in rats or oronasal route in dogs. With the exception of transient exagerrated pharma-coeval effects of insulin, inhalation administration for up to 104 weeks in rats and 39 weeks in dogs was well-tolerated. There were no adverse effects on body weight, food consumption, ophthalmoscopy, clinical pathology parameters or elec-trocardiography (dogs). There were no indications of carcinogenic potential or pro liferation related to AFREZZA inhalation powder in pulmonary tissues by immu nostaining using proliferating cell nuclear antigen assay. Non-proliferative lesions were limited to minimal goblet cell hyperplasia and eosinophilic accumula tion in the olfactory/respiratory epithelium in rats; and minimal neutrophil infiltr ation in lung in dogs. Maximum systemic concentrations of insulin and FDNP were rapidly attained. Terminal half life was approximately 20 and 60 min for in su lin and FDNP, respectively. In dogs, systemic exposure of FDNP and insulin was generally dose proportional with no sex differences or accumulation. In rats, insulin exposures were generally higher in females compared to males. Exposure to insulin was also moderately related to dose. Maximum systemic concentrations of insulin were 12- and 48-fold higher for rats receiving 6 and 12 mL/kg compared to 3 mL/kg. There was a 30-40% decrease in PLT counts on SD3-5 in rats receiving 3 or 6 but not 12 mL/kg suggesting Oxycyte-induced PLT sequestration (TTP) rather than PLT destruction. Mean platelet volumes were increased in all Oxycyte groups through SD7 with a decrease in reticulocyte (RTC) counts and elevated fibrinogen levels through SD5. Except for elevated fibrinogen concentrations, there were no significant changes in coagulation parameters. No elevations in IL-6, TNF-α, and IL-1β levels were detected. Liver and spleen weights were elevated at all time points. RTC changes were considered a pharmacologic response to Oxycyte with no concurrent changes in erythrocyte counts. Increased liver and spleen weights were expected effects due to removal of Oxycyte by the reticuloendothelial system, the known mechanism for clearing PFC particles.

1229 NF-κB Activation in the Hippocampus during Multiple Subthreshold Exposures to Seizurogenic Compounds.

J. A. Miller1, K. S. Kirkley2, Y. H. Rao2, M. Patel1, R. A. Bielecki3 and R. B. Tjalkens1.1 Center for Environmental Medicine, Colorado State University, Fort Collins, CO; 2Department of Pediatric Neurology, University of Colorado, Denver, CO; 3Department of Pharmaceutical Sciences, University of Colorado, Denver, CO; 4Safety Assessment, AstraZeneca,Boston, MA.

Drug-induced seizures have been documented for broad classes of pharmaceuticals including CNS and Non-CNS targeted drugs. A better understanding of the early molecular signaling events involved in promoting seizures is necessary to identify potential proconvulsive liability of new pharmacologic agents earlier in the develop-ment process. The NF-κB pathway is involved in regulating a number of stress genes and its activation may conceivably be an early indicator of potential seizure li ability. Presently, we employed a NF-κB-dependent GFP reporter mouse to investi-gate the role of NF-κB signaling in rendering hippocampal neurons hyper-ex citable. Utilizing EEG recordings and video documentation we established a sub-threshold dose level of the seizurogenic compound kainic acid (KA). Transgenic reporter mice were exposed to multiple sub-threshold doses of KA and regional and cell specific NF-κB activity was assessed after each dose. Under control levels reporter expression was absent in the hippocampus except for a slight basal expression in the CA3 pyramidal layer. Upon multiple exposures to KA, a pro nounced expression of the GFP reporter was observed in the stratum molecular, dentate gyrus molecular layer and in the dentate hilus. Additionally we exposed re porter mice to multiple low levels of a different seizurogenic compound, pentyleneetetrazole (PTZ). After multiple doses of PTZ, a global increase in GFP expression was observed. Comparison of the two compounds suggests a regionally selective expression consistent with the distinct mechanisms of action for each com pound. Utilizing cultured slices from the reporter mice we observed similar selec-tive GFP expression in response to the two compounds demonstrating the potential utility of this method for the assessment of proconvulsive properties of new phar macologic compounds.
Selection of the safe starting dose (SSD) in oncology represents a critical decision point in the drug development process, as under- or over-prediction of the SSD can have serious consequences in Phase I, exposing patients to doses that are either sub- or toxic. The SSD is commonly estimated by determining if 1/10th the severely toxic dose in rodents (STD10) is tolerated by non-rodents, and if so, using 1/10th of the rodent STD10 dose as the SSD. In general, the STD10 is estimated from GLP toxicology studies where relatively large numbers of animals are divided into a few dose groups to increase statistical power within a group. Here, we propose an alternative method to estimate the STD10 based on logistic regression curve-fitting, (a standard technique for modeling binary outcomes in the clinical setting) with mortality as a binary endpoint. To this end, we simulated mortality data based on 400 different sigmoidal dose-mortality curves with a probabilistic model, and predicted STD10 by logistic regression, comparing this approach to the traditional dose-picking methodology for the same datasets. Model-predicted STD10 values outperformed the traditional method, with better accuracy (absence of downward bias) and precision relative to the true STD10. Additionally, this approach was resistant to the effect of outliers (unexplained mortality). More importantly, the superior accuracy and precision of the STD10 values determined by logistic regression could be achieved with fewer animals used in the conventional approach. A retrospective analysis of an anticancer compound currently in Phase I clinical trials demonstrated potential to narrow the gap between the human Maximum Tolerated Dose and SSD from 10-fold to 10-fold. By using the information from all animals in a study, logistic regression curve-fitting provides the potential for a more robust and less biased SSD, while at the same time decreasing the number of animals utilized.

1231 Application of Electroretinography (ERG) in Early Drug Development for Assessing Ocular Toxicity in Rats.

Retinal ocular toxicity is among the leading causes of drug development attrition in the pharmaceutical industry. Electroretinography (ERG) is a non-invasive functional assay used to assess neuro-retinal physiological integrity by measuring the electrical responses of various retinal cell types. When applied in the pre-clinical setting, ERG may be utilized to evaluate potential ocular toxicity of drug candidates. Studies were designed to assess the sensitivity and specificity of ERG to detect ocular toxicity in Wistar Han rats using several drugs with varied activity in the retina ranging from no evidence to those with demonstrated microscopic retinal degeneration. To directly assess the utility of ERG, these studies were conducted following a single intravitreal injection (IVT). Doses were selected based on an in-vitro retinal pigment epithelium (RPE) cytotoxicity assay and compound solubility limit. Serial administration of AG-012986 resulted in decreases in b-wave amplitude correlating at the end of the study for histopathology evaluation. Here, we report IVT dosing with increases in plasma levels of retinal toxicity biomarkers (miR-124a and miR-203) compared to vehicle. These findings support the use of the RIF method for combined assessment of potential effects of drug candidates on cardiovascular and respiratory functions. The methodology could allow the integration of respiratory investigations into regulatory toxicology studies in primates. Such an approach is particularly applicable for the safety evaluation of biotechnology-derived products, for which rodents are often not applicable models.

1232 Absolute Quantitation of Low-Abundance Protein Adducts Using a Novel Accelerator Mass Spectrometry Liquid Sample Interface.

1Biocisence and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA; 2Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA.

Drug characterization studies including the detection and quantitation of protein adducts arising from reactive drug metabolites provide important information about a drug candidate’s potential to cause adverse reactions. Current methods for characterizing protein adducts are limited by low sensitivity and difficulty identifying modified proteins. We report the use of a novel accelerator mass spectrometry (AMS) liquid sample interface for absolute quantitation of protein modification by 14C-iodoacetamide and identification of peptide modification patterns. Competitive binding experiments showed that covalent adducts of cysteine residues in bovine serum albumin can be quantified at the attomole level in microgram-size samples of protein. Tryptic digests and HPLC separation of tryptic peptides followed by peptide analysis using the liquid sample interface and electrospray ionization and tandem mass spectrometry (ESI-MS/MS) showed reproducible patterns of adduct formation, with modifications localized to specific regions of the protein corresponding to regions predicted by known chemical reactivity. Measurements of whole protein adducts using the liquid sample interface were comparable to values measured by standard graphitization with AMS analysis. This technology presents an important novel method for absolute quantitation of 14C-labeled proteins and peptides. Potential applications include microdosing studies using 14C-labeled protein therapeutics and investigation of post-translational and chemical modifications of proteins.

1233 Evaluation of Respiratory Function in the Conscious, Nonrestrained Cynomolgus Monkey Using Respiratory Inductive Plethysmography.

Evaluation of the potential alteration of respiratory function is mostly performed in rodents using whole body plethysmography, while cardiovascular telemetry studies are commonly conducted in large animals. The purpose of the present study was to evaluate the use of respiratory inductive plethysmography (RIP) as a method that might be suitable for routine evaluation of respiratory function in primates. Four monkeys were equipped with jacketed external telemetry devices including abdominal and thoracic belt sets (JET, DSI). Thoracic and abdominal signals were recorded and analysed using Penseam software. After an acclimation period, animals received theophylline (100 mg/kg, p.o.), clonidine (100 µg/kg, i.m.) and corresponding vehicle (0.5% methylcellulose, p.o. or NaCl 0.9%, i.m.). Respiratory rate (RR), tidal volume (TV) and minute volume (MV) were recorded continuously over 24 hours. Theophylline induced increases in TV, MV and RR when compared to vehicle (Emax = +59%, +118% (p < 0.01) and +41% (p < 0.01), respectively). Clonidine produced significant decreases in TV and MV and RR (Emax = -12%, -29% (p < 0.01) and -27% (p<0.05)).

The results demonstrate the validity of the RIP method for the assessment of respiratory function in the monkey for a long period (24 hours). These findings support the use of the RIP method for combined assessment of potential effects of drug candidates on cardiovascular and respiratory functions. The methodology could allow the integration of respiratory investigations into regulatory toxicology studies in primates. Such an approach is particularly applicable for the safety evaluation of biotechnology-derived products, for which rodents are often not applicable models.

1234 Impact of Food and Fecal Contamination on Dog Urinalysis Data.

Suspected aberrant urinalysis results were observed in dogs urinating limited urine volumes, or presenting clinical diarrhea, prompting an investigation to determine potential causes of contamination. Diet consumed and feces were identified as possible sources. Dietary effects on blood urine contents were determined using two laboratory diets: Certified Canine Chow No. 5007 and Harlan Teklad Certified 25% Lab Dog Diet (2025). Urine was collected from animals deprived of food and water, previously fed either diet during a 5 hour period as well as following an overnight collection period. Each diet was mixed with saline to mimic contamination. Five hour small urine samples collected from animals fed diet 5007, and 5007 diet-saline suspensions, both tested positive for moderate (3+) to large (4+) amount of blood measured semi-quantitatively with urine dipsticks (Multistix 10SG, Siemens). 2025 diet-saline suspensions tested positive for traces of blood. Larger volumes and more dilute urine collected following overnight collection tested negative for blood indicating levels were below the detection threshold. The effect of fecal contamination, in dogs presenting diarrhea, on several markers of kidney function was also evaluated. Varying amounts of feces, from 1 to 5 grams were added to approximately 8 mL urine to mimic contamination. Contaminated and uncontaminated samples were analyzed by N-Acetyl-B-D-glucosaminidase (NAG), Gamma-glutamyl-transferase (GGT) and protein, with values corrected for urinary creatinine concentration. Increases in kidney markers were proportional...
to the amount of fecal contamination, with the highest amount of fecal contamina-
tion tested showed NAG/creatinine ratio was increased by 38 fold, GGT/creatininie
ratio by 24 fold and protein/creatinine ratio by 8 fold. In conclusion, the type of
diet and feces were demonstrated as sources that may impact data obtained from
contaminated and/or small urine samples. Optimally, urine should be collected
from dogs deprived of food but with access to water (plus a water catcher), or by
cystocentesis or bladder catheterization to minimize contamination.

1235 High-Resolution Isotope Dilution (HRID) Quantitative Analysis: Metabolites in Safety Testing (MIST) Application to Diclofenac.
J. Virbanac¹, A. Hilgers¹, B. Shilliday¹, T. Dubnicka¹, D. Humphries³ and
R. Hayes². ADME, MRI Research, Mattawan, MI; ³Analytical Sciences, MRI
Research, Mattawan, MI.
During early clinical development it is important to understand the identity and
amount of circulating metabolites in man. Are there human specific metabolites? Guidelines have been issued by regulatory agencies to address this question
(CDER, 2008). We are interested in applying the metabolism of isotope labeled
Drugs [14C alone or both 14C and 13C] and HRID to accurately determine MIST
liability in the clinic in a manner that is both rapid and not excessively expensive (e.g., involve AMS, de novo synthesis and bioanalytical method development for
relevant drug metabolites). Simplicity and ruggedness are also important aspects
of these efforts. This work investigated diclofenac (D). Diclofenac, [14C]D (62.7
mci/mmolc) and [13C6]D were purchased. Human hepatocytes were purchased from
Life Technologies, Grand Island, NY. Incubations were conducted following Life
Technologies procedures. Chromatographic separation was achieved using an
Agilent 1200 HPLC system and detection of radioactivity was by an IN/US
Research, Mattawan, MI.

1236 12-Week Intrathecal Administration Study in Port Catheterized Juvenile Cynomolgus Monkeys.
S. H. Korte¹, C. B. Rose¹, M. Niehoff¹ and M. Butt². ¹Covance Laboratories
GmbH, Muenster, Germany; ²Tox Path Specialists, Frederick, MD. Sponsor:²
Weinbauer.
The cynomolgus monkey is the predominant NHP species when it comes to pre-
clinical safety evaluation of new medical products. Assessment of juvenile toxicity
within this species represents an emerging field, requiring established techniques
for 12 month or younger monkeys. The objective of the study was to determine the
feasibility of bi-weekly bolus delivery in an intrathecially implanted port catheter
system to the juvenile monkey for 12 wks and to assess the feasibility of CSF collection.
Vehicle or PBS was administered to 6 implanted (between L2-L5) monkeys (8-13.5
months; ~800 g). Clinical signs, bw, neurological examinations, CSF, and clinical
pathology data were obtained. Perfusion necropsy, spinal cord brain trimming and
pathology were conducted. There were no indications for procedural-related clini-
cal signs, bw development, clinical pathology or neurological findings. Increased
AST was observed on day 0, most likely related to manual restraint of the animals
on day 1. Necropsy confirmed the placement of the catheter tips at T11/12 in 4/6 animals.
There were no adverse effects noted at the site of the catheter in the in-
trathecal space and in particular, no evidence of pronounced reactions at the
catheter tips. At the catheter tip, tissue reactions were consistent with those re-
ported to occur with the placement of intrathecal catheters in multiple species (M
Butt, 2011). Changes at the catheter tips included slight to minimal fibrosis, adhe-
sion to the overlying dura, and slight compression of the spinal cord (no cord dam-
age). Overall lumbar CSF sampling through the port was only possible in 1/6 ani-
mals. However, spinal lumbar CSF sampling under sedation using a Pencan Paed®
needle proved to be successful on all occasions. Obtained CSF indicated a low level
of white blood cells after surgery, and minimum of red blood cells contamination.
In conclusion, intrathecal administration of juvenile cynomolgus monkeys for
up to 12 wks using a surgically implanted port catheter system is considered fea-
sible.

BMS-964210, a Pegylated Bispecific Adnectin Targeting EGFR and IGF-1R, Demonstrates Improved Class-Specific Toxicity Profile in Cynomolgus Monkeys.
M. Guha¹, R. W. Lange¹, J. Gokemeijer¹, R. White¹, B. Silver², N. Marsh²,
K. Manson², T. P. Sanderson¹ and R. T. Bunch¹. ¹Drug Safety Evaluation, Bristol-
Meyers Squibb, Mount Vernon, IN; ²Early Candidate Assessment, AstraZeneca, Wellesley, MA.
Simultaneous modulation of epidermal growth factor receptor [EGFR] and insulin
like growth factor receptor 1 [IGF-1R] signaling, as an oncology therapeutic strat-
 egy, is based on cross talk between the two signaling pathways to overcome resist-
ance developed if only a single pathway is targeted. However, evidence of class-re-
lated adverse effects of individual anti-EGFR and anti-IGF-1R agents in humans
including diarrhea, acne form skin rash and interstitial pneumonitis (EGFR-spe-
cific) and hyperglycemia, thrombocytopenia and cardiovascular toxicities (IGF-IR-
specific) has emerged in clinical and non-clinical toxicity studies. In contrast to
marketed anti-EGFR monoclonal antibodies which bind to domain III of the ex-
tracellular portion of EGFR, BMS 964210 binds with high affinity to domain I
and overlaps the EGF and TGFβ binding pocket of both human and cynomolgus
monkey EGFR and IGF 1R. In a 4 week intravenous (2QW) toxicity study with
BMS-964210 in cynomolgus monkeys (6, 12 and 25 mg/kg), pharmacodynamic
elevation of plasma biomarkers of EGFR and IGF 1R blockade (TGFβ, amphireg-
ulin, and IGF 1) were observed. Despite the generation of anti BMS 964210 anti-
odies, systemic exposures following first dose were dose proportional and elimina-
tion was linear. No evidence of rash, pulmonary findings, hyperglycemia or
thrombocytopenia was noted, and there were no drug related deaths or effects on
neurologic, respiratory, or ophthalmologic endpoints. At the highest dose, two fe-
nale monkeys suffered body weight loss and dehydration that required fluid ad-
ministration for 3 days. Based on the highest non-severely toxic dose (HNSTD)
of 12 mg/kg, there is sufficient safety margin to the proposed clinical starting dose
of 0.5 mg/kg (QW). These preliminary data suggests that BMS-964210 may have an
improved tolerability profile compared to marketed anti-EGFR mAb and deserves
further evaluation in clinical studies.

1237 Subcutaneous Injection Sites: Is the Quality of the Diagnosis Improved When More Than One Tissue Section Is Examined?
B. Greiff¹, C. Thuilliez¹, C. Clément¹ and M. Perron Lepage. Ricerca Biosciences
SAS, St. Germain sur l’Arbresle, France.
At our Laboratory, the microscopic examination of subcutaneous injection sites in-
volve the evaluation of three longitudinal sections per tissue sample. We conducted
a retrospective study to evaluate the relevance of the diagnoses in subcutaneous in-
jection sites if only one section is examined. Two rat studies and three primate studies were reviewed. All animals received saline or test item injected subcutaneously in the dorsum. At necropsy, 3 pieces, each 3
mm wide, were trimmed from each site. Piece 1 was in the middle, piece 2 lateral to
it and piece 3 medial to it. The original study pathologists formulated overall diag-
noses for each site, taken from evaluation of each of the 3 pieces. One pathologist reviewed the three sections from each site with reference to the
findings recorded by the original study pathologists and attributed each of the orig-
inal diagnoses to the section(s) where it was observed. In each species, animals re-
cieving saline or test item were evaluated separately. Statistical analysis was per-
formed, comparing section 1 with the other two sections and with the original
overall diagnosis. In the rat, section 1 had a statistically significantly higher number of findings when compared to other sections, in one test item and one species. In the primates, section 1 did not differ from the other sections in control and treated animals. In both
species, however, section 1 had a statistically significantly lower number of findings
when compared with the original overall diagnosis. Contrary to the results we obtained in a previous study concerning intramuscular sites, this retrospective study reveals that examination of three sections of subcuta-
naneous injection sites improves the quality of diagnosis. For microscopic changes in-
duced by subcutaneous injections, particularly in primates, one middle piece is not
considered to be sufficiently representative of the whole site.

1238 12-Week Intrathecal Administration Study in Port Catheterized Juvenile Cynomolgus Monkeys.
J. Bruffat¹, C. Thuilliez¹, C. Clément¹ and M. Perron Lepage. Ricerca Biosciences
SAS, St. Germain sur l’Arbresle, France.
entering it should be ensured, by adequate measurements and/or ventilation, that
occurrences, thus prolonged or repeat visits in unchecked containers may constitute a sig-
mnesia (15%), with some readings above or well above the STELs or ceiling limits
frequently detected chemicals include hydrocarbons (unspecified, 47%) and am-
other volatile chemicals were detected. The most common ones were methanol
reduced to aflatoxin (AFT) and toluene (TOL) were 85% and 13%, re-
respectively (n=600); organophosphorus (Org-p) was detected in 49% (n=400), tar-
trazine (TAR) was detected in 78% (n=351), the detection rate of di(2-ethylhexyl)se-
DES), methanoic acid (MA), Styrene (STY), terachlorobenzodioxin (TCDD)
and nonyl phenol (NP) were 100%, 100%, 96%, 32% and 21%, respectively
(n=100). The 95th percentiles of COT, DBP, AFT, TOL, Org-p, TAR, DES, MA,
STY, TCDD and NP were 44 ng mL^-1, 9 ng mL^-1, 0.75 ng mL^-1, 39 ng mL^-1,
0.28 ng mL^-1, 33.92 ng mL^-1, 22 000 ng mL^-1, 23 000 ng mL^-1, 930 ng mL^-1,
1,600 ng mL^-1 and 0.33 ng mL^-1, respectively. The present data show that people
in China are widespread exposure to multiple pollutants. Therefore, in order to de-
scribe the real risk of individual, a well designed study is needed to evaluate the as-
sociations between internal exposure of those pollutants and potential adverse health consequences.

G. Johanson^1 and U. Svedberg^1. ^1 Work Environment Toxicology, Karolinska
Institute, Stockholm, Sweden; ^2 Occupational and Environmental Medicine, Sundsvall
Hospital, Sweden.

Individuals who enter containers for inspection, unloading or cleaning may be ex-
posed to gaseous pesticides (fumigants) and other volatiles. Previous reports from
Hamburg and Rotterdam, as well as a few incidents in Sweden, have raised con-
cerns about the exposure situation in Swedish container terminals. Since systematic
studies in Sweden are missing, we performed a pilot study to investigate the occur-
rence of hazardous volatile chemicals in import containers. Air was sampled from
101 randomly selected containers in the port of Gothenburg. Air samples were
drawn without opening the containers, as they passed and briefly halted at the im-
port inspection station, and analysed by FTIR spectrometry. One container (1%)
contained detectable residues of fumigant (1 ppm carbonyl sulphide), although
none was labeled as fumigant treated. As in the two previous studies, a number of
other volatile chemicals were detected. The most common ones were methanol
(78%) and carbon monoxide (45%), with all readings below the occupational short
term excursion limits (STEL). These substances are likely degradation products
from the plywood flooring as they were also detected in empty containers. Other
volatile chemicals detected included hydrocarbons (unspecified, 47%) and am-
onia (15%), with some readings above or well above the STELs or ceiling limits
(CLI). In our judgement, based on the present and previous studies, the proba-
bility of life-threatening exposure is low. However, violations of STELs and CLI do
occur, thus prolonged or repeat visits in unchecked containers may constitute a sig-
nificant health hazard. In conclusion, extensive and systematic investigations of im-
port and export containers are greatly needed as basis for risk assessments.
Methods for rapid and efficient ventilation should be developed. Prior to
entering it should be ensured, by adequate measurements and/or ventilation, that
the container is safe.

Y. Qin^1, M. Chen^1, W. Wua^1, B. Xua^1, G. Du^1, C. Lua^1, J. D. Mecker^2,
Z. Zhou^1, Y. Xia^1 and X. Wang^3. ^1 Nanjing Medical University, Nanjing, China;
^2 University of Michigan School of Public Health, Ann Arbor, MI.

Background: Octylphenol (OP) and Trichlorophenol (TCP) are the representative
members of alkylphenols and chlorophenols, which act as endocrine disruptors and
have effects on male reproductive function.
Objectives: We studied the interactions between 4-t-OP and 4-n-
Octylphenol (4-n-OP), 2,4,3-Trichlorophenol (2,3,4-TCP), 2,4,5-Trichlorophenol
(2,4,5- TCP) urinary exposure levels and polymorphisms in selected xenobiotic me-
tabolism enzyme genes among 589 idiopathic infertility male patients and 396 con-
tractions in a Han-Chinese population.
Methods: Ultra high performance liquid chromatography-tandem mass spectrome-
try (UPLC-MS/MS) was used to measure alkylphenols and chlorophenols in urine.
Polymorphisms were genotyped using the SNPstream platform and the Taqman
method. We used likelihood ratio tests (LRT) to explore these gene-environment
interactions in idiopathic male infertility, and used false discovery rate (FDR) to ad-
just for multiple testing.
Results: Among four phenols that were detected, we found that only exposure to 4-
t-OP increased the risk of male infertility (Prend=1.70x10^-7). The strongest inter-
action was between 4-t-OP and rs918758 in CYP2C9 (Pinter=6.05x10^-7). It pre-
tened a significant monotonic increase in risk estimates for male infertility with
increasing 4-t-OP exposure levels among men with TCUC genotype (low level
compared with non-exposed, odds ratio (OR) =2.26, 95% confidence intervals
(CI) =1.06, 4.83; high level compared with non-exposed, OR=9.22, 95% CI=2.78,
30.59; but no associations observed among men with TT genotype). We also found
interactions between 4-t-OP and rs918894 in CYP2C19, and between rs1038943
in CYP1A1, on male infertility risk (Pinter=8.09x10^-7, 3.73x10^-4, respectively).
Conclusions: We observed notable interactions between 4-t-OP exposure and me-
tabolism enzyme gene polymorphisms on idiopathic infertility in Han-Chinese
men.

A. J. Larkin^1,2,3, S. K. Krueger^4,4, D. E. Williams^1,5,4 and W. M. Baird^1,3.
^1 Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR;
^2 Statistics, Oregon State University, Corvallis, OR; ^3 Superfund Research Center,
Oregon State University, Corvallis, OR; ^4 Linus Pauling Institute, Oregon State
University, Corvallis, OR.

Chronic exposure to several air pollutants has been identified by the EPA as a major
source of concern for human health. Environmental models have been created to
predict spatial distributions of air pollutants, but are unable to account for daily
travel among the general US population. Several GPS-based methods of tracking a
person’s movement through areas of concern have been developed, but require ex-
ensive or bulky GPS units, have limited ability to provide timely results to partic-
ipants, and are dependent on user compliance. Smartphones are widely popular
across all demographic groups, with more than 100 million US smartphone users.
We developed iPhone and android applications with GPS functionality to predict
personal and population-wide exposures to fine particulate matter (PM_{2.5}), coarse
particulate matter (PM_{10}), and ozone. Environmental distribution models were cre-
ated using Kriging algorithms with MODIS satellite imagery and Oregon
Department of Environmental Quality hourly PM_{2.5}, PM_{10}, humidity, ozone, and
temperature measurements. Geographic locations were sampled from four smart-
phone devices at 30 minute intervals (n=10000 sampling events). Locations and
corresponding times were sent to a database running the environmental modeling
software. Predicted exposure levels, times, and locations were returned to corre-
sponding smartphones and were anonymously added to a data set of predicted ex-
posures collected from all participants. Personal exposure levels were presented to
participants as interactive smartphone maps and graphs. Hotspot exposure sites
were predicted by partitioning Oregon into 10 km^2 regions and mapping daily
group exposure levels within each region. This project was created with open-source
software and can be scaled to larger groups with minimal cost. This research was
supported by NIH P42 ES014465.
Toxicology studies are moving to high-throughput methodologies, however, often times the chemical concentrations are not analyzed or verified. Historically, analytical methods capable of measuring organics in aqueous solutions (including fish water and cell media) often relied on more complicated techniques. The technique presented here has reduced 99% of the historically used sample preparation. Thereby reducing the time per sample associated with preparation from ~90 minutes to ~1 minute. This technique essentially eliminates the chance for target analyte loss during sample preparation and therefore eliminates the need for surrogate standards, such as 13C-labeled, which is typically used to correct for analyte loss during sample preparation. This method utilizes an innovative liquid-liquid extraction, where ~10-25 μL of cell media or water is transferred to a gas chromatography (GC) vial with 1 mL of hexane and 50 mg of sodium sulfate. Target analytes partition from the water to hexane and the water is captured by the sodium sulfate. Overall extraction efficiency is ~100%. The utility of the novel method was demonstrated with a proof of concept experiment that evaluated BDE 47 water concentrations overtime from glass and plastic (48-well plate) wells. BDE 47 concentrations measured in the glass well remained consistent over 24 hrs; however there was a rapid decrease in BDE 47 water concentrations (~80%) within the first 8 hrs in the plastic well. These results demonstrate that this method is simple and useful for both water and cell media studies and offers the ability to monitor the same well over time. Many exposures in toxicology studies start at concentrations above solubility and are used in plastic plates. While this has been an acceptable method of rapidly obtaining LC and IC50 values, it may not be an accurate representation of the actual water concentration. By accurately analyzing the concentration and determining the uptake, more accurate results may be obtained and used for risk assessment and mechanistic determinations, while adding increased study to sample comparability.

1246 How Inaccurate Are Serum-Lipid Unadjusted Organochlorine Levels?

Introduction. Organochlorine pesticides (OCs) have been banned by many countries, but they are still detected in human and animal tissues worldwide. An empirical assessment comparing serum lipid adjusted and unadjusted OC levels has been, so far, not reported in the literature. Objective. To estimate how inaccurate are lipid-unadjusted OCs serum levels compared to adjusted ones. Methods. In a survey carried out in a rural population in Brazil exposed to OCs since early 1960’s, blood samples were obtained from 995 residents of both sexes and all ages. Serum concentrations of 19 OCs were determined by gas chromatography with electron-capture detection and were further adjusted by triglyceride and cholesterol content. Pearson correlation coefficients and determination coefficients (R2) of serum lipid-adjusted and unadjusted concentrations of p,p'-DDE, beta-HCH and aldrin were calculated. Results. Among male and female adults (> 14 yr.), median (1st and 3rd quartiles) of serum-lipid adjusted concentrations were, respectively: 8.32 (2.86-21.9) and 9.64 (3.45-28.9) for p,p'-DDE; 6.0 (2.08-15.1) and 6.0 (2.81-17.6) for beta-HCH; 1.89 (0.73-11.0) and 2.0 (0.77-14.1) for aldrin. Determination coefficients of serum lipid-adjusted and unadjusted OCs were R2 = 0.91 for p,p'-DDE, R2 = 0.90 for beta-HCH, and R2 = 0.93 for aldrin. Correlation between serum lipid-adjusted and unadjusted concentrations was indeed higher for those OCs with serum levels < 50 ng/ml. Conclusion. When serum lipid content is unavailable, unadjusted OC levels can be reasonably used to estimate internal dose of these chemicals, particularly when concentrations are < 50 ng/ml.

Surface deposition of insecticides applied as indoor residential foggers, baseboard or perimeter sprays, spot sprays and crack-and-crevice sprays represent pathways of unintentional, and unavoidable post-application exposure of children and adults. Estimation of the magnitude of this exposure following an application event is associated with uncertainty due to many factors including 1) surface residue deposition and distribution, 2) access to and the nature of contact with treated surfaces based on time-activity patterns of residents, and 3) the role of residue removal mechanisms such as cleaning treated surfaces, pesticide degradation or redistribution, hand washing and bathing following contact. A comparative spatial deposition study was conducted involving broadcast, perimeter and crack and crevice application methods. Residues measured using a spatial grid of deposition dosimeters on floor surfaces demonstrated significantly lower residue concentrations in readily
Blood chlorpyrifos (CPF) and its main urinary metabolite (3,5,6-trichloro-2-pyridinol, TCPy) are often included in general population-based biomonitoring data. Methods that put human internal dose measurements in a health-risk context have been lacking. The concept of Biomonitoring Equivalents (BEs) seeks to address this shortfall. BEs incorporate pharmacokinetic models to calculate biomarker levels consistent with continuous exposure at exposure guidance values (e.g., USEPA reference doses). BEs rely upon the underlying toxicological endpoints used in setting the guidance values and reduced uncertainty factors (UFs). Here, we calculate BE values for blood CPF and urinary TCPy using a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model. The model allows the direct determination of CPF blood concentration associated with a 10% inhibition in red blood cell cholinesterase (RBC ChE). The USEPA regulated endpoint, for oral exposures. This model also predicts age-specific individual human variability of blood levels associated with a 10% inhibition vs. RBC ChE using Monte Carlo analysis, which allows determination of blood levels protective of sensitive humans. Thus, no additional UF's are required to derive the BE. The preliminary blood BE value for CPF in adults is 3.5 μg/L. This level is about 1000 fold higher than the previously estimated values, depending on the food item. Further exposure to environmental TCPy in non-worker populations, then the BE for TCPy will also be about 1000 fold larger than current levels. These findings suggest that exposure to environmental TCPy in non-worker populations), then the BE for TCPy might be about 1000 fold larger than current levels. Assuming that 10% inhibition of RBC ChE, the USEPA regulated endpoint, for oral exposures. Our data suggest that disturbed placental angiogenesis, via upregulation of sFLT1, may link prenatal arsenic exposure to increased risk on SGA.

The studies of the Flemish Center of Expertise on Environment and Health are commissioned, financed and steered by the Ministry of the Flemish Community (Department of Economics, Science and Innovation; Flemish Agency for Care and Health; and Department of Environment, Nature and Energy).

1250 Plasma Polybrominated Diphenyl Ethers (PBDEs) in Californian Women at High Risk for Birthing an Autistic Child.

Y. Lin1, I. Hertz-Picciotto2, D. Tanscaldi2, I. N. Pessah1 and B. Puschniger3.
1Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA; 2Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA.

Exposure to the polybrominated diphenyl ethers flame retardants (PBDEs) is a major preventable health concern. Little is known about the extent and patterns of PBDE exposures during pregnancy, especially in populations susceptible to heritable neurodevelopmental disorders. We measured plasma PBDE levels in Californian women participating MARBLES (Markers of Autism Risk in Babies-Learning Early Signs) who are at high risk for birthing an autistic child. BDE-28, -47, -49, -52, -95, -99, -100, -136, -153, and -183 were measured using GC/MS/MS in plasma samples collected from 79 women at each trimester and at delivery (215 total samples). PBDEs were normalized to plasma volume (ng/ml) and total lipids (ng/g). The concentrations of maternal PBDEs in MARBLES were compared to data from the National Health and Nutrition Examination Survey (NHANES 2003-2004). All ten congeners were detectable in the maternal samples from MARBLES, with BDE-100 (0.792 ± 0.540 ng/ml, 163.5 ± 117.5 ng/g) and BDE-47 (0.661 ± 0.458 ng/ml, 141.1 ± 117.6 ng/g) contributing the highest abundance. Compared to NHANES, women enrolled in MARBLES had significantly higher mean concentrations of BDE-47 (23.9 versus 141.1 ng/g), -99 (5.51 versus 9.23 ng/g), -100 (6.06 versus 163.5 ng/g) and -153 (9.90 versus 28.7 ng/g). Plasma PBDE (ng/ml) in women 25 to 35 years of age increased during gestation, but decreased if they were older than 35 years. Because of the increase of total plasma lipids during gestation, PBDE expressed on an ng/g lipid basis decreased in all age groups with gestational stage. Fluctuations in maternal plasma PBDE levels during pregnancy illustrate the importance of gestational age and underscore the non-linear relationship between volume- and lipid-corrected PBDE concentrations.

1251 Estimation of Dietary Lead Exposure for US Children Using a New Method: Implications for the Integrated Exposure Uptake Biokinetic Model for Lead in Children.

In addition to site-specific inputs, the Integrated Exposure Uptake Biokinetic Model for Lead in Children (IEUBK model) uses national defaults that are recommended when site-specific information is not available. As part of a periodic evaluation of inputs to the IEUBK model, the methodology underlying the basis for default calculations of dietary lead intake has been updated. Previously, the food consumption values in the IEUBK model were based on information reported by Pennington (1983) and the lead in food values were based on food residue data from the ongoing FDA Total Diet Study; the latter are updated periodically as new data become available from FDA.

Recent advances in methods for estimating dietary intake provide a current and scientifically sound basis to develop nationally-representative, age-group specific values for food consumption. The dietary component of NHANES, called the What We Eat in America (WWEIA) Dietary Survey, includes two 24-hour dietary recall interviews during which each respondent reports the amount of all foods they consumed during the prior day. The food consumption values (grams/day) were estimated using a non-linear mixed model developed by the National Cancer Institute (the NCI method). The NCI method uses information on meal sizes and frequency (probability) with which specific food items are consumed to estimate daily consumption rates. The NCI method produced estimates of dietary lead intake that were 18 to 219% higher than the previously estimated values, depending on the food item. Further analysis revealed the increase in the dietary lead intake values was largely due to an increase in the estimated daily consumption values rather than higher lead concentrations in food.

B. Thayer 1, M. Follansbee 1, J. Brown 2, M. Burgess 2 and M. Stieffman 2.

The default values in the IEUBK model (Version 1.1, Build 11) are based on values reported in the Office of Air Quality Planning and Standards report (U.S. EPA, 1989) and the IEUBK Model Technical Support Document (U.S. EPA, 1994). More recent data provide a more scientifically sound basis to further develop nationally-representative, age-group specific values for ventilation rates in children. The default values in the IEUBK model were derived based on body size in combination with smoothed data from Phalen et al. (1985). EPA's (2008) Child-Specific Exposure Factors Handbook provides recommendations for long-term (>30 days) ventilation rates that are based on the average of several studies (Arcus-Arth and Baisdell, 2007; Brochu et al., 2006; Stieffman, 2007). Because Arcus-Arth and Baisdell (2007) used indirect measures of ventilation rates based on dietary and activity survey responses, it was not considered acceptable for derivation of default values for the IEUBK model. Brochu et al. (2006) and Stieffman (2007), however, were based on the doubly-labeled water (DLW) energy data from the Institute of Medicine. DLW energy data are recognized as the gold standard for energy expenditure and an improvement over ventilation estimates based on dietary recall or activity survey data.

Ventilation rate was calculated from total energy expenditure using Layton’s approach as described by Stieffman (2007). The analysis was on pooled data for males and females. More detailed analysis of ventilation rates as a function of age and gender showed the estimated ventilation rates to be parallel and 7% greater in males than females. The resulting ventilation rate values are between 19-66% higher than the existing IEUBK model defaults. Because these values are derived from energy expenditure information, they provide a more scientifically defensible basis for the default values in the IEUBK model.

1253 Conducting Probabilistic Reverse Dosimetry Calculations to Estimate Exposure Concentrations from Biomarker Data—An Example of Perchlorate.

M. B. Phillips 1, C. M. Grulke 1, Y. Yang 1, K. Holm 1, D. T. Chang 1, R. Goldsmith 1, R. Tornero-Velez 1, C. C. Dare 2 and C. Tan 2.

Given the growing number of population-based biomonitoring surveys, there is an escalating interest in converting biomarker measurements (chemical/metabolite concentrations) to exposure concentrations (e.g., daily dose) to help support risk assessment. The conversion involves two steps: (1) formulating a model that describes the dose-biomarker relationship (forward dosimetry); and (2) solving for the plausible doses that are consistent with observed biomarker concentrations (reverse dosimetry). The objective of this study is to use probabilistic reverse dosimetry to estimate the distribution of average daily doses of perchlorate based on the National Health and Nutrition Examination Survey (NHANES) urinary biomarker data. Perchlorate was selected for its abundance in both exposure and biomarker data. First, Monte Carlo simulations of a physiologically based pharmacokinetic (PBPK) model for perchlorate were performed to account for variability/uncertainty in exposure factors and PK. Next, the simulated exposure-biomarker relationship was used to convert urinary perchlorate concentrations to a distribution of daily doses. The conversion was conducted using a web-based tool, Probabilistic Reverse Dosimetry Estimating Exposure Distribution (PROEED), with two methods: the Exposure Conversion Factor and Discretized Bayesian methods. The means of the estimated dose distributions were comparable to average daily doses estimated using other methods (point estimates), with as food concentrations multiplied by consumption rate. Probabilistic reverse dosimetry, however, also provides the distribution of dose estimates to represent the variability/uncertainty in exposure factors and PK. [This abstract has been cleared by the EPA but solely expresses the view of the authors.]

1254 The Effect of Clothing Care Activities on Textile Formaldehyde Content.

R. Novick, M. G. Levy, M. A. McKinley, G. L. Anderson and J. J. Keenan.

ChemRisk, San Francisco, CA.

Textiles are commonly treated with formaldehyde-based finishing agents that can potentially cause allergic contact dermatitis in sensitive individuals. There is limited data on the current formaldehyde content in textiles and the potential for reduction through clothing care activities. This study sought to provide information on the formaldehyde content in clothing specifically focusing on 100% cotton permanent press shirts and pants, a clothing category that is generally treated with formaldehyde-based resins. Textiles were purchased and tested for formaldehyde content using the Japanese method 112. Several items (~20%) exhibited measurable levels of formaldehyde (>20 ppm). Textile samples with the greatest formaldehyde content were hand or machine washed in hot or cold water, dried on a line or in a dryer, and ironed. Ironing did not appear to affect the textile formaldehyde content. The washing and drying procedures reduced formaldehyde content between 28 and 74% compared to the control. Differences in the temperature or type of washing and drying did not result in a clear trend in the formaldehyde content data. Understanding the formaldehyde content in commercially available permanent press clothing and the potential reduction through clothing care activities may be useful for manufacturers and sensitive individuals.

1255 Exposure Associated with Power Stripping of Asbestos Containing Insulation from Electrical Cable.

C. L. Blake 1, A. Jurkowski 1, G. Johnson 1 and R. D. Harbison 2.

Barrow Vertias North America, Inc., Kensington, CA; 2 Environmental and Occupational Health, University of South Florida, Tampa, FL.

Efforts to recycle copper from electrical cable manufacturers have led to the development of specialized machines which automatically remove insulating covers from wires and cables. In the past, cables and cable products were insulated using chrysotile asbestos. This research was undertaken to determine the asbestos fiber exposure risks associated with power stripping machinery to remove asbestos-containing insulation materials from electrical wire or cable. A Rigby Machinery, Inc., Model 4H electric powered wire/cable insulation stripping machine was acquired along with approximately 42 m of asbestos insulated cable. Despite a separate, but nearly identical, test session, a laborer used the wire stripper to remove the asbestos-containing insulation from the subject cable. This work took place within a closed metal building with a total interior volume of 2,500 m³. Industrial hygiene personal and area air samples were collected for airborne fibers throughout all wire stripping periods. Collected air samples were analyzed using phase contrast microscopy (PCM) and transmission microscopy (TEM). The results of analysis using PCM for personal samples (n=3) taken during periods of continuous cable stripping activity showed test period airborne fiber exposures ranging from 0.034 to 0.068 (mean 0.056 f/ml). Follow-up analysis of these personal samples using TEM indicated asbestos adjusted PCM exposures ranging from 0.017 to 0.045 (mean 0.033 f/ml). Area air samples taken at distances ranging from 2 to 9 meters from the wire stripper (n=16) showed asbestos adjusted PCM concentrations ranging from less than 0.0001 to 0.041 f/ml (mean 0.007 f/ml). The process of power stripping asbestos-containing insulation from electrical wires and cables can cause exposure to airborne asbestos fibers. However, the levels of such exposure are not expected to exceed the current day occupational exposure limits for asbestos of 0.1 f/ml as an 8-hr TWA or 1.0 f/ml averaged over a 30-minute exposure period.

The Dow Chemical Company, Midland, MI.

N,N’ di-tert-butylacetamide (AMD; CAS # 54838-72-1) is a raw material and principal hydrolisys product of a new metalorganic molecule. An integrated testing strategy involving the assessment of multiple hazard endpoints was used to provide essential toxicologic data to set an occupational exposure guideline for AMD. The acute oral LD₅₀ was estimated to be 341.4 mg/kg (95% C.I. = 280-550 mg/kg). In a 28-d dietary study no target organ toxicity was identified. A no adverse effects level (NOAEL) of 150 mkd was based on decreased food consumption and body weight gains at 500 and 1000 mkd. A modified acute inhalation toxicity study with the wire stripper (n=16) showed asbestos adjusted PCM concentrations ranging from 0.017 to 0.045 (mean 0.033 f/ml). Area air samples taken at distances ranging from 2 to 9 meters from the wire stripper (n=16) showed asbestos adjusted PCM concentrations ranging from less than 0.0001 to 0.041 f/ml (mean 0.007 f/ml). The process of power stripping asbestos-containing insulation from electrical wires and cables can cause exposure to airborne asbestos fibers. However, the levels of such exposure are not expected to exceed the current day occupational exposure limits for asbestos of 0.1 f/ml as an 8-hr TWA or 1.0 f/ml averaged over a 30-minute exposure period.
aliphatic amines and suggest that the toxicity of AMD is similar to other alkyl amines such as dimethyl- and diethyl-amine. The integrated testing strategy used in this study represents an important approach for reducing animal use and rapidly adopting exposure guidelines for new materials to assure worker safety.

Epidemiological studies suggest an association between cadmium in drinking water and vascular diseases. However, the precise cadmium mechanism of action remains enigmatic. This study was undertaken to investigate the effect of cadmium on lipid metabolism of Wister male albino rats by exposing the animals to 100, 200 and 300 ppm cadmium doses for 12 weeks in their drinking water. Control animals received distilled water for the same period. At the end of 12 weeks, dyslipidemia induced by the cadmium doses exhibited different patterns. Dose-dependent hypolipidemia and hypotriglyceridemia characterized the effect of cadmium exposure at all doses whereas plasma free fatty acid (29%) was increased by cadmium exposure. Reverse cholesterol transport was inhibited by all the cadmium doses as evidenced by 65% decreased HDL cholesterol concentrations whereas hepatic cholesterol was decreased by 55%. Renal and brain cholesterol (46%, 65%) and triglyceride (62%, 50%) were dose-dependently decreased by cadmium exposure respectively; on the other hand, exposure to cadmium depleted cardiac cholesterol by 45%, but enhanced/balanced triglyceride content. Cadmium at all doses of exposure inhibited both hepatic and brain HMGC CoA reductase by 49% and 61% respectively. We observed positive association between tissue cadmium levels and plasma FFA, and negative associations between tissue cadmium levels and HDL cholesterol. Our findings indicate that in contrast to strengthening a dose-dependent effect phenomenon as observed with many other compounds, cadmium up- or down-regulate different pathways in the lipid metabolism spectrum at “low” or “high” doses and this might be responsible for the insidious vascular effects.

Exposure to cigarette smoke is known to increase susceptibility to and severity of pulmonary diseases such as bronchitis and emphysema. During tobacco manufacturing processes, in which the temperature and humidity are brought to an optimum level for fermentation, tobacco is colonized by fungi and bacteria. Lipo polysaccharide (LPS), a gram negative bacterial component, has been found in tobacco smoke. In this study, we wanted to assess whether acute exposure to environmental tobacco smoke (ETS) could alter the immune response caused by exposure to the bacterial endotoxin, LPS. Using a C57BL/6 mouse model, we compared the inflammatory cytokine levels secreted by LPS-stimulated alveolar macrophages in ETS exposed and unexposed (control) groups. Tumor necrosis factor-alpha (TNF-α) levels were significantly attenuated in the ETS exposed groups after ex-vivo exposure to LPS in comparison to the control group. We observed that whether the ex-vivo LPS exposure was performed immediately after the ETS exposure or 96 hours after the ETS exposure, the TNF-α levels were significantly reduced in the ETS exposed groups. No significant difference was observed in alveolar macrophage recovery between groups. Also, no significant difference was found in cell viability between the two groups. This suggests that TNF-α attenuation in ETS exposed groups resulted from endotoxin tolerance caused by LPS or LPS-like constituents in ETS. This endotoxin tolerance resulting from acute ETS exposure can suppress the immune function and subsequently increase susceptibility to bacterial infections. These results provide insights into the weaker immune defense observed in smokers and secondhand smokers. This study was supported by the Flight Attendants Medical Research Institute grant 072083.
implying that BPA is toxic to humans at current exposures. However, a comprehen-
sive reexamination of exposures in humans and test systems has not been con-
ducted. Applying the fundamental principles of biomonitoring, exposure assess-
ment and dosimetry, we conducted a systematic review of BPA exposure levels in
130 peer-reviewed in vivo and in vitro BPA toxicity studies self-referring as “low-
dose.” Total daily human exposure to BPA is ~0.03 μg/kg/day. In contrast, >90% of
“low-dose” BPA toxicity studies were conducted at doses exceeding human expo-
sure by 10-1000,000 fold. Human blood concentrations from a single oral bolus
dose of BPA equal to total daily BPA exposure are in the low pM range. In compar-
ison, concentrations used in >90% of in vitro “low dose” studies were 10 to
1000,000 higher. We conclude that the use of the “low dose” descriptor is largely
inconsistent with the state of our knowledge of human exposure. Looking forward,
as human exposure data continue to emerge from large biomonitoring studies, we
believe that there is a need to adopt standards for the conduct and reporting of tox-
icity studies that include objective comparisons to human exposures.

A. Rohr1, 1, E. Knipping2, A. K. Lund3, M. I. Camper4, M. Doyle-Eisele1 and J. D. McDonald1. 1LRRI, Albuquerque, NM; 2EPRI, Palo Alto, CA; 3University of New Mexico, Albuquerque, NM.

The SPHERES research program was created to examine the role of inhaled sec-
ondary organic aerosol (SOA) on cardiovascular outcomes in mice, benchmarking
effects against those observed from motor vehicle emissions (MVE). SOA was gen-
erated in a reaction chamber with either alpha-pinene or toluene, combined with
(1) NOx; (2) NOx + SO2; (3) NOx + NH3; or (4) NOx + NH3 + SO2. To exam-
ine the effects of these mixtures on progression of atherosclerosis, 8 wk old male
Apo E-/- mice, on a high fat diet were exposed for 7 days, and resulting vascular ox-
idative stress and expression of molecular markers were assayed. Exposure to MVE
resulted in enhanced vascular oxidative stress, measured by vascular TBARS and
HO-1 levels. SOA caused a milder response than MVE, and the biological re-
sponses that were observed differed depending on the composition of the mixture.
The only SOA exposure in which a statistical increase in TBARS was measured,
compared to controls, was the “neutral” α-pinene mixture (e.g., α-pinene reacted with
NOx). All other SOA exposure conditions yielded only slight, or no, increase in
TBARS expression, which is consistent with other studies in the literature (Lemos
et al., 2011; rev. in Godleski et al., 2011). Several of the SOA exposure conditions
yielded significant increases in expression of vascular HO-1 transcript. The “acidic”
α-pinene mixture, as well as α-pinene + NH3 (both neutral and acidic) and the
neutral toluene exposure all resulted in statistically significant increases in HO-1
mRNA. Conversely, both the acidic and neutral toluene + NH3 exposures showed
significant decreases in vascular HO-1 expression. In aggregate, the results suggest
that SOA causes mild cardiovascular responses that are dependant on composition.
Research Funded by the Electric Power Research Institute.

1263. Pulmonary Toxicity of Oxygen and Carbon Dioxide
Degraded Amines Used for Carbon Capture and Storage.
D. Kracko1, C. Wegerski1, J. D. McDonald1, M. Doyle-Eisele1, S. Shaw2, E. Knipping2 and A. Rohr2. 1Lovelace Respiratory Research Institute, Albuquerque, NM; 2Electric Power Research Institute, Palo Alto, CA.

Carbon dioxide (CO2) adsorption with aqueous amine solvents is among the lead-
ning candidates for use in carbon capture and sequestration (CCS) techniques aimed at
reducing greenhouse gas emissions from flue gases (coal-fired power plants, refiner-
ing candidates for use in carbon capture and sequestration (CCS) techniques aimed at
This study evaluated the inflammatory response associated with inhalation expo-

1264. Volatile Organic Compounds Released from Expanded Polystyrene.

The importance of plastic materials for different applications in everyday life has
continuously increased over the years. Manufactured goods made of polymers are
generally complex materials. These are composed of polymers or copolymers them-

1265. Assessment of Biomarkers of Benzene Exposure and Effect in Petrochemical Workers.
S. Inayat-Hussain1, 2, M. Sabu3, E. S Chin2 and M. K. Chani. 1Environmental Health and Industrial Safety Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; 2UWM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.

This study was conducted to assess biomarkers of benzene exposure and effect, and
the relationship between these parameters in petrochemical plant workers during a
major turnaround. Pre and post shift blood and urine samples were obtained from
35 workers including smokers and non-smokers who were potentially exposed to low
air level of benzene. Air monitoring showed that the benzene level in air
samples was less than the Permissible Exposure Level (PEL) which is 0.5 ppm.
Interestingly, there was a 2.1 fold increase of the biomarker of exposure namely uri-

1266. Identification of Sulfated Metabolites of 4-Chlorobiphenyl
(PCB3) in the Serum and Urine of Male Rats.
K. Dhikal1, 1, L. Hans-Joachim1, 2, L. M. Teesch2, M. W. Duffel2 and L. W. Robertson1. 1Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA; 2Department of Pharmacological Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA; 2Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA.

Polychlorinated biphenyls (PCBs) are legacy pollutants that exert toxicity of various
mechanisms. Lower chlorinated or lighter PCBs (LC-PCBs) are semi-volatile, and
air-borne. In the old public school building in New York City, the EPA in 2012 has

SOT 2013 ANNUAL MEETING 271
estimated that students are inhaling six times more PCBs than they are receiving from dietary sources. However, LC-PCBs or metabolites have been rarely reported in the serum of population at risk. LC-PCBs are bioactivated to phenols and further to quinone electrophiles with genotoxic/carcinogenic potential. We hypothesized that phenolic LC-PCBs are subject to phase II conjugation and excretion via urine. Our objective was to identify the final metabolites in the urine that could be potentially employed in the exposure analysis of LC-PCBs. Male Sprague Dawley rats (150-175 g) were housed in metabolism cages and received a single intraperitoneal injection of 600 μmol/kg body weight of PCB3. Control animals received corn oil only. Urine was collected every four hours, euthanized at 36 h, and serum was collected. The LC-MS analysis showed that PCB3 sulfates were the major metabolite of PCB3 in both urine and serum. Approximately 63% of the dose excreted in the urine as sulfate; with peak excretion occurring at 10-20 h post-exposure. The major metabolites were 4'PCBSulfate, 3'PCBSulfate, 2'PCBSulfate and presumably a catechol sulfate. Serum level of 4’PCB3 sulfate was 6.18±2.16 μg/mL while 4’OH-PCB3 was only 0.095±0.055 μg/mL. This is the first report that sulfated metabolites of PCBs are formed in vivo.

1267 Significant Megacластer of Total Cancer Mortality among the US Non-White Population.

NCI and EPA collaborated to describe the U.S. population cancer mortality experience for the 1950s, 60s and 70s. All mortality data are official statistics including 8 million records. For the 30 years, for all anatomic cancer sites, there was a significant difference in the percentage rate of increase between White and Non-white U.S. males. The White male increase was 17%. For the same period, Non-white males experienced a 46% increase. For both White and Non-white males highest rates of increase were in the Southeastern United States. The project also examined lung cancer. For White male lung cancer mortality, all -3050 U.S. counties were ranked by percentile of their absolute rates. The counties were marked as red (99-98 percentile of absolute rates), orange (97-95%), yellow (94-90%), tan (89-75%) and blue background (74-1%). In the 1970s a significant megacластer of White male lung cancer mortality emerged in the Southeastern U.S. The counties show up as strings along rivers. But the important unit of analysis is not the rivers, but U.S. Geological Survey (USGS) hydrologic units. Principal component analysis showed some USGS hydrologic units were more informative: USGS Region 08-02 St. Francis river valley experienced a 300% increase in White male lung cancer mortality in the 1970s, or a 10% increase per year. The heavily forested, rich bottom lands of the river valley were cut down and planted in cotton sprayed with DDT. DDT induces male rat lung cancers. The strings of high rate White male lung cancer counties lie predominately in the USGS Coastal Plains physiographic domain. During late Cenozoic and Tertiary Eras the Coastal Plains filled in with unconsolidated sands and sands, porous to pollutants leaching into shallow wells and aquifers. Relative risk of a red county being within the Coastal Plains was 5.3 times greater than being in another part of the U.S. Color coded counties showed a “dose-related” effect - the higher the county rate, the more likely it was located in the Coastal Plains. Authors solely responsible for conclusions herein and do not reflect authors’ institutions.

1268 Airborne Diacetyl from Cooking and Consumption of Microwave Popcorn: Estimation of Consumer Exposure with a Two-Zone Near-Field/Far-Field Model.

H. M. Bolsel1, K. M. Unice1, J. R. Maskrey2, D. M. Hollins1, B. D. Kerger3 and D. J. Paustenbach1. 1ChemRisk, San Francisco, CA; 2ChemRisk, Pittsburgh, PA; 3ChemRisk, Orange County, CA.

Diacetyl is a volatile diketone used to impart a butter flavor to foods such as microwave popcorn. Occupational exposure to airborne diacetyl has been reported to be associated with obstructive lung disease, and recent concerns have emerged regarding exposure to diacetyl by consumers. Given the absence of data on the airborne concentrations in the home, we estimated consumer exposure using a two-zone near-field/far-field model in which the near-field is a hemisphere above the microwave popcorn bag, and conducted Monte Carlo uncertainty and sensitivity analyses. A recent study revealed that an average of 778.9±135 μg diacetyl was emitted during the popping, opening, and 40 minutes following opening. As part of the input to the model, we estimated that diacetyl is released into the breathing zone over a 40 minute period (a typical consumption duration) comprised of popping (2.5 min), opening (15 sec), and consumption (37.25 min). Based on available information, we estimated that 98.9% of the total diacetyl emitted was released during opening. The popcorn and the bag were assumed to be an arm length away from the nose of the consumer and present for the duration of the scenario. The estimated mean airborne diacetyl concentration in the breathing zone from one bag of microwave popcorn was 0.0030 ppm, whereas the 5th and 95th percentile concentrations were 0.0018 and 0.0048 ppm, respectively. Assuming complete absorption following inhalation and a breathing rate associated with light activity (0.6 l/min), the estimated mean total intake by inhalation per bag was 5.3 μg. By comparison, the daily intake associated with occupational exposure at the eight hour TWA and 15 minute STEL Threshold Limit Values set by ACGIH (0.01 and 0.02 ppm, respectively) are 66 and four-fold greater, respectively.

Vitamin A (retinol) and its metabolites play many physiological roles including cell differentiation, cell proliferation, energy homeostasis, circadian rhythm and immune response. Vitamin A and its metabolites are known to act through retinoid acid receptors (RARs), retinoid-related orphan receptors (RORs) and retinoid x receptors (RXRs). These receptors are also important drug targets, although the specificity of many retinoid-like compounds for the retinoid receptors has not been carefully explored due to the lack of robust and selective assays. In the present work we examined the retinoid-like compounds 4-hydroxyphenylretinamide, 4-hydroxyretinoic acid, 9-cis retinoic acid (9CRA), 13-cis retinoic acid (13CRA), AC-55469, Acitretin, Adapalene, AM-580, All-trans retinoic acid (ATRA), BMS961, Docosahexanoic acid (DHA), EC23, Eicosapentenoic acid (EPA), ER58091, FHX31, HX630, Methoprene, Methoprene acid, MM11253, Puerozin, RO 41-5253, SR1901, TO901317, TTNPB, and Urosic acid for their ability to regulate RARα, β, RXRα, β, and RORα, β, γ. The compounds were tested for agonistic as well as antagonistic activities towards these receptors. Additionally cytotoxicity assays were performed to assess toxic activity. Many of these compounds show a broad range of receptor activity (for example, EC23 shows agonistic activity for all three RARs while the RARs were highly selective). The data further illustrate the need to test new retinoid acid like drugs across the panel of RXRs, RARs and RORs to limit untoward effects.

1269 Examination of Specificity of Retinoid-Like Compounds for RXRs, RARs and RORe.

P. P. Albrecht1, K. Toyokawa1, E. Maddox1, B. Cramer1, B. Sheft1 and L. Vandlen2.

1Indigo Biosciences, State College, PA; 2Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA.

U. Rannug1, A. Smirnova1, L. Vikström Bergander1, E. Wincint1, T. Alberg2 and A. Rannug1.

1Department of Genetics, Microbiology & ToxicoLOGY, Stockholm University, Stockholm, Sweden; 2Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; 3Department of Applied Environmental Science, Stockholm University, Stockholm, Sweden.

The endogenous high affinity aryl hydrocarbon receptor agonist FICZ is formed upon irradiation of tryptophan with UV or visible light. To elucidate the mechanisms in more detail photooxidation products were analyzed by HPLC and LC/MS. The results revealed that the formation of FICZ was dependent on H2O2 since additions of catalase inhibited the reaction. It was also evident that indole-3-acetaldehyde (I-3-A) was a precursor that spontaneously generated FICZ. Monoamine oxidases (MAOs) catalyze the oxidative deamination of monoamines resulting in the corresponding aldehydes. Human recombinant MAO A and MAO B were therefore incubated with tryptamine to yield I-3-A. After the reaction and a post treatment period the amounts of I-3-A and FICZ were measured. Both enzymes generated I-3-A, which was then spontaneously converted to FICZ. Subsequently, tryptophan was incubated with H2O2 at 37°C in the dark. The mixture was concentrated on Sep-Pak C18 and HPLC and MS analyses confirmed the formation of FICZ from tryptophan by H2O2. From these and other experiments it can be concluded that tryptophan can give rise to FICZ in an oxidative environment, i.e. containing or producing reactive oxygen species. In addition, whenever I-3-A is formed there is a possibility for spontaneous formation of FICZ. Altogether, this implies that there are several different conditions under which the endogenous Ah receptor ligand FICZ can be formed in the body. Of great interest in this respect is a recent demonstration of FICZ in the skin of vitiligo patients characterized by a massive epidermal oxidative stress and high levels of H2O2 (Dietrich et al., FASEB J. 2012). It therefore seems likely that FICZ is ubiquitous in the human body but expected to be present at low steady state levels under normal conditions.
1271 The Aryl Hydrocarbon Receptor Regulates the Expression of Multiple Growth Factors in Highly Metastatic Head and Neck Squamous Cell Carcinoma Cell Lines.

K. John1,2, J. Hughes1, T. S. Lahoti1, K. Wagner1 and G. H. Perdue1, 2. Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, PA; 2. DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, DE.

The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor implicated in the regulation of diverse cellular processes. Previous studies in head and neck squamous cell carcinoma lines (HNSCC) have revealed considerable constitutive and ligand inducible AHR transcriptional activity. Antagonism of AHR activity through AHR antagonist treatment was found to greatly attenuate the highly metastatic and proliferative phenotype of these cells, suggesting that AHR plays a significant role in contributing to the aggressiveness of these cells. Therefore, this study sought to use expression profiling to identify putative novel targets of the AHR repressed by AHR antagonist treatment that are associated with cancer cell survival and tumor invasiveness. Three growth factor targets were considered: amphiregulin (AREG), epiregulin (EREG) and platelet-derived growth factor A (PDGFA) identified by expression profiling and from previous studies. Quantitative PCR analysis revealed an attenuation of basal and/or induced gene expression levels of these growth factors in two HNSCC lines after AHR antagonist treatment. ELISA analysis revealed attenuation of both basal and induced protein expression levels of these growth factors examined in these cell lines. In addition, siRNA-mediated knockdown of AHR exhibited attenuation of growth factor expression. In silico analysis revealed these growth factors possess dioxin-like response elements. Additionally, two other AHR ligands, 6-formylindolo[3,2-b]carbazole and benzo(a)pyrene also exhibited induction of the AHR target genes examined. In conclusion, AREG, EREG and PDGFA were identified as three key growth factor targets of the AHR associated with metastatic phenotype of head and neck cancers.

1273 Arsenic Inhibits 3T3-L1 Adipogenesis and Suppresses Induction of Nuclear Receptors during the Earliest Stages of Differentiation.

E. Zandbergen1, A. Adelabu1,2, M. M. Vantangeli1, V. Chaitikavani2 and J. W. Hamilton1,2, 1. Marine Biological Laboratory, Woods Hole, MA; 2. Brown University, Providence, RI.

Chronic environmental exposure to inorganic arsenic (As) is associated with an increased risk of serious illnesses, including type 2 diabetes and cardiovascular disease (CVD), which in turn are often associated with aberrant blood lipid levels and excess adipose tissue. Since we had previously shown that inorganic arsenite (As) can suppress activation of the nuclear hormone receptors we hypothesized that it might also affect adipose lipid metabolism by targeting these or other members of the nuclear receptor family. Treatment of mouse 3T3-L1 cells with As during their differentiation into adipocytes resulted in reduced lipid content and suppressed induction of the master adipogenic transcription factors PPARY and C/EBPB and their target genes. Transient As exposures showed that final lipid content was reduced most in cultures that had been exposed during the initial induction phase of adipogenesis. As did not decrease protein and phosphorylation levels of C/EBPβ - the transcriptional regulator of PPARY and C/EBPB. C/EBPβ acquires its transactivation activity when growth-arrested 3T3-L1 preadipocytes reenter the cell cycle and undergo a couple of mitoses in response to a combination of hormones, an event required for their differentiation into adipocytes. Interestingly, as increased protein expression of the cell cycle inhibitor p27, suggesting it blocks mitotic clonal expansion, and this may be the proximal event resulting in a cascade of downstream effects. Interference of As with differentiation of adipocytes and/or adipocyte-regulated lipid metabolism in vivo might lead to pathophysiological changes in plasma lipid levels and regulation of lipid storage in adipose tissue and liver, which in turn may contribute to the known association between As exposure and increased risk of type 2 diabetes, CVD and other metabolic disorders. (Funded by NIH-NIEHS S RP (P42 ES07373), and NIH-NRSA (2 T32 ES 7272-21)).

1274 Liver X Receptor and Pregnane Xenobiotic Receptor Crosstalk on Direct Repeat 4 (DR4) Response Elements Is Sequence Dependent.

K. Falkner1, B. Wahlang1, H. Bellis-Jones1, H. Clair1, R. Prough1 and M. Cava1, 1. Department of Medicine/GI, University of Louisville, Louisville, KY; 2. Louisville VA Medical Center, Louisville, KY; 3. Biochemistry, University of Louisville, Louisville, KY.

As both the human Liver X-Receptor α (LXR) and the human Pregnanate Xenobiotic Receptor (PXR) bind to a Direct Repeat 4 (DR4) response elements (RE), we compared the effects of co-transfection of either LXR, PXR or a combination of both receptors on their ability to transactivate different DR4 response elements containing reporter genes. Animal studies suggested that over-expression/activation of either of these receptors results in steatosis. Both reporter contained the same hexa-nucleotide (AGTTCA) core repeat but vary in the sequences in the intermediate 5′ and 3′ positions. HepG2 cells were transfected with plasmids expressing human PXR and human LXR; reporter-responsive reporter plasmid, pGL-3-PXRE-luciferase and the LXR-RE-Luciferase. Cells were treated with known positive ligands for the respective receptors. The first reporter, optimized for PXR binding, was activated by co-transfection of PXR treated with 10μM rifampicin and known LXR ligand T0901317 (100nM), demonstrating that T0901317 is a PXR agonist. This reporter was also activated by LXR in the presence of T0901317. In combination, co-transfection resulted in increased fold induction of this reporter with both rifampicin and T0901317. Our LXR selective DR4 reporter was activated by T0901317 when LXR was co-transfected. The reporter was not activated by PXR either in the presence of rifampicin or T0901317. In contrast to the PXR optimized DR4 construct, co-transfection of both receptors resulted in a loss of LXR dependent activation of the reporter by T0901317. These results suggest that both positive and negative interactions are possible between these receptors and therefore, the response of target genes may vary considerably, based in part on minor differences in the nucleotide sequence of the DR4 response elements. Major crosstalk should be anticipated between the predominantly endobiotic LXR and the predominantly xenobiotic receptor, PXR.

1275 Selective Activation of Human Pregnane X Receptor, Vitamin D Receptor, and Glucocorticoid Receptor by Flavonoids.

A. Lau and T. K. Chang, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.

Pregnan X receptor (PXR), vitamin D receptor (VDR), and glucocorticoid receptor (GR) regulate the expression of many genes, including those involved in the bioactivation and detoxification of drugs, toxicants, and endogenous chemicals.
Naturally occurring flavonoids have been reported to possess paradoxical biological activities in vitro and in rodents; e.g. chemoprevention and exacerbation of estrogen-induced tumorigenesis. Previously, quercetin, kaempferol, and tamarixin were reported to activate human PXR (hPXR). However, it is not known whether there is a structure activity relationship in the activation of hPXR by flavonoids and whether they activate human VDR (hVDR) and human GR (hGR). In the present study, we compared the effects of structurally related flavonoids (i.e. flavone, galangin, daucosterol, kaempferol, morin, quercetin, isorhamnetin, tamarixin, myricetin, and syringetin) on the activity of hPXR, hVDR, and hGR. Only flavone, galangin, isorhamnetin, tamarixin, and quercetin activated hPXR, whereas none of them activated hGR or hVDR, as determined in dual-luciferase reporter gene assays in transfected HepG2 human hepatoma cells. Dose-response experiments indicated that the minimum effective concentration for hPXR activation by these flavonoids was 10-30 μM. Flavone and galangin, but not isorhamnetin, tamarixin, or quercetin, recruited steroid receptor coactivator-1 (SRC-1), SRC-2, and SRC-3 to the ligand-binding domain of hPXR, as assessed by mammalian two-hybrid assays. Flavone and galangin bound to the ligand-binding domain of hPXR in a time-resolved fluorescence resonance energy transfer competitive ligand-binding assay. Overall, flavonoids activate hPXR in a receptor-selective and chemical-dependent manner. The addition of OH or OCH3 groups at C2′ and C3′ positions in Ring B of flavone appears to be unfavorable. Therefore, a minor change in chemical structure leads to abolishment of hPXR activation, implying that flavonoids may have differential impact on hPXR-mediated effects. [Supported by CIHR and MSFHR]

1276 A Novel Aryl Hydrocarbon Receptor 1 Sequence from Rainbow Trout (Oncorhyncus mykiss) Brain.

A. M. Kalinoski, J. M. Preslar, M. M. DeRocher, D. M. Hollis and E. V. Hestermann, Biology Department, Furman University, Greenville, SC.

The aryl hydrocarbon receptor (AhR) is a cytosolic protein receptor that mediates the toxic effects of polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and other halogenated aromatic hydrocarbons. Two isoforms of AhR (AhRβt and AhRβ2) have been described in rainbow trout (Oncorhyncus mykiss). However, AhR1 (the presumed ortholog of mammalian AhR) has yet to be sequenced. A novel AhR sequence was obtained through Rapid Amplification of cDNA Ends (RACE) of O. mykiss whole brain cDNA. Comparison of amino acid sequence in the conserved bHLH and PAS regions and phylogenetic analysis revealed that the new sequence is an AhR1. Tissue-specific expression of all three AhR forms was studied by qRT-PCR. AhRβt and β2 showed similar patterns of expression and were found in the highest concentration in the heart, gill, and bulbus arteriosus. AhR1 was found in the highest concentration in the white muscle, heart, and brain. These results suggest that the newly sequenced AhR1 is functionally distinct from the previously described AhR2 forms.

1277 Ginsenosides Are Novel Ah Receptor Ligands.

Q. Hu1, G. He2, J. Zhao3, A. Sofihiro4, M. S. Denisen4, H. Yin1, Q. Xie1 and B. Zhao1, 1State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Beijing, China; 2Department of Environmental Toxicology, University of California Davis, Davis, CA; 3Xiyan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates many of the biological and toxicological actions of structurally diverse chemicals. In this study we have examined the ability of a series of ginsenosides extracted from ginseng, a traditional Chinese medicine, to bind to and activate/inhibit the AhR signal pathway. The ability of the ginsenosides to stimulate/inhibit AhR-dependent luciferase gene expression was examined using a recombinant guinea pig adenocarcinoma (G16L1.1c8) cell line containing a stably integrated DRE-driven firefly luciferase reporter plasmid pGudLuc1.1. Our data show that the ginsenosides Re and Rf1 are not only relatively weak inducers of integrated DRE-driven firefly luciferase reporter plasmid pGudLuc1.1. Our data show that the ginsenosides Re and Rf1 are not only relatively weak inducers of AhR-mediated transcription but that they apparently competed with MSU for binding to the AhR in vitro by utilizing a combination of ligand and DNA binding assays. The overall ability of these ginsenosides to stimulate AhR signal transduction demonstrates that these ginsenosides are a new class of naturally occurring AhR agonists. The weaker activity of these compounds may be due to their relatively large size, which results in poor extravascular delivery within the AhR ligand binding pocket, although it remains to be determined whether the entire compound fits into the binding pocket. Considering the currently large consumption of ginseng, further studies into the molecular mechanisms of ginsenosides action, including involvement of the AhR pathway, are needed in order to better understand the diverse effects of these chemicals.

1278 Comparison of Serum Chemistry and Tissue Phenotypes in Aryl Hydrocarbon Receptor Knockout Rats and Mice.

B. Budinsky1, J. A. Harrill2, R. Hukkanen2, J. Bowland3 and R. S. Thomas3, 1ICSS, The Hamner Institutes for Health Sciences, Research Triangle Park, NC; 2TERC, The Dow Chemical Company, Midland, MI.

An aryl hydrocarbon receptor knockout (AhR-KO) rat was generated on a Sprague-Dawley outbred background in order to investigate the mode-of-action of 2,3,7,8-tetrachlorodibenzo-dioxin (TCDD) tumorigenesis. Aside from its role as a xenobiotic receptor, there is evidence that the aryl hydrocarbon receptor (AhR) plays a critical role in the development of some tissues. Previous reports describe a variety of tissue abnormalities in the liver, heart and kidney in AhR-KO mice. We conducted a comparative study of gross tissue pathology, histology and serum chemistry in AhR-KO rats and mice, and corresponding wild-types at 1, 6 and 12 weeks of age (n = 5 / sex / genotype / species) in order to evaluate the role of the AhR in tissue development across species. Adult AHR-KO mice, but not AHR-KO rats, had alterations in many serum chemistry markers associated with compromised liver function as compared to wild-type. Similarly, in adult AHR-KO mice, decreased liver-to-body weight and increased kidney- and heart-to-body weight ratios were observed. Similar changes were not observed in AhR-KO rats, save increased kidney-to-body weight ratios in females. Hepatic developmental abnormalities, including portal hypercellularity, biliary dilatation, hepatocellular vasculature and increased extramedullary hematopoiesis were observed in 1 week old AHR-KO mice and gradually dissipated across 6 and 12 week time points. Adult AhR-KO mice also had patent ductus venosus. None of these histological or gross morphological liver phenotypes were observed in AhR-KO rats. In contrast, AhR-KO rats had severe urinary tract pathology including hydroureter, hydronephrosis with secondary renal pelvic dilation, epithelial hyperplasia and mineralization leading to degenerative and inflammatory changes in cortical nephrons. Renal pathology was not observed in AhR-KO mice. Overall, these data indicate that the endogenous role of AhR in tissue development differs significantly between rats and mice.

1279 Selective AhR Modulator-Mediated Suppression of Acute Joint Edema Associated with Gouty Arthritis.

I. Murray, T. S. Lahoti, G. Krishnegowda, S. G. Amin and G. H. Perdew, Pennsylvania State University, University Park, PA.

Gouty arthritis is an inflammatory condition associated with the joints of subjects with high circulating levels of uric acid. Multiple factors promote the deposition of uric acid crystals within the synovium, which initiates an immune response resulting in a proinflammatory cytokine cascade and subsequent acute joint inflammation. Here, we examine the topical efficacy of the selective AhR modulator (SAR4) SGA360 as an antiinflammatory therapy to suppress biomarkers associated with the in vivo monosodium urate (MSU) crystal model of gouty arthritis in C57BL/6J mice. Intracutaneous (i.c.) injection of MSU into the ankle joints of subjects prompted a dose dependent increase in joint edema over sham controls, as determined through microscopy. Peak inflammation was manifest 24-36 h post injection and resolved over time. Edema was associated with significantly enhanced gene expression of the inflammatory mediators Il1b, Cxcl1, Saa3, Ptg2 and Sphk1, as assessed by quantitative PCR. Topical application of SGA360 at 6 h intervals after i.c. injection of MSU identified an attenuation of joint edema at 24 h when compared to controls. Ahr null mice revealed no significant difference in the level of MSU-induced edema when compared to wild-type. MSU-dependent edema in Ahr null mice proved to be refractory to the effects of SGA360 and thus established a requirement for AhR to mediate its antiinflammatory potential. Substitution of SGA360 with an AHR antagonist failed to inhibit MSU-induced edema in wild-type mice suggesting the action of SGA360 is independent of competition with endogenous AHR agonists. Analysis of MSU-induced gene expression in the context of SGA360 revealed a suppression of the mediators Il1b, Cxcl1, Saa3, Ptg2 and Sphk1. Furthermore, exposure to SGA360 following the establishment of edema revealed an increased rate of inflammatory resolution when compared to controls. These studies indicate that SAR4Ms such as SGA360 may provide an effective topical therapy against acute inflammation associated with gouty arthritis.
Aryl Hydrocarbon Receptor (AhR) Regulates Growth Factor Expression, Proliferation, Protease-Dependent Invasion and Migration in Primary Fibroblast-Like Synoviocytes from Rheumatoid Arthritis Patients.

T. S. Lahoti, K. John, J. M. Hughes, B. Zhu, I. Murray, J. M. Peters and G. H. Perdew. Veterinary Sciences, Pennsylvania State University, University Park, PA; DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, DE.

Rheumatoid arthritis (RA) is a chronic autoimmune disease. It is characterized primarily by proliferation of cells in the synovial lining such as fibroblast-like synoviocytes (FLS). Under non-RA settings, FLS are a highly differentiated unicellular cell type. However, under inflammatory milieu, they become hyperplastic, invasive and highly migratory. Epidemiological studies have identified a positive correlation between cigarette smoking, a source of agonistic AhR ligands, and the progressive phenotype of RA. Thus, under inflammatory conditions, we hypothesize the AhR plays an important role in the expression of several growth factors in FLS. Our AhR gene knockdown data in IL-1β activated primary FLS suggest a positive link between ablation of AhR protein activity and suppression of inculcability of vascular endothelial growth factor-A (VEGF-A) and epiregulin (EREG) mRNA levels. GNF351, a potent AhR antagonist, was also shown to suppress cytokine-mediated upregulation of VEGF-A, EREG and basic fibroblast growth factor (FGF-2) expression, further validating the AhR dependency. ELISA was performed on supernatants collected from FLS-RA cells pre-exposed to GNF351, followed by stimulation with IL-1β, which revealed AhR antagonist-mediated suppression of VEGF-A activity. Cytokine dependent activation of growth factors has been shown to enhance FLS cell proliferation, which was attenuated by GNF351 pretreatment. Upon activation by cytokines, FLS have been shown to become invasive and highly migratory. Treatment of FLS with GNF351 mitigated cytokine-mediated expression of matrix metalloproteinases (MMP) -2 and -9 mRNA levels and also diminished FLS invasive phenotype. Overall, these results suggest that the AhR may be a viable therapeutic target in amelioration of disease progression in rheumatoid arthritis.

1281 Pregnane X Receptor and Cytochrome P450 CYP2 and CYP3 Gene Responses to Potential Agonists for PXR and AhR2 in Developing Zebrafish.

We addressed responses of developing zebrafish to potential agonists for the pregnane X receptor (PXR); also Steroid Xenobiotic Receptor SXR) and the aryl hydrocarbon receptor (AhR) to determine involvement and interaction of PXR and AhR signaling pathways in regulation of genes in cytochrome P450 subfamilies CYP2 and CYP3. Zebrafish embryos were exposed to 5-pregnene-3β,20-one (pregnenolone; 1-10 μM) or to carrier (DMSO) for 24 h, starting at 48 hours post- fertilization (hpf), and then harvested at day 3. We also exposed one-day-old embryos to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) or DMSO for 24 h and then held in clean water until day 4. Expression of PXR and selected CYP genes that are potential targets in the PXR signaling was assayed. Pregnenolone caused a concentration-dependent increase in mRNA expression of PXR, some CYP2AAs, CYP2A65 and CYP3C1, all of which peaked at 3 μM and then declined. An AhR agonist PCB126 also upregulated the transcript levels of those genes in most cases in a concentration-dependent manner. We next sought to examine the role of the PXR and AhR in the modified expression of those potential target genes by using morpholino antisense oligonucleotides (MO or morpholino) to block initiation of translation of the PXR or AhR. Treatment of embryos with the PXR-MO, but not the control morpholino, partially inhibited pregnenolone-induced expression of PXR, CYP2 and CYP3 genes. Similarly, AhR2-MO treatment blocked PCB126-induced transcript expression of PXR and some CYP2 and CYP3 genes. The present study shows that PXR is not only self-upregulated, but also upregulated via activation of AhR2 in developing zebrafish. Selected zebrafish CYP2 and CYP3 genes appear to be in part under the regulation of PXR and AhR2. They include some CYP2AAs that were first identified in zebrafish. [Support: JSPS Postdoctoral Fellowships for Research Abroad no. 820 (A.K.), and NIH Superfund Research Program grant P42ES00738 (J.S.3)]

1282 Aryl Hydrocarbon Receptor Reduces Cholesterol Absorption by Regulating NPC1L1 Expression.

R. Tanos, A. Kusnadi and G. H. Perdew. Pennsylvania State University, University Park, PA.

Activation of Ah receptor (AhR) by an exogenous ligand such as dioxin is known to mediate the expression of target genes (e.g. CYP1A1), by binding to dioxin response element (DRE) sequences in their promoter region. We have previously demonstrated the ability of the receptor to attenuate the hepatic expression of cholesterol synthesis genes in a DRE-independent manner in mice and humans without affecting the levels of SREBP2. We opted to look at any changes in the levels of the NPC1L1 protein, a transcriptional target of SREBP2. NPC1L1 is known to mediate the intestinal absorption of dietary cholesterol and is clinically targeted by the drug Zetia, usually used in combination treatment with statins. NPC1L1 is also expressed in the liver although its exact function in this tissue has not been determined conclusively. To examine the effect of AhR activation on NPC1L1 expression, C57BL/6J mice and primary human hepatocytes were exposed to the AhR agonist B-naphthoflavone or selective ligand SGA 360 and results revealed a dramatic repression in the hepatic gene expression of NPC1L1. Attenuation of the expression levels of this gene was also confirmed in the intestine of C57BL/6J mice and a human intestinal cell line (Caco-2 cells). Additionally, activation of the receptor was capable of overcoming the statin-induced increase in NPC1L1 gene expression. Through mutagenesis experiments targeting the two DRE sequences present in the promoter region of the NPC1L1 gene, we established that the repression does not require functional DRE sequences; while knock-down experiments demonstrated that this regulation is AhR-specific and independent of the co-factor p300 and the transcription factor YY1. Finally, cholesterol absorption was shown to be reduced in human intestinal cells following AhR activation. These observations clearly establish a role for the AhR as a key regulator of cholesterol absorption and indicate the potential use of this receptor as a target for the treatment of metabolic diseases.

1283 Generation and Characterization of a Hairless Mouse Model to Study the Role of Aryl Hydrocarbon Receptor Activation in Response to Ultraviolet Light Exposure.

K. J. Smith, T. S. Lahoti, J. A. Boyer, K. Wagner, I. Murray and G. H. Perdew. Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, PA.

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known to be a mediator of biological responses to external stimuli. Reports suggest that endogenous ligands of the AhR include tryptophan photoproducts generated upon exposure to ultraviolet (UV) light, such as 6-formylindololo[3,2-b]carbazole (FICZ), linking the AhR to cellular processes occurring in response to UV light. Despite advances in treating UV-related pathologies, the prevalence of detrimental health effects due to UV light indicate that novel therapies are needed. To determine the in vivo role of the AhR in UV-mediated inflammation, mouse strains expressing the high affinity ligand binding allele (AhR+) and low affinity ligand binding allele (AhR−) of the AhR were generated on an SKH1 hairless mouse background. These strains were characterized using genotyping, AhR prototyphing, and saturation ligand binding assays. The AhR+ allele hairless strain was functionally characterized by the application of FICZ to the ears and compared to SKH1 mice, which exhibit the AhR− allele, to determine levels of Cyp1a1 induction, an indicator of AhR activation. The AhR− hairless mice showed greater induction of Cyp1a1 when compared to the SKH1 mice upon FICZ treatment. AhR+ and AhR− hairless mouse strains were exposed to UV (360 μl/cm2), followed by skin treatment with a selective AhR modulator (SahRM), to determine the level of induction of inflammatory genes, and the role of selective activation of the AhR in decreasing inflammatory gene expression. Similar induction of inflammatory genes (e.g., Ptg2, Il6, Il1b) in untreated skin exposed to UV was seen in both mouse strains, but preferential repression of Il1b upon SahRM treatment was observed only in the AhR− hairless mice. These strains will be useful in determining how the activity of the AhR can be pharmacologically modified to reduce inflammation upon UV exposure.
17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) is currently in clinical trials for cancer treatment. 17-DMAG is a hydrophilic derivative of geldanamycin (GA), and its analog, 17-(allylmino)-17-demethoxygeldanamycin (17-AGA), all inhibitors of the molecular chaperone, heat shock protein 90 (HSP90). 17-DMAG offers a potential advantage over 17-AGA and GA due to its increased bioavailability, limited metabolism and reduced in vivo toxicity. HSP90 inhibition results in defective protein folding, conformation and assembly of its client proteins, promoting their destabilization and degradation. Client proteins of HSP90 include transmembrane tyrosine kinases (e.g., HER2, EGFR), intermediary signaling kinases (e.g., AKT, p53) and nuclear receptor family members (e.g., AHR, PXR). Previous reports demonstrated that HSP90 is a cytosolic tethering partner of the constitutive androstane receptor (CAR). The present investigation evaluated the potential effects of 17-DMAG on human CAR transcriptional activation and nuclear translocation. 17-DMAG treatments repressed CAR-mediated CYP450 induction in cultured human primary hepatocytes. Cell-based gene activation and nuclear translocation. 17-DMAG treatments repressed CAR-mediated CYP450 induction in cultured human primary hepatocytes. Cell-based gene activation and nuclear translocation.

1284 Inhibition of Heat Shock Protein-90 Prevents the Transactivation and Translocation of Human Constitutive Androstane Receptor.

17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) is currently in clinical trials for cancer treatment. 17-DMAG is a hydrophilic derivative of geldanamycin (GA), and its analog, 17-(allylmino)-17-demethoxygeldanamycin (17-AGA), all inhibitors of the molecular chaperone, heat shock protein-90 (HSP90). 17-DMAG offers a potential advantage over 17-AGA and GA due to its increased bioavailability, limited metabolism and reduced in vivo toxicity. HSP90 inhibition results in defective protein folding, conformation and assembly of its client proteins, promoting their destabilization and degradation. Client proteins of HSP90 include transmembrane tyrosine kinases (e.g., HER2, EGFR), intermediary signaling kinases (e.g., AKT, p53) and nuclear receptor family members (e.g., AHR, PXR). Previous reports demonstrated that HSP90 is a cytosolic tethering partner of the constitutive androstane receptor (CAR). The present investigation evaluated the potential effects of 17-DMAG on human CAR transcriptional activation and nuclear translocation. 17-DMAG treatments repressed CAR-mediated CYP450 induction in cultured human primary hepatocytes. Cell-based gene activation and nuclear translocation. 17-DMAG treatments repressed CAR-mediated CYP450 induction in cultured human primary hepatocytes. Cell-based gene activation and nuclear translocation. 17-DMAG treatments repressed CAR-mediated CYP450 induction in cultured human primary hepatocytes. Cell-based gene activation and nuclear translocation. 17-DMAG treatments repressed CAR-mediated CYP450 induction in cultured human primary hepatocytes. Cell-based gene activation and nuclear translocation.

1285 Activation of Transient Receptor Potential Ankyrin-1 by Wood Smoke Particulate Material.

D. Shapiro, C. E. Deering-Rice, E. G. Romero, G. S. Yost, J. M. Veranth and C. A. Reithly. PharmTox, University of Utah, Salt Lake City, UT.

Exposure to wood smoke particulate matter (WSPM) has been linked to exacerbation of asthma, development of causes chronic obstructive pulmonary disease (COPD), and premature death. Combustion-derived PM (cdPM) such as cigarette smoke (CS), diesel exhaust (DEP), and WSPM, activate transient receptor potential ankyrin-1 (TRPA1) which promotes neurogenic inflammation/edema and airway irritation/cough. The mechanism of TRPA1 activation by DEP and CS involves the electrophilic/oxidant binding (3CK) and menthol-binding (ST) sites, and a novel mechanosensitive site. We hypothesized that WSPM would activate TRPA1 through one or more of these sites similar to other cdPM. Pine and mesquite PM were generated in the laboratory. Both types of WSPM particles activated TRPA1 in human TRPA1 over-expressing HEK-293 and primary mouse trigeminal (TG) neurons. WSPM also activated TRPA1 in A549, a human alveolar adenocarcinoma cell line, which has recently been shown to express TRPA1. HC-030031, a TRPA1 specific antagonists, attenuated the calcium flux due to WSPM treatment in both human A549 cells and mouse primary TG neurons. Several known chemical components of WSPM, including 3,5-dibutylphthalyl and agatic acid were TRPA1 agonists. Both WSPM and agatic acid activated TRPA1 primarily via binding the 3CK site, based on inhibition of calcium flux by glutathione and mutation of the 3CK site. Conversely, 3,5-dibutylphthalyl activated TRPA1 through the ST site. This study established the mechanisms by which WSPM and associated chemical components activated TRPA1 which may help tailor effective therapeutic treatments for WSPM pneumotoxicity. Support: NIEHS ES017431 and the University of Utah Undergraduate Research Opportunities Program.

1286 Exploratory Phenotype and Molecular Analysis Study in RORγ-Terminal Knockout Mice.

Retinoic acid-related orphan receptor γ (RORγ) is an orphan nuclear hormone receptor that is widely expressed in several tissues including liver and skeletal muscle. Previous gene expression studies of knocking out the RORγ nuclear receptor in mice with a focus on liver and skeletal muscle tissues. Male and female wild type, heterozygote, or homozygote RORγ KO mice (10/group) were assessed at 10 weeks of age. Study endpoints included clinical observations, body weights, organ weights, gross and microscopic examination of tissues, and gene expression evaluation using RNA isolated from liver, skeletal muscle, and spleen. There was no impact with respect to clinical observations, body weight, and pathology on the phenotype of the heterozygous animals when compared with controls. Although no differences in clinical observations or body weights were observed in the homozygous animals, significant microscopic lesions were present in the thymus (thymic hyperplasia or lymphoma), spleen (increased cellularity), and lymph node (abnormal). These findings were not unexpected and are in line with established literature (Eberl and Littrman 2003; Ueda et al. 2002). Pathway analysis of gene expression changes indicated that a majority of the altered pathways were related to immune response, an expected outcome. Skeletal muscle gene changes suggested a possible role for RORγ in energy homeostasis. However, no perturbations in pathways in toxicological consequences were noted. Taken together, the data showed that knocking out of RORγ in mice led to expected changes in immune-associated pathology and gene expression, but did not reveal any additional phenotypic or genotypic toxicologically relevant effects.
genes, suggesting a role for AHRRAs in photoreceptor development. In addition, AHRRAs knock-down induced upregulation of embryonic hemoglobin (Hbba2), suggesting a role in hematopoiesis. Knock-down of AHRRBs caused upregulation of 31 genes and downregulation of 85 genes, without enrichment of genes related to any specific biological process. These results suggest that AHRRAs plays an important endogenous role in development. To understand the role of AHRRAs beyond development, we generated abrras using ZFNs. Microinjection of ZFNs mRNA into mouse embryo fibroblast embryonic stem cells caused a 7 base pair frame shift mutation at the abrra locus. We screened for germline mutants and identified a founder fish that was outcrossed to generate heterozygous mutant offspring. Heterozygous mutants were crossed to generate abrra mutant homozygotes. Using these homozygotes we are investigating the role of AHRRAs in normal physiology and pathology. [Supported by NIH RO1ES006272]

1289 Tissue-Specific Expression of Cytokines and Chemokines in TCDD-Treated B6 and Aryl Hydrocarbon Receptor Repressor Transgenic Mice.

1290 Caloric Restriction Induces Nrf2-Dependent Effects on Lipid Metabolism.

291 Electrophilic Metabolites of Aromatic Hydrocarbons Cause AhR Activation and Up-Regulation of CYP1A1 in HepG2 Cells: Involvement of S-Arylation of Cellular Proteins.

AhRR and AHR repressors (AhRR) are less clear. The AhRR has been found to suppress AhR activity as an inducible negative feedback loop, then again there are many unanswered questions, as we know now that the basal or induced cytochrome P450 1A1 (CYP1A1) mRNA level rarely correlates with AhR expression. To gain insight into the function of AhRR in vivo we developed a transgenic AhRR B6 mouse (AhRR Tg). These transgenic mice express significantly higher levels of AhRR mRNA in all tissues examined such as liver, lymph-node, kidney, spleen, and thymus. Treatment of B6 and AhRR Tg mice with TCDD induced induction of S-Arylation of cytoplasmic tubules examined. However, TCDD-induced expression of CYP1A1 was not significantly suppressed in most of the tissues of AhRR Tg mice. The most consistently observed trend in AhRR Tg mice was a repressed induction of several inflammatory markers induced by TCDD as compared to B6 mice. The TCDD-mediated induction in B6 mice as well as the repression in AhRR Tg mice of markers such as IL-6, IL-1β, IL-10, KC, and COX-2 was tissue-specific. Results show that the AhRR may suppress AhR-mediated induction of inflammatory marker genes and that the AhRR may control AhR activity in the immune system. The cross-talk of AhR with other transcription factors including NF-kB has been well described. Therefore, this study suggests that AhRR interacts specifically with alternative AhR pathways rather than simply blocking the classical AhR/ARNT pathway.

1292 AhR-Independent Gene Regulation by TCDD in Mouse Liver and Kidney.

Arylhydrocarbon receptor (AhR) deficient mice have been shown to be resistant to a variety of adverse effects of TCDD. Furthermore, AhR-deficient mice of various origins exhibit various phenotypes although the physiological function(s) of the AhR still await(s) elucidation. Here, we investigated the effects of TCDD on liver and kidney gene expression in adult female wild-type (wt) and AhR-deficient mice (originating from Finish Public Health Institute, Kuopio, Finland) from our own breeding five days after treatment with either TCDD, single dose, 25 µg/kg body weight, or with corn-oil (vehicle) given by oral gavage. Subsequently, RNA was isolated and Microarray analysis was performed using Agilent Whole Mouse Genome Oligo Microarray 4x44K. In wt mice, 282 genes were more than 2-fold up-regulated by TCDD in the liver including some of well-known AhR target genes like cytochrome P450 (CYP) 1A1, 1A2 and 1B1; 152 genes were up-regulated in the kidney. In AhR-deficient mice, 242 hepatic and 90 renal genes showed an increased expression after TCDD treatment. Among those, 15 hepatic and 13 renal genes were up-regulated in both wt and AhR-deficient animals. None of the core genes of the AhR gene battery except CYP1B1 were up-regulated in AhR-deficient mice. The AhR-independent, TCDD-regulated genes comprise genes involved in lipid, carbohydrate, and amino acid metabolism, and in immune regulation. In wt mice, 203 hepatic and 20 renal genes were more than 2-fold down-regulated. In AhR-deficient mice, 234 hepatic genes including CYP1A2 and CYP3A4 and 235 renal genes showed a decreased expression. In addition, 18 hepatic genes were down-regulated in both wt and AhR-deficient mice. Our data suggests that, in addition to cellular proteins might activate the AhR. In this study, we addressed this question by exposing cells in culture to several of these agents and using immunocytochemistry 12 hours later to determine AHR nuclear translocation. Exposure of HepG2 cells to TBQ, 1,4-NQ, and 1,4-benzoquinone, resulted in AhR translocation and CYP1A1 induction, whereas both measures of AhR activation were negative after treatment with BHA, or naphthalene. Similar results were seen in A549 cells and RAW264.7 cells. TBQ treatment also enhanced the interaction of AHR with ARNT. Interestingly, pretreatment with BSO and NAC to modulate cellular GSH levels enhanced and suppressed 1,2-NQ-mediated activation of AHR, respectively, suggesting that covalent modification of these cellular proteins, possibly through 1,2-NQ-mediated activation of AHR, respectively, activating NRF2 through S-arylation of its negative regulator, KEAP1. To our knowledge there have not been any reports to indicate that electrophiles that covalently bind to cellular proteins might activate the AhR. In this study, we addressed this question by exposing cells in culture to several of these agents and using immunocytochemistry 12 hours later to determine AHR nuclear translocation. Exposure of HepG2 cells to TBQ, 1,4-NQ, and 1,4-benzoquinone, resulted in AhR translocation and CYP1A1 induction, whereas both measures of AhR activation were negative after treatment with BHA, or naphthalene. Similar results were seen in A549 cells and RAW264.7 cells. TBQ treatment also enhanced the interaction of AHR with ARNT. Interestingly, pretreatment with BSO and NAC to modulate cellular GSH levels enhanced and suppressed 1,2-NQ-mediated activation of AHR, respectively, suggesting that covalent modification of these cellular proteins, possibly through S-arylation of cystine residues, contributes to the activation of AHR. These results suggest that electrophilic metabolites of aromatic hydrocarbons can serve as bifunctional inducers through activation of both AhR and NRF2.

Toxic screening has identified the Nrf2 transcriptional pathway as being highly correlated to chemical promiscuity. Nrf2 is classically defined to have a role in the mediation of cytoprotection against oxidative stress, but recent work points to a more fundamental metabolic role in lipid metabolism. Studies have indicated that the Nrf2/Keap1 pathway is inducible in adipose tissue, and Nrf2 may have a role in mediating the beneficial effects of caloric restriction (CR). CR promotes the uti-

1291 Electrophilic Metabolites of Aromatic Hydrocarbons Cause AhR Activation and Up-Regulation of CYP1A1 in HepG2 Cells: Involvement of S-Arylation of Cellular Proteins.

The aryl hydrocarbon receptor (AhR) has been identified as an important trans-
1293 Coexposure to Aryl Hydrocarbon Receptor and Thyroid Receptor Agonists Enhances Induction of Responsive Genes in Cultured Frog Cells and Prometamorphic Frogs.

J. D. Tafi and W. H. Powell. Biology, Kenyon College, Gambier, OH.

Ampulliform metamorphosis is a postembryonic developmental process driven by thyroid hormone (TH) and mediated by the thyroid receptor (TR). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can disrupt TH function in humans and other species. Toxicity of dioxin-like compounds is mediated by the aryl hydrocarbon receptor (AHR). Here we used the African Clawed Frog (Xenopus laevis) as a model to probe the interaction of TR and AHR signaling. We quantified relative mRNA expression of both TR and AHR target genes in prometamorphic tadpoles and in XLK-WG cells following exposure to both TR and AHR agonists. Tadpoles (NF 53-55) were exposed to 5 nM TCDD and/or 10 nM T3 for 18 hours. TR targets BTER, TRβa, and TRβb were not strongly induced by TCDD alone, and AHR target CVPIA6 was not responsive to T3. However, exposure to both compounds resulted in elevated transcriptional responses of both transcript classes. Compared with T3-exposed animals, BTER, TRβa, and TRβb mRNAs were 40-70% more abundant following co-exposure with TCDD. Similarly, CVPIA6 mRNA was ~50% more abundant in tadpoles following T3 co-treatment than with exposure to TCDD only. Comparable patterns were observed in XLK-WG cells. The effect of TCDD on circulating TH varies with species and can differ for T4 and T3. While the superinduction of TH-responsive frog genes could involve TCDD-related alteration of TH levels, the requirement for co-treatment and the effect in cultured cells suggest the possibility of a transcriptional mechanism. We examined the promoter regions of BTER, TRβb, and CVPIA6, finding potential cognate binding elements for each receptor. Overall, our results suggest some degree of co-regulation of the expression of several genes by both AhR and TR. Frogs display great insensitivity to TCDD toxicity, and frog AHRs bind TCDD with low affinity. We hypothesize that the induction of TR-regulated genes by AHR may represent an additional mechanism for protection of metamorphosis from disruption by xenobiotic or endogenous AHR agonists. (NIH: R15 ES011130)

1294 A Global Genomic Screening Strategy Reveals Diverse Activators of Constitutive Activated Receptor (CAR).

K. Oshida1, N. Vasanii, B. Chorley, S. Hester, W. Ward1, R. S. Thomas2, D. Applegate3, L. M. Akoumianas4, C. D. Klaassen5 and C. Corpron1.1US EPA, Research Triangle Park, NC; 2Hamner Institute, Research Triangle Park, NC; 3Regenmed, Inc., San Diego, CA; 4Rutgers University, New Brunswick, NJ; 5KUMC, Kansas City, KS.

A comprehensive survey of conditions that activate CAR in the mouse liver has not been carried out but would be useful in understanding their impact on CAR-dependent liver tumor induction. A gene signature dependent on CAR activation was identified by comparing the transcript profiles after exposure to three CAR activators (phenoxybital, TCPOBOP, CTFCO) in wild-type and CAR-null mice. In independent experiments using transcript profiles from the livers of chemically-exposed male or female mice, the signature correctly predicted activation of 3 CAR activators but not 9 activators of other pathways. The signature was used with 5 classification methods (e.g., support vector machines, K-nearest neighbors) to identify conditions in which CAR was activated in an Affymetrix compendium of ~750 mouse liver transcript comparisons encompassing a broad range of chemical, dietary and genetic perturbations. We found that CAR is activated by a large number of chemicals, dietary regimens and genetic mutations. Specific and novel findings include activation by 1) two PXR activators in a PXR-dependent manner indicating crosstalk between CAR and PXR, 2) 12 out of 15 chemical and triglyceride activators of PPARα to greater levels in PPARα-null mice than in wild type mice indicating that most PPARα activators are also CAR activators and there exists antagonism between CAR and PPARα, and 3) null mutations in a number of transcription factors (AhR, Fxr, Hnf1a, Pxr) that control expression of genes involved in metabolism of exogenous and endogenous chemicals. The findings increase our understanding of the factors that impact CAR activation and that could contribute to increases in CAR-dependent liver tumors. This abstract does not represent EPA policy.

1295 Effects of Munitions Compounds on Xenobiotic-Activated Nuclear Receptors and Cell Signaling Pathways.

D. R. Johnson1, C. Y. Ang1, T. Habib2 and E. J. Perkins1. 1Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS; 2Badger Technical Services, Vicksburg, MS.

Exposure to certain munitions compounds is known to alter physiological functions in test organisms, however little is known about their molecular and cellular effects. The objective of this study to characterize the effects of new and existing munitions compounds on xenobiotic-activated nuclear receptors and cell signaling pathways. Munitions compounds (0.01-10 mg/l) (e.g., nitroaromatics, cyclic nitramines, and new insensitive munitions) were added to wells containing transfected cells containing high constitutive levels of nuclear receptors for 24 h, then examined for nuclear activation according to in-house and commercially available kits. In general, nitroaromatic compounds had greater effects on nuclear receptor activity decreased nuclear receptor activity than other munitions compounds. Nitroaromatic munitions decreased activation of constitutive androstane receptor (CAR), peroxisomal proliferator activated receptors (PPAR), liver X receptor (LXR) at higher concentrations examined, whereas some nitroaromatic compounds activated the Ah receptor. Effects on 45 cell signaling pathways were examined using the Signal Finder multi-pathway reporter array kit that reverse-transferred transcription factor-firefly luciferase reporter plasmids into HepaRG liver cells. Cells were then exposed to munitions compounds for 24 h, then examined for signal pathway activation. Trinitrotoluene (TNT) and its environmental byproducts differentially activated cell signaling pathways, with at least two pathways commonly shared (AhR and Nr2/Nr11). 2,4-Dinitrotoluene, a new TNT replacement munitions compound, activated fewer cell signaling pathways than TNT. These results create a more comprehensive picture of munitions effects within cells and potential down-stream effects within organisms. Furthermore, rapid nuclear bioassays, such as the ones described above, may help material scientist predict biochemical pathways that may be impacted by newly developed munitions earlier in the development process.

1296 The Aryl Hydrocarbon Receptor Depletion in Human MDA-MB-231 Breast Cancer Cell Line Attenuates In Vivo Tumor Growth and Pulmonary Metastasis in a Nude Mouse Model.

G. Goode and S. E. Elton. Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN.

The aryl hydrocarbon receptor (AhR) is a ligand activated transcription factor that is best characterized for its role in mediating the toxic responses elicited by environmental polycyclic aromatic hydrocarbons (PAH). However there is compelling evidence for a PAH-independent role of AhR in breast cancer. AhR is overexpressed and constitutively activated in several human breast carcinoma cell lines and shows strong correlation with the degree of the tumor malignancy. In the present study we examine the effect of depleting AhR expression in the highly metastatic MDA-MB-231 human breast cancer cell line on tumor growth and experimental pulmonary metastasis in a nude mouse model. The AhR was stably knocked down using siRNA targeting AhR gene. Clonal cell line of MD231 HBC with approximately 80% depletion of AhR and its scramble control cells were transfected to stably and constitutively express luciferase gene for the purpose of in vivo bioluminescence imaging of tumors. Cells were injected either orthotopically in the mammary fat pad for monitoring the primary tumor growth, or intravenously in the lateral tail vein, for monitoring pulmonary experimental metastasis. Results showed that knock down (KD) of AhR expression significantly reduced incidence of mice with tumor growth, prolonged the latency and reduced tumor size in those mice which developed tumors compared to controls. Mice with AhR KD in the experimental metastasis group showed a significant reduction in the number of animals with lung metastasis compared to control, and decreased numbers and sizes of pulmonary metastasis in those, which manifested metastasis. Global gene expression profiling identified sets of genes associated with tumor growth and metastasis that have been subsequently altered to depletion of AhR, and are likely to account for these phenotypes. Our data provide the first in vivo evidence for the role of AhR in regulating breast cancer metastasis and identified it as a therapeutic target for metastatic breast cancer.

1297 Species Specificity of the Peroxisome Proliferator Response in Primary Hepatocytes.

P. D. McMullen, S. Bhatchacharya, C. G. Woods, R. A. Clewell, E. L. Lechava, K. M. Yarborough, L. Pluta, P. Lu, J. Dong, J. Pi and M. E. Anderson. 1Clinical Research Program, NIEHS, Durham, NC; 2Cell Adhesion Group, NIEHS, Durham, NC; 3Pharmacology and Toxicology, East Carolina University, Greenville, NC; 4National Toxicology Program (NTP), NIEHS, Durham, NC.

Perturbations induced by environmental chemicals often lead to different physiological outcomes in humans and rodents, calling into question the applicability of animal-based toxicity testing for human risk assessment. For example, peroxisome proliferators, which include several purported endogenous fatty acids as well as a number of synthetic ligands, induce lipid metabolism enzymes in humans and have been used successfully as therapeutic strategies for various dyslipidemias and diabetes. For rodents, in addition to their role in regulating fatty acid metabolism, peroxisome proliferators also influence peroxisome assembly, inflammatory responses, and...
and cellular proliferation. Understanding the basis for differences in clinical repercussion across species is essential to translating information from animal models to human health.

Here we present a genomic characterization of the response of human and rat primary hepatocytes to the PPARα-specific agonist GW7647. We used gene expression microarray experiments to compile a highly resolved time- and dose-response characterization of the differences in the PPARα-mediated response in these two species. Consistent with the qualitative differences in the response to peroxisome proliferators, we identified a substantially larger set of differentially expressed genes in rat cells compared to human. These additional genes include a suite of developmental processes that may account for the increased toxicity of peroxisome proliferators in rodents. Surprisingly, in both species, we found that the canonical nuclear receptor response mechanism accounts for only a small fraction of detected response, suggesting a larger role for non-genomic mechanisms than was previously thought.

A central goal in the 2007 National Research Council’s vision for Toxicity Testing in the 21st Century is the development of a comprehensive suite of in vitro tests covering the major signaling pathways (toxicity pathways) in mammals that can be used for evaluating chemical toxicity while reducing or eliminating the use of animals. Our research focuses on the development of in vitro screens for detecting chemicals in food additives, supplements, and contaminants that can disrupt the major cellular signaling pathways in mammals. One of these pathways, the retinol (vitamin A) signaling pathway, is essential for life in all mammals. It is required for both normal embryonic development and maintenance of cellular phenotype in adult organisms; chemicals that cause even minor interference with its normal function and output are potential fetotoxic and adult toxicants. We have developed a rapid (24 h) screen for detecting chemicals that disrupt this essential signaling pathway. It uses the mouse pluripotent P19 embryonal carcinoma cell line and a medium-throughput 96-well format gene-expression assay to detect disrupting chemicals. It has detected all known retinoid signaling pathway disruptors and some chemicals that are closely related, structurally, to known disruptors. Significantly, it also has detected members of a class of chemicals, the endocrine disruptors, which have not been associated previously with disruption of this pathway; chemicals that caused disruption included xenestrogens (DES, BPA, 4-nonylphthalate, and genistein and phthalate esters (dibutyl phthalate and diphenyl phthalate but not bis(2-ethylhexyl) phthalate). The effects of members of this class of chemicals on the pathway suggest the existence of an additional non-genomic mechanism of action by which some endocrine disrupting chemicals cause toxicity.

1299 Asian Ginseng (Panax ginseng) Potentiates Ethanol-Induced Cardiovascular Dysfunction in Medaka Embryogenesis (Oryzias latipes). M. H. Haren1, 2, L. A. Walker1, 2, I. A. Khan3 and A. K. Dasmana1, 3.

1National Center for Natural Product Research, University of Mississippi, University, MS; 2Department of Pharmacology, University of Mississippi, University, MS.

Alcohol is a teratogen, induces fetal alcohol spectrum disorder (FASD) which has serious central nervous system (CNS), cardiovascular, and craniofacial defects affecting the entire lifetime of an individual. Prevention of FASD, other than women abstaining from drinking alcohol during pregnancy, is not known. The synthetic drugs recommended for the treatment of alcoholism cannot be used by women during pregnancy which led us to investigate on natural products. Due to ethical constraints FASD studies in humans are very limited and several animal models are used to understand the molecular mechanisms. We have observed that development ethanol potentiates the effects of medaka (Oryzias latipes) embryos genistein embryos which are analogous to human FASD phenotypes. We hypothesize that ethanol metabolism generates oxidative stress which can disrupt embryonic development of medaka. In the present experiment, we have used root extracts of Asian ginseng (Panax ginseng) as a preventive agent of FASD. Fertilized medaka eggs within 4 h post fertilization (hpf) were exposed to methanolic extracts (50-100 μg/ml) of ginseng root (PG) or ethanol (300 mM) either alone or in combination. After 48 h of treatment the viable embryos were transferred to clean hatching solution and on 6 dpf the embryos were examined for vessel circulation followed by mRNA analyses of enzymes related to ethanol metabolism and oxidative stress. It was observed that ethanol (300 mM) alone was able to disrupt vessel circulation and treatment of PG (50-100 μg/ml) with ethanol was able to enhance the effect; PG (100 μg/ml) alone has no effect. mRNA analysis of alcohol metabolizing enzymes or oxidative stress-related enzymes did not show any significant alterations in any of these treatment conditions. It is therefore concluded that potentiation of ethanol-induced cardiovascular deformities in medaka by PG may be mediated through a different mechanism rather than oxidative stress.

1300 Toxicology Profile of Virginia Cedarwood Oil Delivered via Dermal Application. L. Sudh1, R. A. Herbert2, G. S. Travlos2, M. Vallant1, L. M. Fomby1, M. R. Heimancelic1 and P. Chan1.

1Toxicology Branch, Division of the National Toxicology Program, NIEHS, Research Triangle Park, NC; 2Cellular and Molecular Pathology Branch, DNTP, NIEHS, Research Triangle Park, NC; 3Program Operations Branch, DNTP, NIEHS, Research Triangle Park, NC; Battelle, Columbus, OH.

Virginia cedarwood oil (CWO), which is extracted from Juniperus virginiana trees, is widely used as an insect repellent and a fragrance in cosmetic formulations resulting in human exposure. To investigate the toxicological effects of CWO, 90-day studies in F344 rats and B6C3F1/N mice were conducted. CWO was administered by dermal application to male and female rats at concentrations of 0, 6.25, 12.5, 25, 50% (v/v) in 95% ethanol or 100% daily (excluding weekends) for up to 14 weeks with an untreated control included. In rats, there were no effects on survival or body weights except in the 100% males in which 2 rats were terminated on day 79 due to severe skin lesions and a 13% lower final mean body weight than that of the untreated control. All males and females in the 100% group were terminated during week 10 due to the severity of skin lesions. Final group mean body weights for females given 12.5, 25 or 50% and males given 50% were less than 90% of the controls. At the site of application, treatment related irritation, thickened skin, and ulcer formation were observed in all treated groups of rats and mice, except the 6.25% groups in rats. Clinical pathology showed an inflammatory leukogram secondary to dermal ulcers/inflammation in both rats and mice; mice also had a decreased erythrocyt. In rats and mice there were dose-dependent increases in incidences and severity of skin lesions at the site of application, and bone marrow hyperplasia. In rats, there were dose-dependent increases in incidences and severity of kidney lesions in males. Male mice demonstrated increased incidences of kidney nephropathy and thymus atrophy.

1301 Novel Antiplatelet Activity of Protocatechuic Acid through Inhibition of High Shear Stress-Induced Platelet Aggregation. K. Kim1, K. Lim1, J. Noh1, S. Kang2, K. Chung2, O. Bae1 and J. Chung1.

1College of Pharmacy, Seoul National University, Seoul, Republic of Korea; 2School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea; 3College of Pharmacy, Hanyang University, Ansan, Republic of Korea.

Bleeding is the common and serious adverse effect of currently available anti-platelet drugs. Many efforts are being made to develop novel anti-thrombotic agents without bleeding risks. Shear stress-induced platelet aggregation (SIPA) which occurs under abnormally high shear stress plays a crucial role in the development of arterial thrombotic diseases. Here we demonstrated that protocatechuic acid (PCA), a bioactive phytochemical from Lonicera (honeyuckle) flowers, selectively and potentently inhibits high shear (>10.000 s-) induced platelet aggregation. In isolated human platelets, PCA decreased SIPA and attenuated accompanying platelet activation including intracellular calcium mobilization, granule secretion and adhesion receptor expression. Anti-SIPA effect of PCA was mediated through blockade of von Willebrand factor (vWF) binding to activated GPIIb/IIIa, a primary and initial event for the accomplishment of SIPA. Consipicuously, PCA did not inhibit platelet aggregation induced by other endogenous agonists like collagen, thrombin or ADP that are important both in pathologicial thrombosis and normal haemostasis. Anti-thrombotic effects of PCA were confirmed in vivo in rat arterial thrombosis model, while conventional anti-platelet drugs, aspirin and clopidogrel substantially prolonged it. Collectively, these results suggest that PCA may be a novel anti-platelet agent which can prevent thrombosis without increasing bleeding risks.

1302 The Soy-Associated Phytoestrogen, Genistein, Does Not Protect Against Alcohol-Induced Osteoporosis in Male Mice. C. Yang1, K. Mercier1, L. Suva2, T. M. Badger2 and M. Ronis1, 4.

1The Hamner Institutes for Health Sciences, Research Triangle Park, NC.

Alcohol abuse acts as a risk factor for osteoporosis by increasing osteoclast activity and decreasing osteoblast activity in bone. These effects can be reversed by estrogen. Soy diets are also suggested to have protective effects on bone loss in men and women.
women, as a result of the presence of soy protein-associated phytoestrogens such as genistein and daidzein. In this study, male mice were pair fed (PF) a control diet, an EtOH diet or EtOH diet supplemented with genistein (250 mg/kg) for 8 weeks. Ex vivo microCT analyses of formalin fixed tibia from each group revealed a significant decrease in trabecular bone in the EtOH group in comparison with the pair-fed control in regards to bone volume (BV/TV), trabecular number (Tb.N), and trabecular separation (Tb.Sp). (p<0.05). No protective effect by genistein was observed in the EtOH+genistein group compared to the EtOH group in BV/TV, Tb.N, and Tb.Sp. Interestingly, there was an increase in trabecular thickness (Tb.Th) in the PF+genistein group compared to the PF (P<0.05), suggesting genistein can affect bone remodeling. In ex vivo bone marrow cultures, EtOH exposure decreased the number of pre-osteoblasts compared to PF controls. In contrast, exposure to EtOH+genistein increased pre-osteoblast numbers compared to the EtOH-treated group, (p<0.05). These findings suggest that genistein has a partial protective effect on bone formation. In conclusion, genistein does not protect against decreased the number of pre-osteoblasts compared to PF controls. In contrast, exposure to EtOH+genistein increased pre-osteoblast numbers compared to the EtOH-treated group, (p<0.05). These findings suggest that genistein has a partial protective effect on bone formation. In conclusion, genistein does not protect against ethanol induced bone loss despite increasing osteoblastogenesis. Supported in part by R01 AA18282 (M.J.R.) and UAMS INBRE award 8 P20 GM103429-11.

1303 Toxicological Safety Assessment of a Hydroethanolic Extract of Caralluma fimbriata.
L.R. Endres1, N. Deshmukh2 and A.G. Schauta1, 1AIBMR Life Sciences, Inc., Phippsville, WA; 2INTOX Pvt. Ltd., Pune, India.

A toxicological safety assessment was conducted on a hydroethanolic extract of Caralluma fimbriata, an ingredient marketed as an appetite suppressant, to predict safety with oral consumption by humans. Caralluma fimbriata extract (CfE) is standardized to contain no less than 25% pregnane glycosides and no less than 10% saponin glycosides. The extract is >98% soluble in water. CfE is currently sold as the trademarked ingredient Slimaluma™. Two genotoxicity studies were conducted and no evidence of mutagenicity of genotoxicity was observed in the presence of a rat liver S9 metabolic activation system at concentrations up to 5,000 μg of extract/ml (Ames Bacterial Reverse Mutation Assay) or 5,000 μg of extract/ml in a chromosomal aberration assay. Studies conducted in Wistar rats included a 14-day acute oral toxicity study, and a 90-day repeated oral toxicity study. A 6-month repeated oral toxicity study was conducted in Sprague-Dawley rats. In the 14-day study, the NOAEL was determined to be 5 g/kg bw. While a few statistically significant (p<0.05) findings were observed in the 90-day study, it was considered to be a sound basis for conducting a 6-month study. In the 6-month Sprague-Dawley rat study, the observed effect level (NOEL) was concluded to be 1,000 mg/kg bw/d, the highest dose group tested. Finally, in a developmental toxicity study in Sprague-Dawley rats no fetal abnormalities related to administration of the test article were observed.

1304 The Antidiabetic Activities of the Soft Drink Leaf Extract of Phyllanthus amarus (Order Euphorbiaceae) in Laboratory Animals.
A. A. Adelade and S. O. Olugbo, Veterinary Physiology, Biochemistry and Pharmacology, University of Ibadan, Ibadan, Nigeria.

Phyllanthus amarus Schum (Family Euphorbiaceae) is an annual herbal shrub which has been used in traditional medicine in Nigeria to treat some disease conditions. This study evaluated the soft drink extract (SDE) of the plant for anti-diabetic activities in rats. SDE was prepared by dissolving fresh aerial parts of the plant in 7up soft drink for 48 h, filtered, lyophilized and then used for the pharmacological investigations. Standard phytochemical methods were used to test for the presence of phytoactive compounds in the plant. Acute toxicity was carried out in mice to determine safe doses for this plant extract. The anti-diabetic activities of the SDE of the plant were assessed using some standard tests as well as histological changes in liver, kidney and pancreas. Diabetes mellitus was induced in rats using alloxan while glibenclamide at 0.2mg/kg was the reference drug used in this study. The SDE at 200 and 400mg/kg body weight caused a significant reduction of fasting blood glucose, significant change in the oral glucose tolerance test, marked effect in the hypoglycaemic activity test, and pronounced reduction on the glucose, cholesterol and triglyceride levels of diabetic rats. The haemograms of all treated diabetic rats experienced recovery. Histopathologically, the liver of the diabetic non-treated and glibenclamide-treated groups showed widespread vacuolar change in the hepatocytes but there was no visible lesion seen in the kidney and pancreas of extract-treated and glibenclamide-treated groups. No lesion was also seen in the liver of SDE-treated group.

In conclusion, the results from this study may have validated the traditional basis for the use of Phyllanthus amarus as an antidiabetic agent. The pharmacological activities noted in this study may be attributed to the presence of flavonoids and other phenolics contained in this plant. At the doses used, SDE also appeared safer than glibenclamide even though the latter is more potent.

1305 Protective Effects of Methanolic Root Extract of Balanites aegyptiaca (L.) Delile on Carbon Tetrachloride (CCL4)-Induced Hepatotoxicity in Rats.
Q. A. Salau1, F. Tukur2, A. Y. Tijani3, J. Ejiofor1 and S. Ahmed1, 1Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development (NIPRD), Abuja, Nigeria; 2Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria; 3Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria.

Objective: Balanites aegyptiaca (BA), a widely grown desert tree found in Africa and Asia is used as a remedy for several ailments including liver and spleen diseases. This study evaluated the protective activity of the methanol extract of BA root by direct (curative and prophylactic models) and indirect (barbiturate-induced sleep model) methods in CCl4-induced hepatotoxic rats.

Methods: In the curative study, 0.5 ml/kg CCl4 was given in intraperitoneally (ip) on alternate days, for 5 days, followed by 100, 200 and 400mg extract/kg orally daily, for 7 days. Other groups received the vehicle only, CC14 and the vehicle, and CCl4 and the standard drug, silymarin (100 mg/kg/day) respectively. In the prophylactic study, all the rats received the treatment respectively for the first 7 days followed by CCl4 as above. Degree of liver protection was measured in the rats by biochemical parameters (serum alanine transaminase, aspartate transaminase, alkaline phosphatase, albumin, bilirubin, triglycerides and cholesterol levels) monitoring, physical (weight) and histopathological changes in the liver. The indirect method was same as in prophylactic study but on the 3th day, the rats were given 25mg pento-barbitone sodium/kg /ip and observed for onset and duration of sleep. Results: Pre-treatment with the extract significantly (P<0.05) decreased CCl4-induced elevation of serum levels of the biochemical parameters, better than silymarin. In the curative study, its effect was comparable with that of silymarin. It also significantly decreased pento-barbitone sleeping time. There was improved tissue histopathology in both studies. Conclusion: These results showed that BA root has significant hepatoprotective activities and could be useful as ‘lead’ in the development of new hepatoprotective agent.

1306 The Effects of Citrus Auraptene in Combination with All-Trans Retinoic Acid on Human Squamous Cell Carcinoma in a Xenograft Model.
H. E. Kleiner, E. R. Lane1, J. Mathis2, J. McLarty3, M. S. Prince1, S. R. Crooks1, J. L. Clifford1 and E. A. Orchard1, 1Department of Pharmacology Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA; 2Anatomy and Cellular Biology, Louisiana State University School of Health, Shreveport, LA; 3Medicine, Louisiana State University Health Sciences Center, Shreveport, LA; 4Biochemistry & Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA.

Over 2,000,000 new cases of non-melanoma skin cancer (NMSC) are expected in the United States in 2012. Our group has previously demonstrated that citrus auraptene (AUR), combined with all-trans retinoic acid (ATRA), can inhibit the growth of human squamous cell carcinoma (SCC) tumors from the cell line SRB12-p9 (P9WT) in SCID/bg mice. ATRA is known to inhibit the STAT3 pathway, whereas AUR suppresses the activation of NF-kB and induces antioxidant enzymes such as glutathione S-transferase (GST). NF-kB and STAT3 are both hyper-activated in cancer. We hypothesize that suppressing both pathways by these compounds will produce a greater chemopreventive effect than by using either agent alone. Groups of 10 each female SCID/bg mice were injected with 1 x 10⁶ P9WT cells, s.c. Mice were doped with AUR (0, 100, 200, 400 mg/kg bw) ± ATRA (0, 100, 200, 400 mg/kg bw) beginning 1 day prior to tumor study injection and 4 days/wk for the duration of the study (48 days). Tumor volumes were estimated by caliper.

At the end of the tumor study, necropsies were performed, and tissues taken for further analyses. Statistical analyses revealed no effect of AUR by itself on tumor volumes. ATRA alone suppressed tumor volume by 16-fold. However, ATRA was so effective at blocking tumor volume that any additional effects of AUR may have been masked. ATRA also caused a loss of body weight, but the liver/body weight ratios were not different across groups, and the activity index of the mice was within range. In conclusion, this study will be repeated using lower doses of ATRA, in combination with AUR to determine the minimum effective dose of ATRA, (known to be toxic) while assessing the effect of the AUR. (5R21CA149761-02)
The present study investigated the actions of fish oil (FO) on D-galactosamine (GalN)-induced changes in plasma glucose (GLC), bilirubin, total proteins (TP) and enzymatic indices of hepatic damage; and in the levels of plasma and hepatic alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP). A portion of plasma and hepatic tissue (1:20 in homogenate in phosphate buffered saline pH 7.5) was analyzed for its contents in TG and CHOL. Relative to control values, GalN increased the plasma GLC (41%), ALT (290%), AST (110%), ALP (+54%), TB (6.3-fold), DB (46-fold), TG (5.3-fold) and CHOL (1.6-fold) while decreasing those of TP by 59% (all at p≤0.01). In addition, GalN increased the liver weight to body weight ratio (35%) and the levels of TG (61%) and CHOL (400%) significantly (p<0.01 vs. control). A pretreatment with FO was able to attenuate the changes in plasma and liver components as well as in the liver weight to body weight ratio to a significant extent (p<0.05). By itself, FO was found to raise the plasma (98%) and liver TG (23%) and the liver CHOL (3%) significantly (p<0.05), but not as much as GalN. In conclusion, FO is found to protect the liver against GalN-induced hepatic injury, dysfunction and fat buildup and to attenuate accompanying changes in circulating GLC, TP and CHOL.
Liver fibrosis is a wound healing response to a variety of chronic stimuli, including alcohol intake, viral infection, drugs, and metabolic disease. This study investigated the anti-fibrotic effects of the aqueous extract of the Platycodi Radix root (Changkil: CK) on dimethyltinurano (DMN)-induced liver fibrosis in rats by inducing Nrf2-mediated antioxidant enzymes. Repeated DMN exposure causes chronic liver injury with necrosis, fibrosis, and nodular regeneration through metabolic activation of CYP2E1 in experimental animals. CK inhibited DMN-induced increases in serum ALT and AST activities, fibrosis score, and hepatic malondialdehyde and collagen content. CK also inhibited DMN-induced reductions in rat body and liver weights. CK inhibited DMN-induced increases in MMP-13, TIMP-1, and TNF-α mRNA, and collagen type I and α-smooth muscle actin protein. DMN-induced COX-2 expression and NF-κB activation was reduced by CK treatment. Furthermore, CK induced activation of Nrf2-mediated antioxidant enzymes such as γ-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), and glutathione-S-transferase (GST) in HepG2 cells. These results demonstrated that CK attenuates DMN-induced liver fibrosis through the activation of Nrf2-mediated antioxidant enzymes.

Bronchial asthma is a chronic airway disorder characterized by airway inflammation, mucus hypersecretion, and airway hyperresponsiveness. This study investigated the protective effects of saponins isolated from the root of Platycodon grandiflorum (Changkil: CKS) on airway inflammation induced by allergic reaction in mice. Mice were sensitized and challenged with ovalbumin (OVA) developed inflammation and remodeling in airway. CKS inhibited OVA-induced number of inflammatory cells and levels of TNF-α, IL-4, IL-5, IL-13, monocyte chemoattractant protein-1 (MCP-1) and OVA-specific IgE in bronchoalveolar lavage fluid. Also, CKS attenuated OVA-induced mucus hypersecretion in lung histopathological studies. CKS inhibited OVA-induced mRNA expression level of MMP-2, MMP-9, and MUC5AC in lung tissues. Furthermore, CKS blocked NF-κB p65 nuclear translocation in the nuclear extracts from lung tissues of OVA-challenged mice. These results suggest that CKS ameliorates OVA-induced inflammation and remodeling in airway.

Atopic dermatitis (AD) is a chronic, relapsing and inflammatory skin disease in humans and animals, caused by a complex interrelationship among genetic, environmental, pharmacologic, psychological, immunologic and skin barrier dysfunction factors. This study investigated the inhibitory effect of the Pleurotus eryngii extract (PEE) on 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD)-like skin lesions. Pleurotus eryngii has been used in traditional medicine for nutritional and medicinal food that enhances the host immune system as a response to various diseases. This study evaluated skin dermatitis severity, ear thickness, histopathological examination, and cytokines level in DNCB-applied mice treated with PEE. Continuous treatment of PEE inhibited the development of the AD-like skin lesions. PEE attenuates DNCB-induced skin dermatitis severity, serum level of IgE and TARC, and mRNA expression of TNF-α, INF-γ, IL-4, IL-5, and IL-13 in mice. Also, PEE reduced thickness of the dermis and dermal infiltration of inflammatory cells and mast cells in histopathological examination. These results suggest that PEE inhibits allergic contact dermatitis through the modulation of T helper (Th1 and Th2) responses and diminishing the inflammatory cells and mast cells infiltration in the skin lesions in NC/Nga mice.

Phikud Navakot is commonly used as Thai traditional medicine for alleviation hyperlipidemia, cardiovascular diseases, and cerebrovascular diseases. Chronic toxicity effects of the extracts from herbs in Phikud Navakot were performed because there were no 6-month toxicological studies reported in the literature. The repeated dose of 10, 100, 1,000 mg/kg/day of the extracts were randomly administered to both male and female Sprague Dawley rats as described in the OECD code 452 guideline. 183 rats survived to the end of the study while 20 rats died. The cause of death was considered to be related to the gavage technical error which positively correlated to high dose concentration. Mean body weights of dosed rats were similar to those of the control group. No differences in feed consumption, relative organ weights, and hematology and blood clinical chemistry were noted. Significant proportionally increased incidences of transitional cell hyperplasia of the renal pelvis in both sexes dosed rats. Therefore our obtained results suggested that Phikud Navakot is a relatively non-toxic herb for repeated oral administration. However the contraindication of the usage of Phikud Navakot is related to induce transitional cell hyperplasia of the renal pelvis after prolong high dose oral administration.

The role of peach and plum polyphenols on the modulation of gut microbiota and the possible relationship with obesity is unknown. We investigated how peach and plum consumption can modulate metabolic syndrome and relative proportions of gut microbiota populations in feces of obese Zucker rats. Experimental groups ingested peach or plum juice ad libitum during 11 weeks; the control and lean groups received water with same amount of glucose than fruit juices. At the end of the study blood was analyzed for glucose, insulin triglycerides, cholesterol and LDL oxidation levels. DNA in feces was analyzed using 454-pyrosequencing and qPCR. Results showed that only plum juice consumption prevented weight gain and modulated microbiota populations in feces; this was related to the higher content of polyphenols in plum juice (3X of peach). However, both peach and plum exerted similar protective effects on metabolic syndrome and inflammatory markers.
in blood as confirmed by a component score coefficient analysis in which peach and plum groups were overlapped and located in between the control and lean groups. Pyrosequencing data from DNA in feces showed that plum group had higher abundance of Bacteroidetes, Ruminococcaceae, and Lactobacillales. qPCR data showed that plum group had higher Fecalibacterium, Lactobacillus, and Turicibacter than all other groups. The abundance of Bifidobacterium in plum group was similar to the lean group and higher than peach and control groups (p<0.05). These results suggest that polyphenols-rich foods can alter the composition of the distal intestinal microbiota in obese rats and modulate metabolic syndrome and obesity.

1318 Kolaviron, a Biflavonoid of Garcinia kola Seed Offered Cardioprotection against Ischaemic/Reperfusion Injury by Up-Regulation of Prosurvival and Down-Regulation of Apoptotic Signaling Pathways.

A. A. Oyagbemi, J. D. Bester, J. A. Esterhuyse, and O. E. Farombi

Clerodendrum violaceum leaf is indigenously used in Nigeria for the treatment of Malaria. In this study, the methanolic fraction of Clerodendrum violaceum leaf was subjected to ischaemic/reperfusion injury and abrogation of apoptotic pathway in isolated rat hearts subjected to ischaemic/reperfusion injury.

1319 Antimalarial Activity of Methanolic Fraction of Clerodendrum violaceum Leaf Extract.

J. O. Adebayo, A. Zailani, and E. A. Balogun

Malaria is a parasitic disease with devastating impact in Africa. Decoction of Clerodendrum violaceum leaf is indigenously used in Nigeria for the treatment of the disease. In this study, the methanolic fraction of Clerodendrum violaceum leaf extract was evaluated in P berghei-infected mice in a 4-day suppressive test. Also, its effects on the activities of antioxidant enzymes in the infected mice were also evaluated. The results revealed that the methanolic fraction of Clerodendrum violaceum leaf extract possess antimalarial activity, causing 42.60% and 79.42% reduction in parasitemia at the doses of 125 and 250 mg/kg body weight on day 5 post-inoculation. It also caused 61.78% and 87.57% reduction in parasitemia at the doses of 125 and 250 mg/kg body weight on day 8 post-inoculation. The fraction however caused a significant increase (P<0.05) in superoxide dismutase and catalase activities and a significant decrease (P<0.05) in glutathione peroxidase activity in erythrocyte and liver in a dose-dependent manner compared to controls. The results of this study suggest that Clerodendrum violaceum leaf may be a potential source of cheaper antimalarial drug.

1320 Effect of Probiotics (Lactobacillus and Bifidobacterium) on Growth Performance and Haematological Profile of Clarias gariepinus Juveniles.

S. O. Ayoola, E. K. Ajani, and O. F. Fashae

This study was carried out to evaluate the use of probiotic (a mixture of Lactobacillus and bifidobacterium species) on growth performance and haematological parameters of Clarias gariepinus juveniles. Fifteen tanks were used and 10 Clarias gariepinus juveniles (mean weight (14.9±0.83) g) per tank, each in triplicate. Five treatment tanks were fed a diet containing 40% crude protein supplemented with varying inclusion of probiotic comprising about 109 colony-forming units per gram of diet (the probiotic diet). Diet T0 contain 0% probiotic (control diet) while the other group contain 0.5 g, 1.0 g, 1.5 g and 2.0 g probiotic diet. Results shows that Fish fed with diet T1 (0.5 g probiotic) had the best growth performance. There was no significant different (P>0.05) in the Mean Corpuscular Volume, Mean Corpuscular Haemoglobin and Mean Corpuscular Haemoglobin Concentration, of fish fed different concentration of probiotic. All blood parameter obtained were between the range of recommended fish blood. It is concluded that using probiotic (especially at 0.5 g) as supplementary feed on Clarias gariepinus showed a slight increase in the haematological parameters compared with the control diet but it has no negative impact on the health status of the species. However, probiotic (Lactobacillus and bifidobacterium) can be used as a probiotic agent in aquaculture, to enhance fish health, survival and growth performance.

1321 Antifungal and Insecticidal Activities of Five Essential Oils from Plants of the Colombian Caribbean Coast.

B. E. Jaramillo, E. Duarte Restrepo and W. Delgado Avila

Plants have developed chemicals mechanisms of self-protection to avoid being attacked by insects, fungi, bacteria and viruses. The diseases caused by these pests are controlled with fumigants, which have a high toxicity, and this necessitates the use of alternative compounds like essential oils. These are botanical sources of compounds potential alternative fumigants currently used, due to its low mammalian toxicity, high volatility and toxicity to stored grain pests and microorganisms. OBJECTIVE: This study determined the insecticidal, antifungal, activities of essential oils isolated from Chenopodium ambrosioides L., Triphasia trifolia, Eryngium foetidum, Bursara Graveolens, and Swingela glutinosa collected in colombian caribbean coast. METHODS: The essential oils (EO) were obtained from leaves of plants by hydrodistillation. The insecticidal activity assay was performed against Sitophilus zeamais. EO were also evaluated as fumigants against phytopathogenic fungi Fusarium oxysporum f. sp. diantii. RESULTS: C. ambrosioides was more active against Fusarium oxysporum than other EO evaluated, with a percentage of mycelial inhibition of 97.3% at 176.5 μL/EOL air after 24 h of exposure; followed by Eryngium foetidum (65.4%); Bursara Graveolens (60.0%); Piper marginatum (41.7%) and Swingela glutinosa (14.7%). C. ambrosioides and Eryngium foetidum essential oils showed the best fumigant activity against Sitophilus zeamais (100% at 500 μL/L air after 24 h of exposure); Piper marginatum oil had weak fumigant toxicity (86.7% μL/L air after 24 h of exposure). CONCLUSIONS: This study demonstrated that essential oils exhibit important fungicidal activity on F. oxysporum and fumigant on S. zeamais, which could become an alternative to synthetic fungicides and insecticides.
appearance and agglomeration state of the NP within HEK vacuoles. This suggests that NP cell association with serum proteins results in different protein coronas that significantly modulates Ag uptake compared to native NP uptake, suggesting caution in extrapolating in vitro uptake data to predict behavior in vivo where the nature of the protein corona may determine patterns of cellular uptake, biodistribution, biological activity and toxicity. (Supported by NIH RO1 ES016138)

1323 Relationship between Silver Nanoparticle Intracellular Accumulation and Cytotoxicity in L-929 Fibroblasts.
B. E. Wildy1, E. I. Mauer2, G. Kumar4, H. A. Degheidy1, S. M. Hussion1 and P. L. Goering4 1US FDA, Silver Spring, MD; 2711 HPW/ RHDL, AFRL, Wright-Patterson AFB, Dayton, OH.

Medical devices containing silver nanoparticles (AgNPs) may release NPs or leach silver (Ag) ions, both of which are cytotoxic in vitro at high concentrations. Given the complexities of NP in vitro dosimetry, proper assessment of AgNP cytotoxicity requires a better understanding of intracellular Ag concentration and observed bioeffects. Therefore, the objective of this study was to measure time-dependent AgNP cell internalization in L-929 fibroblast cells, a cell line that is commonly used for medical device biocompatibility testing, while simultaneously assessing cell viability. These endpoints were assessed following exposure of cells to 50 μg/ml AgNPs (10, 50, 100 and 200 nm) and to equimolar Ag ions. Intracellular uptake of AgNPs and Ag concentrations in L-929 cells were assessed using time-lapse confocal microscopy, flow cytometry and ICP-MS at 24 hr after treatment. The size-dependent in vitro cytotoxicity of AgNPs to L-929 fibroblasts correlated with intracellular Ag accumulation, and underscores the value of using multiple analytical methods when determining NP accumulation and cytotoxicity.

1324 Role of Sample Preparation in In Vitro Cytotoxicity Responses to Silver Nanoparticles.
A. N. Clendaniel1,2, G. Kumar3, H. A. Degheidy3, B. J. Casey4 and P. L. Goering4 1US FDA, Silver Spring, MD; 2711 HPW/RHDL, AFRL, Wright-Patterson AFB, Dayton, OH.

Metallic nanoparticles readily agglomerate in aqueous media and this effect can influence their physical properties and in vitro biological responses. The goal of this study was to: 1) compare effects of cell culture medium containing 10% FBS and DI water as suspension vehicles on AgNP size and agglomeration and, 2) compare effects of pre-mixing of medium and AgNPs on their biological responses in L-929 fibroblasts compared to direct addition of nanoparticles to the cells. To assess the effects of premixing on agglomeration, AgNPs were pre-mixed with cell culture medium or DI water for 1 min, or 1, 5, 24, or 240 hr. Results of dynamic light scattering analysis showed that premixing AgNPs with medium maintained particle dispersion better than DI water. The hydrodynamic diameter of AgNPs increased proportionally to the pre-mixing time. AgNP agglomeration was size-dependent; 10 nm AgNPs agglomerated more readily than 100 nm and 200 nm particles. To assess the effects of premixing on biological responses, AgNPs pre-mixed with cell culture medium for 1 min, or 1, 5, 24, or 240 hr were added to L-929 fibroblasts, or were added to the cells without premixing. After 24 hr exposure, cell viability was assessed by using the standard MTT assay. After 4 and 24 hr exposures, the degree of cell necrosis (via 7-AAD dye) and apoptosis (via Annexin V dye) was assessed using flow cytometry. AgNPs produced a mass concentration (μg/ml) dependent decrease in MTT reduction. Pre-mixing of AgNPs with cell culture medium did not affect cell viability compared to controls; however, AgNPs added directly to the media without pre-mixing were cytotoxic. The degree of necrosis and apoptosis of L-929 cells when exposed to AgNPs depended on mass concentration, exposure time, and size of AgNPs. Cells treated with 10 nm particles at 50 μg/ml showed 22-fold and 33-fold increases in the percentage of apoptotic and necrotic cells, respectively, after 24 hr. Thus, the data show that different sample preparation for AgNPs can affect particle agglomeration and biological responses.

1325 Flow Cytometry Evaluation of Cell Cytotoxicity Induced by Silver Nanoparticles.
G. Kumar1, A. N. Clendaniel1,2, H. Degheidy3, B. E. Wildy1 and P. L. Goering4 1CDRH, US FDA, Silver Spring, MD; 2The Richard Stockton College of New Jersey, Pomona, NJ.

Particles possess unique properties in the nanoscale, e.g., enhanced catalytic activity, high surface area and surface energy, and light emission/absorption properties, which might result in interference with colorimetric in vitro cytotoxicity assays such as MTT, LDH release, and Neutral Red. Alternatively, assays that do not use spectrophotometric detection, such as trypan blue exclusion or flow cytometry (FC) based assays, are less likely to be influenced by nanoparticle interference. The aim of this study was to evaluate FC assays to assess the cytotoxicity of three different sizes (10, 100, or 200 nm) silver nanoparticles (AgNPs) at different mass concentrations (1, 25, or 50 μg/ml) in L-929 fibroblast cells. After 4 hrs and 24 hrs exposure, cell necrosis and apoptosis were assessed using 7-AAD and Annexin V dyes respectively, with FC. Multiple FC controls (including cells alone, AgNPs alone, and single fluorophore controls and their combinations) were used to optimize the experiment and eliminate background autofluorescence and fluorochrome overlap. The data show that cell necrosis and apoptosis in AgNP-exposed fibroblasts depend on dose, exposure time, and AgNPs size. Cells treated with 10 nm particles at 50 μg/ml showed 7- to 22-fold increases in percentage of apoptotic cells and 2- to 33-fold increases in percentage of necrotic cells after 4 hrs and 24 hrs, respectively. Cells treated with 200 nm particles at 50 μg/ml showed only up to 6 fold increases in degree of apoptosis after 24 h. The data show that AgNPs produced a dose- and time-dependent decrease in cell viability; however, 200 nm AgNPs were significantly less toxic than smaller sized particles. Thus, standard FC assays can be utilized to assess apoptosis and necrosis in response to nanomaterial exposure.

1326 Incorporation of Silver Nanoparticles into a Degradable Poly(L-Lactide-Co-Epsilon-Caprolactone) Copolymer Scaffold for Skin Regeneration.
M. E. Samberb1, P. Mente1, T. He2, M. W. King3 and N. A. Monteiro-Riviere3,4 1Joint Department of Biomedical Engineering at the University of North Carolina at Chapel Hill and North Carolina State University, North Carolina State University, Raleigh, NC; 2College of Textiles, North Carolina State University, Raleigh, NC; 3NanoTechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS.

The development of an antibacterial, degradable scaffold system that utilizes patient-derived cells would improve upon current skin grafting techniques which often result in severe scarring, aesthetically undesirable mismatches in skin tones, and are susceptible to surgical site infection. The objective of this study was to characterize and assess the toxicity of an electrospun scaffold of poly(L-lactide-co-epsilon-caprolactone) (PLCL) incorporating antibacterial 20nm silver nanoparticles (AgNPs). The content and distribution of 20nm AgNP incorporated within the PLCL scaffold was optimized to maximize their biocompatibility and antimicrobial activity. The toxicity of the scaffold to human epidermal keratinocytes (HEK) was assessed using Live/Dead and alamarBlue viability assays following 7 days and 14 days. No significant decreases in cell viability were noted at either time point and cell proliferation increased 120% by 7 days and 200% by 14 days on both control and AgNP incorporated scaffolds. After 14 days, scanning electron microscopy revealed a confluent layer of HEK on the surface of the scaffolds, and fluorescent microscopy confirmed cell migration into the scaffold interior. The antibacterial efficacy of the scaffold was evaluated against Escherichia coli and Staphylococcus aureus. The mechanical properties of the PLCL scaffold were assessed via uniaxial tensile testing to failure. A slight decrease in the modulus of elasticity was observed following AgNP incorporation compared to control, while cellular attachment increased the modulus of elasticity significantly. (Supported by NIH RO1 ES016138)

1327 Formation of a Protein Corona on Silver Nanoparticles Mediates Cellular Toxicity via Scavenger Receptors.
J. Shannahah1, R. Chen2, T. Fennell2, C. J. Wingard1, P. Ke2 and J. M. Brown3 1East Carolina University, Greenville, NC; 2Clemson University, Clemson, SC; 3RTI International, Durham, NC.

Addition of a protein corona (PC) on the surface of nanomaterials can modify their activity, bio-distribution, cellular uptake, clearance and toxicity. As silver nanoparticles (AgNP) are incorporated into many products as anti-bacterial/fungal agents, the risk of human exposure escalates. We hypothesize that AgNPs will associate with proteins commonly found in human serum and cell culture media forming PCs which will impact cell activation and cytotoxicity. Furthermore, we believe that
activation of scavenger receptor B (SR-B) mediates this toxicity. Citrate- or PVP-coated AgNPs were internalised with human serum albumin (HSA), bovine serum albumin (BSA), high-density lipoprotein (HDL), or water (control). AgNPs associated with each protein (HSA, BSA, HDL) forming PCMs by TEM, UV-vis spectroscopy and altered Z-potential and hydrodynamic size. Rat aortic endothelial (RAEC) and rat lung epithelial (RLE) cells were exposed to increasing concentrations of AgNPs (0.6, 2.5, 12.5, 25 or 50 μg/ml) with or without PC for 3h or 6h. All PC-coated AgNPs demonstrated a dose-response relationship in cytotoxicity in both cell types. To determine the role of SR-B in the observed cytotoxicity, cells were exposed to AgNPs with or without PCs for 3h in the presence of a SR-B antagonist. Treatment with the SR-B antagonist inhibited cytotoxicity in RAEC but not RLE. Lastly, cell activation was assessed at 1h by measuring interleukin-6 (IL-6) mRNA expression. All PC-coated AgNPs induced IL-6 mRNA expression at 1h in both cell types whereas treatment with the SR-B antagonist was found to inhibit expression. Differences in the induction of IL-6 were found between PC-coated AgNPs based upon suspension (citrate or PVP). This study characterizes a PC on AgNPs using proteins found in human serum and cell culture media. The presence of these PCs influenced cytotoxicity and cell activation through SR-B leading to altered cell responses. This work was supported by the U19 ES019525 and R01 ES09311.

1328 Importance of p38MAPK and pmk-1 a Caenorhabditis elegans Homologue, in Silver Nanoparticles-Induced DNA Damage Response and Apoptosis.

Silver nanoparticles (AgNPs) have recently received much attention for their possible applications in new material design, biotechnology and other commercial purposes. Recent studies have demonstrated that AgNPs can cause DNA damage in Jurkat T cells and Caenorhabditis elegans displayed that AgNP exposure caused dose and time dependent increase in only p38MAPK and pmk-1 expression among all other stress responsive proteins and DNA damage in Jurkat T cells. These findings motivated us to analyze whether and how p38MAPK and pmk-1 is involved in AgNP induced DNA damage response and eventually in mode of cell death. Our approach was comparative and we used the wild type (wt), p38 and pmk-1 knockdown Jurkat T cells (tRNAi transfection) as in vitro model system and wild type (N2) and pmk-1 (KU25) mutant strains of C. elegans as in vivo model system. The result showed that p38MAPK siRNA knocked down (KD) Jurkat T cells and pmk-1 mutant worms were more sensitive to AgNP and posed higher DNA damage response by activating sensors (hus-1, H2AX) and effectors (cep-1 and p53) but preferred necrosis rather than DNA damage mediated apoptosis which is attested by egl-1 and ced-3 expression in C. elegans and in the in vitro model system. The nanoparticles were non-toxic for the duration of the experiment, indicating a continuous inflammatory response. Most notably, these stress indicators were all significantly higher in chronically dosed cells vs. their acute counterparts, demonstrating a more severe response. Additionally, chronically dosed cells demonstrated a vastly higher modification to gene regulation, again representing the potential for a serious long-term impact. In conclusion, this study identified a significant variation in the HacGt stress response following chronic exposure of Ag NPs vs. an acute scenario and offers a novel approach to nanotoxicology research.

1329 Cytotoxicity and Genotoxicity of Silver Nanoparticles and Silver Ions to CHO K1 Cells.
X. Jiang1, B. Ebbesen1, T. Miclau1, C. Chen1, H. Autrup2 and C. Beer2.
1National Center for Nanoscience and Technology, Chinese Academy of Science, Beijing, China; 2Environmental and Occupational Medicine, Aarhus University, Aarhus, Denmark; 3Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.

Silver nanoparticles (Ag NPs) are used in a variety of commercial products due to their antimicrobial activity. As both in vitro and in vivo studies have demonstrated toxic effects of Ag NPs, there is an urgent need to explore the toxicity of Ag NPs. Here we studied the cytotoxicity and genotoxicity of Ag NPs (BSA coated, 15.9±7.6 nm) and silver ions (Ag+) to Chinese hamster ovary (CHO K1) cells. To analyse the cytotoxic effects the mitochondrial activity was determined by the MTT assay, intracellular reactive oxygen species (ROS) and the cell cycle were analysed by flow cytometry. Fluorescence microscopy and flow cytometry based micronucleus assays were applied to quantify and quantify the number of micronuclei induced by Ag NPs and Ag+. F32 postlabeling was performed to detect DNA adducts. In addition, inductively-coupled plasma mass spectrometry (ICP-MS) and transmission electron microscope (TEM) were applied to study the uptake and intracellular distribution of Ag NPs, respectively.

A time and dose dependent decrease in mitochondrial activity and increase of intracellular ROS level of CHO K1 cells was observed after exposure to Ag NPs and Ag+ (0-20 μg/ml) for 24h and 48h. Ag NPs and Ag+ induced a cell cycle arrest in the G2/M phase. Micronucleus assay and P32 postlabeling revealed that both Ag NPs and Ag+ induced micronuclei and DNA adducts. Using TEM observations Ag NPs were found to be located in endosomes/ lysosomes suggesting that Ag NPs are taken up by receptor mediated endocytosis. However, no Ag NPs were found in the nucleus suggesting that Ag NPs are presumably dissolved into Ag+ in the endosomes/ lysosomes and released to the cytosplasma. From here they can enter mitochondria and for the nucleus leading to an increased intracellular ROS level and the induction of DNA damage.

1330 Chronic Exposure to Realistic Doses of Silver Nanoparticles Demonstrated Differential Cellular Responses Than Acute Exposure in Human Keratinocytes.
K. K. Comfort1,2, L. Bravdich-Stolle3 and S. M. Hussain3.
1Molecular Biosciences Branch, Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, OH; 2Chemical and Materials Engineering, University of Dayton, Dayton, OH.

One obstacle plaguing the field of nanotoxicology is the development of a mechanism to translate acute exposure data to an accurate prediction of real world implications of nanomaterials (NM). In an effort to enhance the efficacy of information gathered on the acute in vivo cytotoxicity of chronic NM exposure, a chronic NM dosing regimen was designed and implemented in which human keratinocyte cells (HaCaT) were dosed with 50 nm silver nanoparticles (Ag-NP) 8 h a day, 5 days a week, for 3 months. Working concentrations were based off the permissible exposure limits set by OSHA and were 0.4, 4, and 400 pg/ml. The HaCaT stress response of the chronically dosed cells was directed at 24 h acute exposure at a concentration equal to the cumulative Ag-NP dosage encountered over the 3 months. Cellular endpoints evaluated included activation of Heat shock protein-27 signal transduction, ki67 expression, pro-inflammatory cytokine secretion, actin inflammation, and alterations in gene regulation. Results indicated that the chronically dosed HaCaT cells were functioning under sustained, augment cellular stress as seen with increased reactive oxygen species levels, HSF-27 signaling, cytokolic ki67 expression, and actin inflammation and disorganization. Furthermore, considerable IL-6 secretion was observed throughout the experiment, indicating a continuous inflammatory response. Most notably, these stress indicators were all significantly higher in chronically dosed cells vs. their acute counterparts, demonstrating a more severe response. Additionally, chronically dosed cells demonstrated a vastly higher modification to gene regulation, again representing the potential for a serious long-term impact. In conclusion, this study identified a significant variation in the HacGt stress response following chronic exposure of Ag NPs vs. an acute scenario and offers a novel approach to nanotoxicology research.

1331 Evaluation of Uptake and Cytotoxicity of Citrate Stabilised Gold Nanoparticles in Chinese Hamster Ovary (CHO) Cells prior to the In Vitro Mammalian Mutation Test.
M. Vetten1,2 and M. Gulumian3,4.
1Toxicology and Biochemistry Section, National Institute for Occupational Health, Johannesburg, South Africa; 2School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.

The health risk assessment of engineered gold nanoparticles (AuNPs) requires the generation of hazard identification data. Currently the Organisation for Economic Co-operation and Development (OECD) has released a guidance manual for the testing of manufactured nanomaterials. Within this document various established toxicological endpoints have been proposed for study, including the in vitro mammalian cell gene mutation test (OECD TG476) for genotoxicity assessment. Prior to this mutation study, preliminary experiments were required to assess the cytotoxicity and uptake of the AuNPs into the cells. Chinese Hamster Ovary (CHO) cells were treated with 14 nm, 20 nm, and 40 nm citrate stabilised gold nanoparticles. The Roche xCELLigence RTCA system was used to determine cytotoxicity of the nanoparticles using cell impedance. The nanoparticles were non-toxic for the duration of the experiment, indicating a continuous inflammatory response. Most notably, these stress indicators were all significantly higher in chronically dosed cells vs. their acute counterparts, demonstrating a more severe response. Additionally, chronically dosed cells demonstrated a vastly higher modification to gene regulation, again representing the potential for a serious long-term impact. In conclusion, this study identified a significant variation in the HacGt stress response following chronic exposure of Ag NPs vs. an acute scenario and offers a novel approach to nanotoxicology research.

SOT 2013 Annual Meeting 285
1332 Bioavailability of Silver Nanoparticles in Artificial Physiological Fluids: Coating and pH Impact on Degree of Ionic Dissociation.

L. Braydich-Stolle, E. Breitner, E. I. Maurer, B. Stacy and S. M. Hussain, 711 HPWR/HRDE, Wright-Patterson AFB, Dayton, OH.

The majority of studies have focused on nanoparticle (NP) fate and their induced damage with limited information on the physiologic environment’s role in altering NP properties. Artificial fluids (AFs) have been used to test the bioavailability of metallic compounds (difference between the amount of a substance a person is exposed to and the amount of substance the body receives). Literature has demonstrated that inhaled NPs accumulated in lungs and clearance was hindered during chronic exposure indicating the observed effects should become more pronounced over time due to impeded clearance. Based on these findings, this study examined the impact of artificial interstitial, alveolar, lysosomal, and gastric fluid on the physical properties of hydrocarbon coated silver (Ag-HC) and polysaccharide coated silver (Ag-PS) NPs and the associated changes in toxicity. Since inhalation exposure is of concern, the toxicity of the Ag-NPs exposed to the AFs was evaluated in alveolar macrophages and doses represent a week or year of exposure (0.5 ng/ml and 25 ng/ml) based on the concept that this delayed clearance will result in macrophages continually being recultivated by NPs. For all the AFs, the Ag-HC NPs demonstrated large agglomeration, limited ionic dissociation, and no changes in cell viability. Ag-PS NPs exposed to alveolar and interstitial fluid demonstrated a similar trend, in addition to a loss of the PS coating. For the gastric fluid, large agglomerates were observed but these were rare and most likely due to the Ag NPs precipitating out as AgCl. Interestingly, the Ag-PS NPs exposed to lysosomal fluid demonstrated a loss of coating, less agglomeration, and significant decreases in cell viability. Since NPs are most likely taken up via endocytosis in cell cultures or by phagocytic cells in an in vivo system, the interactions of the NP with the lysosomal environment has critical implications on mediating the NP cellular consequences. Based on this study, the lysosomal environment has the potential to make a NP more toxic over time. (88ABW-2012-5185)

1333 Cytoxic and Inflammatory Responses to Silver Nanoparticles in Hepatocyte-Kupffer Cell (HC-KC) Coculture and HepG2 Cells.

M. W. Berts, B. E. Wildt, B. J. Casey and P. L. Gowenring, CDRH, US FDA, Silver Spring, MD.

Nanoparticles accumulate in several organs following in vivo exposure, notably the liver. Numerous studies have assessed effects of nanoparticles on liver cells in vitro, but it is unclear whether it is preferable to conduct these studies using a physiologically-relevant cell culture model or if using an established liver-derived cell line is adequate. To address this question, we compared cellular responses to AgNPs in a primary rat HC-KC coculture with those in HepG2 cells. Metabolic activity (MTT reduction) was assessed 24 hr after exposure of cells to 10, 50, or 100nm AgNPs administrated at 1, 10, 25, or 50 μg/ml. AgNPs demonstrated a loss of coating, less agglomeration, and significant decreases in cell viability. Since NPs are most likely taken up via endocytosis in cell cultures or by phagocytic cells in an in vivo system, the interactions of the NP with the lysosomal environment has critical implications on mediating the NP cellular consequences. Based on this study, the lysosomal environment has the potential to make a NP more toxic over time. (88ABW-2012-5185)

1334 Evaluation of Genotoxicity of Silver Nanoparticles in Vitro and In Vivo Standard Assays.

Y. Li, J. Yan1, N. Mei1, Y. Chen1, M. G. Pearce1, W. Ding1, C. Candice2, P. C. Howard2, P. Rice3, T. Zhao4, R. K. Flespuru3, M. M. Monroe3 and T. Chen1.

Division of Genetic and Molecular Toxicology, US FDA/National Center for Toxicological Research, Jefferson, AR; 2Nanotechnology Core Facility, US FDA/National Center for Toxicological Research, Jefferson, AR; 3Center for Food Safety and Applied Nutrition, US FDA, College Park, MD; 4Center for Veterinary Medicine, US FDA, Rockville, MD; 5Center for Devices and Radiological Health, US FDA, Silver Spring, MD.

Many publications are available on genotoxicity of nanomaterials. However, it is difficult to compare these results objectively due to conflicting results from different test methods, most of which were not the standard assays. In this study, both in vitro and in vivo standard genotoxicity assays including the Ames test, the in vitro and in vivo micronucleus assay and the mouse lymphoma gene mutation assay were applied to assess the genotoxicity of 5 nm uncoated and PVP coated silver nanoparticles (AgNPs). Mutagenic evaluation of uncoated AgNPs with the Ames test showed negative results possibly due to lack of cell uptake of the nanoparticles and strong cytotoxicity of AgNPs to bacteria. The AgNPs, however, induced mutations in a dose-dependent manner in mouse lymphoma cells via an oxidative stress mechanism evidenced by the results from loss of heterozygosity analysis of the Tk mutants, oxidative Comet assay and gene expression analysis. Micronuclei in TK6 cells were also increased by AgNPs in a dose-dependent manner. At a concentration of 30 μg/ml, uncoated AgNPs caused around 50% cytotoxicity (relative population doubling) and induced a significant, 3.17-fold increase over the vehicle control while PVP-coated AgNPs induced 50% cytotoxicity and 2.25-fold increase of micronuclei over the control at only 1.75 μg/ml. Although AgNPs can reach the bone marrow, they were negative in in vivo micronucleus assay. Our results demonstrate that the AgNPs are genotoxicity in vitro mammalian assays, but not in vivo mouse micronucleus assay. (88ABW-2012-5185)

1335 DNA-Dependent Protein Kinase Reduces Toxicity of Silver Nanoparticles in Mammalian Cells through JNK and Telomerase Pathways.

H. Lim and H. Manoor Prakash. Physiology, Yong Lou Lin School of Medicine, National University of Singapore, Singapore, Singapore. Sponsor: S. Sawant.

Silver nanoparticles (Ag-np) are distinctively reported to be toxic to mammalian cells. Less is known about the signalling response triggered in cells to counteract such toxicity. This study was initiated to enhance our mechanistic insight on correlation between, DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and toxicity of Ag-np. The toxicity of polyvinyl alcohol (PVA)-coated Ag-np was studied in normal human lung fibroblast and human breast cancer and brain cancer cells. DNA-PKcs inhibition was carried out to investigate impact of DNA-PKcs on influencing toxicity of Ag-np. The toxicity was evaluated using changes in cell survival, DNA damage and repair and telomeres length. We observed concurrent activation of DNA-PKcs and JNK pathway in cancer cells upon Ag-np treatment, which were also anticipated as physiologic responses to DNA damage and repair. JNK pathway was insufficiently activated in DNA-PKcs inhibited cancer cells, abolishing the signalling events required for mediating DNA repair. Further investigation on genotoxic effect of Ag-np indicated that Ag-np causes telomere attrition and dysfunction in human cancer cells by disrupting shelterin complex integrity and telomerase expression. Recruitment of activated DNA-PKcs to damaged telomeres signifies the importance of DNA repair machinery at damaged telomeres. DNA-PKcs inhibition potentiates the damaging effect of Ag-np at telomeres in human cancer cells. Aggregation of JNK mediated DNA repair and substantial damages at telomeres lead to higher cell death in DNA-PKcs inhibited, Ag-np treated cancer cells. Altogether, presence of DNA-PKcs effectively reduces the toxic effects of Ag-np in human cancer cells by triggering the activation of JNK pathway and telomeres length maintenance. This study suggests that the potentially detrimental combination of Ag-np with DNA-PKcs inhibition can however be applied as a better strategy in cancer therapy.

1336 Determination of Nanosilver Dissolution Kinetics and Toxicity in an Environmentally Relevant Aqueous Medium.

The dissolution potential of citrate capped silver nanoparticles (AgNPs) in laboratory test media and in the environment is critical for determining toxicity. In the present study, the ion-release kinetics from citrate capped 20, 50, and 80 nm AgNPs.
AgNPs in dilutions of an environmentally relevant freshwater (30 μS/cm and 150 μS/cm) were used to identify toxic nanoparticles. The acute toxicity of the AgNPs suspensions was then assessed with D. magna at 0 and 7 days post interaction between the particles and test media. An increase in hydrodynamic diameter measured by dynamic light scattering and field flow fractionation over time was observed at a relatively higher specific conductivity of 150 μS/cm in 20 nm particles (3.3 fold increase) and only a small increase in 50 and 80 nm particles (1.4 and 1.2 fold increase, respectively). At a lower conductivity of 30 μS/cm a 1.7, 1.0, and 1.2 fold increase was observed in 20, 50 and 80 nm, respectively. Results showed that although the total concentration of silver in solution decreased with time, there was a consistent spike in dissolved concentration after 2-3 days interaction, followed by a steady decrease in dissolved silver in 150 μS/cm and 30 μS/cm medium. This suggests that the concentration of dissolved silver in environmentally relevant ionic strength media increases over time after the introduction of capped AgNPs which may have implications on their antimicrobial properties. When exposed D.magna was exposed to 150 μS/cm and 30 μS/cm test media, 30 μS/cm test media induced more toxicity than 150 μS/cm test media. Toxicity increased with longer Ag interaction time with smaller particles inducing more toxicity than larger particles.

1337 Silver Nanoparticles Induce Mast Cell Degranulation via Scavenger Receptors.

A. Aldossari, L. Shannaham, S. Hilderbrand and J. M. Brown, Pharmacology and Toxicology, East Carolina University, Greenville, NC.

Silver nanoparticles (AgNPs) are increasingly incorporated into a variety of consumer and industrial products such as water filters and cosmetics for their antimicrobial properties. This has increased human exposures to AgNPs and therefore the possibility of adverse health effects. Mast cells are well known to orchestrate allergic immune responses through degranulation and release of pre-formed mediators such as histamine. Furthermore, mast cells have been shown to mediate pulmonary inflammation following exposure to nanoparticles in a murine model. We therefore examined whether AgNPs could induce mast cell degranulation. Bone marrow derived mast cells (BMMCs) were generated from femoral bone marrow of C57BL/6 mice. BMMCs were exposed to either citrate- or polyvinylpyrrolidone (PVP)-coated AgNPs (20 nm or 110 nm diameter) at increasing concentrations (0.25, 1.25, 25, or 50 μg/ml) for 3, 6, or 24 h. Exposure to 20 nm AgNPs, but not 110 nm AgNPs, was found to cause concentration-dependent degranulation of BMMCs at 1 h. TNF-α gene expression was increased in BMMCs following AgNP exposure while TNF-β protein levels were increased only after exposure to citrate-coated AgNPs at 50 μg/ml. To determine the mechanism of BMMC degranulation following exposure to 20 nm AgNPs, we examined scavenger receptors which have been shown to mediate nanoparticle uptake in macrophages. PCR and flow cytometry demonstrated the presence of scavenger receptor class B1 (SR-B1) on the surface of cultured BMMCs. To determine the role of SR-B1, BMMCs were treated with two different SR-B1 antagonists (blt-1 and blt-2). Treatment with either SR-B1 antagonist was found to prevent AgNP-induced degranulation of BMMCs. These in vitro findings suggest that AgNPs may induce an inflammatory response via mast cell degranulation in vivo, which is dependent upon nanoparticle size and scavenger receptor activation. Therefore mast cell degranulation may be considered as an indicator of nanomaterial toxicity. This work was funded by NIEHS R01 ES019511 and U19 ES019525.

1338 High-Throughput Methods for Assessing the Molecular Toxicity of Nanomaterials in Bacteria.

C. Kweteweraaw1,2, A. Ivask3, C. Low-Kam3, P. Holden4 and H. A. Godwin1,2.1Molecular Toxicology, University of California Los Angeles, Los Angeles, CA; 2University of California Center of Environmental Implication of Nanotechnology, University of California Los Angeles, Los Angeles, CA; 3Department of Biostatistics, University of California Los Angeles, Los Angeles, CA; 4Donald Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA.

Synthesis and use of nanoparticles has skyrocketed during the past decade. To ensure that nanotechnology is safely and sustainably developed, rapid, cost-effective methods are needed to determine the toxicity of nanoparticles. Here, we report the application of a suite of sub-lethal assay as well as a growth inhibition assay to a series of silver and metal oxide nanoparticles in bacteria (Escherichia coli). Sub-lethal effects such as perturbation of membrane integrity (using PI/SYTO) disruption of membrane potential (using DiBAC) and reduction of respiratory rate (using XT2) were used to identify toxic nanoparticles. To further look into mechanism of toxicity, intracellular Reactive Oxygen Species (ROS) and the intrinsic property of nanoparticles to oxidize electron (abiotic ROS generation) were measure by using H2DCFDA and DCFH-DA respectively. These studies revealed that toxicity of the silver particles studied correlates with size and surface charge, with smaller particles and particles with a more positive surface charge being more toxic. By contrast, the toxicity of the metal oxide particles studied correlates most significantly with their ability to oxidize biomolecules, although dissolution of some of the particles also plays an important role.
A Nanoaerosol Exposure Chamber.

C. Grabinski1, 2, M. Sankaran2 and S. M. Hussain1, 1Molecular Bioeffects Branch, Air Force Research Laboratory, Wright-Patternson AFB, OH; 2Department of Chemical Engineering, Case Western Reserve University, Cleveland, OH.

Traditional in vitro toxicity methods require dispersion of nanomaterials (NMs) in biological media for administration to cells, which does not depict realistic inhalation exposure. The objective of this work is to design and optimize a system to mimic inhalation exposure by delivering well-characterized NM aerosols to cells grown in the air liquid interface. Gold or silver NMs were drawn into the gas phase from an aqueous dispersion using electrospay. The aerosolized NMs were introduced into a chamber and deposited onto cells using electrostatic deposition. The deposition of NMs in the chamber was assessed by evenly placing copper grids throughout the chamber and imaging particle deposition using transmission electron microscopy (TEM). NM deposition on cells grow in the chamber was quantified by digesting the samples and measuring gold or silver content using inductively coupled plasma – mass spectrometry (ICP-MS). A human nasal epithelial cell-line was grown in the chamber, and the viability was assessed using the Alamar Blue assay. Results showed that gold and silver NMs could be deposited uniformly in the chamber and that the dose could be controlled by varying the electric field strength and frequency used for electrostatic deposition. Additionally, the dose was found to be relevant compared to NM deposition in the respiratory tract predicted by the Multiple Path Particle Dosimetry model. The results of the Alamar Blue assay showed that the cells could be sustained in the chamber, and the application of electric fields did not have an affect on cell viability. This study demonstrates a promising step forward in the development of a standardized realistic exposure method for assessing NM toxicity in vitro.

In Vitro Using a Nanoaerosol Exposure Chamber.

F. Zhang, B. L. Lau and E. D. Bruce. The Institute of Ecological, Earth and Environmental Sciences, Baylor University, Waco, TX.

The usage of engineered silver nanoparticles (AgNPs) in catalysts, sensors, drug carriers, and personal care products is growing because of their unique physicochemical and biological activities. Consequently both occupational and consumer exposure to these AgNPs is likely to increase in proportion to the production and usage in the market. Meanwhile, there are increasing concerns that exposure to these NPs may cause potential adverse effects on humans health as well as the environment. Capping agents are selected organic or inorganic material applied to the surface of nanoparticles as stabilizer to prevent aggregation. However, little is known about the effect of capping agents on the NPs-cell interaction and the mechanisms behind it. Experiments were carried out to quantitatively and mechanistically investigate the effect of capping agents of AgNPs on cellular uptake by two different cell lines, human bronchial lung carcinoma derived cells (A549) and human colon adenocarcinoma derived cells (Caco-2). In vitro studies were used to quantify the uptake kinetics and the extent of internalized AgNPs and to investigate the uptake mechanism among five capping agents (citrate, polyvinylpyrrolidone (PVP), tannic acid, silica and penetratin) by two cell lines. Preliminary results on A549 showed that 34% of the penetratin-coated AgNPs were internalized, followed by tannic acid-coated AgNPs, 25%, while the silica-coated AgNPs showed the least uptake, only 4% internalized content. Penetratin is a cell-penetration peptide designed to translocate across the cell membrane, which explains why penetratin-coated AgNPs were more readily internalized than other capping agents. These results demonstrated that capping agents play an important role in cellular uptake of AgNPs. Further experiments on Caco-2 cell line are currently underway and will expand our knowledge on nanoparticle-cell interactions. The combined results can be applied to manage the risk associated with occupational and consumer exposure to AgNPs.

Comparative Cytotoxicity of Silver Nanomaterials in a Murine Macrophage Cell Line.

T. D. Green1, A. Badawy1, T. Tolaymat2 and D. I. Thom1. 1ISTD, NHEERL, ORD, US EPA, Research Triangle Park, NC; 2Department of Civil & Environmental Engineering University of Cincinnati, Cincinnati, Cincinnati, OH, 1LPPC, NRMRL, ORD, US EPA, Cincinnati, OH.

Manufactured silver nanomaterials (AgNPs) are used as antimicrobials in many consumer products. Although increased use of AgNPs increases risk of exposure by inhalation or ingestion, there are few data on human health risks associated with exposure. Here, we evaluated the toxicity of AgNPs in the murine macrophage J774.A.1 cell line. Macrophages play a key role in the inflammatory response by phagocytosis of pathogens, debris, and particles. Phagocytosis of AgNPs by macrophages could expose cells to Ag and alter cell structure and function. We used two in vitro cytotoxicity assays, lactate dehydrogenase (LDH) and reduction of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), to compare cytotoxic effects of ionic Ag, polyvinylpyrrolidone PVP-coated AgNPs (MHD=13 nm), hydrogen reduced H2-AgNPs (14 nm), and citrate-AgNPs (12 nm). Cells were exposed to Ag, PVP-coated AgNPs, H2-AgNPs, or citrate-AgNPs, either in media alone or media supplemented with 1% fetal bovine serum (FBS) for 1, 4, or 24 hours before assessment. Each AgNP diminished MTT reduction capacity of J774.A.1 cells with 50% reductions in activity in the low parts per million of Ag concentration range. Compared with AgNPs, Ag was a more potent cytotoxicant. LDH leakage increased after exposure to Ag and AgNPs indicated that all compounds produced damage to cell membranes. In MTT assays, addition of 1% FBS to media mitigated cytotoxic effects of all forms of Ag. In LDH assays, addition of FBS did not affect Ag-dependent membrane damage. These results indicate the AgNPs affect integrity of cell membranes and metabolic competency of cells, although it is yet unclear whether these effects are mediated by phagocytosis of AgNPs or by accumulation of Ag solubilized from nanoparticles. Future studies that examine the disposition, fate, and effects of AgNPs will provide more information for assessment of bioavailability and potential human health risks. (This abstract does not reflect U.S. EPA policy.)
after dosing for TEM analysis. Images from these samples are consistent with predicted agglomeration behavior in that PEG-coated Au NPs can be observed as primary (22nm), non-agglomerated NPs in the stomach, small intestine (SI), cecum, large intestine (LI) and feces of dosed animals. In contrast, uncoated Au NPs were observed to form agglomerates of several hundred nanometers in the stomach and remain agglomerated in the SI, cecum, LI and feces. At 12 hours post-gavage there was significantly more gold detected in the blood and liver (p < 0.05) of animals dosed with PEG-coated vs. uncoated Au particles. The characterization of these particles in vivo supports our hypothesis that differences in ICP-MS tissue levels of Au between animals dosed with PEG-coated vs. uncoated Au NPs is due to the particle size being presented to absorptive surfaces in the GIT.

1346 Comparison of Acute and Chronic Toxicity and Effects of Nanoparticles Ceriodaphnia dubia

In recent years, the usage of nanoparticles has grown tremendously, and their potential to exert toxicity in aquatic environments is an increasing concern. This study evaluated the toxicity of 20 and 100nm nanosilver and nanogold to Ceriodaphnia dubia in soft reconstituted water. The selected nanoparticles were chosen for nanosilver ability to dissolve in environmentally relevant solution and nanogold for its slow dissolution in environmentally relevant solution. Standard toxicity test have shown that Ceriodaphnia dubia are less sensitive to silver chronically than they are acutely. This is most likely a result of the addition of food binding to the silver reducing bioavailability. An altered testing procedure adding food after 8 hours from water renewal alongside standard testing procedures was evaluated acutely and chronically. This window of time will allow for the uptake of nanoparticles by the organisms that would otherwise not be available. In acute and chronic test Ceriodaphnia dubia were less sensitive to nanogold than nanosilver. When comparing acute and chronic 20nm nanogold tests, 100% mortality was shown in the highest concentration 75μg/mL chronically with 60% survival acutely in the highest concentration. This would suggest the possibility that toxicity is occurring by different mechanisms. In 20nm nanosilver chronic testing the altered testing procedure showed an increase in mortality and delayed reproduction and standard testing procedures confirming that the addition of food decreases sensitivity to the organism. Future work will include the testing of 100nm nanosilver and nanogold. Further studies are needed to indicate that toxicity is occurring by different mechanisms when comparing acute-to-chronic ratios and testing of different aquatic organisms.

1347 Silver Nanoparticles Impair Neuronal Synaptic Function and Alter Neurotransmitter Content in the Brain

Silver nanoparticles (AgNPs) find application in the manufacturing of industrial, household and diagnostic products, besides its extensive antimicrobial use. While the economic benefits of manufacturing such materials are highly promising, their adverse environmental and health effects are yet to be fully characterized. The unique physico-chemical properties of AgNP influence its ability to aerosolize, and thus occupational or environmental exposure is of major concern. To determine if AgNPs pose a neurological risk, we evaluated its effects in a rodent model. Well characterized AgNP (primary particle size = 20-50 nm) suspensions were prepared in dispersion medium (DM; mean particle aggregate size in DM = 180 nm). Adult male Sprague-Dawley rats were intra-tracheally instilled with a single dose of either DM, 37.5, 112.5 or 450 μg AgNP. At 7, 17, 28, or 84d post-exposure, various indices of neural dysfunction were examined in discrete brain areas. By 7d post-exposure, AgNPs caused a partial loss (35-40%) of striatal synapsosomal-associated protein 25 (Snap25) and syntaxin binding protein 1 (Stxbp1), critical molecular regulators of synaptic neurotransmission. Levels of Snap25 decreased further (~85%) by 84d post-exposure. AgNP also decreased (~25%) striatal tyrosine hydroxylase (Th) protein content. Further, AgNP caused a time-dependent increase (16-45%) in striatal norepinephrine, while lowering (25%) serotonin content by 84d post-exposure. However, AgNP did not alter striatal dopamine content, although it reduced striatal Th. Reactive astroglisis, as evidenced by increased (30%) expression of glial fibrillary acidic protein (Gfap) was observed in the striatum, 7d following exposure. The persistent reduction of synaptic proteins 84d following cessation of exposure suggests that AgNPs can potentially be neurotoxic. Whether such abnormalities can cumulate in neurodegenerative diseases remains to be investigated. Our findings call for extensive safety evaluation to better understand the risks associated with AgNPs and avert any adverse neurological health effects.

1348 A Study of Mice Inhalation Exposures to Silver Nanoparticles Generated by Nebulization and Electrospray Methods

Many forms of engineered nanomaterials are currently being used in industrial and medical applications in the advanced field of nanotechnology. One of the major routes of human exposure to nanomaterials is inhalation. Silver nanoparticles or nanosilver in particular, are prevalent in consumer products and have other applications as antibacterial agents, yet there are relatively limited nanosilver toxicity data in the literature. A series of rodent exposures were conducted to assess the lung inflammatory response. The nanoparticles were generated via a Collison nebulizer and an electrospay aerosol generator using suspensions composed of citrate stabilized nanosilver or polyvinylpyrrolidone (PVP) stabilized nanosilver. The primary size of both nanosilvers was 20 nm in diameter. Particle size distributions of aerolized citrate stabilized nanosilver and PVP stabilized nanosilver were also characterized. Count median diameters (CMD) of citrate nanosilver and PVP nanosilver were between 50 and 60 nm, while their volume median diameters (VMD) were between 80 and 100 nm, respectively. The CMD and VMD of citrate stabilized nanosilver generated by electrospray were found to be about 2-fold and 3-fold lower, respectively, than that generated by Collison nebulizer. Acute nose-only exposures were conducted on male BALB/cj mice using the nebulizer and lung inflammatory responses were examined following 4-h exposure to citrate stabilized nanosilvers at a concentration of 1.0 mg/m³. At 24-h and 7-d post-exposure, there were levels of ptyalin in the number of polymorphonuclear leukocytes and protein concentrations in bronchoalveolar lavage fluid as compared to filtered air control. Our results showed that citrate and PVP coated nanosilver elicited minimal pulmonary inflammatory response in mice at the concentration tested in this experiment.

1349 Estimation of Human Equivalent Exposure from Rat Inhalation Toxicity Study of Silver Nanoparticles Using Multipath Particle Dosimetry Model

J. J. and J. Yu. Institute of Nanoproduct Safety Research, Huseo University, Aunan, Republic of Korea.

Respiratory tract dosimetry is a useful tool to estimate the exposure concentrations of an inhaled substance that will produce the same result at a target site of the respiratory tract in both rats and humans. Thus, to enable the results of animal inhalation studies to be extrapolated to human equivalent exposure levels, the MPPD (multi-path particle dosimetry) model was used to estimate the differences in the respiratory dosimetry of rats and humans. In our previous study, when animals were subchronically exposed to silver nanoparticles over a period of 90 days, a no observable adverse effect level (NOAEL) of 100 μg/m³ was suggested. Therefore, this study used results from a previous animal study, including the test aerosol information and estimated clearance rate of silver nanoparticles after a 90-day inhalation toxicity test. As a result, the human equivalent workplace exposure concentration of silver nanoparticles was estimated as 59 μg/m³ compared to the rat NOAEL of 100 μg/m³.

1350 Alterations in Lung Host Defense after Pulmonary Exposure to Silver Nanoparticles in Rats

B. M. Yingling, C. McLaughlin, J. M. Antonini, R. I. Macuspie, V. A. Hackley, B. T. Chen, D. Schwegler-Berry and J. L. Roberts. WVU, Morgantown, WV; NIOSH, Morgantown, WV; NIST, Gaithersburg, MD.

Silver nanoparticles (AgNPs) are among the fastest growing categories of manufactured nanomaterials, and there is a need to investigate the risk for potential adverse effects of respiratory exposure in workers. The goal of the current study was to characterize susceptibility to lung bacterial infection following AgNP exposure in vivo. AgNP, 20 nm in diameter with a 0.3% wt polyvinylpyrroldione coating (Nanosom, Inc.), were suspended in a physiological dispersion medium (DM) and sonicated. On day 0, rats were intratracheally (IT) instilled with 37.6 (Ag Low) or 449 (Ag High) μg of AgNP in DM or DM alone. On day 3, rats were inoculated IT with 5x10³ Listeria monocytogenes (LM). Rats were euthanized on day 3 (pre-infection), and on days 4, 6, 8, and 10. Bronchoalveolar lavage (BAL) was performed on the right lung. The left lung was cultured to assess LM burden, and the lung-associated lymph nodes (LALN) were harvested. BAL cells and fluid were retained for analysis of innate and adaptive immune response. As a result, the lung-associated lymph nodes (LALN) were harvested. BAL cells and fluid were retained for analysis of innate and adaptive immune response. As a result, the lung-associated lymph nodes (LALN) were harvested. BAL cells and fluid were retained for analysis of innate and adaptive immune response. As a result, the lung-associated lymph nodes (LALN) were harvested. BAL cells and fluid were retained for analysis of innate and adaptive immune response.
BAL cell oxidant production were measured in the Ag High group when compared to the Ag Low and DM groups. Following infection, LM lung burden increased significantly in the DM and Ag Low groups as compared to the Ag High group, peaking on day 6, with the highest burden in the DM group. LALN lymphocytes and BAL neutrophils, lymphocytes, and cellular oxidant production were elevated in the Ag High group on days 4 and 6 compared to DM and Ag Low groups. By day 8, LM lung burden, and BAL and LALN cell counts were similar for all groups. Induction of an early inflammatory response and oxidant burst in conjunction with increased lymphocyte proliferation in the lungs of the high dose AgNP group prior to infection enhanced the innate immune response and led to an increased clearance rate of bacteria from the lungs.

1351 Exposure to Inhaled Silver-Nanoparticles Results in the Induction of Gene Expression Alterations in Oxidative Stress Pathway Components, in a Time-Dependent Manner.

The use of silver nanoparticles (AgNPs) is ubiquitous, and they are now commonly employed in pharmaceuticals, medical imaging, medical devices, cosmetics, clothing, and other consumer products. Due to the commonality of AgNPs, along with a general lack of toxicity and safety testing, AgNPs have been deemed safe by de facto. However, legitimate concerns exist, and a number of recent studies suggest that AgNPs pose a threat to human health. This study was conducted in order to examine the hypothesis that inhaled nano-sized Ag particles cause lung and extra-pulmonary organ dysfunction via oxidative stress pathways. Male and female FVB/NJ mice were exposed to either 0.5 mg/mL or 1 mg/mL of AgNPs generated from metal rods, using a Palas spark generator, via nose only inhalation for 4 hrs. An n=5 animals were used in each treatment group, and all treated animals were compared to air exposed controls. At 24h, 24h, 48h, 72h, and 72h post-exposure, animals were euthanized and blood, lung and tissue were collected. RNA was isolated from lung and liver tissue and mRNA expression levels, of key oxidative stress genes, were quantitated by real-time RT-PCR. A number of significant alterations in gene expression of key oxidative stress genes were observed in response to AgNP exposure. At 2 hours post exposure, Hmx1 and Keap1 expression increased ~2.75 fold in lung tissue, and modestly decreased to ~ 2.5 fold at 24 hours post exposure. Whereas in liver tissue, Keap1 expression changed from a 2.5 fold increase to a 3.5 fold increase in liver tissue, at 2 and 24 hours post exposure, respectively. Similarly, in liver tissue, Tnx1 expression increased from 0.5 fold to a 2.5 fold increase at 2 and 24 hours post exposure, respectively. These experiments have suggested that exposure to inhaled AgNPs results in the induction of gene expression alterations in oxidative stress pathway components. Further, these alterations occur in a time-dependent manner.

1352 Genetic Influence of Pulmonary Response to Silver Nanoparticles Exposure.

M. N. Hernandez, E. L. Saunders and M. Popovech. *Environmental Medicine, New York University, Tuxedo, NY.*

Within the last decade, nanotechnology has seen a boost in commercial, medical and industrial applications. However, there is great uncertainty in terms of the biochemical activity nanoparticles (NPs) may have on biological systems. In particular, this study sought out to determine the genetic influence on the pulmonary response to silver NPs. Murine models were employed to evaluate the variation of inter-strain response. Differences were quantitated by measuring inter-strain variability in terms of polymorphonuclear neutrophil (PMN) infiltration in bronchoalveolar lavage fluid. Initially, three mouse strains (C57BL/6J, FVB/NJ, and BALB/c) representing resistant, moderate, and sensitive responders, respectively, were exposed to 0.5 µg/g body weight of 20 and 110 nm citrate or PVP stabilized silver NPs by oropharyngeal aspiration. Bronchoalveolar lavage was performed 24 h post exposure to measure PMN number and protein concentration. All three strains were found to be more sensitive to 20 nm silver citrate (40-85% PMN response) and 20 nm silver PVP (15-85% PMN response). We then performed a similar exposure in 8 strains of mice (DBA/2J, C57BL/6J, AKR/J, 129S1/Svl, AJ, FVB/NJ, C3H/HeJ, Balb/c) at a lower dose of 0.25 µg/g body weight of 20 nm silver citrate. PMN responses between 1.5% and 60% were observed. In addition, temporal pulmonary response was measured in C57BL/6J, FVB/NJ, and BALB/c mice at 24 hrs and 7days. At 24 hours, PMNs were found to be strain dependent, between 14-46%, and the response at 7 days was found to be between 0-15% PMN response. Based upon these initial findings on inter-strain response variation, it can be concluded that these mouse models show a susceptibility pattern among strains, and can help to elucidate sensitivity mechanisms in terms of exposure assessment and innate inter-species responses.

1353 Short- and Long-Term Effects of Commercially Available Gold Nanoparticles in Rodents.

J. Bahamonde1, B. Brenske2 and M. R. Prater3, 4. 1Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA; 2Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA.

Gold nanoparticles (GNPs) have physical and chemical properties that place them as top candidates for biomedical uses, including promising alternatives for targeted drug delivery, cancer therapy, and diagnostic contrast imaging. Their characteristics and behavior depend largely on their size, shape, and coating, making their uniformity an important aspect to consider, and making comparisons among studies a great challenge. We acquired 15 nm GNPs commercially available for in vitro contrast imaging, characterized them, and exposed female BALB/c mice, female F344 rats, and female and male C57BL/6 mice to either 1/1g/kg of GNPs, or phosphate buffered saline (PBS) via tail vein injection. Blood, urine, and feces collection, euthanasia and necropsy were performed at 24 hours, 1, 2, 3, 4, and 18 weeks post exposure. GNPs were found to be polydispersed, polyethylene glycol-coated, and varied in size from about 4 to 30 nm. Three out of the 19 rats exposed to GNPs died unexpectedly within 24 hours of exposure, with no deaths registered in any other group. GNPs were detected in urine for up to 1 week post exposure, and in feces for up to 2 weeks in mice and 4 weeks in rats. On gross inspection, GNPs caused immediate and persistent darkening of all tissues, and stayed in blood for up to 1 week. Histological examination demonstrated accumulation of GNPs in macrophages and endothelial cells of all tissues examined up to the end of the study, with increased numbers of activated macrophages in GNPs exposed animals compared to PBS exposed animals. Serum levels of interleukin-18, a pro-inflammatory cytokine secreted by macrophages, were significantly higher in animals exposed to GNPs in comparison to those exposed to PBS. Main conclusions of this study are that commercially available GNPs are not necessarily standardized, may cause acute death in rats, accumulate in macrophages and endothelial cells, incite granulomatous inflammation, and persist in the body indefinitely.

1354 Assessment of Genotoxicity of Silver Nanoparticles in Myh-Deficient and Wild Type Mice.

Silver nanoparticles (AgNPs) are extensively used in consumer products due to their antimicrobial properties. AgNPs are released from textile fabrics under regular wash conditions and were detected in sewage sludge of a municipal wastewater treatment plant, suggesting a potential for widespread exposures to AgNPs. However, genotoxicity and underlying molecular mechanisms of AgNPs are poorly understood. We studied DNA double strand breaks (DSBs) and chromosomal damage by γ-H2AX assay and micronucleus assay, respectively, in mice after 5-day treatment with AgNPs by oral application. AgNPs treatment resulted in a 2-fold induction in γ-H2AX foci in both bone marrow and peripheral blood. In addition, AgNPs increased the frequency of micronucleated cells in bone marrow erythroblasts and peripheral blood erythrocytes. Myh is a DNA glycosylase involved in both base excision repair and mismatch repair. We speculated that Myh is involved in AgNP-mediated DNA damage, which predisposes Myh deficient mice to DSBs and/or chromosomal damage. We observed a similar number of γ-H2AX foci and about 2-fold more micronuclei in AgNP treated Myh deficient compared to wild-type controls, suggesting a potential role of Myh in the repair of AgNP-mediated damage. We further investigated the effect of AgNPs on changes in the expression levels of 84 genes involved in DNA repair by using PCR array profiler. In total, 25 genes were downregulated and 12 genes were upregulated as a function of AgNP treatment (1.5-fold cutoff). Most downregulated genes play a role in base excision and nucleotide excision repair, while upregulated genes are part of different DNA repair pathways. In summary, AgNP exposure by oral ingestion induces DSBs and chromosomal damage and alters expression of DNA repair genes, suggesting a potential hazard to genetic integrity. Further studies are needed to understand the effect of AgNP on DNA damage signaling, DNA repair efficiency, genomic instability and carcinogenicity.

1355 Comparative Hepatotoxicity Study of Two Different Diameter Size Silver Nanoparticles in Sprague-Dawley Rats.

A. Putrella1 and P. Tchounwou2. 1Biology, Jackson State University, Jackson, MS; 2Biology, Jackson State University, Jackson, MS.

The antibacterial effect of silver nanoparticles (AgNPs) has resulted in their extensive application in health, electronic, and household products. Due to the intensive commercial application of AgNPs, their health risk assessment is of great importance. The previous in vitro studies demonstrated that AgNPs caused toxicity in
Various cell-lines. However, the data on the toxicity of Ag-NPs in vivo is largely lacking. The main goal of this study was to determine the effect of two different diameter sizes (6nm, 10nm) silver nanoparticles on certain liver enzymes (alanine ALT, aspartate AST and alkaline phosphatase ALP) in serum and analysis of liver damage in Sprague-Dawley rats. Four groups of five male rats, each weighing approximately 80 to 2 g, were administered orally, once a day for five days with doses of 5, 25, 50, 100 mg/kg body weight (B.W.) of Ag-NPs. A control group was also made of five rats. Serum was collected following standard protocols, and the activity of the liver enzymes (ALT, AST and ALP) was determined by colorimetric method. The results demonstrated that Ag-NPs exposure increased the activities of the liver enzymes (ALT, AST, ALP) and damage in liver tissue in exposed groups compared to control. The increase in the activity was larger in 6nm size Ag-NPs compared to 10nm size. Only the highest two concentrations 50 mg/kg and 100 mg/kg showed statistically significant increases in ALT and ALP in both diameter size Ag-NPs compared to control. AST activity showed an increase; however, it was not statistically significant compared to control. Furthermore, the smallest sized Ag-NPs (6nm size) had a greater ability to induce hepatic damage in Sprague-Dawley rats than the other sized Ag-NPs (10 nm). These data suggest that the Ag-NPs-induced hepatoxic effects against tissue cells are particle size-dependent, and thus, the particle size needs careful consideration in the design of the nanoparticle for biomedical uses.

1356 Increased Mucus Production and Histopathological Gill Alterations after Exposure to Nanosilver and Silver Nitrates.

A. D. Hawkins1, C. Thornton1, A. Harmon1, A. J. Kennedy2, J. A. Steevens2, N. G. Reyero Vinas2, K. Bu3, J. Cizdziel3 and K. M. C. Steevens3. 1Environmental Toxicology Research Program, University of Mississippi, Oxford, MS; 2, 3Environmental Lab, ERDC, Vicksburg, MS; 4Chemistry, University of Mississippi, University, MS.

Silver nanoparticles are among the most widely used nanomaterials because of their antibacterial and antifungal properties. Despite their extensive use, information is now becoming available on the toxicity and fate of nanosilver formulations within living organisms. Mucus has both increased and decreased the toxicity of different xenobiotics by either concentrating the xenobiotic on the gills and body or encapsulating toxicants to prevent exposure. In order to understand the relationship between mucus, toxicity and silver exposure, zebrafish (ZF) and fathead minnows (FHM) were exposed for 36 or 96 hr to nominally 20 nm PVP- or citrate-coated silver nanoparticles (PVP-AgNPs; citrate-AgNPs) or silver nitrate (AgNO3) at 2 μg/L or (2 and 6 μg/L), respectively. After 4 hr, ZF produced significantly more mucus secretion in every treatment than the control fish in a dose-dependent manner as measured by a phenol-sulfuric acid method. FHM gill RNA was extracted for microarray analyses. To quantitate distribution of silver, skin, liver and GI were digested for ICP-MS. FHM gills were also paraffin embedded, sectioned and examined for histopathological lesions to phenotypically analyze the molecular and chemical endpoints. The highest AgNO3 and PVP-AgNP (20 nm) size had a greater ability to induce hepatic damage in Sprague-Dawley rats than the other sized AgNPs (10 nm). These data suggest that the Ag-NPs-induced hepatotoxic effects against tissue cells are particle size-dependent, and thus, the particle size needs careful consideration in the design of the nanoparticle for biomedical uses.

1357 Impact of Silver Nanoparticles (AgNP) on Bacteria Species Isolated from Gastrointestinal (G.I.) Tract of Sprague-Dawley (SD) Rats.

M. S. Imam1, S. Khare2, A. M. Paredes3 and M. D. Boudreau1. 1Division Biochemical Toxicology, NCCTR, Jefferson, AR; 2Division of Microbiology, NCCTR, Jefferson, AR; 3Office of Scientific Coordination, NCCTR, Jefferson, AR.

The food industry is incorporating AgNP into a growing number of products, which suggests that consumers are being exposed orally to increasing amounts of these nanoparticles. The absorption of AgNP from the G.I. tract has been demonstrated; however the potential effects from the interactions of AgNP with bacteria of the G.I. tract are largely unknown. We investigated the bacterial effects of AgNP on Lactobacillus sp. (G+) and Bacteroides sp. (G-) isolated from the G.I. tract of SD rats. Three sizes of AgNP (10, 75, and 110 nm) at (0.1, 0.5, 1, 2, 5, 10 μg/ml) were incubated with cultures of bacteria (in triplicate), and the bacterial effects at 60, 120, and 180 min were assessed using colony forming unit (CFU) and adenosine triphosphate (ATP) release assays. There were no CFUs in cultures of Lactobacillus sp. or Bacteroides sp. when incubated with or longer than the presence of 75 or 100 nm AgNP at concentrations of ≥2 μg/ml or in the presence of 10 nm AgNP at concentrations of ≥1 μg/ml, suggesting enhanced bacterial effects by 10 nm AgNP. Both bacterial species showed a significant decrease in ATP release at concentrations of AgNP (10, 75, or 110 nm) at concentrations ≥1 μg/ml. At equivalent number of cells (10^3 cells/ml), Bacteroides sp. were more sensitive than Lactobacillus sp. to the bactericidal properties of AgNP (10, 75, or 110 nm), likely reflecting differences in cell wall composition between species. Scanning electron microscopy showed that AgNP were attached to bacterial cells at the surface, suggesting that protein binding or cell wall distortion by AgNP might result in cellular toxicity or death. These results provide new insights into the bactericidal properties of AgNP and how the consumption of AgNP might disrupt the normal balance of microorganisms in the healthy G.I. tract. Supported by interagency agreements 224-12-0003 and AES12013 between the NCTR/FDA and NIEHS/NTTP.

1358 Influence of Dose, Size and Chemical Composition on Persistence of Silver Nanoparticles in the Rat Lung.

Silver nanoparticles (AgNPs) have antimicrobial activity and unique electrical properties, resulting in increasing use. While there have been studies of the biological effects of AgNPs, including persistence and clearance of AgNPs from the lung, an examination of the effect of AgNP size and surface coating (used to stabilize these materials when in solution) has not been fully investigated. We investigated lung deposition, retention and clearance of 20 nm and 110 nm spherical AgNPs coated with citrate or polyvinylpyrrolidone (PVP). Rats were instilled intratracheally with 0.1, 0.5 or 1.0 mg/kg of either one of the AgNP solutions or a vehicle control and were assessed at 1, 7 and 21 days post treatment. Ag was quantified in tissue using inductively coupled plasma mass spectrometry. At one day postinstillation, lungs dosed with 1.0 mg/kg AgNPs had 0.25 to 0.51 mg Ag/g dry tissue and these amounts did not differ by surface coating or particle size. Sham controls had no detectable Ag. Total leukocytes and neutrophils in bronchoalveolar lavage fluid increased in a dose dependent manner 1-day after exposure to all AgNPs with significant increases in the 1.0mg/kg dose compared to all other doses for all 4 particle types. This increase persisted at the 7-day time point in all AgNP groups except for 20 nm PVP. Distribution of Ag in the lung was determined using autometallography and semi-quantitative scoring on paraffin-embedded lung sections to demonstrate Ag was preferentially localized to the bronchoalveolar duct junction at the 1-day time point. At 7-days post exposure, Ag was localized to the epithelial extracellular matrix of the terminal bronchioles. Uptake of Ag by alveolar macrophages was also observed. These findings suggest Ag can persist in the lungs over time and alveolar macrophages have a role in the clearance. Supported by U01ES02027 and P42ES00469. Nanomaterials supplied by the NIH NCNHR consortium.

1359 Subtle Surface Variations Influence Biological Compatibility of Gold Nanoparticles.

K. Kim1, T. Zaikova2, J. E. Hutchison3 and R. L. Tanguay1. 1Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR; 2Chemistry, University of Oregon, Eugene, OR.

To better understand the nanoparticle physicochemical properties that influence biological compatibility, we investigated how subtle ligand variation on the surface of gold nanoparticles (AuNPs) influences biological responses. The zebrafish embryos were exposed to four distinct, well-defined ligand-stabilized 1.5 nm spherical AuNPs. The ligand shells for each AuNP contain: (1) anionic 2-mercaptoethanesulfonic acid (MES), (2) only cationic N,N,N trimethylammonium methanethiol (TMAT), (3) a mixed ligand shell containing MES and a small amount of triphenylphosphine (TPP), and (4) a mixed ligand shell containing TMAT and a small amount of TPP. Small-angle X-ray scattering (SAXS) confirmed the core size of the particles and that there was no agglomeration in the embryonic test medium. The only difference between partial and full functionalization was the P/Au ratio as determined by XPS analysis. The MES/TPP coated particles caused higher mortality and malformation than those fully functionalized with MES, and in TMAT/TPP coated particles a higher incidence of smaller size and pale gray eyes was observed. In the gene expression profiles of transcription factors for apoptosis (p53 and bax), eye development (pax6a, otx2 and rx1) and pigmentation (sox10 and irx5), the gene expression of embryos were significantly disrupted in both mixed ligand particles in a concentration dependent manner, consistently with the observed developmental toxicity. In addition, laser ablation ICP-MS analysis revealed that biological absorption and distribution of AuNPs in exposed embryos were closely related to the toxicity phenotype and gene expression caused by differential surface functionalization. These data provide new insights into the understanding of how subtle surface changes impact biological compatibility and further emphasize the importance of particle characterization. This research is supported by NIEHS P3 ES000210, ES016856 and Air Force Research Laboratory #FA8650-05-1-5041.
Gold nanoparticles (GNPs) possess unique physicochemical properties that may facilitate entry into the central nervous system (CNS) where they may act therapeutically. There is little information on GNPs biodistribution in specific brain regions or extent of inflammation induction. Experiments determined the localization and neuroinflammatory response of spherical GNPs (10 nm) after IV injection in male C57Bl mice. As a supplement, a known inflammogen, lipopolysaccharide (LPS), 2 mg/kg, sc, was tested. To determine the optimal buffer concentration to maintain GNP solubility, we measured aggregation of GNPs using various PBS concentrations (10, 1, 0.1, 0.01 X). 0.01X PBS produced the least amount of GNP aggregation and was used in all studies. The next experiment verified entry of GNPs into CNS. Mice were IV injected using the tail vein (200 μg/ml 10 nm GNPs in 0.01X PBS). After 24 hrs mice were perfused transcardially with 2% glutaraldehyde/paraformaldehyde and brains were collected. GNPs were measured using inductively coupled plasma mass spectrometry in whole brain homogenates. To specifically localize accumulation of GNPs in brain, septum, caudate, hippocampus, hypothalamus, cortex, frontal cortex, and spinal cord were dissected. Hypothalamus, hippocampus, and septum had the highest levels of GNPs (6.7, 6.2, and 4.6 μg/g, respectively). To evaluate brain inflammation, we used q-PCR analysis of frozen brain regions for study of pro-inflammatory mediators, IL-1β and IL-10. GNPs did not affect cytokine/chemokine expression in cortex, frontal cortex or hippocampus. LPS, as expected, caused a marked (100-fold) increase in the same cytokines. Results show that GNPs enter brain and concentrate in specific regions without eliciting an inflammatory response. Data raise the possibility of usefulness of GNPs in drug delivery and therapeutic treatment of CNS diseases.

Dissolution Kinetics of Inhaled Metal Nanoparticles in a Murine Model.

Previous work has established that Ag, Ni, and Ce nanoparticle (NP) inhalation induces a defined dose/inflammatory-response relationship. Adverse responses to each metal were found to vary by size, shape (TEM analysis) and chemistry (XPS analysis). This study was conducted to delineate the inflammatory responses generated by exposure to Ag, Ni, and Ce NPs in a murine model, as marked by the polytomy of usefulness in drug delivery and therapeutic treatment of CNS diseases.
and the presence of leukocytes and inflammatory cytokines in bronchoalveolar lavage fluid (BALF). One day after exposure, none of the strains exhibited differences in total protein or LDH activity compared to saline vehicle controls. However, there were marked strain-dependence differences in lung inflammation, with C57BL/6 mice showing a 3-6 fold lower response compared to other strains. Evidence to date indicates that neutrophilic inflammation was attenuated by 21 days, suggesting a transient effect for these nanoparticles. Because C57BL/6 mice were not very responsive, relying on this strain alone to assess NanoAG-induced inflammation may not adequately assess their safety. This work is done in collaboration with the NCNHIR Consortium and supported by NIH/NIEHS grants U19ES019545, P30ES07073 and T32ES07032.

Characterization and Toxicity of Silver Nanowires.

A. Tagmount1, B. Gilbert2, J. Scanlan1, C. Tran1, C. Clark1 and C. Vulpe1.
1Nutrition Science and Toxicology, University of California Berkeley, Berkeley, CA; 2Earth Science Division, LBNL, Berkeley, CA.

Metal and semiconductor nanowires (NW) have a diverse range of anticipated applications in electrical devices, sensors, catalysts and composite materials but there is very limited information on the fate of NW in the environment or the effect of NW on organisms. We are studying the environmental fate and biological toxicity of silver nanowires (Ag NW), a representative metal NW, to (1) Daphnia magna, an aquatic ecotoxicity model to test the acute toxicity to other species representing potential target organs, including a cell line from fathead minnow, another eco-indicator species. LC50 values were determined in D. magna exposed to Ag NW and different end-points of cytotoxicity were investigated using cell based imaging assays (high content screening) and other cell assays. Transcriptomic response to Ag NW was also tested and in a macrophage cell line using high throughput RNA sequencing. We characterized the physicochemical properties of Ag NW to determine how their chemistry relates to cytotoxicity. We studied the colloidal stability and oxidation rates of Ag NW with two lengths and two coatings in different aqueous solutions, including conditions relevant to studies of toxicity to D. magna, and cell media. While poly(vinylpyrrolidone) (PVP) and aluminosilica (SiO2) coatings prevent NW aggregation in ultrapure water, rates of aggregation and settling were greatly increased in the presence of dissolved inorganic and ionic ions. In stirred anaerobic solutions, morphological changes, including fusing of multiple nanowires, was the dominant transformation. In aerobic solutions, Ag oxidation to release dissolved Ag+ occurred for all coating types. Rates of Ag+ release cannot explain observed differences in Ag NW toxicity to Daphnia, suggesting that toxicity is controlled by a complex mixture of colloidal and chemical processes in solution. Also, in parallel to this physicochemical study, cell internalization, sub-cellular localization as well as in situ localization of Ag NW in Daphnia were carried out.

1367 Mouse Neural Progenitor Cells As a Functional Model for Developmental Neurotoxicity Testing Intracellular Calcium Signaling.

M. M. Dingemans, M. de Groot and R. H. Westerink.
Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.

Developmental neurotoxicity (DNT) is often investigated in a traditional manner (in vivo using large numbers of experimental animals), while development of in vitro methods for DNT reduces animal use and increases insight into cellular and molecular mechanisms of DNT. Neuronal progenitor cells (NPCs) are particularly suited for the investigation of neurodevelopmental processes as they are pre-programmed to differentiate into nervous system-specific cell types: neurons and glia. The intracellular calcium concentration (Ca2+)) plays an essential role in neurotransmission, plasticity and neurodevelopment and can therefore be used as a functional readout for DNT [1]. We therefore investigated changes in (Ca2+)evoked by a set of neurotransmitters in primary mouse NPCs using the Ca2+-responsive dye Fura-2. Calcium responses were measured at a single-cell resolution at various differentiation durations. Calcium responses could be evoked by depolarization, acetylcholine, and adenosine triphosphate (ATP), indicating the expression and functionality of the respective neurotransmitter receptors and related calcium signaling pathways.

The data demonstrate that this model allows for the investigation of possible effects of (suspected) developmental neurotoxictants on the development of neuronal characteristics, such as intracellular signaling in response to neurotransmitters. As investigation of chemical-induced effects on the development of neuronal characteristics is underrepresented in DNT testing, we argue that biochemical and morphological approaches should be complemented with investigations of neuronal (network) functionality, including network formation, intracellular and extracellular signaling and neuronal network function.

Funding: EU (DENAMIC-FP7/282957); ZonMW NL (85000008).

Ketamine-Induced Neuronal Damage and Altered N-methyl-D-aspartate (NMDA) Receptor Function in Rat Primary Forebrain Culture.

N. Sadovova1, E. Liu2, M. G. Paule2, W. Slukker3 and C. Wang1.
1Toxicologic Pathology Associates, Jefferson, AR; 2Division of Neurotoxicology, National Center for Toxicological Research/US FDA, Jefferson, AR; 3Office of Director, National Center for Toxicological Research/US FDA, Jefferson, AR.

Ketamine, a noncompetitive NMDA receptor antagonist, is used in pediatric general anesthesia and causes neuronal cell death during the brain growth spurt. To understand the underlying mechanisms associated with ketamine-induced neuronal toxicity and search for approaches or agents to prevent such adverse effects, a primary cell culture system was utilized. Neurons harvested from the forebrain of newborn rats were maintained under control conditions or exposed to either ketamine (10 μM), or ketamine plus L-carnitine (1, 30 and 100 μM) for 24 hours, followed by a 24-hour withdrawal period. Ketamine exposure resulted in elevated NMDA receptor (NR1) expression, increased generation of reactive oxygen species (ROS) as indicated by higher levels of 8-oxoguanine production, and enhanced neuronal damage. Co-administration of L-carnitine significantly diminished ROS generation and provided near complete protection of neurons from ketamine-induced cell death. NMDA receptors regulate channels that are highly permeable to calcium. Calcium imaging data demonstrated that neurons exposed to ketamine had a significantly elevated influx of calcium and higher intracellular free calcium concentrations ([Ca2+]) evoked by NMDA (50 μM), compared to control neurons. These findings suggest that prolonged ketamine exposure produces an increase in NMDA receptor expression (compensatory up-regulation) which allows for a higher/toxic influx of calcium into neurons once ketamine is removed from the system, leading to elevated ROS generation and neuronal cell death. L-carnitine appears to be a promising agent in preventing ketamine toxic effects on neurons at an early developmental stage.

L-Carnitine Ameliorates Propofol-Induced Toxicity in Rat Embryonic Neural Stem Cells.

M. G. Paule1, E. Liu1, C. M. Fogle2, N. Sadovova2, W. Slukker1 and C. Wang1.
1Division of Neurotoxicology, National Center Toxicological Research/US FDA, Jefferson, AR; 2Toxicologic Pathology Associates, Inc., National Center Toxicological Research/US FDA, Jefferson, AR.

Propofol is a widely used general anesthetic. A growing body of data suggests that perinatal exposure to general anesthetics can result in long-term deleterious effects on brain function. In the developing brain there is evidence that general anesthetics
can cause cell death, synaptic remodeling, and altered brain cell morphology. Acetyl-L-carnitine (aLc), a dietary supplement, has been reported to protect against propofol-induced neuronal toxicity, neural stem cells were isolated from gestational day 14 rat fetuses and on the 8th day in culture were exposed for 24 hr to propofol at 10, 50, 100, 300 and 600 μM, with or without aLc (10 μM). Markers of neural proliferation (Ki67), mitochondrial health (MTT), cell death/damage (LDH) and oxidative damage (8-oxo-dG) were monitored to determine: 1) the effects of propofol on neural stem cell proliferation; 2) the nature of propofol-induced neurotoxicity; 3) the degree of protection afforded by aLc and 4) to provide information regarding possible mechanisms underlying protection. After propofol exposure at a clinically-relevant concentration (50 μM), the number of dividing cells was significantly decreased and oxidative DNA damage was increased. There was also a significant dose-dependent reduction in mitochondrial health as evidenced by decreases in MTT metabolism. No significant effect on LDH release was observed at propofol concentrations up to 100 μM. The oxidative damage at 50 μM propofol was blocked by aLc. Thus, clinically-relevant concentrations of propofol induce dose-dependent adverse effects on rat embryonic neural stem cells by slowing or stopping cell division/proliferation and causing cellular damage. Elevated levels of 8-oxo-dG suggest oxidative damage and aLc effectively blocks at least some of the toxicity of propofol, presumably by scavenging oxidative species and/or reducing their production.

Nicotine treatment resulted in a substantial dose-dependent reduction in mitochondrial function as evidenced by significant decreases in the metabolism of MTT. No significant effect of nicotine on LDH release was observed. 1 μM nicotine significantly increased the expression of activated caspase 3, suggesting that nicotine induced neural stem cell apoptosis. These results suggest that nicotine decreased neural stem cell viability, and nicotine-induced cell death is probably apoptotic in nature.

Cigarette smokers often report having problems associated with disrupted sleep. One potential mechanism underlying sleep disruption could be related to alterations in an individual’s circadian rhythm. Nicotine from cigarettes can activate neuronal nicotinic acetylcholine receptors (nAChRs) throughout the nervous system including structures important for maintaining the circadian rhythm. We have utilized oscillations in larval zebrafish locomotor activity as a model to study circadian rhythms. Initially, the circadian rhythm in embryos reared on a 14:10 light/dark (l/d) cycle was evaluated. Of 257 larvae examined, 76.6% exhibited a typical rhythm where locomotor activity was high in the initial hours of the cycle, declined to a minimum, and then became elevated again at the end of the cycle. We then determined the consequences of raising embryos in constant dark or constant light post-fertilization (hpf) as well as being exposed to nicotine. At 127 hpf, 23.5% of the larvae reared in constant dark exhibited a typical circadian rhythm and 12.5% of embryos reared in constant light exhibited a typical circadian rhythm. Moreover, the locomotor activity of larvae reared in constant light was reduced and remained at a constant level for the duration of the cycle. Since nAChRs are expressed in the zebrafish pineal gland and retina (two structures that influence circadian rhythms in fish) early in development, we hypothesized that nicotine exposed fish would have a pattern of activity similar to those reared in constant light. Zebrafish reared in 15 μM nicotine from 36-96 hpf and then evaluated at 127 hpf indeed lacked the normal circadian rhythm. The locomotor activity pattern in the nicotine-exposed zebrafish was similar to the pattern of zebrafish reared in constant light: the activity was reduced and remained at constant level for the duration of the cycle. These results indicate that nicotine is capable of disrupting vertebrate circadian rhythms and could be involved with the disrupted sleep pattern of smokers.

In children exposed to alcohol in utero, problems with learning and memory suggest hippocampal involvement and effects on synapse formation and function. Astrocytes may contribute to synaptogenesis by releasing specific factors. The present study investigated how ethanol influences the ability of astrocytes to modulate synapse formation in vitro. Using immunocytochemical labeling of synaptic proteins, confocal imaging and 3-dimensional object analysis, we found that astrocytes pre-treated with ethanol (50 mM) and co-cultured with primary hippocampal neurons (14 days in culture) for 24 hours, induce a 4.5-fold increase in synaptic structure formation. To corroborate that this is reflected in increased functionality, we used whole cell patch clamp techniques to measure spontaneous miniature excitatory post-synaptic currents. In neurons co-cultured with ethanol pre-treated astrocytes, we observed a higher frequency of events, relative to neurons co-cultured with control astrocytes, suggesting more functional synapses in the ethanol group. However, a second population of neurons in the same treatment group was observed to have a lower frequency than control astrocytes. No amplitude differences were observed, suggesting no difference in the number of post-synaptic receptors between groups. Ethanol increases the influx of cholesterol-containing lipoproteins (CCL) from astrocytes, and cholesterol appears to play a role in synapse formation. Direct treatment of hippocampal neurons with high-density lipoproteins induced a 3.2-fold increase in synaptic structures. When cholesterol release from astrocytes was induced by LXR/RXR agonists, through the over-expression of cholesterol transfer protein, this also resulted in an increase in synapses, suggesting a role for astrocytic CCLs in the observed synaptic increase after ethanol pre-treatment (Supported by F31AA019860, AA008154).

1370 Determination of Neurotoxicity in the Developing Rat Induced by Dexmedetomidine.
J. Liu. Anesthesia, Harvard Medical School, Boston, MA.

Anesthetic, sedative and analgesic drugs are used for diagnostic studies and surgery procedures in infants and children, but little is known about their impact on the developing nervous system. Dexmedetomidine is a selective alpha-2-adrenergic agonist, and has been used in many clinical applications including the reduction of postoperative delirium and has many protective effects on cell damage in animal models. However, dexmedetomidine induced human neutrophil apoptosis by activation of caspases-3, 7, 8 and 9. Based on these, we hypothesize how dexmedetomidine affects neurotoxicity in the developing rat brain.

Material and Methods: Sprague-Dawley postnatal day 7 (P7) rat pups were used for this study. Rats were divided into three doses of 10, 25, and 50 μg/kg body weight of dexmedetomidine and one control group. Each rat pup received 5 intraperitoneal doses of either saline, or Dex at 90 minutes intervals over 6 hours. After the exposure, parts of the brain tissues were extracted and flash frozen in liquid nitrogen for western blotting analysis. The other parts were fixed in 4% paraformaldehyde for immunohistochemical assay. Apoptosis such as cleaved-caspase-3, TUNEL, and other protein expression such as GSK-3β were determined by immunohistochemistry and western blotting techniques.

Results and Conclusion: Dexmedetomidine increased neuroapoptosis by increasing apoptosis and cleaved caspase-3 expression in the rat brain tissues. Dexmedetomidine also increased the p-GSK-3β / GSK-3β ratio, indicating a reduction in GSK-3β activity. These findings suggest that dexmedetomidine may induce neuroapoptosis by regulating GSK-3β in the developing rat brain.

1371 Nicotine-Induced Toxicity in Rat Embryonic Neural Stem Cells.
F. Liu1, N. Sadovoy2, C. M. Fogle1, M. G. Paul1, W. Sikker1 and C. Wang1.
1Division of Neurotoxicology, National Center for Toxicological Research NCTR/US FDA, Jefferson, AR; 2Toxicologic Pathology Associates, Jefferson, AR.

Maternal smoking substantially increases the risk of learning disabilities, behavioral problems, and attention deficit/hyperactivity disorder in offspring. Nicotine is the main pharmacologically active component of tobacco smoke. Prenatal exposure to nicotine is capable of causing fetal brain damage. To evaluate nicotine's effects on the developing nervous system and explore potential mechanisms underlying such toxicity, rat embryonic neural stem cells were used.

Brain cortices were collected from fetal rats (gestational day 14, GD14) for neural stem cell isolation and subsequent culture in commercial rat growth medium. On day 3 of culture, brain tissues were used whole cell patch clamp techniques to measure spontaneous miniature excitatory post-synaptic currents. In neurons co-cultured with ethanol pre-treated astrocytes, we observed a higher frequency of events, relative to neurons co-cultured with control astrocytes, suggesting more functional synapses in the ethanol group.

In children exposed to alcohol in utero, problems with learning and memory suggest hippocampal involvement and effects on synapse formation and function. Astrocytes may contribute to synaptogenesis by releasing specific factors. The present study investigated how ethanol influences the ability of astrocytes to modulate synapse formation in vitro. Using immunocytochemical labeling of synaptic proteins, confocal imaging and 3-dimensional object analysis, we found that astrocytes pre-treated with ethanol (50 mM) and co-cultured with primary hippocampal neurons (14 days in culture) for 24 hours, induce a 4.5-fold increase in synaptic structure formation. To corroborate that this is reflected in increased functionality, we used whole cell patch clamp techniques to measure spontaneous miniature excitatory post-synaptic currents. In neurons co-cultured with ethanol pre-treated astrocytes, we observed a higher frequency of events, relative to neurons co-cultured with control astrocytes, suggesting more functional synapses in the ethanol group. However, a second population of neurons in the same treatment group was observed to have a lower frequency than control astrocytes. No amplitude differences were observed, suggesting no difference in the number of post-synaptic receptors between groups. Ethanol increases the influx of cholesterol-containing lipoproteins (CCL) from astrocytes, and cholesterol appears to play a role in synapse formation. Direct treatment of hippocampal neurons with high-density lipoproteins induced a 3.2- fold increase in synaptic structures. When cholesterol release from astrocytes was induced by LXR/RXR agonists, through the over-expression of cholesterol transfer protein, this also resulted in an increase in synapses, suggesting a role for astrocytic CCLs in the observed synaptic increase after ethanol pre-treatment (Supported by F31AA019860, AA008154).
Sympathetic neurons were dissociated from superior cervical ganglia of perinatal rat pups and grown in serum-free defined medium in the absence of glial cells. Under these conditions, these neurons do not extend dendrites unless treated with BMP7 (10 ng/ml). After 5 days of exposure to BMP7 in the absence of presence of PCBs (1 PM-1 μM) and/or IFNγ (30 ng/ml), cultures were fixed and immunostained for MAP2b to visualize dendrites. PCB 95 increased the number and length of dendrites in a concentration-dependent manner in the absence or presence of BMP7 and these effects were inhibited by pharmacological block of ryanodine receptor calcium channels. IFNγ reduced dendritic growth in PCB 95-treated cultures in the absence or presence of BMP7. These findings illustrate a novel interaction between PCBs and cytokines in the autonomic nervous system, and suggest that exposure to these factors during critical windows of neurodevelopment may interfere with normal patterns of neuronal connectivity in sympathetic neurons and contribute to neuronal, immune and GI dysfunction in ASD. Support provided by NIEHS (R01 ES014901 to PEG) and a Hartwell Biomedical Research Fellowship (to PEG).

Polychlorinated biphenyls (PCBs) are widespread environmental pollutants linked to developmental neurotoxicity in children. Recent evidence suggests that non-dioxin-like (NDL) PCBs interfere with neuronal connectivity via interactions with ryanodine receptors (RyRs) which are calcium release channels broadly expressed in the nervous system. NDL PCBs stabilize RyRs in the open configuration and this triggers a calcium-dependent signaling pathway that mediates activity-dependent dendritic growth via CREB activation. CREB activation is also linked to increased formation of dendritic spines and synapses via upregulation of miR132, which suppresses the translation of p250GAP, a negative regulator of synaptogenesis. This suggests the possibility that NDL PCBs modulate these signaling events to influence synaptogenesis. To test this, we quantified dendritic spine and synapse formation in primary dissociated hippocampal cultures and organotypic hippocampal slice cultures treated with PCB 95, a NDL congener with potent activity at the RyR. Nanomolar concentrations of PCB 95 significantly increased spine density and the frequency of miniature excitatory post-synaptic currents. These effects were coincident with upregulation of miR132 and were blocked by inhibiting RyR or CREB, suppressing miR132 or expressing a mutant p250GAP, translation of which is not suppressed by miR132. These data demonstrate that PCB 95 sensitization of the RyR modulates synaptogenesis via activation of a CREB-miR132-p250GAP signaling pathway, and provide further evidence of mechanisms by which NDL PCBs may interfere with normal patterns of connectivity in the developing brain. Supported by NIH grants R01 MH086052, R01 ES014901, P42 ES04699, and the Hope for Depression Research Foundation.

Optimizing Methods to Quantify CYP1A Enzyme Activity in Mouse Brain following Developmental PCB Exposure.
A. Ashworth and C. P. Curran. Biological Sciences, Northern Kentucky University, Highland Heights, KY.

Polychlorinated biphenyls (PCBs) are developmental neurotoxicants and endocrine disrupters that remain widespread in the human food supply. Children exposed during gestation and lactation are at highest risk of neurotoxicity. Genetic differences can influence how these chemicals are metabolized, so we use a mouse model in an effort to identify genes which affect human susceptibility to developmental PCB exposure. Coplanar PCBs activate the aryl hydrocarbon receptor (AhR) in high-affinity Ahrb mice and increase cytochrome P450 (CYP1) expression, including CYP1A2 protein which can sequester PCBs in the liver. Our work and the work of others have shown that this sequestration is protective. However, our previous research also found an increase in CYP1A1 mRNA in the brains of our most susceptible mouse line with the AhrbCyp1a2(-/-) genotype at postnatal day 28 when PCB tissues levels were highest. Other researchers have reported differential expression and regulation of CYP1A1 and CYP1A2 in the brain. So, we are now assessing CYP1A protein levels and activity in various brain regions. We used the EROD assay as a test for CYP1A1 activity and the MROD assay for CYP1A2 activity. Liver from PCB-treated AhrbCyp1a2(+/-) was used as a positive control whereas Cyp1a1(-/-) and Cyp1a2(-/-) knockout mice served as the respective negative controls. We compared traditional methods used for liver tissue (microsome purification) and a modified EROD assay and found higher enzyme activities in liver microsomes from Cyp1a1(-/-) mice, indicating this is a non-specific test for CYP1A2 activity.
and L.

Environmental exposure to toxic chemicals during early fetal development has been known to manifest long lasting adverse effects for several decades. We hypothesized that combined exposures to pesticides used in households and to nicotine in cigarettes may have adverse synergistic outcome in both the mother and developing fetus. We studied the effects of combined exposure to chlorpyrifos (0.2 mg/kg) and nicotine (1mg / kg) with appropriate controls on the developing rats. Following parturition from exposed mothers, the brains of the new born litters were dissected out to isolate different tissues from the brain. Total RNA from the cerebellum was isolated and global gene expression analysis was done using cell cycle specific super arrays from Qiagen, employing standard molecular techniques. Some of the major findings include the following: A) There were a number of cell cycle genes altered in various treatment groups. B) cdc25b was significantly up-regulated in nicotine treatment group, but was down-regulated in both chlorpyrifos and combined treatment group. C) cdk5 was up-regulated in chlorpyrifos alone and combined treatment groups. D) Up-regulation of p27kit1 and p15ink4b were noted in combined treatment group and not in nicotine or chlorpyrifos alone groups. This data indicates complex pathways of inhibition and acceleration of cell cycle. Further studies with those genes identified as biomarkers from this study can be useful for developing molecular tools for diagnostics and therapeutics for toxicities involving chlorpyrifos and nicotine.

1379 Differential Gene Expression in the Neonatal Rat Brain following Combined Maternal Exposure to Chlorpyrifos and Nicotine.

T. V. Damodaran1, 2, J. Bradley2 and M. B. Abou Donia1, 2, Biology, NCCU, Durham, NC; 1Pharmacology and Cancer Biology, DUMC, Durham, NC.

1380 The Effect of Embryonic Exposure to Deltamethrin on the Dopaminergic System and Swim Activity in the Zebrafish.

T. S. Kung, J. Richardson, K. R. Cooper and L. A. White, Rutgers University/UMDNJ, New Brunswick, NJ.

Pyrethroids are commonly used insecticides that are generally considered to pose little risk to human and environmental health. However, there is increasing concern that children are more susceptible to the adverse effects of pesticides. We developed the zebrafish model to test the hypothesis that developmental exposure to low doses of pyrethroid pesticide deltamethrin alters dopaminergic gene expression and leads to persistent behavioral alterations. Zebrafish embryos were treated with deltamethrin at doses below the LOAEL (0.25-0.5 μg/l), during the embryonic period (3-72hpf) using a static non-renewal water exposure. After 72hpf, embryos were either harvested for RT-qPCR or reared in pesticide free water until adulthood. At 72hpf, deltamethrin treated embryos had significant increased expression of the dopamine transporter (DAT) and dopamine receptors D1 and D2. We quantified the swim activity of 2-week old zebrafish (larvae) and 1-year old zebrafish (adults) using the Noldus Ethovision system and observed significant increases in swim activity in both larvae and male adults that had been developmentally exposed to deltamethrin. To determine if the increased swim activity at the 2-week stage is mediated by deltamethrin’s effect on dopaminergic system, we treated deltamethrin exposed and control larvae to methyldopa, a DAT agonist. Methylphenidate had a significant stimulating effect on control larvae and a significant suppressive effect on larvae developmentally exposed to deltamethrin. To further investigate the role of the DAT, embryos were injected with a DAT morpholino to transiently reduce mature DAT transcript levels during the developmental period. DAT knockdown alone results in significant increases in swim activity at 2-weeks of age which is significantly reduced in deltamethrin treated embryos. Our data suggest that exposure to deltamethrin during the embryonic period results in persistent behavioral changes and is likely due to an interaction between deltamethrin and the dopaminergic system. NIEHS R56ES018863, T32ES007148, R01ES015991

1381 Dysregulation of Redox Homeostasis by Paraquat in Rat Developing Brain.

M. Rathnam, L. Chen, A. Fowler, A. Riar, M. Narasingam, L. Mahaimanathan and G. I. Henderson, Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX.

Immature brain is susceptible to paraquat (PQ) induced oxidative stress resulting in neuron damage. We hypothesize that dysregulation of glutathione (GSH) homeostasis is a key factor in these neurotoxic responses. To test this, postnatal day 4 (PN4) rat pups were chosen as the period between birth and PN10 includes active brain development equivalent to that in the human 3rd trimester. Initially, LD50 levels on PN4 were evaluated. Sprague Dawley rat pups were grouped as control, vehicle control, and PQ was administered (I.P) at 10, 25 and 50 mg/kg. At 24h post-treatment, declines in viability by 45% and 100% were observed in the 25 and 50 mg/kg PQ groups, respectively. During the 24h period, a decline in motor activity was also noticed in these two high dose groups. For subsequent studies the 10 mg/kg dose was used for all time points (2-24 hours). Body weight was unchanged compared to both controls (p<0.05) Brain PQ levels peaked at 4h (140μg/mg protein) as assessed by HPLC. In brain, a significant (p<0.05) increase in reactive oxygen levels (ROS) was observed by DCF-DA fluorimetry as early as 6h which persisted to 24h. Increased oxidized form of GSH (GSSG) was observed at all time points (2, 4, 6, 8 and 24h) while decreased reduced glutathione (GSH) was noted only at 24h. These changes were reflected in decreased GSH/GSSG ratios with an associated increase in brain PARP-I levels (50%) at 24h. These results indicate altered redox homeostasis and DNA damage in PQ exposed brain. The studies have established a role for oxidative stress in PQ induced neurotoxicity in developing brain and a model for studying PQ neurodevelopmental toxicity.

1382 Neonatal Bisphenol A (BPA) Exposure Alters Sex-Specific Estrogen Receptor 2 (ERβ) mRNA Expression in the Postnatal Rat Brain.

J. Cao, L. Joyner and H. B. Patisaul, Biology, North Carolina State University, Raleigh, NC.

Perinatal life is a critical window for sexually dimorphic brain organization, which is profoundly influenced by endogenous steroids, most notably estrogen. Exposure to endocrine disrupting compounds may disrupt this process, resulting in compromised reproductive physiology and altered sociosexual behavior in adult life. To test the hypothesis that Bisphenol A (BPA) exposure specifically confined to the neonatal period impairs ESR expression through weaning, the present study assessed the impact of exposure (on the first three days of life) to 10 μg estradiol benzoate (EB), 50 μg/kg BPA (LBPA) or 50 μg/kg HBPA (EBP2) expression in the bed nucleus of the stria terminalis (BNST), the paraventricular nucleus (PVN) and the anterior medial amygdala (MeA) in the postnatal rat brain. In unexposed animals, ESR2 expression decreased in the BNST and increased in the PVN from postnatal day (PND) 0 to 19 in both sexes. Sexually dimorphic ESR2 expression was transient in the neonatal BNST and PVN, EB decreased ESR2 expression in females in the BNST, and in both sexes in the PVN. In the BNST, ESR2 expression was decreased in males by LBPA and in females by HBPA on PND 10. LBPA increased ESR2 expression in females but decreased it in males on PND 10, thus reversing the sexually dimorphic expression pattern observed in the vehicle controls. In the MeA, BPA mimicked the EB effect and decreased ESR2 expression levels on PND 4. Collectively, these data demonstrate that the neonatal period is vulnerable to BPA exposure, and BPA does not simply mirror the impacts of EB, but rather, disrupted ESR2 expression in a dose, temporal, and region specific manner. The functional significance of this altered ESR2 expression may underlie reported disruptions of adult reproductive deficiencies and abrogated sex differences in sociosexual behavior across the lifespan. Further work will also be needed to establish if these effects can be induced via exposures which recapitulate human exposure conditions and doses.

1383 Effects of Different Endocrine Disruptor Mixture on Gene Expression in Neonatal Rat Brain Regions: Focus on Developing Excitatory Synapses.

W. Lichtensteiger1, G. Basserti-Gaille2, O. Fauss3, J. Boberg4, S. Christiansen4, U. Hass4, A. Kortenkamp4 and M. Schlempp4, 1GREEN Team and Institute of Anatomy, University of Zurich, Zurich, Switzerland; 2National Food Institute, Technical University of Denmark, Søborg, Denmark; 3Institute for the Environment, Brunel University, Uxbridge, United Kingdom. Sponsor: T. Slotkin.

Brain development is regulated by sex hormones. In mammals, estradiol is thought to control male sexual brain differentiation, but recent data also indicate a role for androgen receptor-mediated mechanisms. Female brain development is dependent
on estrogens. It is not known how these processes are affected by real-world mixtures of endocrine disrupting chemicals (EDCs). We investigated effects of mixtures of 13 EDCs (T-Mix) and of mixtures of its estrogenic (E-Mix) and anti-androgenic (A-Mix) components, administered by oral gavage to rat dams from gestational day 7 until weaning. The mixture ratio was chosen to reflect high end human intakes (S. Christiansen et al., 2012). At postnatal day 6, during the last part of sexual brain differentiation, ex vivo microarray analyses were performed in medial preoptic area (MPO) of both sexes in the highest dose group, and real time RT PCR of selected mRNA species in MPO and ventromedial hypothalamus (VMH) of all dose groups. Microarray analyses in MPO revealed sex-specific effects on gene expression patterns that differed between all three EDC mixtures. Real time RT PCR of individual mRNA demonstrated treatment- and sex-dependent differences between MPO and VMH; effects were dose-dependent. Prominent are effects of all three EDC mixtures on the expression of genes encoding for proteins involved in excitatory glialmergenic synapse formation and function, including a number of genes identified as risk factors for autism spectrum disorders. Our study demonstrates differential responses of the developing brain to different types of EDC mixtures and points to excitatory synapse development as a new, potentially relevant focus. Supported by EU FP7 Framework Programme (CONTAMED).

1384 The Effect of Prenatal Exposure to Amorphous Nanosilica Particles on Neonatal Memory.

Y. Morishita1, Y. Yoshikawa1, K. Takao2,3, Y. Ago1, H. Sato1, N. Nojiri1, T. Tanaka1, T. Takuma1, T. Yoshida1, H. Nabeshi1, T. Yoshikawa1, S. Tsunoda1, T. Matsuoka1, M. Miyakawa1, K. Higashikawa1 and Y. Tsutsumi1,4,5,6,7.

1Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan; 2Division of Systems Medicine, Institute for Comprehensive Medical Science, Fushimi Health University, Toyokawa, Japan; 3Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan; 4Laboratory of Medical Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan; 5National Institute of Health Science, Setagaya-ku, Japan; 6Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Ikbaraki, Japan; 7MEI Center, Osaka University, Suita, Japan.

Nanomaterials (NMs) are increasingly being used in various fields for their unique functions. Therefore, it is important to ensure the safety of NMs to take advantage of their usefulness. Previously we identified the hazard that intravenous injection of several NMs to pregnant mice might induce intrauterine growth retardation (IUGR). IUGR children are known to have high risks of contracting some diseases, such as neurological disorders. Thus, it is important to assess postnatal effects of prenatal exposure to NMs. In this study, we examined neonatal memory after in utero exposure to amorphous nanosilica particles (nSP), as one of the typical NMs. Pregnant mice were intravenously injected nSP. The body weight of pups were measured weekly. Working memory, reference memory, and context memory of pups were measured by eight-arm radial maze test, Barnes maze test, and fear conditioning test. Pups of nSP treated mice (nSP pups) had smaller body weight than control mice from birth to 30 weeks old. On the other hand, no difference was found on the scores of memory tests between nSP pups and control mice. These results suggest that in utero exposure to nSP might result in growth disorder of pups but have little effect on memory of pups.

1385 Sex-Dependent Impairment of Learning due to Exposure to Concentrated Ambient Particles.

L. L. Allen1, D. Weston1, K. Conrad1, G. Oberdorster2 and D. A. Cory-Slechta1.

Environmental Medicine, University of Rochester Medical School, Rochester, NY.

Multiple studies link air pollution to impaired cognition in humans and experimental animals. Our study sought to determine the effects of ultrafine (<100nm) concentrated ambient particles (CAPS) on learning in C57BL6 mice exposed to CAPS or filtered air for 2 weeks during early postnatal life with and without CAPS re-exposure as adults. Behavioral testing began at 2-3 mos of age using a repeated learning and performance paradigm that housed a series of three response levers (left, center, right) was located on the front wall of the chamber. During the repeated learning component of the paradigm, the required sequence at a mixture of 1 session, whereas a constant sequence was used in the performance component. Both male and female mice showed significant sequence-dependent learning impairments, but no alterations in the performance component, consistent with selective learning deficits. Postnatal female CAPS-exposed mice showed significant learning impairment in sequences requiring a right-center-left order, whereas male adult CAPS-exposed mice were impaired on learning sequences requiring a left-center-right order. Assessment of brain pathology in non-behaviorally tested litter-mates showed CAPS-related evidence of sex and brain-region dependent microglial activation, astroglisis, and neurochemical changes even several months post termination of exposure, the importance of which will be determined by histopathological examination and neurochemical analysis of the brains from CAPS-exposed mice that underwent behavioral testing. Collectively, these findings demonstrate long-lasting brain and behavioral toxicity in response to CAPS exposures, with impairments on the repeated learning and performance paradigm that are sex-, sequence-, and exposure period-dependent. They support the need for broader assessment of the role of CAPS exposure in nervous system diseases and disorders. Supported by T32ES007026, R21ES019105, P30ES01247.

1386 Effects of Maternal Inhalation of Gasoline Evaporative Condensates on Sensory Function in Rat Offspring.

1TAD/NB, US EPA, Durham, NC; 2EPHD, US EPA, Durham, NC.

In order to assess potential health effects resulting from exposure to ethanol-gasoline blend vapors, we previously conducted neurophysiologically assessment of sensory function following gestational exposure to 100% ethanol vapor (Herr et al., Toxicology, 2012). For comparison purposes, the current study investigated the same measures after gestational exposure to 100% gasoline evaporative condensates (GVC). Pregnant Long-Evans rats were exposed to 0, 3K, 6K, or 9K ppm GVC vapors for 6.5 hrs/day over GD9 – GD20. Sensory evaluations of male offspring began around the age of 3 months (peripheral nerve function (compound action potentials, NCV), somatosensory (cortical and cerebellar evoked potentials), auditory (brainstem auditory evoked responses), and visual evoked responses were assessed. Visual function assessment included pattern elicited visual evoked potentials (VEP), VEP contrast sensitivity, and electroretinograms (ERG) recorded from light-adapted (scotopic) and light-adapted (photopic) flashes, and UV and green flicker. Although some minor statistical differences were indicated for auditory and somatosensory responses, these changes were not consistently dose- or stimulus intensity-related. Scotopic ERGs had a statistically significant dose-related decrease in the b-wave implicit time. All other parameters of ERGs and VEPs were unaffected by treatment. All physiological responses showed changes related to stimulus intensity, and provided an estimate of detectable levels of change. The results show that gestational exposure to GVC vapors did not result in large decrements in peripheral nerve, somatosensory, auditory, or visual function when the offspring were assessed as adults. However, the alterations in ERG b-waves may indicate subtle changes in retinal function. Additional studies are in progress to evaluate the effects of exposure to the evaporative condensate vapors from a blend of ethanol (15%) and gasoline (85%). This is an abstract of a proposed presentation and does not necessarily reflect EPA policy.

1387 Abnormality in Fear-Related Emotional Function in Mice Perinatally Exposed to a Low Dose of TCDD.

S. Benner1, A. Hajiyma2, Y. Zhang2, R. Kobayakawa2, K. Kobayakawa2, M. Kakeyama1 and C. Toyama1.

1Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; 2Osaka Bioscience Institute, Osaka, Japan.

An increasing trend of prevalence of developmental disorders, psychiatric illnesses and associated pathological behaviors has been suspected of being induced at least partly by environmental chemical exposure during development. We have previously reported the lasting consequences of perinatal exposure to a low dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in brain functions, such as cognitive and social-emotional defects in mice. Nevertheless, the effects on emotional function have not yet been clearly defined. The current study thus aimed to examine whether a perinatal TCDD-exposure at an oral dose of 0.6 μg TCDD/kg on GD 12.5 in C57BL6 dams affects emotional function in offspring. Eleven brain regions were microdissected by the punch out technique for determination of the basal dopamine contents using HPLC-ECD. Behavioral responses toward acquisition and innate fear were analyzed using fear conditioning and olfactory-based fear stress tests. A depression-like behavior was assessed using forced swim test. It was found that the TCDD-exposure enhanced dopamine level in the ventral tegmental area and ventral hippocampus. These mesolimbic structures are thought to regulate behavioral responses toward external stimuli by processing internal information, such as memory and emotion. A mesolimbic dopaminergic balance is particularly sensitive to aversive stimuli such as fear. Accordingly, the TCDD-exposed mice exhibited abnormal behavioral responses to both acquired and innate fear. However, no apparent alterations in the basal serotonin levels were found in the examined regions. In correlation, no abnormalities associated with serotonergic dysfunction were observed in the brain regions involved in regulating fear-related emotion.
Neonatal Exposure to Perfluorohexane Sulfonate (PFHxS) in Mice Alters Neuroprotein Levels Essential for the Developing Brain.

I. Lee and H. Viberg, Environmental Toxicology, Uppsala University, Uppsala, Sweden.

Perfluorohexane sulfonate (PFHxS) is a perfluorinated compound (PFC) used as an industrial additive. The chemical properties of PFCs make them suitable as surfactants and oil- and water repellents, and they are frequently used in products for packaging and as protective coatings. However, the same properties account for their extreme physico-chemical stability, making them practically non-biodegradable, which has generated a worldwide environmental spread and concern. Since we recently have seen that other PFCs, like perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), can induce developmental neurotoxic effects, the purpose of the present study was to explore if neonatal exposure to PFHxS affects specific neuroprotein levels e.g. calcium/calmodulin-dependent kinase II (CaMKII), growth-associated protein-43 (GAP-43), synaptophysin and tau, in the mouse brain. Male and female NMRI mice were exposed, on postnatal day 10, to a single oral dose of 6.0 or 9.2 mg PFHxS/kg bw and control animals received a 20% fat emulsion vehicle. The animals were euthanized 24h or 4 months after PFHxS exposure and the neuroprotein levels in hippocampus and cerebral cortex were analyzed.

24h after exposure there were significant differences seen in the neuroprotein levels compared with control and the neurotoxic effects differed between hippocampus and cerebral cortex. Increased levels of CaMKII, synaptophysin and tau in the hippocampus and decreased levels of GAP-43 in the cerebral cortex were measured for both sexes. The effects on the protein levels in adult animals were less pronounced than in the neonates. The results from the present study show that a single oral dose of 6.0 or 9.2 mg PFHxS/kg bw and control animals received a 20% fat emulsion vehicle. The animals were euthanized 24h or 4 months after PFHxS exposure and the neuroprotein levels in hippocampus and cerebral cortex were analyzed.

Prenatal Exposure to 1-Bromopropane Changes Basic Excitability of the Hippocampus and Inhibits the Behaviors Induced by Kainic Acid and Pentylenetetrazole in the Rat Offspring during Lactation Period.

Y. Fueta1, S. Ueno1, T. Ishido1, M. Kanemitsu2 and H. Hori1. 1University of Occupational and Environmental Health, Kitakyushu, Japan; 2Kyushu Institute of Technology, Kitakyushu, Japan.

1-Bromopropane (1-BP), a substitute for specific chlorofluorocarbons, is mainly used for degreasing agents and spray adhesives. 1-BP exhibits central neurotoxicity in adult humans. Animal studies have shown reproductive/developmental toxicity as well as neurotoxicity. However, developmental neurotoxicity remains unclear. We aimed to clarify whether prenatal exposure to 1-BP affects development of neuronal excitability and behaviors in the juvenile offspring. 1-BP was inhalingly exposed to pregnant Wistar rats from day 1 to 20 (6 h/day) with the concentration of 0, 400, or 700 ppm. On the days of PND 13, 14 and 15, field potentials were recorded from the CA1 area of hippocampal slices obtained from the control and 1-BP groups. Stimulation/response curves of field excitatory postsynaptic potential and those of population spike (PS) enhanced, and the ratios of paired-pulse responses of PS decreased in the 1-BP groups at PND14. PTZ or KA injection to the PND14 offspring resulted in a significant inhibition of the drug-induced behaviors in the 1-BP groups. Our results provide the evidence that prenatal exposure to 1-BP metabolites affects the central nervous system (CNS) of the offspring during lactation period, suggesting developmental modification of neuronal networks and changes in the excitability of the CNS during the lactation period.

Neonatal Exposure to a Single Low Dose of Ionising Radiation Causes Persistent Disruptions in Cognitive Abilities and Increased Levels of Tau in Mice.

S. Baratovic1, B. Stenerlov2, S. Sundell-Bergman3, A. Fredriksson1, H. Viberg1 and P. Eriksson1. 1Environmental Toxicology, Organismal Biology, Uppsala, Sweden; 2Radiology, Oncology and Radiation Science, Biomedical Radiation Sciences, Uppsala, Sweden; 3Soil and Environment, Uppsala, Sweden.

Ionising radiation (IR) is extensively used in the medical field for treatment and diagnostics. Concern has been raised about possible negative consequences from low dose exposure to IR during critical phases of perinatal and/or neonatal brain development. The brain growth spurt, which is characterized by maturation of axonal and dendritic network, establishment of neural connections and formation of new motor and sensory abilities, occurs perinatally in humans and neonatally in mice. By using the neonatal mouse as an animal model we are able to study the effect of IR during early periods of brain development and which consequences it has for the adult animal.

Neonatal NMRI mice were irradiated (0; 0.35 and 0.5 Gy) at one single occasion on postnatal day 10. At 2- and 4-months of age, spontaneous behaviour was tested in a novel home environment and parameters observed were locomotion, rearing and total activity. Analyses of important neuroproteins in cerebral cortex were performed 24h following irradiation (0 and 0.5 Gy) and at 6-months of age. Observation of spontaneous behaviour revealed a significantly deranged behaviour in 2- and 4-month old mice of both sexes irradiated with 0.35 or 0.5 Gy in a dose response related manner. The observed reduced activity during the beginning of the test period and increased activity at the end of the test period indicates a lack of habituation capacity and disrupted cognitive functions. Neuroprotein analyses of cerebral cortex 24h after irradiation and at 6-months of age showed significantly increased level of tau in mice irradiated with 0.5 Gy compared to controls. This demonstrates that a single dose of IR, given at a defined critical period during brain development, is sufficient to cause persistently reduced cognitive functions and increased levels of tau in mice.

CYP1A1_CYP1A2(-/-) Double Knockout Mice Exhibit Impaired Motor Function.

A. Lang, H. Garber, C. Strohmaier, K. Taylor and C. P. Curran. Biological Sciences, Northern Kentucky University, Highland Heights, KY.

CYP1A1 and CYP1A2, members of the cytochrome P450 superfamily, are key detoxifying enzymes normally expressed in the liver. Though they are also reportedly expressed in the cortex and cerebellum of the brain, their physiological function in the brain remains unknown. Previous work in our lab uncovered motor deficits in Cyp1a2(-/-) knockout mice. To confirm those findings, we obtained Cyp1a1_1a2 (-/-) double knockout mice which had the Cyp1a2 gene deleted using a different genetic strategy. We compared Cyp1a1_1a2 (-/-) double knockout mice with wild-type Cyp1a1_Cyp1a2 (+/+) mice using a battery of four behavior tests: The rotorod test primarily identifies deficits in cerebellar function related to balance and motor coordination. Gait analysis, adhesive removal, and pole climbing tests primarily identify impairments in the nigrostriatal pathway, which is a major dopaminergic pathway related to motor function. We found significant impairments in Cyp1a1_1a2 (-/-) double knockout mice in rotorod testing and adhesive removal. Male knockouts demonstrated the greatest impairment in adhesive removal compared with females. Interestingly, Cyp1a1_1a2 (-/-) double knockout mice had shorter latencies in the pole-climbing test. This might be explained by a difference in motivation or anxiety, because the animals climb down a 50cm pole to return to their home cage. The gait test revealed that male knockouts showed a gait test for stride length, stride width and stride differential. Together, these data suggest a novel function for CYP1A2 in brain regions important to normal motor function.

Aryl Hydrocarbon Receptor (AhR) Deletion in Cerebellar Granule Neuron Precursors Impairs Motor Function and Neurogenesis.

The AhR is a ligand-activated member of the basic-helix-loop-helix (bHLH)/PER-ARNT-SIM transcription superfamily that regulates the toxicity of 2,3,7,8- tetachlorodibenzo-p-dioxin (TCDD). Increasing evidence suggests that AhR influences the development of many tissues, including the central nervous system. In particular, the AhR has been reported to be involved in regulating critical stages of neurogenesis. Our previous data suggest that inappropriate and/or sustained AhR activation by TCDD disrupted granule neuron precursor (GNP) development. Moreover, studies in AhR knockout mice suggested that GNP maturation was abnormal. This study tested the hypothesis that the AhR endogenously controls GNP maturation in the developing cerebellum. We created a GNP-specific AhR knockout mouse (AhRx/fxs/Math1ICre+/-) utilizing the Cre-LoxP conditional knockout strategy, then examined motor function and GNP maturation. GNP's in AhRx/fxs/Math1ICre+/- exclusively expressed Cre recombinase in the developing mouse cerebellum and the intrachromosomal recombination of AhR alleles by Cre recombinase resulted in decreased AhR protein expression. Behavioral studies revealed that AhRx/fxs/Math1ICre+/- mice displayed repetitive motor activity and abnormal rotarod performance. Additionally, DNA content, a surrogate measure of
cell number, was reduced in PND10, PND21, and PND60 in AhR/βx3/MthICre+ mice compared to controls, suggesting that cell number were diminished. Following AhR excision, there were fewer proliferating GNP s in the external germinal layer of the cerebellum at PND10, which resulted in a reduction of granule neurons reaching their final destination in the adult cerebellum. These results suggest that AhR activity plays a role in regulating granule neuron number, possibly by promoting GNP cell cycle activity, which ultimately impacts cerebellar function. These studies will provide novel insights for understanding mechanisms of dioxin-mediated neurotoxicity in the developing cerebellum.

1393 Assessment of Brain Morphometry Data Using Multivariate Statistical Analysis Methodology.

W. Miner, T. J. Vidmar and L. Freshwater, BioSTAT Consultants, Portage, MI.

As required by EPA guidelines, brain morphometry is an area of interest in screening chemicals for developmental neurotoxicity. Brain morphometry data includes multiple measurements from the same animal such as brain weight, brain width, and brain length. These measurements are typically resource intensive and costly and therefore often made on a small subset of animals. Univariate statistical methodology (eg. ANOVA) treats these measurements as independent of one another and analyzes each separately. By contrast, using multivariate analysis of variance, the potential error resulting from conducting multiple univariate tests can be avoided. Multivariate statistical analysis evaluates all measurements simultaneously, taking advantage of the correlation between those measurements. In this simulated study, female brain morphometry data were generated in SAS® using the means, standard deviations, and correlations between measurements observed in an actual study. Three dose groups (control, low, and high) were created. The simulation was designed such that individual brain morphometry components suggested the presence of dose-related increasing trends. A univariate analysis of variance was performed on each of the components: brain weight, brain width, and brain length. The univariate analysis showed no significance for any of the three brain measurements at the 5% significance level. Performing a multivariate analysis of variance yielded an overall significant treatment effect (p < .05). Pairwise comparisons provided evidence that brain morphometry for both the low and high dose groups was significantly higher when compared to the control group. In the simulated study, the univariate analysis of variance fails to detect biologically relevant treatment effects in brain morphometry measurements. The multivariate analysis, which addresses the measurements concurrently, identifies statistically significant differences among the dose groups. These results suggest a multivariate analysis should be used to analyze brain morphometry data.

1394 Mother’s Environmental Tobacco Smoke Exposure during Pregnancy and Externalizing Behavior Problems in Children.

L. Liu1, P. Leung2, L. McCaulay1 and J. Pinto-Martin1, School of Nursing, University of Pennsylvania, Philadelphia, PA; 1Chinese University of Hong Kong, Hong Kong, China; 1Nell Hodgson School of Nursing, Emory University, Atlanta, GA.

Background: While the impact of active maternal smoking during pregnancy on child health has been well investigated, the association between maternal passive smoking, or environmental tobacco smoke (ETS), and behavioral development of offspring is less clear. This study examines the association between maternal ETS exposure during pregnancy and child behavior problems.

Methods: As part of the Jintan China Cohort Study, mother-child pairs (n=646) were included in the analyses. Maternal ETS exposure at home, the workplace, and other places during pregnancy was retroactively assessed when children were 5-6 years old. Behavior was assessed via the Child Behavior Checklist when children were 5-6 years old. Logistic regression models were constructed to examine associations between maternal exposure to ETS during pregnancy and internalizing and externalizing behavior problems, adjusting for potential confounders including child sex and parental characteristics.

Results: 37% of mothers reported ETS during pregnancy. Children of mothers exposed to ETS during pregnancy had higher scores for externalizing and total behavior problems with 25% of children whose mothers were exposed to ETS, compared to 16% of children of unexposed mothers. After adjusting for potential confounders, ETS exposure was associated with a higher risk of externalizing behavior problems in offspring of exposed mothers (OR=2.08, 95% confidence interval [CI] 1.27-3.43). Analysis after multiple imputations and sensitivity analysis further verified the association, but no dose-response relationship was found. ETS exposure, however, was not associated with internalizing or total behavior problems.

Conclusion: This study suggests that maternal ETS exposure during pregnancy may impact child behavioral development, particularly externalizing behaviors.

1395 Patterns of Clinical Bioindicators in Rat Serum following Acute Exposure to Pesticides of Different Chemical Classes.

D. W. Herr1, N. A. Stewart2, D. F. Lyke1, K. L. McDaniel1 and V. C. Moser1, TAD/NB, US EPA, Durham, NC; 1 Contractor, Durham, NC.

There is interest in bioindicators of adverse outcomes in safety assessment and translational research. Chemically-induced neurological effects may be reflected in specific neuronal changes and/or by general stress-like responses, and such bioindicators may be useful for measuring health impacts. We examined differential profiles of clinical bioindicators after acute treatment (po) with different pesticides (permethrin, B. thuringiensis, fipronil, imidacloprid, carbaryl, triadimefon). These same rats were evaluated for EEG changes (Lyke et al., Toxicologist, 2010, 2011, 2012, 2013). Rats were sacrificed after EEG testing. Serum samples were processed by Myriad RBM using their RodentMAP® and Rat MetabolicMAP® assays. Depending on the pesticide, 2-18 of 78 analytes were altered, and each pesticide produced a different pattern of changes. Discriminant analysis indicated that these alterations were shaped in a dose-dependent manner for each chemical. The data show that exposure to acute different classes of pesticides produced different patterns of changes in clinical bioindicators, which may be analyzed for linkages to biological pathways. This is an abstract of a presentation and does not necessarily reflect EPA policy.

1396 Acute Triadimefon-Induced Changes in the EEG of Long-Evans Rats.

We have reported that the non-stimulus driven EEG is altered differently by acute treatment with deltamethrin, permethrin, fipronil, or imidacloprid (Lyke and Herr, Lyke et al., Toxicologist, 2010, 2011, 2012) in non-restrained animals. In the current study, we examined the ability to detect changes in EEG activity produced by triadimefon, a triazole pesticide which inhibits sterol synthesis in fungal cell membranes and inhibits dopamine re-uptake in the mammalian nervous system. Adult male Long-Evans rats were implanted with epidural screw electrodes. After about 1 week recovery, non-restrained animals were gavaged with corn oil (vehicle) and tested for 2 days for acclimation. On day 3, the rats were dosed with 1 ml/kg corn oil, 75, or 150 mg/kg triadimefon and 1 h later. EEG was recorded as 30 segments of 2 s durations, transformed using a Fast Fourier Transformation, and the spectra averaged. These dosages have increased motor activity in Long-Evans rats in previous studies. Treatment with 150 mg/kg triadimefon increased the amplitude associated with Theta activity compared to controls (31% increase), and compared to 75 mg/kg triadimefon (27% increase), when recorded between the visual cortex and cerebellum. These results were different from the decreased gamma activity resulting from treatment with fipronil, increased gamma activity following treatment with permethrin, slightly decreased alpha activity with deltamethrin, and lack of changes after dosing with imidacloprid. The data show that triadimefon can alter CNS activity as measured by EEG, and the alterations may differ from some other pesticides. This is an abstract of a proposed presentation and does not necessarily reflect EPA policy.

1397 In Vitro Assessment of Parkinsonian Neurodegeneration by Dinitrophenolic Herbicides in PC12 Cells.

H. J. Heusinkveld1, A. C. van Vliet1, P. C. Nijssen2 and R. H. Westerink1, 1Neurotoxicology Research Group, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands; 1Department of Neurology, Elisabeth Hospital, Tilburg, Netherlands.

Parkinson’s disease (PD) is the most prevalent human neurodegenerative disorder after Alzheimer’s disease affecting 1-2% of the population over 65 years of age. In several epidemiological studies, chronic exposure to environmental pollutants, in particular pesticides, has been linked to neurodegeneration and the development of PD, though the underlying mechanisms are largely unknown.

Research directed by neurologist Dr Peter Nijssen encountered PD patients clustered in a remote rural area in the Netherlands, both occupationally and non-occupationally involved in agriculture, with relatively high exposure to pesticides. Among the pesticides, (dinitrophenolic) herbicides, were identified as common de-

1, 2Contractor, Durham, NC.

1, 2Contractor, Durham, NC.
that dinitrophenolic herbicides induce moderate cytotoxicity via calcium-depend-ent activation of caspase-mediated apoptosis as well as activation of key proteins characteristic for Parkinsonian neurodegeneration in surviving dopaminergic cells. This leads to the hypothesis that human exposure to dinitrophenolic herbicides may be linked to the pathophysiology of PD.

Funding: EU (ACROPOLIS, KKBE-245163) and the Dutch "International Parkinson Fonds" (PAGES).

1398 Protein Cysteine Oxidation and Dopaminergic Cell Death Induced by Pesticides.

J. Navarro-Yepes1,2, L. M. Del Razo1, R. Franco2 and B. Quintanilla-Vega3,1Toxicology Department, CNVESTAV-IPN, Mexico City, Mexico;2Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE.

Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra, which is linked to mitochondrial dysfunction, oxidative stress, protein aggregation and impairment in protein degradation pathways. Epidemiological studies suggest that chronic exposure to pesticides is associated with an increased risk of developing PD. However, the underlying mechanisms have not been precisely elucidated. Oxidative protein modifications can modulate the activation of cell death pathways. Thus, we explored the role of oxidative cysteine modifications in dopaminergic cell death induced by pesticides. Human neuroblastoma cells (SK-N-SH and SH-SY5Y) and the fetal human mesencephalic cell line (LUHMES, Lund human mesencephalic) were exposed to paraquat (PQ), rotenone and dieldrin. Compared to neuroblastoma cells, LUHMES cells exhibited greater sensitivity to all pesticides independent from their differentiation state. Apoptotic cell death induced by pesticides was paralleled to oxidative stress and a decrease in glutathione content. Cell death was prevented by glutathione ethyl ester. PQ induced protein alterations in both sulfenic acid (PSSOH) and glutathionylation profiles (PSSG). Mass spectrometry of immunoprecipitated PSSOH/PSSG proteins identified several proteins from the ubiquitin/proteasome degradation system and molecular chaperones as being modified by PSSOH and PSSG in response to PQ, including E3 ubiquitin-protein ligases (SIAH1, TRIM13, RNF25, RNF139, RNF139, HERC2, BRE1B), ubiquitin hydrolases (USP47, USP24), ubiquitin conjugating enzymes (UBE20), and Hsp40 co-chaperones (DNAJB4, DNAJC11). The expression of PSSG in response to PQ was dependent in a concentration dependent manner by PQ. Results suggest a role for protein cysteine oxidation (sulfenylation and/or glutathionylation) in the regulation of the ubiquitin/proteasome and chaperone-mediated folding systems in response to pesticide exposure. Supported by CONACIT-Mexico (Grant #104316).

1399 Aldehyde Dehydrogenase Dysfunction Increases Parkinson's Disease Risk via Gene-Environment Interactions.

A. G. Fitzmaurice1,2, S. L. Rhodes3, M. Cockburn4, B. Ritz5 and J. M. Bronstein5,1Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA;2Molecular Toxicology, University of California Los Angeles, Los Angeles, CA;3Epidemiology, University of California Los Angeles Fielding School of Public Health, Los Angeles, CA;4Preventive Medicine, Keck School of Medicine of University of California Los Angeles, Los Angeles, CA;5Greater Los Angeles Veterans Administration Medical Center, Los Angeles, CA.

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. We recently reported that exposure to the fungicide benomyl resulted in dopaminergic neuronal loss, aldehyde dehydrogenase (ALDH) inhibition, and an epidemiologic association with increased PD occurrence. Since the dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (i.e., DOPAL) is highly toxic and an ALDH substrate, ALDH inhibition might contribute to the particular vulnerability of dopaminergic neurons. To investigate the potential relevance of this mechanism, we developed a novel ex vivo neuronal assay to screen pesticides for ALDH inhibitory activity. All dithiocarbamate tested (e.g., mancozeb, maneb, ziram), two dicarbamoyl derivatives (captan, folpet), and two imida-zoles (benomyl, triflumizole) inhibited ALDH activity, potentially via metabolic byproducts (e.g., carbon disulfide, thiophenone). We developed a geographic information system method employing state-manufactured commercial pesticide use reports to estimate patient exposures to specific pesticides from 1974-1999. Exposures to ALDH-inhibiting pesticides (i.e., from the screen) were associated with dose-dependent twofold to fourfold increases in PD risk. Patients were geno- typed for variation in the mitochondrial ALDH2 gene, and haplotype analyses of six single nucleotide polymorphisms revealed that ALDH2 variation potentiated PD risk for people working where ALDH-inhibiting pesticides were sprayed liberally. This ALDH model for PD etiology might help explain the selective vulnerabil-ity of dopaminergic neurons in PD and provide a potential new mechanism through which environmental toxicants contribute to PD pathogenesis.

1400 Pesticide-Linked Parkinson’s Disease: Using Drosophila to Build a Novel In Vivo Model of Paraquat, Maneb and Ziram Exposure.

C. A. Martin1, A. Barajas2 and D. Krantz2,1Molecular Toxicology, University of California Los Angeles, Los Angeles, CA;2Neurobiology, University of California Los Angeles, Los Angeles, CA.

The vast majority of Parkinson's disease (PD) cases are sporadic and environmental exposure to pesticides have long been suspected to contribute to PD development, though the disease etiology remains poorly understood. Recently, epidemiological data has supported this and revealed that individual exposures to the pesticides ziram, maneb, and paraquat increase PD risk. Interestingly, it appears that these pesticides interact synergistically and exposure to all three pesticides increases PD risk up to three-fold. We are using the model organism Drosophila melanogaster to study the connection between pesticide exposures and the neuronal dysfunction and dopaminergic cell loss characteristic of PD. We find that combined, but not individual, chronic exposures to maneb and paraquat leads to significant dopaminergic neuron loss. To understand how neuronal dysfunction may contribute to a PD phenotype, we complement this approach by utilizing the Drosophila neuromuscular junction. This powerful tool has allowed us to explore the way pesticide exposures may more subtly affect neuronal physiology and behavior in an intact synapse. We report that ziram exposure significantly alters synaptic vesicle fusion and reuptake, processes that are essential for proper neuronal signaling. Ziram has been shown to inhibit the E1 ligase, which is required for targeting proteins to the proteasome for degradation. We find that inhibiting the proteasome increases synaptic vesicle fusion in a similar manner to ziram, implying a shared mechanism of action. However, it remains unclear if it is ziram's inhibition of E1 itself or ziram's downstream effect on the proteasome that is responsible for this synaptic phenotype. Ongoing investigations are exploring these possible neurotoxic mechanisms of action and may help elucidate the interrelationship between ziram, neuronal dysfunction, and early neurotoxic mechanisms that could initiate a PD phenotype.

M. Butt1, P. Borham1, C. Breckenridge2, L. Smith1, N. Sturgess1 and J. Wolf3,1Syngenta, Bracknell, United Kingdom; 2Syngenta, Greensboro, NC; 3Tox Path Specialist, Frederick, MD; 4EPL, Sterling, VA.

A number of publications have reported that the i.p. administration of paraquat (PQ) to rodents (normally male C57Bl6 mice; up to 3 x 10 mg/kg) results in a loss of dopaminergic neurons from the substantia nigra pars compacta (SNpc), which is the primary area of neuropathological damage in Parkinson's disease (PD). We have conducted studies in the male C57Bl6 mouse examining the effect of high i.p. doses (up to the maximum tolerated dose of 3 x 25 mg/kg) of PQ looking not only for neuronal cell loss, but also for evidence of striatal neuronal changes and pathological changes using stains to detect disintegrating neurons and neuronal processes and the expected astrocyte/microglial activation in response to neuronal cell damage. Mice were administered paraquat dichloride in 1, 2 or 3 occasions (separated by one week) at doses of 10, 15 or 25 mg/kg. A relatively low dose of N-1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 10 mg/kg administered i.p. 4 times in a single day at 2 hr intervals) was dosed to a separate group as a positive control. Studies were conducted to GLP and assessment of toxicological endpoints was by individuals blinded to treatment group. No consistent stereolog-ical evidence for a loss of tyrosine hydroxylase positive (TH+) dopaminergic neu-rones in the SNpc was observed in the PQ treated mice. PQ did not alter the con-centration of striatal dopamine or its metabolites. Over a range of time points (4-168 hrs post-dose), there was no evidence of PQ-induced neuronal degeneration in the SNpc, degenerating processes in the striatum or apoptotic cell death; astrocytes and microglia were not activated. In the MPTP treated mice the number of TH+ dopaminergic neurons in the SNpc was reduced, striatal dopamine was re-duced and significant pathological changes, including necrotic neurons and astrocyte/microglial activation in the SNpc, were consistently observed. These results bring into question the use of PQ mouse studies as a robust model for PD/parkin-sonism.
1402 Repeated Exposure to Paraquat Affects the Neural Behavior in Male C57BL/6 Mice.

D. Lou, Q. Zhao, M. Huang, and Z. Zhou, Department of Occupational Health Sciences and Toxicology, Fudan University, Shanghai, China; Center of Disease Control in Minhang District, Shanghai, China; Department of Environmental and Occupational Health Sciences, Ningxia Medical University, Yinchuang, China.

Epidemiological studies have revealed that neural degenerative diseases such as Parkinson disease are typically influenced by genetic and environmental factors, while little is known about the environmental factors. The broad application of paraquat (PQ) has given rise to wide public concern on its potential to damage the nigrostriatal dopaminergic (DA) system because its chemical structure resembles that of the well-known DA neural toxicant MPP⁺. We used male C57BL/6 mice (aged 8 weeks and weight 20 ± 2g) to examine the effects of PQ oral exposure on neural behavior. The Society’s criteria for the care and use of laboratory animals were used for all the experiments in this study. After treated with normal saline (vehicle) and PQ (5mg/kg, 10 mg/kg or 20mg/kg) daily for 30 consecutive days, no significant differences in the body weight gain as well as the brain coefficient were observed among different dose groups. The transmission electron microscopy showed that subcellular structures of DA neurons were impaired when exposed to the high dose of PQ. The Open Field test revealed reduced locomotor activity and exploratory drive with the increase of PQ concentrations. Cognitive assessments were conducted in all the groups of mice via Morris Water Maze, no statistically significant difference among treatment groups was shown in the avoidance latency, although a trend toward less learning can be observed. On probe trial, PQ-treated mice did show a significant preference for the correct quadrant. Together, the functional observational battery showed treatment-related, but not necessarily dose-related changes in the mice’s reactivity and activity. Thus, we proposed that repeated exposure to PQ can induce neurochemical and persistent neurobehavioral changes.

(Supported by NSFC81072324)

1403 Protective Effect of Edaravone Pretreatment against Mancozeb Cytotoxicity in Rat Hippocampal Astrocytes.

L. D. Trombetta and N. Ruparel, Pharmaceutical Sciences, St. John’s University, Queens, NY.

Mancozeb (manganese-zinc ethylenebis(dithiocarbamate)) is a polymeric dithiocarbamate fungicide that has been used commercially for decades. A number of studies have shown this agent to cause neurotoxicity that is linked to oxidative stress. The objective of this experiment was to study the protective effects of edaravone (S-Methyl-1-phenyl-2-pyrazoline-5-one) on rat hippocampal astrocytes after mancozeb insult. Edaravone has been demonstrated to be a free radial scavenger and inhibits cerebral edema and infarction after brain ischemia. Rat hippocampal astrocytes maintained in Dulbecco’s modified Eagle’s medium with 10% FBS were exposed to a range of concentrations of MAN-2A dithiocarbamate for one hour at 37°C. Viables 23 hrs post-treatment with 4uM, 8uM, 16uM, and 24uM doses were 94%, 82%, 34%, and 20%, respectively. The LC50 was found to be 14.7 uM. For further experiments, treatment with 12uM mancozeb was chosen. Cells pre-treated with edaravone (10uM, 80uM, 160 uM, 320uM) for 24 hours, and then treated with 320uM mancozeb for 1 hour showed significant increases in viability at all doses of edaravone. The 320uM pretreatment of edaravone increased the viability by 63.7% when compared to the group treated with 12uM mancozeb alone. GSH studies showed that 12uM mancozeb treatment for 1 hr. decreased the GSH/GSSG ratio by 45.87%, however, when astrocytes were pretreated with 320uM Edaravone the GSH/GSSG ratio was significantly different from the group with mancozeb alone with a decrease of 36.84%. Edaravone pretreatment was shown to be protective against mancozeb cytotoxicity and this protection may involve a reduction in oxidative stress.

1404 Role of Alpha-Synuclein and Its Mutants on Dithiocarbamates Cytotoxicity.

Mn-containing dithiocarbamates, such as maneb (MB) and mancozeb (MZ), often seen in the agricultural industry, have been known to increase the toxicity of neurotoxic MPTP on dopaminergic neurons, which can lead to cell death and Parkinson-like symptoms. Dopamine transporter (DAT) is a key protein in MPTP’s toxicity by transporting the active metabolite (MPP⁺) into dopaminergic neurons; increasing the cell surface expression of DAT raises the uptake of MPTP. Alpha-synuclein, a protein that interacts with the dopamine transport, can regulate DAT trafficking and the DAT cell surface expression. Alpha-synuclein (wt) and its mutants (A30P and A53T) have been associated with Parkinson’s disease.

The aim of this study is elucidate the role of the alpha-synuclein and its variants on dithiocarbamates cytotoxicity. HEK 293 cells transfected with DAT and either alpha-synuclein or its mutants were treated with dithiocarbamates for 1 hour. Cell lysates from these treated groups and the control group, treated with phosphate buffered saline (PBS), were used for co-immunoprecipitation using anti-DAT antibody. The co-immunoprecipitated proteins were subjected to Western blot analysis, probed with alpha-synuclein and DAT antibodies. The integrated density values (IDV) of the alpha-synuclein were normalized to the IDV of the DAT. The PBS control was taken as 1.

We report roughly a 30% decrease in the DAT/alpha-synuclein interaction in the presence of the A53T mutant versus wild-type, but not in the presence of the A30P mutant. With dithiocarbamates, the interaction of DAT and alpha-synuclein (wt) was enhanced, with increases ranging from 50% to 200%. Cells transfected with A53T mutants respond to pesticides more dramatically than cells transfected with A30P mutants in increasing the interaction between the DAT and the alpha-synuclein.

1405 The Role of RTP801 in Maneb and Mancozeb-Induced Cytotoxicity.

Environmental factors, such as pesticide exposure, have been implicated in the pathogenesis of neurodegenerative and neurodevelopmental diseases such as Parkinson’s disease (PD). Manganese (Mn)-containing ethylene-bis-dithiocarbamate compounds, maneb (MB) and mancozeb (MZ) have been extensively used for pesticides for the past 50 years. Exposure to MB lowers the threshold for dopaminergic damage triggered by MPTP, which is a human Parkinson’s disease inducing neurotoxin. Preliminary data from Cheng’s lab demonstrate that MB and MZ enhance 1-methyl-4-phenylpyridinium (MPP⁺)-induced cell death in rat pheochromocytoma (PC12) cells. However, the neurotoxic molecular mechanisms and the signal transduction pathways involved in the action of these dithiocarbamate toxins in PD are still not clear. Neuron death, regardless of initiating causes, generally requires proapoptotic gene activation. Studies showed RTP801 is dramatically increased by oxidative stress. A sequential mechanism (induction of RTP801 suppression of mTOR signaling, and then depletion of phosphorylated/activated Akt) has been suggested to be the mechanism of neurotoxins-induced cell death. In this study we observed no change in RTP801 protein expression after 4 h diethyldithiocarbamate (DCC) and MB treatments. But for MZ, RTP801 was twice the PBS control. After 8 h treatment, all chemicals showed significant increase of RTP801 protein expression (about 3 to 4 fold). This observation proved that the RTP801 protein expression has been regulated by Manganese (Mn)-containing ethylene-bis-dithiocarbamate compounds. Then, the transcriptional activation was studied by real time RT-PCR for 2 h, 4 h, and 8 h treatments. At 2 h, the transcription of RTP801 was increased for MB and MZ (2 and 3.5 fold), but not very significant for DDC. At 2 h, the transcription appeared the highest compared to other time periods, and gradually decreased at 4 h and 8h. This observation showed that the up-regulation of RTP801 is due to the increase in RTP801 mRNA transcript. RTP801 shRNA will be used to further confirm the involvement of RTP801 in MB and MZ induced cytotoxicity.

1406 Nrf2 Protects Hippocampus against Oxidative Stress Caused by Maneb.

D. Kurzatkowski and L. D. Trombetta, Pharmaceutical Sciences, St. John’s University, Queens, NY.

Maneb is an ethylene(bis)dithiocarbamate fungicide that has been used to treat diseases of vegetables, fruits, and field crops. This study investigated the neurotoxic effects of maneb on the hippocampus of C57BL/Nrt2 (−/−); knockout and C57BL/Ntr2 (+/+); WT) mice. The mechanism by which maneb exerts its neurotoxicity is unclear; however, a number of effects have been observed both in vitro and in vivo, which suggest a link between exposure to maneb and an increase in oxidative stress. Genes that are regulated by the ARE help control the redox status of the cell and protect it against oxidative injury. The Nrf2-ARE pathway can be found in most tissue types and is responsible for the control of expression of many genes that are involved in the protection of cells such as cell injury, peroxiredoxin, glutathione peroxidase, glutathione reductase, superoxide dismutase, and heme-oxygenase 1. The activation of Nrf2 has been linked to neural cell protection against numerous toxicants; therefore, Nrf2−/− mice treated with pro-oxidants such as maneb would be expected to show increased neurologic damage. Animals were injected I.P., twice a week for 30 days, at 0, 15, 30 and 60 mg of maneb/kg body weight. Levels of TBARS were not increased in hippocampal tissue in Ntr2−/− animals at any dose of maneb but were significantly increased in the Ntr2−/− animals at the 30 and 60 mg dose. The TUNEL technique demonstrated
the presence of positive cells in the hippocampus of Nrf2/-/- mice treated with 60 mg/kg maneb. Of 84 antioxidant pathway genes included in an oxidative stress and antioxidant defense array, qPCR demonstrated that the only gene mediated by the Nrf2 transcription pathway significantly modulated by at least 1.5-fold was glutathione peroxidase 4 (GPX4). This enzyme was significantly upregulated in Nrf2/-/- mice treated with 30 mg/kg maneb and significantly downregulated in Nrf2+/+ mice treated with the same concentration. It was concluded that maneb exposure causes oxidative stress mediated by the Nrf2 pathway and that GPX4 plays an important role in this protection.

1407 Neurotoxicity of the Dithiocarbamate Fungicide Ziram Is Dependent on Synuclein in Zebrafish: Implications for Parkinson's Disease.

A. Lulla1,2, L. Barnhill1,2, M. Stahl1, A. G. Fitzmaurice1,2, S. Li1 and J. M. Bronstein1,2. 1Toxicology, University of California Los Angeles, Los Angeles, CA; 2Neurology, University of California Los Angeles, Los Angeles, CA.

Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic (DA) neuronal death and α-synuclein (α-syn) accumulation. Epidemiological studies reveal that exposure to the dithiocarbamate fungicide ziram is associated with increased risk of PD. We have previously found that ziram causes selective toxicity to DA neurons, ubiquitin proteasome system (UPS) inhibition, and α-syn accumulation in primary neuronal cultures. Here, we develop using zebrafish (Danio rerio) embryos as an in vivo model to investigate mechanisms of ziram toxicity and its dependence on endogenous synuclein.

ZF embryos exposed to environmentally relevant levels of ziram were deformed, had altered swimming behavior, and premature death with a LD50 of approx. 50 nM at 7 days post fertilization (dpf). Transgenic ZF expressing green fluorescent protein (GFP) driven by vesicular monoamine transporter protein (VMAT) were used to identify amineergic neurons in zf embryos. Ziram exposure (50nM) resulted in a 35% reduction in VMAT-GFP-expressing neurons in anterior DA clusters and 26% reduction in posterior clusters (noradrenergic) but was not toxic to non-DA sensory neurons.

ZF express 3 synucleins similar to mammalian β and γ synucleins. Overexpression of ZF γ-syn in neurons led to ZF-syn aggregates and neuronal death in a similar manner as overexpression of human α-syn. ZF embryos exposed to ziram also showed accumulation and aggregation of endogenous ZF γ-syn. This accumulation appeared to augment the toxic effects of ziram’s neurotoxicity since knockdown of ZF γ-syn expression improved survival. Furthermore, treatment with CLR01, a molecular tweezing that mitigates α-syn toxicity, also attenuated ziram toxicity. The mechanism(s) by which ziram increases ZF γ-syn appear to involve inhibition of protein degradation since ziram at concentrations as low as 10 nM inhibited the UPS in ZF embryos. These studies add further insight into the mechanism of posttranslational neurotoxicity relevant to the risk of PD.

1408 Linking Developmental Ataxia Exposure in Zebrafish to Long-Term Neurotransmission Alterations.

C. Xiao, G. J. Weber, S. E. Watson, J. L. Freeman and J. R. Cannon, School of Health Sciences, Purdue University, West Lafayette, IN.

Ataxia is an agricultural herbicide widely used to prevent post- and post-emergence of broadleaf and grassy weeds in major crops. It is a major environmental contaminant, commonly present in potable water supplies. Recent work has suggested that ataxia exposure may affect behavior and neurotransmitter systems in rodents. However, rodent studies have typically utilized exposures many magnitudes above environmentally relevant levels and produced conflicting data. The role of early-life exposures in the development of late-life neurodegenerative diseases has recently received much attention. In an effort to assess the immediate and late-life effects of atrazine on neurological function, zebrafish embryos were exposed to environmentally relevant doses of atrazine (0, 0.3, 3, 30ppb) from 1-72 hours post fertilization. Following the developmental exposure, larvae were changed to atrazine-free water and allowed to mature under normal conditions to assess lifespan impacts. Neurotransmitter levels were assessed using HPLC with electrochemical detection. Adult female zebrafish (9 months) exhibited statistically significant decreases in 5-hydroxyindolacetic acid (5-HIAA), the primary metabolite of serotonin, as well as a reduction in 5-HIAA/serotonin turnover. Interestingly, larvae evaluated at 7 days post fertilization did not show significant alterations in neurotransmitters levels, indicating that deficits arise over time, many months after the initial exposure. In addition, microarrays performed on adult female brain tissue revealed alterations in genes that are enriched in neurological, psychological and developmental diseases. Thus, after short-term ataxia exposure during development, persistent neurotransmitter disruptions are observed, indicating long-term disruption of brain function. Future experiments are focused on elucidating mechanisms of neurologic dysfunction and neurodegeneration elicited by toxicant exposure during critical development stages.

1409 Effects of the Long-Term Coexposure to the Herbicide Atrazine and Inorganic Arsenic (As) in the Nigrostriatal Dopaminergic System of the Albino Rat.

U. Bardullas, M. Giordano and V. Rodriguez, Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autonoma de Mexico, Queretaro, Mexico.

The herbicide atrazine (ATR) and the metalloid arsenic (As) are substances widely distributed in the environment. In recent years interest has grown regarding the toxicity of these substances on the nigrostriatal dopaminergic system. To date, no study has evaluated the effects of chronic and simultaneous exposure to ATR and As, substances that may share the same neuronal target. In order to study the effects of the coexposure As+ATR, six groups of rats were given atrazine (10 mg ATR/kg), arsenic (0.5 or 50 mg As/L of drinking water) or their combinations (ATR+0.5 mg As/L, ATR+50 mg As/L or ATR+50 mg As/L daily) for one year. Behavioral tests showed hypoactivity in the 50 mg ATR/L group, and hyperactivity in the ATR group. All treatments decreased motor coordination. Striatal DA content was significantly reduced in ATR, 0.5 mg As/L, ATR+0.5 mg As/L and ATR+50 mg As/L groups, compared to controls. The number of mesencephalic TH+ cells was significantly reduced in ATR and ATR+0.5 mg As/L groups, compared to controls. Furthermore, the assessment of cell integrity in the substantia nigra showed decreases in cytochrome oxidase reactivity in all treatment groups, but no changes in malondialdehyde immunoreactivity. In summary, the nigrostriatal dopaminergic system appears to be a target for the toxic effects of As and ATR. Our results indicate that when combined, ATR + As act independently, and ATR has more severe effects on dopaminergic neurons. We appreciate the technical assistance of B. Soledad Mendoza. This work was sponsored by PAPIIT 214608-19 and CONACYT 60662, 103907 and 152842.

1410 Glyphosate Treatment Suggests Offspring and Reproductive Toxicity in Caenorhabditis elegans.

R. Neppa, M. B. Johnson, K. A. McVey, I. B. Snapp and V. A. Firsanakis, Biology, King College, Bristol, TN.

Herbicides are widely used in both agricultural and residential areas; therefore, pesticide users, as well as family members, may be routinely exposed to these potentially harmful chemicals. Epidemiological studies have shown pesticide exposure may lead to decreased fetal viability in exposed versus non-exposed females. A significant gap in the literature exists as to whether these observations are applicable to exposures of glyphosate-containing herbicides. To further examine this question, we utilized the model organism, Caenorhabditis elegans, to test our hypothesis that exposure to the glyphosate-containing herbicide, Roundup (TD), results in decreased numbers of offspring in wild-type (N2) worms. Furthermore, this exposure could render surviving offspring more susceptible to neurodegeneration. Based on concentrations (LC50 and LC75) from previous data, eggs were removed from gravid adults and chronically (24 hours) exposed to TD. The numbers of hatched offspring were counted to determine whether TD adversely affected embryo viability. One-way ANOVA indicated a statistically significant decrease (p < 0.05) in the number of hatched eggs from treated compared to control worms. Our second study was designed to determine whether eggs exposed to TD would result in general neuronal degeneration. Eggs from NW1229 worms (a green fluorescent protein (GFP):neuron construct) were treated as described. Data suggested potential neurodegenerative degeneration in treated embryos compared to control (p < 0.05), as determined by fluorescence photomicrograph analysis. Lastly, we chronically exposed eggs from strain CL2166 (GFP:glutathione-S-transferase) to varying concentrations of TD. Fluorescence between control and treated groups, however, did not vary, suggesting that large increases in oxidative stress are not responsible for the observed changes in the nervous system. Taken together, these results suggest that TD decreases the number of viable offspring in the nematode, and that neurodegeneration may be present in those that survive.

1411 Effects of the Subchronic Exposure to the Herbicide Glyphosate on Behavior and the Nigrostriatal and Mesolimbic Dopaminergic Areas of the Albino Rat.

I. Hernandez-Plata1, M. Diaz-Muñoz2, M. Giordano1 and V. M. Rodriguez1, 1Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Queretaro, Mexico; 2Neurobiología Celular y Molecular, Instituto de Neurobiologia, Queretaro, Mexico.

Glyphosate (Glyph) is the active ingredient of several herbicide formulations widely used to eliminate weeds. Although it has been described that the Glyph formulations are slightly toxic for mammals, reports of human exposure and studies using animal models suggest that Glyph formulations are more toxic than the active ingredient. In order to evaluate the effects of Glyph on the nervous system, male Sprague-Dawley rats received six i.p. injections of 50, 100 or 150 mg Glyph/kg or saline (n=10) during 2
weeks (3 injections/week). We recorded locomotor activity 15 min before and 3 h immediately after each injection. Also, the locomotor activity was recorded during 24 h, 16 days after the last injection. The subchronic exposure to Glyph caused decreases in locomotor activity immediately after each injection, as well as 48 h after the Glyph injection. This hypomotility was maintained until the 16th day post-treatment. We did not detect changes neither in monoamine concentrations nor in the levels of TSH in NAcc or STR at 2 and 16 days after the last Glyph injection. However, specific binding to D1 dopamine receptors in NAcc decreased dose-dependently when measured 48-h after the last Glyph injection. These results indicate that subchronic exposure to Glyph has as acute as well as long-term effects on locomotor activity, and that these effects may be related to a decrement in specific binding to D1 dopamine receptors in NAcc. We thank Soledad Mendora for her technical assistance.

Supported by CONACYT 60662. 152842 and 103907 and PAPIIT grants 214608-19 and 211709-21; IHP received a fellowship from CONACYT 164300.

1412 Relationship between Administered Dose, Target Tissue Levels and Thermoregulatory Response Alterations after Acute Oral Exposure to the Potent Tremor-Inducing Pyrethroid Bifenthrin in Rats.

M. Mosquera-Ortega1, A. Pato1, C. Sosa-Holt3, A. Ridolfi2, M. J. Wolansky1 and E. Villamil Lepori1. 1Biological Chemistry, IQUIBICEN (CONICET); University of Buenos Aires, Buenos Aires, Argentina; 2Toxicology, Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina; 3Biological Chemistry, University of Buenos Aires, Buenos Aires, Argentina.

In toxicological studies, potency estimates for pyrethroid insecticides (PYRs) in rats may depend on the exposure and testing conditions. This experimental factor may challenge present efforts to consider the health risks posed to humans by exposure to PYRs. We are using exposure-dose-effect studies to explore the influence of the testing conditions on the qualitative toxicological classification of, and experimental potencies for, these insecticides. Four PYRs (tefluthrin, bifenthrin [BIF], deltamethrin, alpha-cypermethrin) are evaluated in Wistar adult rats. Body temperature is measured using microchip-like transponders implanted in rat backs 5-7 days before testing. Subcutaneous temperature (T-SC) is then monitored by radiotelemetry at 30 min intervals for 5 h after oral dosing of PYRs in corn oil. Basal T-SC is recorded before the test day, and 30 min before dosing (i.e., physiological T-SC). The maximal difference in T-SC compared to the pre-dosing baseline (i.e., ΔT-max) is here used as a measure of peak response. Soon after the thermoregulatory assay, target tissues are dissected out. Blood, liver and brain (striatum, cortex, cerebellum) are collected at 6 h post-dosing for posterior determination of PYR residues using a SPE-GC-ECD protocol. Results for BIF are shown in this first presentation. 0, 0.5, 3, 9 and 12 mg BIF/Kg (N=4-8) produced dosage-related increases in temperature and ΔT. Dose-related increases in both BIF levels in target tissues and ΔT-max were observed. R-squared values were >0.6 in all pairwise relationships. These results are mostly consistent with previous BIF studies carried out using motor activity and rectal temperature as endpoints (Wolansky et al., 2006, 2007), and a toxikokinetic study (Scollon et al., 2011).

1413 Interactions of a Promoter/Potentiator of Neuropathy and Esterases of Membrane and Soluble Fractions of Brain.

I. Mangas, J. Estévez and E. Vilanova. Unit of Toxicology and Chemical Safety Institute of Bioengineering, University Miguel Hernández, Elche, Spain.

Phenylmethyl sulfonyl fluoride (PMSF) is a protease and esterase inhibitor causing protection or potentiation/promotion of the organophosphorus induced delayed neuropathy if dosed before or after the organophosphatase inducer. The molecular target/s of potentiation/promotion has not yet been elucidated. The analysis of the neuropathy if dosed before or after the organophosphate inducer. The compounds were diluted in ethanol and the cells were incubated with the OPs for 24 hours in a 96-well microplate. Paraoxon exhibited an inhibitory concentration of 50% of enzyme activity (IC50) value approximately 47 times greater than that of the mipafox. Fenamiphos and acephate exhibited IC50 values 117 and 124 times, respectively, greater than that of the mipafox in the SH-SYSY human neuroblastoma cell culture samples. Considering the esterases inhibition and aging results, fenamiphos and acephate would not be expected to have a great ability to induce OPIDN in humans compared with the ability of mipafox. Financial support: Fapesp grant # 2012/00168-6.

1414 In Vitro Inhibition and Aging of Neuropathy Target Esterase (NTE) Caused by Fenamiphos and Acetate.

G. L. Emerick, L. S. Fernandes, N. G. Santos and A. C. Santos. DACTB, Universidade de São Paulo, Ribeirão Preto, Brazil.

Organophosphorus-induced delayed neuropathy (OPIDN) is a neurodegenerative disorder characterized by ataxia progressing to paralysis with concomitant central and peripheral distal axonopathy. Symptoms of OPIDN in people include tingling of the hands and feet. These symptoms appear around 8–14 days after exposure. One of the criteria for acceptance of organophosphates pesticides (OPs) in Brazil is if the compound does not cause OPIDN. Guidelines for evaluating OPIDN require the observation of dosed animals over several days and the sacrifice of at least 48 hens. Adhering to these protocols in tests with analytical standards of OPs is difficult because large quantities of the compound are needed and many animals must be sacrificed. Thus, developing an in vitro screening protocol to evaluate if the OP is able to induce or not delayed neuropathy is important. This study aimed to evaluate in SH-SYSY human neuroblastoma cell culture samples the potential of some OPs, which are widely used in Brazil, in induce delayed neurotoxicity. The relations between the inhibition and aging of neuropathy target esterase (NTE) by the fenamiphos and acetate were evaluated as indicators of the compound ability to induce OPIDN. Mipafox was used as inducer of OPIDN and paraxon was used as non-inducer. The compounds were diluted in ethanol and the cells were incubated with the OPs for 24 hours in a 96-well microplate. Paraoxon exhibited an inhibitory concentration of 50% of enzyme activity (IC50) value approximately 47 times greater than that of the mipafox. Fenamiphos and acephate exhibited IC50 values 117 and 124 times, respectively, greater than that of the mipafox in the SH-SYSY human neuroblastoma cells. Considering the esterases inhibition and aging results, fenamiphos and acephate would not be expected to have a great ability to induce OPIDN in humans compared with the ability of mipafox.

1415 Inhibition and Aging of Neuropathy Target Esterase (NTE) in SH-SYSY Human Neuroblastoma Cells As Screening for Inducers of Delayed Neuropathy.

L. S. Fernandes, G. L. Emerick, N. G. Santos and A. C. Santos. DACTB, Universidade de São Paulo, Ribeirão Preto, Brazil.

Organophosphorus-induced delayed neuropathy (OPIDN) is characterized by a central-peripheral distal axonopathy and Wallerian-type degeneration that develops 8–14 days after poisoning by a neuropathic organophosphate (OP). The current Organization for Economic Co-operation and Development (OECD) guidelines for evaluating organophosphorus-induced delayed neuropathy (OPIDN) require the observation of dosed animals over several days and the sacrifice of at least 48 hens. Adhering to these protocols in tests with analytical standards of OPs is difficult because large quantities of the compound are needed and many animals must be sacrificed. Thus, developing an in vitro screening protocol to evaluate if the OP is able to induce or not delayed neuropathy is important. This study aimed to evaluate in SH-SYSY human neuroblastoma cell culture samples the potential of some OPs, which are most used in Brazil, in induce delayed neurotoxicity. The relation between the inhibition and aging of neuropathy target esterase (NTE) by the trichlorfon was evaluated as a possible indicator of the compound ability to induce OPIDN. Mipafox was used as inducer of OPIDN and paraxon was used as non-inducer. The compounds were diluted in ethanol and the cells were incubated with the OPs for 24 hours. Paraoxon exhibited an inhibitory concentration of 50% of enzyme activity (IC50) value approximately 47 times greater than that of the mipafox. Trichlorfon exhibited an IC50 value 48 times greater than that of the mipafox in the SH-SYSY human neuroblastoma cells. Considering the esterases inhibition and aging results, trichlorfon would not be expected to have a great ability to induce OPIDN in humans compared with the ability of mipafox.

1416 Use of a Human Haploid Cell-Based Loss of Functional Genetic Screening Model to Identify Human Susceptibility Genes for Chlorpyrifos Toxicity.

A. Dubois, J. R. Olson and X. Ren. Pharmacology & Toxicology, University at Buffalo, The State University of New York, Buffalo, NY.

Chlorpyrifos (CPF), one of the most widely used organophosphorous pesticides, has been known to cause neurotoxicity through the inhibition of cholinesterase activity. However, other factors, such as immunological effects, unrelated to cholinesterase inhibition, have been linked to chlorpyrifos exposure. The mechanisms behind these effects are not fully known or understood. High-throughput loss-of-function genetic
screening tools in yeasts or other non-mammalian model systems have been successfully used to identify susceptibility to chemical exposure and decipher chemical compound mode of action. We recently obtained a newly developed human haploid cell line, loss of functional genetic screening model and adopted this haploid cell line in our laboratory. We treated the cells with 200 μM CPF, a dose causing 30% death of haploid cells after 3 days of treatment. After 21-days of treatment, we were able to identify cells carrying genes with deficient functions that play a role in the resistance to CPF-induced toxicity. We are currently conducting functional tests to validate their association with CPF toxicity. Ultimately, this approach will help identify novel susceptibility genes and gain insight into potential mechanisms of CPF-induced toxicity. (This work was supported by Startup funds to X.R. provided by SUNY Buffalo).

1417 Pharmacological Modulation of Endocannabinoid Signaling Differentially Affects Acute Toxicity of Paraoxon and Chlorpyrifos Oxon in Rats.

J. Liu and C. Popo. *Physiological Sciences, Oklahoma State University, Stillwater, OK.*

Organophosphorus anticholinesterases (OPs) elicit acute toxicity by inhibiting acetylcholinesterase, increasing acetylcholine levels at cholinergic synapses throughout the nervous system. This leads to excessive/prolonged activation of cholinergic receptors and resulting signs of toxicity including increased parasympathetically-mediated secretions (SLUD signs) and involuntary movements (e.g., tremors). Endocannabinoids (eCBs, e.g., anandamide [AEA] and 2-arachidonoylglycerol [2-AG]) are released from membrane lipids upon neuronal activation. AEA, 2-AG and potentially other putative eCBs couple to G-protein-coupled receptors (GPCRs) by activating presynaptic CB1 receptors to inhibit neurotransmitter release. We hypothesized that pharmacological modulation of eCB signaling will influence the expression of anti-cholinesterase toxicity. The comparative effects of WIN 55,212-2 (WIN, a CB1 receptor agonist, 1.5 or 5 mg/kg), AM251 (a CB1 receptor antagonist, 3 mg/kg), UR597 (an inhibitor of AEA degradation, 3 mg/kg) and capsazepine (a TRPV1 endovanilloid antagonist, 10 mg/kg) on the toxicity of paraoxon (PO) and chlorpyrifos oxon (CPO) were evaluated. Involuntary movements were induced by both OPs in a dose-related manner (PO: 0.4,0.5,0.6 mg/kg, sc; CPO: 8,10,12 mg/kg, sc), whereas somewhat less consistent dose-related effects were noted with SLUD signs. WIN partially reduced signs of toxicity following PO exposure, but had little effect on toxicity following CPO. The CB1 receptor antagonist AM251 had no effect on CPO toxicity, but substantially increased lethality following PO exposure (6/12 vs 1/9). UR597 had no effect on PO toxicity, or on involuntary movements following CPO, but increased SLUD signs following CPO. Similar to effects of UR597, capsazepine had little effect on PO toxicity, but increased SLUD signs following CPO. These results suggest that pharmacological modulation of eCB- and/or endovanilloid signaling may differentially influence selected toxic responses to anticholinesterases in an OP-related manner. (Supported by NIEHS and/or endovanilloid signaling may differentially influence selected toxic responses following CPO). These results suggest that pharmacological modulation of eCB following CPO, but increased SLUD signs following CPO. Similar to effects of (6/12 vs 1/9). URB597 had no effect on PO toxicity, or on involuntary movements (e.g., tremors).

1418 Hippocampal Changes Induced by Noncholinergic Disopyrofuronphosphate (DFP) Exposure in Fischer 344 Rat Brain.

D. A. Mahle1, A. Soto1, V. T. Chan1 and N. V. Rees2. *711 HPWIRHDJ, Wright-Patterson AFB, OH; 2Wright State University, Fairborn, OH.*

The mechanism of organophosphate (OP) induced inhibition of acetylcholinesterase and subsequent excitotoxicity is well described. However, exposure to OPs at non-cholinergic doses has been reported to cause deficits in cognitive behavior and spatial memory, though little is known about the mechanisms of action. Here an integrated approach using both metabolomic and transcriptomic techniques was used to reveal some of the non-cholinergic effects of DFP in rat hippocampus. Adult male Fischer 344 rats were administered 1 mg/kg DFP or saline (control) via subcutaneous injection at 10 mL/kg. Time points for hippocampal collection were 1, 3, 5, 1, 2, 12, 24 and 48 h post dose.ACH activity reached a minimum of 55% at 2 hr post dose. Total RNA was isolated from hippocampus for differential gene expression analysis using the Affymetrix 1.0 ST gene array at 1 hr post dose. Lipid and aqueous extracts were prepared from each hippocampus at 2 hr post dose, and profiles of small molecule metabolites, lipids and phospholipids were measured using multidimensional NMR spectroscopy. The amino acids valine, isoleucine and alanine were increased 4-5 fold, while co-aminotransferase and fumarate were increased 2-3 fold after exposure to DFP. Succinate and γ-aminobutyric acid (GABA) were decreased approximately 57%. No change was detected in any of the lipid metabolites measured. Differential gene expression and pathway analysis revealed that the L-glutamate and the Wnt signaling pathways were down-regulated. By evaluating the impact of low level OP exposure on the metabolic and transcriptomic profile of the hippocampus, we hope to gain a greater understanding of the noncholinergic mechanisms of action and sensitive target areas of OPs.

1419 Dose-Dependent Behavioral Deficits in Egyptian Agricultural Workers with Chronic Organophosphorus Pesticide (OP) Exposures.

W. K. Anger1, F. M. Farahat1, P. L. Leira1, B. L. Olson1, M. Lasarev1 and D. Rohman1. *1Oregon Health & Science University, Portland, OR; 2Menoufia University, Shebin Elkom, Egypt; 3University of California Davis, Davis, CA; 4University at Buffalo, Buffalo, NY.*

Chronic exposure to OPs is consistently associated with deficits on neurobehavioral tests in workers using pesticides. While years of work have correlated with degree of effect in a few studies, a dose-effect relationship has not been identified, leading some to doubt the association. We identified a population of pesticide application teams in Egypt primarily exposed to one OP, chlorpyrifos (CPF). Teams include engineers (who do not typically enter the fields during applications), technicians (who walk side-by-side with the applicators in the fields), and applicators (who are typically seasonal workers and have the highest exposures). TCPy levels in urine confirmed the pattern of lower to higher exposures across these job categories. Traimaking, a test of complex visual scanning, motor speed and agility, consists of two test components, A and B that differ in complexity. The test was administered to 54 engineers, 59 technicians, 31 applicators, and 150 control 3 times during the OP application season and 1.5 months after applications had ended. While time to complete Trailmaking A and B improved across sessions, a consistent dose-response relationship was seen in performance speed: Controls had the best (fastest) performance throughout the application season on Trailmaking A (p<0.04) and B (p<0.001). Applicators had slower performance than engineers (p<0.015) and technicians (p<0.032) on Trailmaking A. On the more complex Trailmaking B test, applicators and technicians had comparable performance that was significantly slower (p<0.003 and p<0.012 respectively) than performance of engineers. Test performance at 1.5 months after applications ended revealed that differences between the groups were persistent. Ongoing studies are evaluating relationships between neurobehavioral performance and genetic polymorphisms of enzymes that metabolize CPF. (NIEHS R01 ES016308; MPI: WKA & PJJ)

1420 Chlorpyrifos Exposure and Self-Reported Neurological Symptoms in Adolescent Pesticide Applicators.

D. Rohman1, K. Khan1, A. A. Ismail2, G. Abdel Rasoul2, M. R. Bonner3, M. R. Lasarev1, A. L. Crane4, S. T. Singleton4 and J. R. Olson1. *1Occupational and Environmental Health, University of Iowa, Iowa City, IA; 2Community Medicine and Environmental Health, Menoufia University, Shebin El-Kom, Egypt; 3Social & Preventive Medicine, State University of New York at Buffalo, Buffalo, NY; 4Pharmacology & Toxicology, State University of New York at Buffalo, Buffalo, NY.*

Although studies with adults have demonstrated associations between organophosphorus (OP) pesticide exposure and neurological symptoms, the change in symptom reporting across an application season and the relationship between symptoms and biomarkers of exposure is poorly understood and few studies have examined adolescents. The prevalence of neurological symptoms across the chlorpyrifos (CPF)-application season was examined in adolescent pesticide applicators (n=57) and environmentally exposed adolescents (n=38) in Egypt. Self-reported symptom data at 32 time points over a 7-month CPF-application season were collected. Associations of symptoms with the urine CPF biomarker, trichloro-2-pyridinol (TCPy) and blood cholinesterase inhibition were also investigated. Increased reporting of neurological symptoms were observed among both applicators and non-applicators after several weeks of repeated exposure. Applicators demonstrated a greater percentage of neurological symptoms relative to baseline than the non-applicators at all subsequent time intervals. Cumulative TCPy, an estimate of overall exposure was a significant predictor of symptoms only among the applicators in the adjusted models. No associations were found between acetylcholinesterase (ACHE) and butyrylcholinesterase (BChE) inhibition and self-reported symptoms after accounting for covariates. Results of the study demonstrate that adolescent applicators and non-applicators experience a greater percentage of neurological symptoms due to repeated exposure. Reduction of CPF exposure among the adolescent applicators should be a public health priority since neurological symptoms remained elevated even after the cessation of CPF application. Supported by NIEHS ES017223.
Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential terrorist weapon. We characterized TMDT-induced seizures and mortality in male C57BL/6 mice. TMDT (ip) produced a syndrome of twitches, clonic, and tonic-clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The MDMA antagonist, ketamine (KET, 35 mg/kg) injected ip after the first TMDT-induced seizure, did not reduce lethality, but increased the number of clonic seizures. Doubling the KET dose decreased tonic-clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another MDMA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of KET, respectively, and prevented lethality, converging continuous (status epilepticus) EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with diazepam (5 mg/kg; GABAA allosteric enhancer) reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and death. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing EEG seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists are more likely to be effective in treating TMDT poisoning. Supported by NIH NS056093, NS072966, NS044421, DOD PR1006341P1 & NYMC.
immunosuppressive agents with harsh side effects. Cannabinoids, which are a group of compounds derived from the marijuana plant (Cannabis sativa), are known to mediate their signals through the cannabinoid receptors, CB1 and CB2, and have been effective as treatment for cancer associated pain, nausea and appetite loss. Recently, their anti-inflammatory properties have been studied. Moreover, the use of cannabinoid therapy for MS has also been explored. However, the proposed mechanism of action needs to be explored further. We used experimental autoimmune encephalomyelitis (EAE), a murine model of MS, to explore the anti-inflammatory role of cannabidiol (CBD) and its effects on myeloid-derived suppressor cells (MDSCs). EAE disease paradigms were consistently reduced with CBD treatment as compared to the untreated EAE controls. Both granulocytic and monocytic MDSC induction in the spleens, CNS, and peritoneal wash of CBD treated EAE mice increased in the untreated EAE mice. However, there was a profound increase in CD4+ T cells infiltrating the CNS (spinal cord and brain), which were significantly increased in the untreated EAE mice. There was a reduction in the percentage and absolute number of T cells particularly the CD4+ T cells in the untreated EAE mice. However, a significant decrease in MDCS was seen in the spleens, CNS, and peritoneal wash of CBD treated EAE mice as compared to the untreated EAE controls. Both granulocytic and mononuclear MDCS were increased in CBD treated EAE mice. Together, these studies demonstrate that CBD treatment may ameliorate EAE via the induction of MDSCs which suppress the aberrant autoimmune response. (Supported by NIH grants R01 AT006988, R01 ES019313, R01 MH094755, P01 AT003961, P20 RR032684 and VA Merit Award BX001357).

1426 Attenuation of Trichloroethylene-Mediated Autoimmune Response in iNOS-null MRL/+ Mice.
G. Wang1, M. Wakamiya1, J. Wang1, G. Ansari2 and M. Khan1. 1Pathology, University of Texas Medical Branch, Galveston, TX; 2Institute for Translational Sciences and Animal Resource Center, University of Texas Medical Branch, Galveston, TX.

Exposure to trichloroethylene (TCE), a ubiquitous environmental contaminant, is associated with an autoimmune response both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL/+ mice suggest that reactive oxygen and nitrogen species (RONS) may contribute to TCE-induced autoimmunity. The current study was undertaken to further assess the role of oxidative and nitrosative stress in TCE-induced autoimmunity by using iNOS-null MRL/+ mice. iNOS-null mice were backcrossed to MRL+/+ mice for 10 generations and then N10 heterozygous mutants were intercrossed to obtain homozygous mutants. Female MRL/+ and iNOS-null MRL/+ mice were given TCE (10 mmol/kg, i.p., every 4th day) for 6 weeks; their respective controls received corn oil only. TCE treatment led to significant induction of anti-malondialdehyde (MDA)- and anti-4-hydroxy-nonenal (HNE)-protein adduct antibodies along with increased iNOS in sera, and increased nitrotyrosine (NT) in sera, livers and kidneys in MRL/+ mice, suggesting an overall increase in oxidative and nitrosative stress. The TCE-induced oxidative stress was also associated with significant increases in serum anti-nuclear antibodies (ANA) and anti-double stranded DNA antibodies (anti-dsDNA) levels. Interestingly, iNOS and NT levels were negligible in both controls and TCE-treated iNOS-null MRL/+ mice. However, TCE treatment in iNOS-null mice still led to significant increases in serum anti-MDA/HNE-antibodies along with increases in serum ANA and anti-dsDNA compared to controls. Remarkably, the increases in serum ANA and anti-dsDNA induced by TCE in the iNOS-null mice were significantly less pronounced compared to that in MRL/+ mice. Our results provide further evidence for a role of oxidative/nitrosative stress in TCE-induced autoimmune response, and iNOS elimination attenuates this autoimmune response. Supported by NIH ES016302.

1427 Mouse Model of Halogenated Platinum Salt Hypersensitivity.

Occupational exposure to halogenated platinum salts can trigger the development of asthma. Concern for increased asthma risk exists for the general population due to the use of platinum (Pt) in catalytic converters and its emerging use as a diesel fuel additive. To investigate airway responses to Pt, we developed a mouse model of Pt hypersensitivity. Previously, we confirmed the dermal sensitizing potency of ammonium hexachloroplatinate (AHCP) using an ex vivo [3H]methyl thymidine labeling version of the local lymph node assay in BALB/c mice. Here, we investigated the ability of AHCP to induce airway responses in mice sensitized by the dermal route. Mice were sensitized through application of 100 μL 1% AHCP in DMSO to the shaved back on days 0, 5 and 19, and 25 μl to each ear on days 10, 11 and 12. Unexposed mice were injected with PBS. On day 24, mice were challenged by oropharyngeal aspiration (OFA) with 0 or 100 μg AHCP in saline. Before and immediately after dosing, airway responses were assessed using whole body plethysmography (WBP). A dose dependent increase in immediate airway responses (IAR) was observed in AHCP sensitized and challenged mice. On day 26, changes in ventilatory responses to methacholine (Mch) were assessed by WBP. A dose dependent increase in Mch responsiveness occurred in sensitized mice. Bronchoalveolar lavage fluid harvested from sensitized mice contained an average of 7.5% eosinophils compared to less than 0.5% in control mice (p < 0.05); significant increases in total serum IgE was observed for all sensitized mice. This model will be useful for assessing the relative sensitizing potency and cross-reactivity between different halogenated Pt salts and for investigating the possible adjuvant effects of diesel exhaust particles. This abstract does not represent EPA policy.

1428 Effect of Analgesic Administration on the Guinea Pig Maximization Test.
D. W. Rice1, L. C. Anderson and J. H. Gass. 1Department of Toxicology, Baxter Healthcare Corporation, Round Lake, IL.

Guinea pig maximization tests have been associated with inflammation at cutaneous induction sites due to the use of 1-chloro-2, 4-dinitrobenzene (DNCB) as a positive control and Complete Freund’s Adjuvant (CFA). CFA enhances the sensitization potential of the test substances and its use is required by ISO 10993-10. To alleviate the potential for pain and distress, we evaluated the use of the analgesic, buprenorphine hydrochloride (HCl). Analgesics can modulate the inflammatory response and may interfere with the detection of contact sensitization. The purpose of this study was to determine if the administration of buprenorphine HCl, as a refinement to reduce the potential for pain and distress, would affect the results of the guinea pig maximization test. DNCB and Rubbercare® Gloves were used as the test articles. The experimental design was consistent with the procedures described in ISO 10993-10 and the guinea pig maximization test (Magnusson and Kligman), with additional parameters evaluated. The experimental design consisted of 10 groups with each group receiving different concentrations of the test articles with or without analgesic treatment. Twenty-four to thirty hours after topical induction, the groups treated with buprenorphine HCl were given 0.006 mg/kg every 12 hours for a total of three doses. Three animals per group were terminated on study day 10 for hematology, coagulation and histologic evaluation of treatment sites. The remaining animals were terminated after completion of the sensitization test. Body weight gain, clinical observations, pain assessment, and sensitization potential were evaluated. Clinical observations, hematology, coagulation or histopathology of treatment sites were similar in groups that received analgesics compared to groups that did not. At least 60% to 100% of animals in each group were sensitized with no observable relationship to expiration date. One MM syringe preparation had variable and lower nickel sulfate (NiSO4) particulate compared to the labeled concentrations of commercial allergens. NiSO4 particulate was uniformly distributed throughout the petrolatum. In contrast, MM was low and variable in commercial allergen preparations. FA is diluted in water. Participating clinics submitted in-date and out-dated test articles to Dermatology Clinics. Concentration of nickel sulfate (NiSO4), methyl methacrylate (MM), formaldehyde (FA) and glutaraldehyde (GA) compared to the labeled concentrations of commercial allergens were highly dependent on the use of reliable chemical allergen testing reagents. Participation in the nickel sulfate test is required by ISO 10993-10 and the guinea pig maximization test. DNCB and Rubbercare® Gloves were used as the test articles. The experimental design was consistent with the procedures described in ISO 10993-10 and the guinea pig maximization test (Magnusson and Kligman), with additional parameters evaluated. The experimental design consisted of 10 groups with each group receiving different concentrations of the test articles with or without analgesic treatment. Twenty-four to thirty hours after topical induction, the groups treated with buprenorphine HCl were given 0.006 mg/kg every 12 hours for a total of three doses. Three animals per group were terminated on study day 10 for hematology, coagulation and histologic evaluation of treatment sites. The remaining animals were terminated after completion of the sensitization test. Body weight gain, clinical observations, pain assessment, and sensitization potential were evaluated. Clinical observations, hematology, coagulation or histopathology of treatment sites were similar in groups that received analgesics compared to groups that did not. At least 60% to 100% of animals in each group were sensitized with no observable difference between corresponding groups with or without analgesic treatment. Based upon the results of this study, the use of the analgesic, buprenorphine HCl, did not interfere with the evaluation of the results of the guinea pig maximization test.

Chemical Assays of “In-Use” Allergic Contact Dermatitis Patch Test Reagents from Dermatology Clinics.
1NIOSH/CDG, Morgantown, WV; 2University of Louisville, Louisville, KY; 3University of Minnesota, Minneapolis, MN; 4Cleveland Clinic, Cleveland, OH.

 Epicutaneous patch tests (EPT) are commonly used to identify chemical agents of allergic contact dermatitis in dermatology patients. Test validity and assessment of allergic reaction severity are highly dependent on the use of reliable chemical allergen test reagents. The purpose of the present study was to measure the actual concentration of nickel sulfate (NiSO4), methyl methacrylate (MM), formaldehyde (FA) and glutaraldehyde (GA) compared to the labeled concentrations of commercial reagents found in dermatology clinics where patch testing is routinely performed. The commercial reagents, NiSO4, MM and GA are supplied either dissolved or suspended in petrolatum (usually in syringe, multiuse containers) while FA is diluted in water. Participating clinics submitted in-date and out-dated reagents to the laboratory for analyses. Both NiSO4 and FA levels were at or above the labeled concentration. NiSO4 particulate was uniformly distributed throughout the petrolatum. In contrast, MM was low and variable in commercial allergen reagents. “In-use” MM reagent syringes were all >56% of the 2% label concentration with no observable relationship to expiration date. One MM syringe purchased directly from the manufacturer was 70% of the labeled concentration. Lower MM levels in syringes were consistently measured at the tip vs. plunger end.
of the syringe suggesting loss due to MM’s volatility. GA patch test reagents concentration ranged from 27 to 45% of the labeled (1% in petrolatum) amount, independent of expiration date. No GA concentration pattern between tip and plunger was observed. These data suggest that false negative EPT results may be due to instability of volatile or self-polymerizing chemical allergens in the test reagents.

1430 Adjuvant Effect of Dibutyl Phthalate (DBP) in an Animal Model of Contact Hypersensitivity.

A. S. Lourenço, R. M. Zaiá, A. Prudente, M. F. Otuki and A. J. Martino-Andrade. 1, 2. 1Fisiologia, Universidade Federal do Paraná, Curitiba, Brazil; 2Farmacologia, Universidade Federal do Paraná, Curitiba, Brazil. Sponsor: E. S. Silbergeld.

Recent studies have demonstrated that certain phthalates can have adjuvant effects in contact hypersensitivity models, exacerbating inflammatory responses. According to human exposure estimates, perfumes containing DBP can result in topical applications as high as 0.4 mg DBP/day. The aim of the present study was to investigate the adjuvant effect of DBP in the oxazolone-induced contact hypersensitivity model using human relevant doses. Adult male Balb/c mice were divided into 5 different groups (n=6/group). These animals received oxazolone (75 μg/animal) in hairless abdomen (induction). After five days, mice received oxazolone (75 μg/ear; positive control and DBP exposed group) or vehicle (negative control group) in the right ear (sensitization). In addition, in the sensitization day and in the two subsequent days, DBP groups received three different doses (0.04, 0.4 and 4 mg DBP/ear) twice a day, while positive and negative controls received vehicle (acetone). All exposures were topical. For three subsequent days after sensitization, ear thickness (edema) was measured with the use of a micrometer. After the last measurement, animals were decapitated and the ears were collected for the determination of N-acetyl-fl-D-glucosaminidase (NAG) and Myeloperoxidase (MPO) activity. The study was in accordance to the ethics committee of the Federal University of Paraná. Ear thickness was increased in positive control when compared to vehicle only (negative control) group. No difference was seen between positive control and the lowest DBP dose group. However, oxazolone-induced edema was increased in the groups treated with 0.4 and 4 mg DBP/ear when compared to positive control. Similar results were found in MPO and NAG activity. The groups treated with the two highest DBP doses displayed significantly higher enzymatic activity when compared to positive control group. These results indicate that human relevant doses of DBP can have adjuvant effects in the oxazolone-induced contact hypersensitivity in mice.

1431 Characterization of the Mouse Allergy Model to Understand Mechanisms of Drug Allergy.

Z. Xhu, S. Cole, T. Kawabata and J. Whiteworth. Pfizer Inc. Immunotoxicology CoE, Drug Safety Research and Development, Groton, CT.

Developed as a modification of the Lymph Node Proliferation assay, the mouse allergy model (MAM) appears to be a promising tool for predicting the potential of drug development candidates to produce hypersensitivity reactions (HR). In this model, drugs associated with HR in the clinic produce a marked increase (compared to controls) in the cellularity of the draining lymph nodes (LN). The objective of this study was to characterize the phenotype of draining LN cells to identify new parameters that can be used to enhance the sensitivity and specificity of the MAM and to better understand the mechanism(s) for the response. Drugs that are associated with HR in the clinic (abacavir and amoxicillin) were selected as positive controls for this study. Negative control drugs (merformin and cimetidine) were selected based on the low number of reported HR for these compounds. Groups of 5 mice per group were injected subcutaneously with drug (100 mg/kg) or vehicle once daily for three consecutive days. After a two day rest, cells from the draining brachial LN were isolated and analyzed by flow cytometry. A significant increase in total LN cell number (compared to vehicle) was observed for mice treated with the positive control drugs. Compared to vehicle and negative control animals, an increase in CD4+ and CD8+ T cells and B cells was observed in the draining LN of abacavir and amoxicillin treated animals. Positive control drugs produced significant decreases (~25% compared to control) in the percentage of naive T cells and increases (~27% compared to control) in the percentage of L-selectin (CD62L) and CD44 double-negative T cells. The negative control drugs induced slight, but statistically insignifiant, changes in the expression of these markers. Drugs associated with HR in the clinic produced changes in draining LN cellularity and phenotype that are not observed for negative control drugs. Changes observed in adhesion molecule expression may suggest an effect of positive control drugs on lymphocyte trafficking.

1432 Characterization and Comparison of Methylene Diphenyl Diisocyanate Haptenated Human Serum Albumin and Hemoglobin.

M. Mhike, J. M. Hettick, L. Chipinda, R. H. Simoyi and P. D. Siegel. 1Health Effects Laboratory Division, NIOSH/CDG, Morgantown, WV; 2Department of Chemistry, Portland State University, Portland, OR.

Methylene diphenyl diisocyanate (MDI) is widely used as a cross-linking agent in the manufacture of polyurethane products. Exposure to diisocyanates (dNCO), such as MDI, is known to cause occupational asthma. MDI haptenation of proteins is central to in vitro immunological sensitivity; however, the resultant protein conjugates are complex and difficult to characterize. The objective of the present study was to characterize hemoglobin (Hb) and human serum albumin (HSA) following conjugation to different molar concentrations of MDI. MDI-protein conjugates were acid digested to obtain free methylene diianiline (MDA). MDA was extracted, derivatized with fluorescamine and analyzed by HPLC-fluorescence. MDI-Hb was also digested with trypsin and specific amino acid conjugation sites determined by ultra-performance liquid chromatography-quadrupole-tandem time-of-flight mass spectrometry. The trinitrobenzene sulfonic acid assay (TNBS) and denaturing gel electrophoresis were used to determine the extent of cross-linking. MDI conjugation was observed to be dependent on the MDI: protein ratio and the concentration of protein. Greater binding to HSA than Hb was observed and MDI bound to only eight binding sites on Hb compared to twenty for HSA (at 40:1 molar ratio of MDI: protein). Self-polymerization of MDI onto protein was observed on some amino acids at higher MDI concentrations. The TNBS assay was used to confirm cross linking in MDI-HSA with approximately 60% loss of amine reactivity at 5 mg/ml MDI: HSA. More cross-linking was observed at 0.5 mg/ml HSA than at 5mg/ml at 40:1 MDI: HSA. It is concluded that MDI has a greater reactivity toward HSA than Hb with respect to the number of residues haptenated and amount of MDI bound per mole of protein. This work was supported by an Interagency agreement with the NIEHS (Y1-E5-0001).

1433 Dimethylfumarate: Potency Prediction and Clinical Experience.

I. R. White, D. Basketter, F. G. Burleson, G. Burleson and L. Kimber. 1DAMBEB Consultancy Ltd., Shearwater, United Kingdom; 2Department of Cutaneous Allergy, St. John’s Institute of Dermatology, London, United Kingdom; 3BRT – Burleson Research Technologies, Morrisville, NC; 4Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.

Dimethylfumarate (DMF) was the cause of a major outbreak of allergic contact dermatitis as a consequence of its use as an antifungal agent in leather products, particularly when used in furniture. This became known, as “toxic sofa dermatitis”. However, what has not previously been established is why the risks to human health had not been assessed adequately for this chemical. The purpose of these investigations was, therefore, to determine whether the frequency and severity of reactions to DMF arose as a function of its intrinsic skin sensitizing potency and/or the nature and extent of exposure. The intrinsic sensitizing potency of DMF was measured using the standard local lymph node assay (LLNA) with determination of an EC3 value; the threshold in the LLNA and which serves as an indicator of relative skin sensitising potency in humans. The EC3 value for DMF was 0.35% when tested in dimethylfumaramide as a vehicle, indicating that this chemical is a strong, but not an extreme, skin sensitizer in this mouse model. DMF was found therefore to have a relative sensitising potency that is comparable with formaldehyde, also a strong human skin sensitizer. The conclusion is drawn that the frequency and intensity of allergic contact dermatitis reactions to DMF suggest that it was the prolonged, repeated and occlusive exposure over large skin areas to this chemical, combined with strong sensitising potency, that together generated the “perfect storm” conditions that caused the DMF epidemic.

1434 Characterization of the Allergenic Potential of Proteins: An Assessment of the Kiwifruit Allergen Actinidin.

L. Beresford, S. McClain, L. Kimber and R. I. Dearman. 1Faculty of Life Sciences, Manchester University, Manchester, United Kingdom; 2Syngenta Crop Sciences, Portland, OR.

Assessment of the potential allergenicity (IgE-inducing properties) of novel proteins is an important component of the overall safety assessment of foods. Resistance to digestion with pepsin is commonly measured to characterize allergenicity, although the association is not absolute. We have shown previously that the measurement of specific IgE antibody production induced by systemic (intraperitoneal) exposure of BALB/c strain mice to a range of proteins correlates with
1435 Risk of Allergic Reaction to Undeclared Milk Proteins in a Dietary Supplement.
J. Fleischer and M. H. Whittaker, ToxServices LLC, Washington DC.

In food allergic individuals, the immune system is sensitized to food proteins and mounts a damaging inflammatory response. As a major food allergen, milk and milk-derived ingredients must be declared on food labels under the U.S. Food Allergen Labeling and Consumer Protection Act. Individuals with cow's milk allergy (CMA) may be at risk from a single exposure to undeclared milk, and may experience hives, swelling, vomiting, diarrhea, and/or asthma. Life-threatening anaphylaxis may occur.

We assessed the risk of allergic reaction due to consumption of undeclared milk proteins in a dietary supplement in adults with CMA by calculating acceptable daily intake (ADI) thresholds for the milk proteins lactoglobulin and casein. ADIs are the lowest exposures that would elicit only mild symptoms in adults with CMA. We compared these ADIs with estimated intake (EI) levels for the two proteins, based on analytical evaluation of the supplement and recommended serving size.

We conducted benchmark dose (BMD) modeling on data published double- or single-blind, placebo-controlled milk challenge studies in individuals with CMA. Dichotomous modeling (presence/absence of allergic response) was conducted using EPA's BMD Software 2.1.2. BMDs and BMDLs (lower 95% confidence interval for the BMD) at a benchmark response (BMR) of 10% for allergic response to milk challenge were modeled. BMDLs were adjusted for milk lactoglobulin and casein content (10% and 83% of total milk protein, respectively) and divided by an UF of 10 (individual variation) to obtain the ADIs. ADIs were 0.3 mg/person for lactoglobulin and 2.1 mg/person for casein, compared to respective EIs of 0.47 mg/person and 0.02 mg/person. The ADI for lactoglobulin was 0.3 mg/person for lactoglobulin and 2.1 mg/person for casein, compared to respective EIs of 0.47 mg/person and 0.02 mg/person. The ADI for lactoglobulin exceeded at an EI of 0.47 mg/person, suggesting that levels of undeclared milk protein in a dietary supplement are sufficient to increase the risk of allergic reaction in adults with CMA. The potentially severe and life-threatening nature of allergic reaction supports the need for immediate risk management action and highlights the importance of GMPs for dietary supplements.

1436 Allergenic Antibiotics (Blactams and Sulfonamides) Induce Oxidative Stress in Keratinocytes.
B. E. Lucas1, A. E. Asangba1, S. Mohammad1, M. Gande2, K. L. Voie2, K. L. Campbell2 and S. Mohammad1, 1, A. E. Asangba1, S. Mohammad1, M. Gande1, K. L. Voie2, K. L. Campbell2 and S. Mohammad1, 1Comparative Biosciences, University of Illinois, Urbana, IL; 2Veterinary Clinical Medicine, University of Illinois, Urbana, IL.

Drugs can induce hypersensitivity reactions (drug allergies). Delayed drug hypersensitivity occurs after >5 days of drug exposure. Surprisingly, delayed reactions usually target the skin although most drugs are not administered percutaneously. “Danger” signals such as necrotic cell debris, oxidative stress or inflammation, are key elements in the events leading to the sensitization of the immune system against an environmental toxicant or a therapeutic drug. We hypothesized that allergenic antibiotics would induce oxidative stress in keratinocytes in vitro. We therefore measured levels of intracellular glutathione (reduced and total GSH) and reactive oxygen species (ROS) in a canine keratinocyte cell line (CPEK cells) exposed to 2 Blactams (amoxicillin or cephalaxin) 2 sulfonamides (sulfamethoxazole and sulfdimethoxine). Amoxicillin, cephalaxin, sulfadimethoxine and sulfdimethoxine decreased levels of GSH in CPEK cells after 2h compared to the negative control; at 8h, levels were similar to the negative control with the 2 Blactams, but higher with the 2 sulfonamides; there was no difference between conditions at 24h. These effects affected total GSH rather than reduced or oxidized GSH. Sulfadimethoxine was the only antibiotics that increased hydrogen peroxide levels compared to the media control at 2h/6h/24h. Measuring a larger range of ROS (hydroxyl, peroxide, superoxide), amoxicillin started to increase ROS levels at 4h; these ROS levels were further increased by amoxicillin and cephalaxin at 24h compared to the media control. The effects were dose-dependent over a 2-2000uM range. Our data on these canine keratinocytes confirm results published on sulfonamides and human keratinocytes; they also expand them to Blactams.

1437 Activities of Xenobiotic Metabolizing Enzymes in Cell Lines Used for Skin Sensitization Testing In Vitro.
D. Vogel1, E. Fabian1, T. Eltz1, T. Ramirez1, S. N. Kolle1, B. van Ravenzwaay1 and R. Landsiedel1, 1Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany; 2Product Safety Paper Chemicals, BASF SE, Ludwigshafen am Rhein, Germany; 3Food Chemistry and Toxicology, Technical University of Kaiserslautern, Kaiserslautern, Germany.

Skin sensitization is caused by repeated contact with an allergen. An early step in the sensitization process is the interaction of haptons with proteins. In some cases the hapten is formed from pro-haptons by enzymatic reactions in the skin (1).

Several in vitro methods are currently in the validation process as alternative methods to test for skin sensitization (2,3). The metabolic activities of selected enzymes were assayed in keratinocyte-like cells Keratinosens® (Givaudan, Switzerland) and LuSens (BASF, Germany) as well as in the dendritic-like cell U937 (used for the MUSST assay) and THP-1 (used for the h-CLAT). Protein and cytochrome c reductase contents as well as activities of oxidizing enzymes (CYP, FMO, ADH, AIDH), hydrolysing enzymes (esterase) and conjugating enzymes (NAT and UGT) were measured in subcellular fraction of the cells by monitoring metabolic transformation of model substrates. CYP, FMO, UGT and ADH activities were below the detection limit for all investigated cells. NAT and esterase activities were detectable in all cell lines. AIDH activities were detected in the keratinocyte-like cells Keratinosens® and LuSens but not in U937 or THP-1 cells. These results demonstrate that potential pro-haptons can be metabolically activated during sensitization testing in vitro. The xenobiotic metabolizing enzymes of the respective cells need, however, to be compared to those of native skin.

1438 Interleukin 17 Expression by Chemical Allergen-Activated Lymph Node Cells: Selectivity for Contact Allergens.
L. Kimber, A. Metryka, M. D. Hayes and R. L. Dearman, Faculty of Life Sciences, Manchester University, Manchester, United Kingdom.

Chemical allergens can cause skin sensitization resulting in allergic contact dermatitis, or sensitization of the respiratory tract associated with occupational asthma. The immunological mechanisms resulting in sensitization, and the contributions made by the innate immune response are not fully understood. The interleukin (IL)-17 cytokine family, originally described as Thelper (Th17) cytokines, are now known to be expressed by cells of the innate immune system. It has been shown previously that topical exposure of mice to 2,4-dinitrochlorobenzene (DNCB), a potent contact allergen, is able to provoke the rapid (within 6-16 hours) production of IL-17 by components of the innate immune system in regional lymph nodes. Here we have examined whether this rapid elaboration of IL-17 cytokines is selective for contact allergens. BALB/c mice were exposed on the dorsum of both ears to various allergens (DNCB, dinitrofluorobenzene, oxazolone, 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one, or 6-hecylcinnamaldehyde), to the irritants sodium lauryl sulfate and benzalkonium chloride or to the appropriate vehicle control. At various times thereafter cells from draining lymph nodes were isolated and cultured, and supernatants analyzed for IL-17A, IL-17B, IL-17A/F and IL-22 expression. Expression of IL-17 cytokines and IL-22 was selective for contact allergens with no significant increase in response to skin irritants. A chemical respiratory allergen (trimellitic anhydride; TMA) also induced IL-17 and IL-22, but with substantially delayed kinetics compared with contact allergens. Enhancing the dendritic cell migration kinetics in response to TMA to match those induced by contact allergens did not impact on the tempo of lymph node IL-17 expression. Collectively these data suggest that the rapid elicitation of IL-17 cytokines in delayed type hypersensitivity is a permissive effective biomarker of exposure to contact allergens, and may provide a platform for the development of a novel approach to the characterization of skin sensitizing activity.
Interleukin (IL)-17 cytokines, expressed by T helper (Th)17 cells, play pivotal roles in adaptive immune responses. They have been implicated in autoimmune and allergic diseases and have roles in bacterial and fungal clearance. Importantly, IL-17 is produced not only by adaptive immune cells but also by cells of the innate immune system including the nonconventional yδ T cell subset. It has been shown recently that IL-17-expressing yδ T cells are required for the development of adaptive Th17 responses that mediate experimental autoimmune encephalomyelitis, a murine model of multiple sclerosis. We have examined whether IL-17 influences sensitization to chemical allergens. BALB/c strain mice were exposed topically to the contact allergen 2,4-dinitrochlorobenzene (DNCB), the respiratory allergen trimethyl- anhydride (TMA), or to vehicle alone. At selected time points single cell suspensions of draining lymph nodes were cultured and analyzed for cytokine secretion or for mRNA following enrichment/depletion using magnetic beads. A single exposure to either allergen resulted in transient up-regulation of IL-17 from yδ T cells. Maximal levels of secretion were observed at 6th and 46th following exposure to DNCB and TMA, respectively. After repeated exposure under conditions where DNCB and TMA stimulated polarized Th1 and Th2 cytokine phenotypes, respectively, DNCB, but not TMA, was shown to induce the expression of IL-17. IL-17 production by DNCB-activated cells was shown by complement depletion to reside only in the CD4+ population. In subsequent experiments, responses were explored in yδ T cell null mice and C57BL/6 wild type (WT) controls. A similar pattern of IL-17 production to that provoked in BALB/c strain mice was seen in the WT mice following prolonged exposure to DNCB. However, in the yδ T cell null mice the adaptive Th17 response was completely abrogated. These data suggest strongly that the lack of IL-17 production by yδ T cells during the acute (innate) response affects the subsequent adaptive Th17 response to contact allergens.

1440 IL-18 Secretion in Human 3D Organotypic Skin Models for the Identification of Contact Sensitizers.

E. Cerini1, G. Gibb1, V. Galliati1, S. Spiekel2, H. Kandarou3, P. Haydon4, C. Seaman5 and E. L. Roggen6. 1DSFEB, Università degli Studi di Milano, Milan, Italy; 2Vrije Universiteit Medical Center, Amsterdam, Netherlands; 3MetaTek Corporation, Ashland, MD; 4GSK, Hersheyford, United Kingdom; 53Rc Management and Consultancy, Kongens Lyngby, Denmark.

Over the last decade, several in vitro methods have been proposed to identify potential of contact sensitizers, but no accepted in vitro method yet available. Keratinocytes play a key role in all phases of skin sensitization. Interleukin-18 (IL-18) production in keratinocyte was identified as a potentially useful endpoint for determination of contact sensitizers. Limitations of traditional submerged cell culture include chemical solubility, stability in water and metabolic competence. To overcome these problems, experiments were performed to test the possibility to use commercially available 3D organotypic skin models to exploit the possibility to use the secretion of IL-18 for the identification of contact sensitizers. A protocol was developed using different 3D skin models, including EpiDerm TM, EST1000TM. Preliminary experiments were conducted to determine chemical toxicity profiles using the MTT viability assay. Additional doses were then chosen for IL-18 secretion experiments. Following topical exposure for 24 h to several contact allergens (including benzocaine, cinnaMidazol, cinial, DNCB, egcnol, isoeugenol, 2-mercaptoacetohexazol, oxazolone, etc.) and irritants (including chlorobenzene, lactic acid, octanoic acid, phenyl acetic acid, SDS, Tween 20, etc.) a robust increase in IL-18 release was observed only after exposure to contact allergens. The method could be easily transferred to naïve laboratories. Using a cut-off of 2-fold increase of IL-18 above vehicle control and 40% cell viability, depending from the laboratory 85-100 % sensitivity and 88-100 % specificity were obtained. This model appears to be very promising, additional testing with a larger chemical set is required to fully evaluate the utility of this assay.

1441 Animal Strains Usable to the LLNA: BrdU-ELISA (OECD 429B).

T. Amazi1, Y. Nozaki3, M. Kaminiishi1, H. Takagi1, T. Sato2, R. Guest2 and K. Sato3. 1Harlan Laboratories Co., Ltd., Tokyo, Japan; 2School of Medicine, Showa University, Tokyo, Japan; 3Harlan Laboratories (UK), Derby, United Kingdom.

The murine local lymph node assay (LLNA) is a widely accepted alternative test to assess the skin sensitizing potential of chemical substances. The original LLNA was modified to quantify lymph cell proliferation in the draining auricular lymph nodes by incorporation of radiolabeled thymidine analogues. To avoid use of the radioisotope in humans, some modified LLNA protocols were developed. One of the modified methods utilizes the nucleus (uridine) analogue of 5-Bromo-2-deoxiuridine (BrdU). In this method, the incorporated BrdU is measured by ELISA, using anti BrdU antibody. This modified LLNA-BrdU-ELISA has been validated and adopted as OECD test guideline 429B. In this guideline, the CBAJ or CBA CN strains are recommended, since research strains during the validation. Previously, we noted differences in response in the LLNA with different strains of mouse. In this study, we used mice of several CBA strains to compare the reactivity against several skin sensitizers and a non sensitizer. It is confirmed that the mouse strains, CBA/CalolaHsd and CBA/N Ic showed similar but not equal re- response to CBA/JNCig1, the preferred strain in the LLNA-BrdU-ELISA.

1442 Elucidation of the Reason Underlying the Incorrect Sensitization Evaluation Results for Methyl Methacrylate, Methyl Salicylate and 2-Mercaptobenzothiazole by Nonradioactive Local Lymph Node Assay.

W. Jang1, K. Jung1, Y. Lee1, Y. Yum1, Y. Heo2 and K. Lim1. 1Amorepacific R&D Center, Yong-in, Republic of Korea; 2Korea FDA, Cheong-on, Republic of Korea; 3Catholic University of Daegu, Daegu, Republic of Korea.

The non-radioisotopic local lymph node assay (LLNA) using bromodeoxyuri- dine(BrdU) with flow cytometry (FCM) has been developing as an alternative test for identifying skin sensitizers. We previously performed pre-validation with recommended reference substances in the OECD Test Guideline 429 using Balb/c mice. Our results using non-radioisotopic LLNA were similar to those of traditional LLNA. However, a weak sensitizer, methyl methacrylate(MM), a non-sensitizer, methyl salicylate(MS) and a moderate sensitizer, 2-mercaptobenzothiazole(MBT) were wrongly identified by non-radioisotopic LLNA-BrdU-FCM as a non-sensi- tizer, a weak sensitizer and a non-sensitizer, respectively. Therefore, we tried to clar- ify the reason underlying the wrong prediction by LLNA-BrdU-FCM. First, we compared strain difference of Balb/c mice from CBA mice that are recommended strain in the OECD Test Guideline 429 with several test materials including the 3 chemical substances described above. Mice received topical application of the test material or vehicle on both ears for consecutive 3 days. Mice were sacrificed 24 hr after intraperitoneal injection of BrdU. Ear thickness and ear weight were measured for evaluating irritation and auricular lymph nodes were used for determining BrdU incorporation into lymph node cells. All of test materials including positive control showed similar stimulation index and ear thickness between two mice strains suggesting that strain difference may not be the reason for the wrong predic- tion by LLNA-BrdU-FCM. Interestingly, MBT were correctly identified as a moder- ate sensitizer when A00 was used as a vehicle while it was a non-sensitizer when DMF was used as recommended in the OECD guideline suggesting that vehicle selec- tion may profoundly affect the prediction for MBT by LLNA-BrdU-FCM.

1443 Polarized Immune Responses Induced by Chemical Allergens Display Differential DNA Methylation Patterns.

V. Chapman1, L. Muggle2, R. Terranova2, T. Zollinger1, L. Kimberg2 and R. J. Dearman3. 1Manchester University, Manchester, United Kingdom; 2Novartis, Basel, Switzerland.

There is increasing evidence that epigenetic regulation of gene expression plays a pivotal role in the orchestration of immune responses. It has been demonstrated previously that chemical allergens can be divided into two categories; contact allergens (such as dinitrochlorobenzene; DNCB), that cause type I/17 polarized responses and respiratory allergens (such as trimellitic anhydride, TMA) that in- duce a preferential type 2 response. Such polarization occurs upon repeated (13) day topical exposure. In order to explore the regulation and maintenance of such responses at the molecular level, the genome wide patterns of DNA methylation fol- lowing treatment with the reference allergens DNCB and TMA was characterized. Mice (n=5 per group) were exposed to DNCB, TMA or vehicle alone for 13 days, and draining auricular lymph nodes excised. DNA was extracted, sonicated and processed for methylated DNA immunoprecipitation (MeDIP) followed by hy- bridization to a high resolution DNA promoter array (Roche) representing 28,000 probe ranges, covering promoter regions and known CpG islands. Changes in DNA methylation profiles for allergen-activated tissues were compared with the vehicle-treated control samples, with a cut off of p<0.01. More differentially methyl- ated regions (DMR) were recorded for DNCB tissue than for TMA tissue (6149 versus 2178), although approximately half those identified for TMA were in common with DNCB. Direct comparisons between DNCB and TMA-treated tissue re- vealed 268 DMR that were differentially regulated between the two different classes.
of allergens. The 15 most significant genes identified were associated with hyper- methylation and hypomethylation for DNCB and TMA exposure, respectively. Thus, topical exposure to different classes of chemical allergen under polarizing conditions results in characteristic patterns of DNA methylation indicative of epigenetic regulation of the developing allergic response. Furthermore, DNCB and TMA are associated with more silencing and activating epigenetic marks, respectively.

1444 Chemicals Acute Toxicity Testing and Evaluation Based on Nematode Caenorhabditis elegans Model.

Y. Li, K. Yang, S. Gao, H. Jing, L. Qi, J. Ning, Z. Tan, C. Zhao, L. Ma and G. Li; Institute for Toxicology, Beijing Centers for Disease Control and Prevention, Beijing Research Center for Preventive Medicine, Beijing, China.

The toxicity assessment and risk management of chemicals is highly associated with the safety of human health. At present, the conventional model of which rodent tests were greatly characterized, can no longer meet the increasing requirements of chemical toxicological evaluation. Studies on the non-rodent in vivo assay by using model organisms are becoming a potential perspective and frontiers in the research field of chemicals toxicity risk assessment. Nematode Caenorhabditis elegans (C. elegans) has great potential value in the chemical rapid toxicity screening and complying with principles of “3Rs” for its short life cycle, easy operation and low cost. However, the fact that how the acute toxicity in rodents and even health risks in human being can be predicted through toxicity in C. elegans, is still a key scientific problem that remains to be solved. In this pilot study, we assayed 50% lethal concentration (LC50) and 50% lethal time (LT50) of 20 selected chemicals using C. elegans as an in vivo model organism in 96-well plate for 24h, analyzed the correlation between LC50 of C. elegans and LD50 of rat/mouse. The results indicated that the estimated toleration of chemical pH4 for C. elegans was greater than 2.75. There was a positive correlation between LC50 of C. elegans and LD50 of rat/mouse (R=0.83, P<0.01). LC50 and LT50 of chemicals in C. elegans have positive correlation as well. Taking together, there is an intrinsic relationship between LC50 of C. elegans, LD50 of rat/mouse. LC50 and LT50 are recommended as toxic effect index for further study on acute toxicity test of chemicals using C. elegans. C. elegans will be a potential valuable in vivo pre-screening toxicity model in the new chemical’s predictive toxicity test and assessment prior to the conventional rodent model (partly supported by NSFC Grant in China #81273108, Capital Development Project 2011-1013-03, and Beijing Health Bureau Project-2011. Corresponding author: Guojian J. Li; guojianli88@yahoo.com).

1445 Predicting Developmental Neurotoxicity in Rodents from Larval Zebrafish—and Vice Versa.

The complexity of standard mammalian developmental toxicity tests limits evaluation of large numbers of chemicals. Less complex, more rapid assays using larval zebrafish are gaining popularity for evaluating the developmental neurotoxicity of chemicals; there remains, however, a pressing need to determine the utility of the model for predicting adverse neurobehavioral outcomes. We are undertaking studies to compare the developmental effects of chemicals in both larval zebrafish and rats. Zebrafish studies show that transitions between light and dark periods can produce robust changes in activity that may be differentially altered by chemicals; an analogous behavior pattern is being studied in rats. Developmental heptachlor in rats increased motor activity in addition to altering righting reflex ontogeny, and impairing learning and memory in adult offspring. In zebrafish, developmental heptachlor produced marked increases in dark-induced activity and dysregulation of the light-dark patterning of activity. Preliminary studies with dimethyl phthalate (DMP) in zebrafish showed reduced habituation only during the dark period, perhaps reflecting changes in anxiety or cognitive behaviors. We evaluated developmental effects of DMP in rats using light-dark transition activity measures in addition to standard neurobehavioral toxicity tests including anxiety. Alterations were observed on several of these endpoints; however, the results were not always dose-related and were confounded by maternal toxicity at high doses. While these results suggest concordance between outcomes of two chemicals from different classes, considerably more comparisons with positive and negative controls are needed to understand the predictability of the larval zebrafish assay. Further exploration of analogous/homologous behavioral tests in both species may be beneficial in evaluating neurotoxic outcomes from developmental exposures, and in assessing the conformity of results. This is an abstract of a proposed presentation and does not reflect US EPA policy.

1446 Developmental and Reproductive Toxicity of Fusarium Mycotoxins in the Nematode Caenorhabditis elegans.

Z. Yang1, L. Tang1, G. Qian1 and J. Wang1; Toxicology and Environmental Research & Consulting, The Dow Chemical Company, Midland, MI.

Developmental and reproductive toxic effects of some naturally occurring Fusarium mycotoxins were shown in certain animal models. In this study we used the nematode Caenorhabditis elegans (C. elegans) as an alternative model for mechanistic studies, to investigate the developmental and reproductive toxic effects of T-2 toxin (T-2), zearalenone (ZEN), and deoxynivalenol (DON). C. elegans (N2) 1-day or 3-day old were exposed to various concentrations of these toxins for up to 72 hrs. The development arrested rate (DAR) and the reproduction arrested rate (RAR) were outcomes used to assess the overall effects on the development and reproduction of the exposed C. elegans. T-2 has the most potent suppressive effects on the development and growth, concentrations from 0.5- to 8-mg/L caused averaged DAR from 12.01% to 41.6%; exposure to ZEN from 5- to 80-mg/L caused averaged DAR from 11.14% to 35.56%; exposure to DON from 50- to 800-mg/L caused averaged DAR from 12.71% to 32.77%. The concentration ratio for inducing significant DAR (10%) is approximate to 1:100 for T-2, ZEN, and DON, respectively. T-2 also has the most potent toxic effect on the reproduction, concentrations from 0.5- to 8-mg/L caused averaged RAR from 28.97% to 72.43% with an EC50 at 3.57-mg/L; exposure to ZEN from 5- to 80-mg/L caused averaged DAR from 26.15% to 90% with an EC50 at 12.02-mg/L; exposure to DON from 50- to 800-mg/L caused averaged RAR from 23.83 to 52.33% with an EC50 at 585.85-mg/L. The concentration ratio for EC50 is approximate to 0.13:4.1641 for T-2, ZEN, and DON, respectively. These results suggest that T-2 and ZEN have more significant toxic effects than DON on development and reproduction in C. elegans and that C. elegans is an excellent model, due to its short life cycle and easy genetic manipulation of genes, for studying molecular mechanisms of developmental and reproductive toxic effects caused by food-borne mycotoxins.

1447 Zebrafish As a Complementary Model in Toxicology.

A. Merké2, A. Wolterbeek1, A. Beke1, C. Snell1 and D. de Groot1; 1 TNO, Zeist, Netherlands; 2 TNO Triskelion BV, Zeist, Netherlands. Sponsor: R. Woutersen.

Growing awareness to apply the principles of Replacement, Refinement and Reduction (3Rs) of animals in regulatory testing drives the need for alternatives identifying potential toxic agents with accuracy, speed, reliability and respect for animal welfare. So far, for complex endpoints like reproduction and developmental toxicology, animal-free in vitro models are limited and cover only a restricted part of the reproductive cycle. The characteristics of zebrafish embryos and/or larvae (as an ideal non-mammalian whole organism model that could bridge gape between in vitro cell systems and complex reproduction studies in mammals, e.g. small size, ease of obtaining high number of progeny, external fertilization, transparency and rapid development of embryo, and a basic understanding of its gene function and physiology. Macроскопическое examination of zebrafish embryos/larvae predicted toxicity of chemical and pharmaceutical agents with high certainty and proved to form a reliable total organism approach to study embryo- and developmental (neuro)toxicity. More in depth analysis and interpretation of the locomotor data in the developing zebrafish larva relative to (nervous system) development increases the use of the zebrafish model in developmental neurotoxicology research. A full histopathological survey of the embryo’s combined with high-end analytical methods appeared to further increase the applicability domain of zebrafish into toxicity screening studies. Further refinement with respect to the physical and chemical properties of test compounds that determine the body burden and tissue distribution increases the predictability of the assay. For translation to other toxicity models and man, there is an urgent need to research on responsible toxicity pathways. This research is supported by the Dutch Ministry of Health, Welfare and Sport and the Dutch Ministry of Social Affairs and Employment.

1448 Using Yeast Functional Toxicogenomics to Decipher the Toxicity of the Dieldrin Organochlorinated Pesticide.

B. Gaytan1, A. Loguinov1, S. Lanza1, N. Denslow2 and C. Vulpe1; 1 University of California, Berkeley Berkeley, CA; 2 University of Florida, Gainesville, FL.

Exposure to organochlorinated pesticides (OCPs) has been linked to neurotoxicity, endocrine disruption, and cancer, but the cellular mechanisms of toxicity remain largely unknown. It was hypothesized that a chemical genomics approach using a Saccharomyces cerevisiae gene deletion library could help elucidate the cellular mechanisms by which various OCPs induce toxicity. In this study, pools of deletion
strains were exposed in triplicate for five and fifteen generations to the IC20, 50% IC20, and 25% IC20 dieldrin OCP concentrations. The oligonucleotides unique to each deletion strain were PCR-amplified and hybridized to TAGA arrays to identify sensitive, unaffected, and resistant strains. The overrepresented biological terms within the data assisted in the selection of individual deletion strains for confirmation experiments. Analyses indicate that amino acid sensing and components of the pyruvate dehydrogenase complex are critical for cell survival under dieldrin exposure. Exogenous amino acids rescue dieldrin toxicity, while lower concentrations of amino acids in the media exacerbate toxicity. Finally, it was demonstrated that dieldrin inhibits amino acid uptake in yeast cells. Future investigations will examine whether amino acid status is tied to dieldrin toxicity in human cell lines. Additionally, the development of an automated high-throughput system to screen the yeast deletion library for altered growth in various toxicants may be discussed.

1450 A High-Throughput Mechanism-Based Toxicity Screen Using C. elegans.

R. B. Goldsmith1, J. R. Pirone1, W. A. Boyd2, M. V. Smith2, and J. H. Freedman1, 2.

1NIH, Research Triangle Park, NC; 2NTP, NIEHS, Research Triangle Park, NC.

To quantitatively assess the effects of chemical exposures on transcription, an automated high-throughput in vitro toxicity assay was developed to measure changes in the levels and cell-specificity of specific gene expression in C. elegans. Transcriptional responses were measured in individual strains of transgenic C. elegans that express fluorescent proteins under the control of archetypical stress-inducible genes: cod-3, esp-35,42, ges-1, ges-38, ges-4, hsp-16.2, hsp-16.41, hsp-17, hsp-4, hsp-6, hsp-20, ntl-2, ugt-1 and ugt-13. As part of assay development, transgenic nematodes with large dynamic ranges (i.e., low constitutive expression levels) were selected for high-throughput analysis. These nematodes were exposed to a cocktail of stressors in 24-h exposure experiments at each stressor concentration. Differential expression was measured by qRT-PCR analysis of cDNA reverse transcribed from RNA isolated from nematodes exposed to stressors. To validate array analysis, the levels and cell-specificity of specific gene expression in C. elegans were measured by qRT-PCR analysis of cDNA reverse transcribed from RNA isolated from nematodes exposed to stressors. The results show that this assay can be used to assess the effects of toxicants on gene expression in vivo.

1451 The Effects of Microcystin-LR on the Catecholamine Indexes of Caenorhabditis elegans i. C.

Moore and B. Puchner.

Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA.

The blue green algae toxins microcystins (MCs) are known ubiquitous hepatotoxins found across coastal and marine waters. The World Health Organization has established a drinking water guideline of 1 μg/L total MCs based on MC-LR liver toxicity data after oral exposure. MCs inhibit serine/threonine protein phosphatases (PP1 and 2A), a mechanism extensively studied in the liver; yet the effects of MCs on the nervous system are poorly understood. To study MCs' effects on the nervous system, a 24-hour exposure assay using the neurotoxicity model Caenorhabditis elegans (C. elegans) was established. C. elegans have remarkable genetic and neurobiochemical conservation with humans, and with all 302 neurons extensively studied, key sensory neurons have been linked to specific behaviors. It is well known the AWA and AWB sensory neurons detect diacetyl and benzaldehyde, respectively, and sensory neuron function can be quantified using a catecholamine index (CI). Wildtype (N2) adult nematodes were exposed for 24 hours to 0, 1, 10, 40, 80, 160 and 320 μg/L MC-LR before determining CIs. No significant changes in CIs for benzaldehyde were observed. At MC-LR concentrations of 40 μg/L and above, CIs for diacetyl decreased significantly. The unchanged CIs for benzaldehyde suggest that AWA is not affected. The decreased CIs for diacetyl suggest that AWA is targeted by MC-LR. PP2A inhibitor okadaic acid and PP1 inhibitor tautomycin were used in the same 24-hour exposure model to evaluate whether PP1 or PP2A inhibition result in changes in AWA function. Results of CI indexes suggest that the AWA chemosensory neuron is affected by MC-LR resulting in neurotoxicity.

1452 Quantitative Assessment of Phase II ToxCast™ Chemical Toxicity in C. elegans.

W. A. Boyd1, M. V. Smith2, J. R. Pirone2, J. R. Rice3 and J. H. Freedman1, 2.

1DNIE, NIEHS, NTP, Research Triangle Park, NC; 2SRA International, Research Triangle Park, NC; 3IRA, Research Triangle Park, NC.

The ToxC21 community is working to prioritize thousands of chemicals for further toxicity testing and to develop prediction models for human toxicity. To integrate the large amounts of high throughput in vitro and in vivo toxicity and develop these models, better quantitative methods are necessary. To develop quantitative assessments of in vivo toxicity data, the U.S. EPA's ToxCast Phase II library, which contains 676 unique chemicals including failed drugs, food additives and industrial products, was screened using the C. elegans growth assay. This assay uses the COPAS Biosort to measure size changes in individual nematodes after 48-h exposures. Over the seven concentrations tested (0.5–200 μM), >50% of the chemicals caused a decrease in growth. To rank their toxicity in C. elegans, a concentration-response curve for each chemical was described using isotonic regression and the statistical significance of the curve assessed. For significant concentration-response curves, the fitted isotonic regression model calculated three parameters that characterized the efficacy and potency of each chemical: 1) change in response between control and highest concentration (R); 2) concentration of chemical at which half of R is reached (ECR50); and 3) slope of the curve at the ECR50. Chemicals were also ranked by computing a toxicity score, which is a weighted sum of the change in response at each dose relative to the control. The top 5% most active compounds included several organic pollutants (e.g., DDT, PFOS), which have been banned from use due to their toxicity and bioaccumulation. Excellent reproducibility was observed for eight chemicals replicated in the library: seven were active and one was inactive for all replicates. The application of this new method for the quantitative assessment of chemical toxicity in C. elegans could be applied to other in vitro and in vivo toxicity screens, thus allowing for better comparisons among various assays, and the development of predictive models of toxicity.

1453 Triazole-Induced Gene Expression Changes in the Zebrafish Embryo.

S. A. Hermesen1, 2, T. E. Pronk1, E. van den Brandhof1, L. T. van der Ven1 and A. H. Piersma1, 3, 4.

1Health Protection, RIVM, Bilthoven, Netherlands; 2Toxicogenomics, University, Maastricht, Netherlands; 3IRAS, University, Utrecht, Netherlands. Sponsor: H. van Loveren.

The zebrafish embryo is a promising alternative test for developmental toxicity. The classical read-out is via morphological assessment. Microarray analyses may increase sensitivity and predictability of the test by detecting more subtle and mechanistic
responses. We have shown earlier that with transcriptomics data we could discrimination between two chemical classes, glycol ethers and triazoles, in a concentration-response design. It is time-consuming and expensive to perform concentration-response analysis for many compounds. Thus, we studied the possibility of relating gene expression profiles of structurally related chemicals tested in a single concentration to a complete transcriptomic concentration-response of the triazole anti-fungal fluazolane (FLU). We tested five other triazoles, hexaconazole (HEX), cyproconazole (CYP), triadimefon (TDF), myclobutanil (MYC), and triticonazole (TTC) at equipotent concentrations based on morphological evaluation. Results showed that compounds differed in their regulation of major anti-fungal and developmental toxicity pathways, steroid biosynthesis and retinol metabolism, respectively. Assuming that the ratio between these pathways is relevant for efficacy compared to developmental toxicity, we found TTC was more efficacious and CYP was more toxic compared to the other triazoles. MYC showed a different response similar to the high toxic concentrations of FLU. We here demonstrated that gene expression data allow more comprehensive assessment of compound effect by discriminating relative potencies using these specific gene sets. The zebrafish embryo model can therefore provide information on relative pathway sensitivity related to intended mechanism of action and toxicological activity of compounds.

1454 Early-Life Exposure to Methylmercury and Multiple Stressors: Daphnia pulex As an Alternative Model System to Evaluate Long-Term Effects.

D. Doke and J. M. Gohike, Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL.

While human populations are exposed simultaneously to chemical stressors and physical factors including temperature and differing nutrition, safe limits of exposure are based primarily on tests using single chemicals. Due to the high cost and time required to test mixtures in traditional animal models, development of novel model systems are of critical importance. We are currently evaluating Daphnia pulex, a standardized USEPA and OECD ecotoxicology model system and an NIH model organism for biomedical research, as a tool for assessing long-term effects of early life exposures to multiple stressors. As a case study, we are examining the interaction between MeHg exposure and varying temperature regimes and nutrition. We hypothesize that: Early life exposures in high temperature or a low food regime will increase MeHg toxicity as measured by reproduction and lifespan in Daphnia pulex. D. pulex were exposed to a matrix of three temperature regimes emulating constant temperature regimes. This indicates that subtle differences in lifespan can be detected across standard laboratory thermal conditions and those that would be experienced in a natural environment. Subsequent work will evaluate interactions. Since current alternative model systems are not designed to evaluate long-term effects of early life exposures, our research is designed to evaluate the utility of D. pulex as a complementary model system.

1455 A Rapid Chemical Screening Platform in C. elegans for Assessing Environmental Germline Disruption.

P. Allard1, N. Kleinsteuber1, T. B. Knudsen2 and M. Colaiacovo3, 1Environmental Health Sciences, UCLA, Los Angeles, CA; 2Genetics, Harvard Medical School, Boston, MA; 3NCCRT, US EPA, Research Triangle Park, NC.

Despite the developmental impact of errors in chromosome segregation, we lack the tools to comprehensively assess environmental effects on meiotic integrity in animals. Here, we report the development of an assay in C. elegans that fluorescently marks aneuploid embryos following chemical exposure. We qualified the predictivity of the assay against chemotherapeutic agents as reference compounds, as well as environmental compounds with comprehensive mammalian in vivo endpoint data. The assay was highly predictive of mammalian reproductive toxicities with a maximum specificity of 78%. Finally, we validated selected compounds from the screen by analyzing germline maintenance following exposure. With this novel approach, we provide the first high-throughput screening strategy for the assessment of environmental effects on the germline.

1456 Cytotoxic Effects of Methyl-Mercury in Whole Worms and Pan-Neuronal GFP-Expressing Embryonic Cultures of Caenorhabditis elegans.

K. Breihaunt1, R. K. Hjelala1,2 and W. D. Atchison1,2, 1Neuroscience Program, Michigan State University, East Lansing, MI; 2Pharm/Tox, Michigan State University, East Lansing, MI.

Caenorhabditis elegans (C. elegans) strain K1C136 was used to study whole worm viability in response to methylmercury (MeHg) toxicity in a semi-fluid gellan gum medium. Stage 1 L3 K1C136 whole worm viability is reduced by exposure to 0.5-25 μM MeHg (p<0.0001) for 24-48 hrs. At the highest [MeHg] tested, cytotoxicity was 54% and time of exposure (24 and 48 hrs) did not have an effect (p=0.15). C. elegans strain NW11229, which expresses pan-neuronal Green Fluorescent Protein (GFP), was used to prepare primary cell cultures from eggs to test the ability of the nemadipine-A to reduce the cytotoxicity of MeHg in worm neurons. Nemadipine-A is a novel dihydropyridine (DHP) L-type voltage gated Ca2+ channel antagonist and we hypothesize it has a similar effect as we have previously reported for the non-DHP-type antagonist verapamil. At [MeHg] of 0.4-1.2 μM, cytotoxicity in neurons was both concentration and time dependent as determined by ethidium homodimer viability assay. Thus the results obtained in whole worms differ somewhat from those of isolated neurons relative to time-dependence of cytotoxicity. As previously reported, verapamil reduced MeHg-induced cytotoxicity by ~10% at 1 hr of exposure, however, lost its protective effect at 3 hrs (p<0.08). Similarly, nemadipine-A (0.25-1 μM) protected neurons against MeHg toxicity at 1 hr (p=0.033), but not 3 hrs of exposure. The reduction of MeHg-induced cytotoxicity by L-type Ca2+ channels contribute to MeHg-mediated neuronal cell death in C. elegans, just as they do in mammalian neurons. The lack of correlation between time and exposure to MeHg may result from upregulation of genes for proteins involved in metal detoxification. Using C. elegans neuronal cultures as a model system for MeHg neurotoxicity may help uncover why certain neurons are more susceptible to MeHg-induced cell death furthering our understanding of the underlying mechanisms.

1457 MTBE Disrupts HIF1-Vegf Regulated Angiogenesis in Zebrafish (Danio rerio).

L. A. Bonventre1,2, T. S. Kung3, L. A. White3 and K. R. Cooper2, 1EMT, Oregon State University, Corvallis, OR; 2JGPT, Rutgers University, New Brunswick, NJ.

Understanding the sensitivity of developing vascular networks to toxic insult is important to advancing vascular biology. Methyl tert-butyl ether (MTBE) induces vascular lesions in the zebrafish embryo, including pooled blood in the common cardinal vein (CCV), cranial hemorrhages (CH), and abnormal intersegmental vessels (ISV). The transcript levels of two isoforms of vascular endothelial growth factor, vegfa and vegfc, as well as a primary receptor, vegfr2, are significantly decreased during the critical period (6-somites to Prim-5). The vascular lesions were hypothesized to be a result of the MTBE-induced down-regulation of vegfa. An over-expression study was conducted to rescue MTBE-induced vascular lesions. Over-expression of zebrafish vegfa resulted in 46% fewer animals exhibiting MTBE-induced CH and 35% fewer embryos exhibiting abnormal ISV, while no rescue was observed for the CCV lesion. Global gene expression changes during the critical period, assayed with the Affymetrix GeneChip® and analyzed with Ingenuity Pathway Analysis®, identified the cardiovascular system as a primary pathway altered by MTBE exposure, as well as other pathways associated with hypoxia inducible factors (HIFs). Two further rescue studies were designed to block HIF1α degradation to test the hypothesis that MTBE toxicity was HIF1α-dependent. Chemical inhibition of HIF1α degradation, by blocking prolyl-4-hydroxylase activity with N-oxalylglycine, rescued both the CCV lesion (24%) and CH (32%). Knockdown of a ubiquitin ligase component, von Hippel-Lindau protein, with an antisense morpholino rescued only the CCV lesion (35%). Rescue of MTBE-induced vascular lesions by over-expression of vegfr2 and inhibition of HIF degradation demonstrated that MTBE toxicity is mediated by a down-regulation of HIF driven Vegf at a critical period during the developing cardiovascular system. Chemicals with anti-angiogenic properties, such as MTBE, can be used to advance the science of angiogenesis in both a disease state and during development. Funding: E307148, E305022.
The use of reverse dosimetry for in vitro-in vivo extrapolation (IVIVE) enhances the utility in predicting toxicity early within the research and development process. The validation of in vitro cardiac and skeletal muscle models of toxicity may find a utility in predicting striated muscle toxicity. Future work will be aimed at exploring tissue-specific toxicity using higher tier in vitro models (liver, muscle bionector flow through systems) which might better represent the in vivo system.

1459 Controlled Hemodynamics and Transport in Primary Hepatocytes Shift Induction and Toxic Responses to Drugs Closer to In Vivo Concentrations.

Preclinical in vitro drug screening systems exhibit efficacy and toxicity responses to concentrations very different from corresponding clinical or in vivo plasma Cmax levels, contributing to poor in vitro-in vivo correlations. We established a primary hepatocyte system using controlled hemodynamics and transport that retains polarized morphology and metabolic function more stably than traditional static cultures. We tested the hypothesis that restoring these critical parameters could achieve in vitro hepatocyte drug response at concentrations closer to in vivo levels. Fresh rat hepatocytes were cultured under controlled hemodynamics alongside static controls for 5 days before treating with various concentrations of test drugs (dexamethasone, acetaminophen, chlorpromazine) for 2 days. Cytotoxic response was evaluated by MTT and ATP assays and cytochrome p450 activity by standard kits. Under controlled hemodynamics, dexamethasone was significantly more toxic to primary hepatocytes at concentrations used for induction studies in static cultures (93.31±9.5% at 50 μM, p <0.01). Induction responses of Cyp3A activity equivalent to 50μM of dexamethasone in static cultures were seen at 2.5 μM under controlled hemodynamics. Cytotoxic dose response curves of acetaminophen demonstrated a leftward shift with IC50 values at 10 μM in devices compared to 30 μM in static controls. A similar shift in laboratory animal model, and the need to extrapolate results from animals to humans. In vitro tissue microms are a promising avenue for studying the effects of toxicants. Such systems can serve as reliable models of in vivo studies and can be systematically probed with a wide range of toxicity. Since they are engineered, experimentation on these microms is considerably less complex than those needed to probe tissues and organisms in vivo. We have designed a novel 3D organotypic liver model assembled with three cell types (hepatocytes, sinusoidal endothelial cells and Kupffer cells) and a polyelectrolyte multilayer (PEM) that mimics the Space of Disse. We have established a dose range (20–40μM) for acetaminophen in 3D liver models that is non-lethal yet is capable of perturbing hepatic function. When acetaminophen was administered 4 days after hepatocytes were obtained from rat livers, conventional monolayer, collagen sandwich and 3D liver model cultures showed a small decrease in cell viability. When the drug was administered at day 12, only the 3D liver models showed a decrease in viability. All cultures exhibited a decrease in albumin production and urea secretion. The 3D liver models exhibited better urea secretion than monolayer and collagen sandwich cultures. Intracellular glutathione levels were measured for all three cultures. 3D liver models exhibited approximately 40% decrease in glutathione in comparison to monolayer and collagen sandwich cultures that exhibited greater than 60% decrease. These trends suggest that the inclusion of non-parenchymal cells in the 3D liver model may impart cytoprotective effects and present in vivo like environment.

1460 Validation of In Vitro Systems to Explore Mechanisms of Striated Muscle Toxicity.

W. Dott1, J. Wright2, P. Mistry3 and K. Herbert1, 1Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; 2Product Safety, Syngenta, Bracknell, United Kingdom; Sponsor: P. Redhead.

The validation of in vivo cardiac and skeletal muscle models of toxicity may find a utility in predicting toxicity early within the research and development process. The primary aim of this project was to investigate the extent of translation from an in vivo to an in vitro, system, using a toxicogenomics approach. Female Han Wistar rats were dosed daily via the diet with sulfonyl isoxazoline (SI) chemistries for 4 or 28 days. Histopathological evaluation revealed a dose-dependent myositis and myoglobinuria in striated muscle. Gene expression profiling of cardiac and skeletal muscle tissues taken from sub-toxic doses identified a number of perturbed cellular pathways including mitochondrial dysfunction, altered energy metabolism, oxidative stress, cell cycle and apoptosis. This data provided a plausible hypothesis which suggested mitochondrial toxicity as a principle mechanism of SI-induced striated muscle toxicity. To investigate the translation of this toxicity to an appropriate in vitro system cardiac (H9c2) and skeletal muscle (L6) cell lines were selected. A cell based assay was developed in which the cardiac and skeletal muscle cells were adapted to use mitochondrial oxidative phosphorylation rather than glycolysis. This system identified the SI compounds as mitochondrial toxicants. In addition there was a significant increases in mitochondrial reactive oxygen species, which provided further evidence of mitochondrial perturbation. SI treatment also induced cellular hypertrophy, accompanied by cell cycle arrest, and subsequent caspase-mediated apoptosis. These in vitro results were consistent with the transcription data, providing further validation that the cell systems models may have utility for predicting striated muscle toxicity. Future work will be aimed at exploring tissue-specific toxicity using higher tier in vitro models (liver, muscle bionector flow through systems) which might better represent the in vivo system.

1461 3D Liver Models for Investigating Drug-Induced Hepatotoxicity.

E. Jain1, M. Ehrlich2, T. Murali3 and P. Rajagopalan1, 1Department of Chemical Engineering, Virginia Tech, Blacksburg, VA; 2Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA; 3Department of Computer Science, Virginia Tech, Blacksburg, VA.

Testing the toxic effects of chemicals has traditionally relied on large-scale animal studies. In addition to being extremely expensive, this strategy has come under scrutiny due to over-reliance on animal testing. The T ox21 Consortium aims to develop in vitro quantitative High Throughput Screening (qHTS) using human cells and targets to replace animal testing. In screening for cytotoxicity, primary human cells make useful models, but results from primary cells are irreproducible and the cells are problematic to obtain. At the other extreme, transformed cell lines are readily available and reproducible, but are often poor representations of normal human tissues. Between these extremes, immortalized cell or differentiated stem cells provide reliable phenotypic models for neutrophils, kidney proximal tubule, subepithelial cells or podocytes, cardiac myocytes, vascular endothelial cells, and hepatocytes. We are evaluating cell models for these cell types by evaluating susceptibility to toxicants that are organ-selective in vivo. Efforts are also underway to adapt such cells that require differentiation to qHTS in 1536- well plate format. Gene expression profiling is being leveraged to dissect the modes of cytotoxicity, and to determine why in vitro models succeed for some compounds and fail for others. We will present the evaluation of several such toxicological models vis-à-vis: differentiated phenotypes, cytotoxicity assays, and gene expression profiling.
1463 Potential Cholestatic Compounds Assessed by Membrane Transport Vesicle Assays As Well As Bile Canaliculi Inhibition in Primary Hepatocytes in Both Human and Rat.

L. Qiu1, M. Taimi1, C. Strock2, J. Gilbert2 and Y. Will1,1, Compound Safety Prediction, Pfizer Global Research & Development, Groton, CT; 2, Apredica,Watertown, MA.

BSEP (Bile Salt Export Pump) inhibition has been proposed as a mechanism for drug-induced cholestasis, a subtype of drug induced liver injury (DILI). Screening systems for BSEP inhibition have been established in membrane vesicles from S9 insect cells over-expressing rat or human BSEP transporter. However, as any cell-free assay, the data from vesicle assays might not reflect true BSEP inhibition profile due to lack of biotransformation and metabolism. In addition, the contribution of MRP2 (Multidrug resistance-associated protein 2) to drug induced liver cholestasis also needs to be considered.

In this study, we examined 18 potential cholestatic compounds, which were either known to be BSEP inhibitors, dual inhibitors for BSEP and MRP2 or glutathione deporters, in both human and rat BSEP and MRP2 vesicle assays. Moreover, a high-content imaging assay using fluorescent selective substrates for BSEP and MRP-2 transporters including CMFDA and CLF, was used to examine these compounds in inhibition of bile canaliculic excretion in both human and rat sandwich-cultured hepatocytes. In addition, CMFDA and CLF were characterized for their ability as uptake substrates for BSEP and MRP2 transporters.

We found that both, CMFDA and CLF were not selective for BSEP transport since they were also potent MRP2 substrates. Vesicle and hepatocyte canaliculi inhibition data showed no substantial species difference between human and rat, for either transporter. Furthermore the vesicle data correlated well with the hepatocyte canaliculi data. However, for a few compounds the vesicle data did not translate into hepatocyte canaliculi data probably due to impact of cell-based effects such as metabolism or permeability.

In conclusion, to better predict drug-induced cholestasis, a larger set of compounds with known clinical DILI outcomes need to be tested in both vesicle and hepatocyte canaliculi assays in order to elucidate the mechanisms involved in liver toxicity.

1464 Development of Alternative In Vitro Methods to Screen for Pulmonary Toxicities—Characterization of Epithelial-Macrophage Coculture and In Vitro Assay Conditions at the Air-Liquid Interface (ALI).

S. P. Ng and D. B. Warheit, DuPont Haskell Global Centers for Health & Environmental Sciences, Newark, DE.

The successful development of in vitro assays with cultured pulmonary cells and aerosols is instrumental for creating toxicity/screening tests for use during product development. To optimize for future in vitro aerosol exposures using the NanoAerosol Chamber for In Vitro Toxicology system, rat lung epithelial L2 cells and NR8383 macrophages (MO) were co-cultured on an ALI system and cell metabolism (XTT), cytotoxicity (LDH), and cytokine (IL-6) release assays were developed as endpoints to assess cell toxic effects following particle exposure. Co-cultures were exposed to 0-80 μg/cm² ZnO fine particles in supplemented growth medium for 2 hrs followed by 24-hr maintenance of cultures at ALI. Results showed that both XTT and LDH assays performed with cells co-cultured at the ALI were able to detect toxicity in a dose-response manner. Cytotoxic effects measured following 20 μg/cm² ZnO particle exposures (i.e., -1C₅₀) increased with epithelial cell:MO (L2:NR8383) ratios, revealing that the seeding ratio strongly affects the assay sensitivity. In a separate study, optimization for cytokine release assay performed with different cell seeding densities and L2:NR8383 ratios showed the highest IL-6 release (~2.5 ng/ml) from cultures seeded at 0.5E5/cm² in a 2:1 ratio and maintained at ALI for 1 day. Maximum stimulation of IL-6 release was detected from the optimized cultures 4- and 24-hr post-exposure to low dose (2.5 μg/cm²) ZnO (200-300% of medium-exposed controls); IL-6 release was suppressed to 0-50% of controls after relatively high-dose ZnO (>10 μg/cm²) exposures. In conclusion, these studies are useful in characterizing and optimizing the co-culture and in vitro assay conditions with ALI which could better simulate in vivo exposure of lung cells to inhaled materials (when compared to a submerged exposure system) and ultimately should facilitate the development of reliable in vitro cell exposure systems and cell-based lung toxicity/screening tests.

1465 Predicting Heart-Specific Toxicity Using Two Cell Models: Human iPSC-Derived Cardiomyocytes and Human Liver Cells (HepaRG).

P.C. Wilto, D. Keller, B. Franz and J. M. McKim, CeeTox, Inc., Kalamazoo, MI.

A major reason for the failure of new drugs is due to adverse effects in the cardiovascular system. An in vitro model capable of identifying heart-specific liabilities would be of considerable value. To differentiate heart toxicity from liver toxicity, a dual cell model was developed that utilizes changes in cell health and function following exposure to a test drug. Human cardiomyocytes and normal human liver cells were used as the test system. Cardiomyocytes were derived from induced pluripotent stem cells (iPSC) obtained from Cellular Dynamics International. Terminally differentiated bi-potent HepaRG cells were from Life Technologies. Each cell type was established in a 96-well format and prepared in triplicate wells for each concentration. Markers of cell health (ATP, LDH leakage, and GSH) were monitored in both cell types. Additional information was collected for beat rate (BR) in heart cells and endpoints were monitored over concentration and time. The concentration-response curves were compared using mean IC50 values. Beat rate (BR) was measured using the xCelligence RTCA Cardiio system (Acea). To test the model, hepatotoxic (camptothecin (CAM), rotenone (ROT)) or cardiotoxic (doxorubicin (DOX), mitoxantrone (MTX)) compounds were used. These were added to cells at concentrations of 0, 0.1, 1, 10, and 100 μM and exposed for 24 hr. In addition, drugs known to produce QT prolongation (Tetraenadine (T) and verapamil (V)) were included and the BR determined. T and V significantly reduced BR at a concentration of 0.3 μM. To determine heart (H) or liver (L) specificity, average IC50 values were obtained for each cell type and the H-to-L ratio calculated. H-to-L ratios were MTX = 0.5, DOX = 2.6, ROT = 0.02 and CAMP underestimated. Ratios < 1.0 indicate cardiotoxicity, those >1.0 but < 3 indicate toxicity in both models, while ratios >3 indicate hepatotoxicity. BR data was used to improve these predictions. The combined data provided better resolution and enabled cardiac toxicity to be determined with greater confidence.

1466 Predicting Respiratory Sensitization Using Activation of Nrf2/ARE Genes in a Human Reconstituted Airway Model.

J. A. Willoughby, D. Keller, P.C. Wilto and J. M. McKim, CeeTox, Inc., Kalamazoo, MI.

Current in vitro methods for determining sensitization have focused on skin sensitization and provide data on hazard, but are unable to predict potency. The aim of this study was to determine if a new method known as SenCecTox, originally developed to detect skin sensitizers, could also identify respiratory sensitizers and provide potency. The EpiAirway™ model from MatTek Corp. was used as the test system. Viability, test article reactivity, and the expression of genes controlled by Nrf2/ARE (NADPH Quinone oxidoreductase (NQO), aldo-keto reductase (AKR), inter- leukin-8 (IL8), aldehyde dehydrogenase (ADH), heme oxygenase-1 (HMOX1), and glutamate cysteine-ligase catalytic subunit (GCLC)) were monitored. CYP1A1 was monitored to identify proallergens. Test solutions of p-benzoquinone (BQ), benzoceric acid (BA), glycerol (Gly), cinnamic aldehyde (CA), tolulene diisocyanate (TDI), and oxazolone (OX) were prepared in DMSO. Each test agent was evaluated in a gluthathione depletion assay (GSH) and then applied apically to the tissue at concentrations of 0, 100, 250, 500, and 2500 μM. Following 24 hr incubation, total RNA was isolated and changes in gene expression determined by qRT-PCR. Tissue viability was monitored by MIT, BQ reduced viability to 73% at 2500 μM, depleted GSH by 70% and induced NQO, AKR, CYP1A, ADH, HMOX1 and GCLC. Oxazolone reduced viability to 56% at 2500 μM, depleted GSH by 92% and induced GCLC. TDI did not have an effect on viability, depleted GSH by 26% and induced GCLC. CA had no effect on viability, depleted GSH by 22% and induced GCLC. Glycerol and benzoic acid had no effect on viability or GSH depletion, but did produce a positive response on GCLC. These data provided a rank order of potency from highest to lowest of BQ > OX > TDI > CA > BA and Glycerol. This ranking is consistent with reported sensitization potency categories for these chemicals. In conclusion, Nrf2/ARE signaling pathways are in fact present in the EpiAirway™ tissue and that this model may provide a means of accurately identifying respiratory sensitizers.

1467 Measurement of Phagocytic Activity in Rats with the Phagotest® Kit.

J. Legrand1, C. Mimouni1, M. Valin1, N. Pearson1, R. Forster1 and J. Descotes2, 1, GiteToxLAB, Eureaux, France; 2, Poison Center, Lyon, France.

Very few tools are available to assess phagocytosis, a major functional component of the innate immune system, during nonclinical immunotoxicity studies. The objective of the present study was to evaluate the feasibility of the Phagotest® in rats.
Phagotest® (Glycotope Biotechnology, Berlin, Germany) is routinely used in clinical and ex vivo investigations for phagocytes in humans. It allows the quantitative determination of leukocyte phagocytosis by measuring the percentage of phagocytes that have ingested bacteria and the number of ingested bacteria per cell. In the present study, 2 ml samples taken from 6 male and 6 female Sprague-Dawley rats onto heparin lithium tubes were incubated with FITC-labeled E.coli bacteria at +37°C. The staining was stopped by placing the samples on ice, adding a quenching solution. After washing and erythrocyte lysis, a DNA staining solution was added prior to flow cytometry analysis using a XL MCL flow cytometer with the Expo 32 ADC software (Beckman Coulter, France). The percentage of phagocytizing cells (granulocytes and monocytes, differentiated by side scatter and forward scatter) and their mean fluorescence intensity (number of ingested bacteria) were determined in four independent runs. The mean ± SD of the percentage of phagocytizing granulocytes was found to be 84.4 ± 11.02 for females, and the mean ± SD of the percentage of phagocytizing monocytes, 51.6 ± 8.3 for males and 55.5 ± 11.7 for females. Intra-individual precision (CV%) was between 10.4% and 13.6% for males, and between 18.1% and 24.2% for females. These results demonstrate that the Phagotest® kit can be used to assess phagocytosis in rats as it is in humans.

Results: This study shows the results of the first 6 tested substances out of 20. In all laboratories, concentration dependent toxicity could be shown for aniline, glutaraldehyde, triton X-100 and paracetamol, but not for lactose and methyl methacrylate. EC₅₀-values obtained for the WST-1, LDH and BCA data were very similar in all participating laboratories. No increase in IL-1α was observed for these chemicals.

Conclusion: Local respiratory toxicity induced by chemicals could be tested with comparable results in the PCLS model without in vivo experiments in three independent laboratories. The standardization of the PCLS method was successful and the reproducibility of the results is very promising after testing of the first 6 substances.

The incidence of chemotherapy-induced peripheral neuropathy (CIPN) is increasing because more neurotoxic drugs are being developed and these are increasingly administered in combinatorial regimens to longer living cancer patients. To evaluate neurotoxicity of drugs, a high content analysis (HCA) strategy was developed to assess response differences of exposed rat dorsal root ganglion cells (DRG). DRG microcultures were exposed to CIPN-inducing drugs (up to 1 μM) for 24 hr. After exposure, treatment medium was removed and cells were fixed, or were given fresh culture medium and allowed to “recover” for 24 or 72 hr prior to fixation. DRG were fluorescently stained for nuclei, acetyl-ß-tubulin, and Nissl bodies. Four of the six drugs evaluated caused concentration-dependence changes in acetyl-ß-tubulin staining (AATS) and total neurite area (TNA) after 24 hr exposure. Eribulin and colchicine were most potent, reducing TNA by 50% at <10 nM, but only colchicine effects were reversible after drug removal (AATS intensity doubled in 10% and TNA increased >5-fold during the 72 hr recovery period). Taxol moderately decreased TNA (~65% of control), but increased AATS intensity to >150% at 1 μM. Initially, bortezomib notably increased AATS intensity but a later effect included loss of AATS, TNA, and increased cell loss after drug removal. Evaluation of Nissl staining areas also showed drug-specific changes in response to exposure and “recovery”. Caspofungin and tramadol did not have any effect on the parameters measured. Evaluating cellular response is confounded by low level cytotoxicity and loss of viability over time. The use of HCA has identified several morphological endpoints and biomarkers of rat DRG that may serve as indicators of drug-specific neurotoxic risk. Funded by NCI Contract No. HHSN26120080001E.

The usefulness of precision-cut lung slices (PCLuS) in assessing nanomaterial (NM) respiratory toxicity was investigated. The data from testing 16 OECD reference NM (nitrile and anatase TiO₂, CeO₂, SO₂, Ag, coated and uncoated ZnO NM, and different multi-walled carbon nanotubes) in rat PCLuS were related to published in vivo acute inhalation toxicity data, and the influence of different test system parameters on test results was evaluated. After 24-hour exposure to the test substances indicators of oxidative stress (glutathione levels), inflammatory reactions (induction of cytokines: CINC-1/IL-8, M-CSF, OSP, TNF alpha, MCP-1 and intracellular IL-1 alpha), cytotoxicity (membrane integrity by LDH release, mitochondrial activity by WST-1 metabolism), and apoptosis (caspase 3/7 activity) were measured in the PCLuS. No concentration-dependent oxidative stress or apoptosis was observed with any NM. Cytokines were induced by most of the NM, with varying, ZnO and Ag induced severe cytotoxicity, whereas the remaining NM induced no or only slight cytotoxicity in the tested concentrations. Histopathological evaluation of the PCLuS revealed only particle uptake into macrophages for most of the NM. The observed effects in PCLuS by most of the NM not always reflected NM size, NM class, or pulmonary inflammatory reactions in vivo. The relevance of the different effects measured in PCLuS for respiratory toxicity in vivo needs further investigations.
1472 A Transcriptomic Comparison between the Neural and Cardiac Embryonic Stem Cell Tests (ESTn and ESTc).

P. T. Theunissen1, 2, J. L. Penning1, D. A. van Darr1, J. F. Robinson1, 2, J. C. Kleinjans1, 2 and A. H. Piersma1, 4, 5. 1Health Protection, RIVM, Bilthoven, Netherlands; 2Toxicogenomics, University, Maastricht, Netherlands; 3Human and Animal Physiology, University, Wageningen, Netherlands; 4HAS, University, Utrecht, Netherlands.

In vitro screening assays may increase testing efficiency and reduce animal use in developmental toxicity testing. The cardiac mouse embryonic stem cell test (ESTc) is a promising in vitro assay in this field, in which the effect of developmental toxicants on cardiomyocyte differentiation is assessed. To increase prediction of the EST approach, we developed a neural differentiation variant of the stem cell test (ESTn). In both ESTn and ESTc, we performed a series of transcriptomic studies to characterize gene expression changes 1) across time during normal differentiation and 2) in response to a series of developmental toxicants in the ESTn and ESTc. In the present study, gene expression profiles of ESTn and ESTc over time as well as model-specific changes induced by seven compounds are compared. Time-related gene expression profiles showed that specific genes changed over time differently in each model, related to the two specific lineages of differentiation. Interestingly, compound-induced gene-expression changes were generally model-specific, particularly for methylmercury and flavazole, which were predicted better in ESTn than in ESTc, respectively. Valproic acid-induced gene expression changes were most comparable between ESTn and ESTc. Direct transcriptomic comparisons between the ESTn and ESTc models indicate that both assays support and complement each other. Therefore, a combined transcriptomics approach, incorporating ESTc and ESTn, may result in improved developmental toxicant detection over individual assays.

1473 In Vivo Proliferation in Human and Rat Urothelial Cells.

E. L. Bowern1, J. Southgate1, S. Baker1 and P. Rawlinson1. 1Jack Birch Unit for Molecular Carcogenesis, University of York, York, United Kingdom; 2Syngenta, Bracknell, Berkshire, United Kingdom. Sponsor: R. Peffer.

Despite the regular use of the rat in toxicity studies, which are used for human risk assessment, the extrapolation from rat to humans is often difficult. This study set out to explore the utility of cell culture systems to better understand species differences. As urine is a main route of chemical excretion from the body, the epithelial barrier lining of the bladder (urothelium) may be exposed to higher concentrations of xenobiotics, with the potential for adverse findings. Methods have been successfully developed to culture normal human urothelial (NHU) cells in vitro, with subsequent differentiation to form a functional barrier. With this in mind, equivalent normal rat urothelial cell culture systems were grown from Wistar (NRU-W) and Homozygous Scottish (NRU-HS) rats. They were compared to human cell cultures by exploring their regulation and capacity for proliferation.

NHU cells could be propagated beyond passage 6 in serum-free medium, while NRU-W could only be maintained up to passage 1, and NRU-HS required serum to grow to passage 1. By immunofluorescence, NHU cells were shown to express nuclear Ki67 and cyclin D1, but the same proliferation markers were cytoplasmic in NRU cells. In contrast, Ki67 was virtually negative in histological sections of human and rat urothelium, but strongly expressed (nuclear) in Wistar rat urothelial cells. It is noteworthy that in vivo rat urothelium is regulated, with cells maintained in the cell cycle in vivo and with a less proliferative phenotype observed in vitro. Future work will aim to further characterise these differences, and to understand the consequences of these findings for the development of a comparative model.

1474 In Vivo-In Vitro Comparison of Respiratory Tract Toxicity Using Human 3D Airway Models and Human A549 and Mouse 3T3 Monolayer Cell Systems.

U. G. Sauer1, 3, Vogel1, 2, A. Hess1, S. N. Kolle1, L. Ma-Hock1, B. van Ravenswaya and R. Landsiedel1. 1Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany; 2Performance Chemicals - Master Data, Product Safety, Product Stewardship, BASF SE, Ludwigshafen am Rhein, Germany; 3Scientific Consultancy - Animal Welfare, Neubisberg, Germany.

Four in vitro systems to predict acute inhalation toxicity were evaluated, 19 substances (lactose, paracetamol, methylmethacrylate, aniline, acetic- and trimellitic anhydride, N-hexylchloroformate, octanol chloride, isophorone and tolune diisocyanate, zinc oxide, paraquat, glutar- and formaldehyde, acetone, ethanol, dimethylformamide, ammonium hexachloroplatinate and sodiumdodecylsulfate) were tested in 3D human airway epithelial models, EpiAirwayTM and MouriAir™, and in A549 and 3T3 monolayer cell cultures. Cytotoxicity was assessed by determining LDH release and MTT or WST reduction. IC50 values were compared to literature rat 4-hour LC50 values classified according to the US EPA and GHS hazard categories. Best results were achieved with a prediction model identifying non-toxic substances (determination of LDH release in 3T3 cells: sensitivity 1.00 and specificity 0.89).

Further predictions of in vivo hazard categories based on four in vitro hazard categories resulted in mediocre correlations: 9 of 19 test substances were classified concordantly in the MuclAir™ system determining MTT reduction and 8 of 19 in A549 cells determining WST reduction. Concordance could be improved by excluding substances leading to pulmonary edema and emphysema in vivo. None of the test systems was outstanding and there was no evidence that the use of 3D or monolayer systems using respiratory tract cells provide an added value to simple 3T3 monolayers. However, the test systems only reflected bronchiol epithelia and alveolar cells and only investigated cytotoxicity so that effects occurring in other cells by other mechanisms were not recognized.

1475 Neurotoxicity In Vitro: Assessment of the Predictivity of Neuronal Networks Coped to Microelectrode Arrays for Identification of Neurotoxicants.

A challenging aspect to assure the safety of a product is the assessment of its neurotoxic hazard potential. Currently, only in vivo methods are regulartorily accepted and so far, no in vitro model has been fully validated. The majority of the test systems are reduced to the analysis of cytotoxicity in immortalized cell lines, without including unique characteristics of the nervous system, such as axonal transport, synaptic transmission or its electrophysiology. Recently, with the advance in technology and the ability to maintain neuronal models for prolonged periods, a test system emerged, combining the use of microelectrode arrays (MEAs) and in vitro culture of 2D neuronal networks (NN). Herein, we report on the in-house validation of the NN MEA assay using a set of 43 compounds known as neurotoxic and non-neurotoxic potential with the aim to use it for screening of compounds under development. The results demonstrate that the methods presents a sensitivity of 71%, while the specificity is still an aspect for optimization, since in its current status, it cannot distinguish specific neurotoxicity from unspecific cytotoxicity. In order to increase the sensitivity and predictivity, we are currently working on the combination of the electrophysiological assessment with a panel of cytotoxicity assays.

1476 A Human 3D Myocardial Microtissue Model for Cardiotoxicity Testing.

C. Zuppinger1, J. Agarkova2, W. Moritz3 and J. M. Kelm1. 1University of Bern, Bern, Switzerland; 2InSphera, Zürich, Switzerland. Sponsor: A. Wolf.

Cardiomyocytes (CMs) are terminally differentiated cells in the adult organism and regeneration is limited. This is a worrisome fact, since insults such as ischemia and cardiotoxic compounds can lead to cell death and irreversible reduction of cardiac function. As testing platform, isolated organs and primary cells from rodents have been the standard in research and toxicology so far, but due to a very limited cell supply there is a strong need for better in vitro models. Hence, an in vitro model comprising the advantages of 3D cell culture and the availability of induced pluripotent stem cells (iPSC) from human origin was developed and characterized. Myocardial microtissues (MTs) were generated by self-assembly in multi-well hanging drop cultures. iPSC-derived CMs were evaluated regarding cardiac features and toxicological response. Prior use of the iPSC-derived cells, CMs were characterized after 10 days in standard culture which showed highly differentiated myofibers positive for sarcomeric proteins such as myosin, myosin, cardiac actins and desmin. The cells showed spontaneous contractile activity and connexin-43 positive gap junctions. In the hanging drop cultures, iPSC-derived CMs formed MTs within 4 days, contracting up to 3 weeks recorded by optical motion tracking. Excited by electrical field pacing they comply to the external stimulus up to 2Hz. Effects of a cardiac specific cancer therapeutics such doxorubicin on iPSC-derived CMs in 2D- and 3D-culture were further evaluated with respect to caspase activation, LDH release and cellular ATP levels. Adult human CMs are a very rare and hard to handle cell source. New concepts have to be developed to create cardiac models systems to be used for cardioxic testing, ideally in a standard multi-well format. Within this “proof-of-concept” study a novel 3-dimensional human myocardial MT model was developed and characterized. iPSC-derived CMs. Morphological and functional characterization underline that this model might become a valuable tool for substance safety testing in the future.
Conclusions:

We have evaluated the potency of test items to phosphorylate Stat5 in lymphocyte subsets expressing or not the IL-2 high affinity receptor subunit (CD25). Experimental Procedures and Results:

Cytomolgous monkey peripheral blood mononuclear cells (PBMC) were stimulated with increasing doses of the test items under evaluation. The PBMCs were then stained using conjugated monoclonal antibodies specific to different lineage markers such as CD3, CD4, CD8 and CD25 to allow distinction between the different T lymphocyte subsets. In addition, in order to evaluate the potency of the test items to differentially stimulate CD25+ and CD25− lymphocytes, we have evaluated the activation of a downstream mediator of the IL-2 receptor signaling by measuring phosphorylation of the Signal Transducer and Activator of Transcription (Stat5). Intracellular staining using a Phospho-Stat5 (pStat5) specific antibody was thus performed and data was acquired by flow cytometry. The pStat5 signal fold-increase was plotted against the test items concentration and the half maximal effective dose (EC50) was determined. The results obtained showed that the calculated EC50 for the CD4+CD25+ was of approximately 100 to 1000 times lower compared to CD4+CD25− cells and CD8+ cells. In addition, when comparing the potency to the two test articles to stimulate CD4+CD25+ cells, a 2-log difference was observed between calculated EC50.

Conclusions:

This innovative approach enables us to replace animal experimentation by an in vitro assay. Our method assesses the potency of test items to signal through the IL-2 receptor in different lymphocyte subsets.

Scope:

Animal welfare guidelines place more and more emphasis on the 3Rs principle as a way to achieve excellence in animal care and use. In that objective, we have developed an in vitro flow cytometry method that allows us to quantify the immune response to IL-2 stimulus in a lymphocyte population thus replacing the use of live monkeys.

We have evaluated the potency of test items to phosphorylate Stat5 in lymphocyte subsets expressing or not the IL-2 high affinity receptor subunit (CD25).

Experimental Procedures and Results:

Cytomolgous monkey peripheral blood mononuclear cells (PBMC) were stimulated with increasing doses of the test items under evaluation. The PBMCs were then stained using conjugated monoclonal antibodies specific to different lineage markers such as CD3, CD4, CD8 and CD25 to allow distinction between the different T lymphocyte subsets. In addition, in order to evaluate the potency of the test items to differentially stimulate CD25+ and CD25− lymphocytes, we have evaluated the activation of a downstream mediator of the IL-2 receptor signaling by measuring the phosphorylation of the Signal Transducer and Activator of Transcription (Stat5). Intracellular staining using a Phospho-Stat5 (pStat5) specific antibody was thus performed and data was acquired by flow cytometry. The pStat5 signal fold-increase was plotted against the test items concentration and the half maximal effective dose (EC50) was determined. The results obtained showed that the calculated EC50 for the CD4+CD25+ was of approximately 100 to 1000 times lower compared to CD4+CD25− cells and CD8+ cells. In addition, when comparing the potency to the two test articles to stimulate CD4+CD25+ cells, a 2-log difference was observed between calculated EC50.

Conclusions:

This innovative approach enables us to replace animal experimentation by an in vitro assay. Our method assesses the potency of test items to signal through the IL-2 receptor in different lymphocyte subsets.

When a chemical is exposed to an in vitro cell assay in culture medium with serum protein, the effect (e.g. clearance) observed is lower than when the chemical is exposed in culture medium without serum protein. This is because the chemical can bind to serum protein, which reduces the unbound free concentration of the chemical available for uptake into cells. Therefore, it is better to determine in vitro intrinsic clearance (CLint) based on unbound fractions of chemicals. However, a few studies have suggested that serum protein may also facilitate the transport of chemicals through aqueous media (facilitated transport). Thus the presence of serum protein may increase the uptake rate of chemicals into cells and solid phase microextraction (SPME) fibers. If the uptake rate determines clearance, then the presence of serum protein may increase clearance, thus hampering the extrapolation of in vitro CLint to in vivo clearance when clearance assays use varying concentrations of serum. Therefore, the uptake rate and clearance of the strongly-albumin bound, quickly cleared chemical testosterone was measured in HepaRG, HepG2 and H4IIE hepatoma cell lines at varying concentrations of bovine serum albumin using the substrate depletion approach. To measure the free fraction, mimic uptake of testosterone in cells, and facilitate the modeling of the transport into cells, a SPME method was developed for extracting the unbound chemical from the exposure medium. Results indicate that in vitro CLint of testosterone increases with increasing albumin concentration when using the unbound fraction. SPME was successfully applied to determine the free concentration and study the uptake rate of unbound testosterone into cells.

In summary, we have validated a semi-quantitative assay for cytotoxic testing of MCYSTs in recreational water. The RTCA directly demonstrated MCYSTs total toxicity and the semi-quantitative results have high correlation to those from other methods such as ELISA and LC/MS/MS. The RTCA is a useful tool in the safety evaluation of potential cosmetic ingredients that contain MCYSTs. To illustrate the utility of the 3T3 NRU PT as a useful screening tool in the safety evaluation of potential cosmetic ingredients, the results of the evaluation of 42 botanical extracts and 25 synthetic chemicals found to absorb in the UV/VIS range are reported. Most substances evaluated were not found to be phototoxic in vitro; however, several substances were identified as potentially/probably phototoxic in the 3T3 NRU PT and were eliminated from further consideration for use as cosmetic ingredients. Several substances found to be non-phototoxic in the 3T3 NRU PT were formulated with other ingredients in a prototype cosmetic formulation and subject to clinical testing. No manifestations of phototoxicity were observed in any of the test subjects in the prototype formulation containing any of the substances identified as non-phototoxic in vitro.

Microcystins (MCYSTs) are hepatotoxins produced by cyanobacteria (blue-green algae) commonly found in fresh water. There are a few semi-quantitative and quantitative detection methods available including protein phosphate inhibition assay (PPI), enzyme-linked immunosorbent assay (ELISA) and liquid chromatography tandem mass spectrometry (LC/MS/MS).

Our laboratory recently developed a novel assay using a cell microelectronic sensing technology known as RTCA (Real-Time Cell Analyzer, Roche xCELLigence system) for detecting MCYSTs cytotoxicity. The assay is based on the fact that MCYSTs toxicity requires the active uptake of MCYSTs into the cytoplasmic membrane which is mediated by the organic anion transporting polypeptides (OATPs). By comparing the 48-hour cytotoxic effects of MCYSTs in wild type Chinese hamster ovary cells (CHO/WT) and in CHO with OATP1B3 expression (CHO/OATP1B3), we semi-quantified MCYSTs cytotoxicity in recreational water using standard curves prepared from MCYST-LR, the most common MCYST analogue. MCYSTs levels in water samples were compared with results from PPI, ELISA and LC/MS/MS. The RTCA directly demonstrated MCYSTs total toxicity and the semi-quantitative results have high correlation to those from other methods (r-value > 0.999), particularly at the Canadian recreational water guideline level (20 μg/L) or greater.

In summary, we have validated a semi-quantitative assay for cytotoxic testing of MCYSTs in recreational water by observing real-time toxic response at microgram per litre concentrations.
with fecalase was also confirmed by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick-end labeling assay. Taken together, the findings suggested that metabolism of butyl paraben by human fecalase might have protective effects against butyl paraben-induced toxicity in HepG2 cells.

1483 DNA Damage-Induced by Goldenseal Constituents.

S. Chen1, L. Wan1,2, H. Lin1, L. Couch1, N. Mei1 and L. Guo1. NCTR, Jefferson, AR; 2Shanghai Institute for Food and Drug Control, Shanghai, China.

Goldenseal is used for the treatment of gastrointestinal disturbances, urinary disorders and inflammation. The major alkaloid constituents in goldenseal are berberine, hydralazine, and canadine. Because it is one of the most widely used herbal dietary supplements in the United States and the lack of carcinogenicity data, goldenseal was nominated to the National Toxicology Program (NTP). The NTP conducted 2 year bioassay on goldenseal and reported that goldenseal increased the incidence of liver tumors in rodents. However, the mechanisms of goldenseal-associated liver carcinogenesis are unclear. In this study, we compared genotoxicity of five goldenseal constituents and studied the underlying mechanisms. Five goldenseal constituents tested (berberine, palmatine, hydralazine, hydastinine, and canadine) did not induce mutagenicity in the salmonella mutation assay. Berberine and palmatine at high concentrations showed positive results in the mouse lymphoma assay. Berberine and palmatine also caused DNA strand breaks in cultured hepatic cells whereas the rest three did not. The expression of γ-H2AX, a biomarker of double strand breaks, was induced in a dose-dependent manner in response to berberine treatment. In addition, berberine and palmatine suppressed activities of both topoisomerase I and II, indicating that the inhibitory effect may contribute to berberine- and goldenseal-induced genotoxicity and tumorigenicity.

1484 DNA Adduct Formation and Mutation Induction by Aristolochic Acid in Rat Spleen.

N. Mei1, X. Guo1, P. McDaniel and T. Chen. Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR.

Aristolochic acid (AA) is a potent human nephrotoxin and carcinogenic. We previously reported that AA treatment resulted in DNA damage and mutation in the kidney and liver of rats. In the present study, we have determined the DNA adducts and mutations induced by AA in rat spleen. Big Blue transgenic rats were gavaged with 0.01, 1.0 and 10.0 mg AA/kg body weight 5-times/week for 3 months. Three DNA adducts, [7-deoxyadenosin-N6-yl]-aristolactam II and 7-(deoxyguanosin-N2-yl)-aristolactam I were identified by P32-postlabeling. Over the dose range studied, there were strong linear dose-response relationships for AA-DNA adduct formation in the treated rat spleens, ranging from 5.0 to 217.6 adducts/10^8 nucleotides. Spleen cell mutant frequencies (MFs) also increased in a dose-dependent manner from 3.27 to 286.2 x 10^-6 in the treated animals. Mutants isolated from the different treatment groups were sequenced; there were significant differences between the spectra of 1 mg/kg AA-treated and control groups, and between the 10 mg/kg AA-treated and control groups. Act→TA transition was the major type of mutation in AA-treated rats, while G:C→T:A transition was the major type of mutation in the vehicle controls. These results indicate that AA is genotoxic in the spleen of rats exposed under conditions that result in DNA adduct formation and mutation induction in kidney and liver.

1488 In Vitro Genotoxicity of Ginkgo biloba Extract and Two of its Major Components, Quercetin and Kaempferol.

Ginkgo biloba (ginkgo), one of the world’s oldest living tree species, has been used for many years for a variety of medicinal purposes. The NTP 2-year bioassays on ginkgo extract found an increased incidence of liver cancer in mice and thyroid gland cancer in both mice and rats. In this study, the mouse lymphoma assay (MLA) was used to evaluate the in vitro mutagenicity of ginkgo extract and two of its major constituents, quercetin and kaempferol. L5178Y/Tk+/-; 3.27 c mouse lymphoma cells were treated with different concentrations of ginkgo extract (0.2-1.2 mg/ml), quercetin (3-30 μg/ml) and kaempferol (2.7-5.7 μg/ml) in the absence of metabolic activation. Ginkgo extract, quercetin, and kaempferol significantly increased the mutant frequency in the MLA. Loss of heterozygosity (LOH) analysis for mutants induced by quercetin and kaempferol was also examined at five microsatellite loci spanning the entire mouse chromosome 11. The results indicated that the mutational spectrum from the quercetin and kaempferol treatment were significantly different from that of the negative control. In addition, the neutral comet assay conducted in the mouse lymphoma cells with quercetin and kaempferol also demonstrated a dose-dependent increase in the DNA double-strand breaks (DSBs). Western blot analysis showed that quercetin increased the phosphorylation of ATM, and consequently increased expression of γ-H2AX, phosphorylated Chk1 and Chk2 in the cells; while kaempferol increased expression of γ-H2AX and phosphorylated Chk1. These results suggest that ginkgo extract and two of its major constituents, quercetin and kaempferol, are genotoxic in the mouse lymphoma cells.
Cyproterone acetate (CPA), a hormone therapy drug with anti-androgenic activity, is commonly used for androgenisation symptoms in women and treatment of prostate cancer in men. CPA is known to produce liver tumor in rats, with a higher incidence in females. In standard genotoxicity assays, such as Ames test, HGPRT assay, chromosomal aberration assay and in vivo micronucleus assay, negative responses were observed. However, more recent studies have demonstrated that CPA induces a sex-specific genotoxicity, forming DNA adducts in female rats but not in male rats. To investigate the genotoxicity of CPA, and to answer the question if it is sex-specific, we evaluated the genotoxicity of CPA through in vivo Comet assay in both sexes of rats. hOGG1- and Endo III-modified in vivo Comet assay were performed to measure CPA induced oxidative DNA damage. Groups of 5 seven-week old male F344 rats were treated with olive oil or 10, 25, 50 or 100 mg/kg bw CPA in olive oil at 0, 24, and 45 hr. Animals were sacrificed at 48 hr, 3 hr after the last treatment. Liver, testis, kidney and blood were collected for Comet assay. CPA treatment resulted in an increase in DNA strand breaks in the liver of male rats with significant (p≤0.05) increases detected in all the dose groups, suggesting a possible role of reactive oxygen species for CPA-induced genotoxicity. To evaluate the genotoxicity of CPA in female rats, groups of 5 seven-week old female F344 rats will be treated identically with CPA. Liver, mammary gland, uterus, ovary, kidney and blood will be collected for Comet assay and the responses will be compared with the males. This study will provide a further understanding of the cancer mode of action of CPA and if there is any sex-specific genotoxic response in rats.

Routine toxicological assessment of tobacco smoke commonly uses the particulate fraction of the smoke aerosol. The particulate phase of cigarette smoke makes up a small percentage of the total aerosol, approximately 5-9% by weight. The remaining ~91% is associated with the vapour phase of cigarette smoke and is not routinely evaluated. Whole smoke exposure systems are capable of capturing the full interactions of both the particulate and vapour phase together and offer unique potential for toxicological assessments.

In this study we used a Vitrocell® VC10 smoking robot to expose cell cultures at the air-liquid interface to ISO mainstream 3R4F cigarette smoke. All experiments were independent and completed a minimum of three times. For biological assessment we developed the Neutral Red Uptake (NRU) assay with a Balb/c cell line, and the Ames assay using bacterial strain YG1042. We also used a novel crystals quartz microbalance (QCM) assay for real-time in situ deposition analysis. For the Ames assay we observed a mean fold increase of 5.9 at the highest concentration of smoke deposition, which correlated with a 2.29μg/cm² increase in particulate deposition. Clear differences were seen at all doses; for example, 12, 8 and 4μl/min produced a 2.1, 2.3, 3.8 and 0.04, 0.09, 0.50 fold increase and deposited mass (μg/cm²) respectively. The NRU assay showed a complete cytotoxic dose response (12-1/L/min), with a calculated dilution IC50 and deposited mass IC50 of approximately 6.5 μl/min and 1.7μg/cm² respectively.

We conclude that the VC10 can be used in conjunction with routine toxicological assays for the assessment of cigarette smoke toxicity, as demonstrated by consistent responses in two independent in vitro test systems. Furthermore, QCM measurements in situ of exposure have enabled us to present biological data as a function of deposited mass. QCMs have also acted a important QC tool for smoke exposure and provide valuable information on the exposure system itself.

Evaluation of the Results of Several Genotoxicity Tests in Carvacrol and Thymol.

J. Scognamiglio, V. T. Politano and A. Api. Research Institute for Fragrance Materials, Woodsfield Lake, NJ.

Carvacrol (CAS#99-75-2) and thymol (89-83-8) are fragrance ingredients that have been studied in bacterial and mammalian genotoxicity assays in vitro and in vivo in human lymphocyte transfection and in vivo in vivo chromosome aberration test. These materials have antibacterial and anti-fungal properties and are cytotoxic. Their cytotoxicity needs to be considered when evaluating the results of genotoxicity assays using mammalian cell cultures because cytotoxicity is the most important confounding factor in analyzing these results. To avoid the occurrence of secondary (indirect) modes of clastogenic activity, the highest concentrations tested in these assays should lead to sufficient levels of cytotoxicity within the guidelines, but not cause extreme cytotoxicity. In published literature, there are inconsistent results of the genotoxicity tests on these two materials, where positive results correlate with cytotoxicity, indicating that positive results can be explained by secondary effects. An SOS Chromotest was less prone to false positives than the Ames test and was negative with both carvacrol and thymol. A positive chromosomal aberration test in rats on both carvacrol and thymol was further evaluated to clarify the cause of the chromosomal aberration observed. Thus an in vitro micronucleus test in human peripheral blood lymphocytes was conducted with careful selection of doses based on cytotoxicity to determine if these materials were potential clastogens or a spindle poison. Both assays yielded negative results, supporting the hypothesis that the previous positive genotoxic outcomes were the result of high cytotoxic activity in the test system and that carvacrol and thymol are likely not genotoxic agents.

In Vitro Evaluation of Cytotoxic and Genotoxic Effects of Ofloxacin.

V. Sekeroglu1,2, Z. Adi Sekeroglu2,3, M. Aksoy2 and S. Kontas2. Applied Medical Sciences, University of Southern Maine, Portland, ME; 2Biology, University of Ordu, Ordu, Turkey; Sponsor: J. Wise Sr.

Ofloxacin (OFX), the second-generation of quinolones, is a broad-spectrum fluorourinequinolone antibiotic used in the treatment of various bacterial infections. In this study, the genotoxic and cytotoxic effects of OFX in cultured human peripheral blood lymphocytes were investigated by measuring chromosome aberrations (CAs), sister chromatid exchange (SCE) assay, mitotic index (MI) and proliferation index (PI). Cultures were treated with three doses of OFX (30, 60 and 120 μg/ml) at 48 h exposure period for all assays. An untreated culture (negative control) and a positive control treated with MMC (positive control) were established, as well. Although the frequency of SCE slightly increased in a concentration-dependent manner, dose-dependent increases were not observed in the CAs. But, these increases were statistically not significant, compared to negative control (P > 0.05). With respect to the cytotoxic effects of the test compound on lymphocyte cultures, as measured by MI and PI, a concentration-dependent reduction in cell proliferation was also observed. The highest dose of OFX (120 μg/ml) significantly reduced the MI values compared to negative control (P < 0.05), whereas decreases in PI values were not found significant compared to negative control.
The results of this study indicate that OFX can exert a cytotoxic effect especially at the higher doses because of statistically significant decreases in MI, but has no genotoxic activity in both CA and SCE assays in human peripheral blood lymphocyte cultures.

Genotoxic Effects in Children Environmentally Exposed to Particulate Matter.

M. Sánchez-Guerrera, A. Araujo, L. Serrano-García, L. Hernández-Cadena, R. Montero-Montoya, J. Alvarado-Cruz, A. De Vizcaya-Ruiz, L. Rafael-Vázquez, E. Jiménez-Mendoza, J. Torres-Arellano, V. Míguez and B. Quintanilla-Vega. 1, 2, 3 Toxicology Department, GINESIVAT-IPN, Mexico City, Mexico; 4 Exposure Epidemiology and Risk Program, Harvard School of Public Health, Boston, MA; 5 Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico; 6 INSP, Cuernavaca, Mexico; 7 FEZ-Iztacala, UNAM, Mexico City, Mexico; 8 UAM-Azcapotzalco, Mexico City, Mexico.

Ecatepec County is considered one of the most contaminated counties in the Metropolitan Area of Mexico City. There are reports about the high levels of particulate matter (PM) in this area related to the high traffic and industrial activity. PM study is associated with several health problems including genotoxic effects. Children are considered one of the most susceptible populations to air pollution. The aim of this study was to evaluate the DNA damage related to the exposure to PM in the air. We conducted an air monitoring study and an epidemiological survey in schoolchildren from 6 to 10 years (n = 86) of both genders in an area of Ecatepec County and the following was evaluated: concentrations of PM10 and PM2.5 in the air, as well as the organic and elemental carbon content (CO and CE, respectively), the presence of microculeous (MN), apoptotic cells (AC) and necrotic cells (NC), and the nuclear division index (NDI) in peripheral lymphocytes by the cytokinesis-block micronucleus test in 1000 cells. The geometric average age was 8.4 years; 41% of children showed at least 1 MN (range 1-6), 27% showed 1-49 AC and 16% had 1-9 NC, some children showed exceptionally high AC or NC values. We found a significant association between CO-PM10, and the presence of MN, AC and NC, and a decrease in the NDI, while CE-PM10 was associated with MN and NC. Regarding PM10, the CO content was associated only with the presence of MN. These preliminary data suggest that both the CO and CE contents of PM from Ecatepec County are involved in the genotoxic effects observed in schoolchildren. Study supported by CONACYT-México (Grant #106034).

Genotoxic Effects in Children Environmentally Exposed to Particulate Matter.

The tobacco-specific carcinogen NNK form DNA adducts in animal models. One report indicates that NNK could cause damage to the mitochondrial as well as nuclear genome in rats (Stepanov and Hecht, 2009 Chem. Res. Toxicol. 22; 406-414). Using a different DNA damage detection technology, we tested whether this could be repeated in the nematode Caenorhabditis elegans. We also evaluated whether mitochondrial function would be affected. We treated N2 strain (wild-type) nematodes with NNK in liquid culture. Quantitative PCR was applied to analyze NNK-induced nuclear and mitochondria DNA damage. This assay has the advantage of measuring all DNA lesions that inhibit the DNA polymerase, and normalizes results to mitochondrial DNA copy number (Hunter et al. 2010 Methods 51:444-451). Our results confirm that NNK causes both nuclear and mitochondrial DNA damage, but surprisingly nuclear DNA damage was greater than mitochondrial DNA damage in C. elegans. To test whether the mitochondrial DNA damage was associated with mitochondrial dysfunction, we used a transgenic nematode strain that permits in vivo measurement of ATP levels and found lower levels of ATP in NNK-exposed animals when compared to the unexposed controls. To test whether the lower levels of ATP were due to the inhibition of respiratory chain components we investigated oxygen consumption in whole C. elegans and found reduced oxygen consumption in exposed animals when compared to the unexposed controls. Our data suggest a model in which NNK causes damage to both nuclear and mitochondrial genomes, and support the hypothesis that the mitochondrial damage is functionally important. These results also represent a first step in developing this genetically tractable organism as a model for assessing NNK toxicity.

Bariatric Surgery Reduces Intestinal Toxicity in Man.

Obesity is a global epidemic. Worldwide 500 million people are classified as obese with a global prevalence that continues to rise. Obesity and its co-morbidities are amongst the leading causes of global mortality and morbidity and pose substantial socioeconomic burdens on health services worldwide. Bariatric surgery is a form of gastrointestinal surgery that leads to sustained weight loss, resolution of type 2 diabetes and a decrease in cancer risk. These operations alter gut microbial composition which is reflected in the bacterial composition of faeces. We hypothesise that the protective effect of bariatric surgery is due to a decrease in diet-derived intestinal toxic burden. Here, we determined the effect of bariatric surgery on intestinal cytotoxicity and genotoxicity in man. Aquous dimethyl sulfoxide faecal extracts were obtained from preoperative and 2 month postoperative samples from 5 individuals undergoing Roux-en-Y gastric bypass. Human MCL5 cells, a lymphoblastic cell line expressing CYP1A1, 1A2, 2E1 and 3A4 and epoxide hydrolase, were used to assess faecal extract toxicity and genotoxicity was determined at the TK and HPRT loci using benzo(a)pyrene as a positive control. We found a trend of decreased cytotoxicity postoperatively, as assessed by relative total growth (20% decrease compared to preoperative faecal extracts). Furthermore, the genotoxicity of the faecal extracts decreased postoperatively at both the TK and HPRT loci (50% and 70% respectively, whereas the BaP control induced mutation frequency more than 50 fold). These results support the hypothesis that bariatric surgery leads to a decrease in diet-derived intestinal toxicity burden, which in turn may contribute to the health beneficial effects associated with surgery.

Evaluation of the Mutagenicity of Dyed Fabrics with Direct Black 38.

G. A. Oliveira, D. M. Leme, T. C. Santos, M. B. Zanoni and D. P. Oliveira. 1Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil; 2Institute of Chemistry, Universidade Estadual Paulista (UNESP), Araçatuba, Brazil.

There are several information on toxicity of textile dyes, but data of colored fabrics are still limited. Although a dye itself may be toxic, its presence in the finished material may not be harmful. Direct Black 38 (DB38) is a benzidine-based azo dye, but
commonly used in textile industry. It is known that, under conditions of perspiration, dyes migrate from colored fabrics and penetrate into human skin. Objective: Evaluate the mutagenicity of DB38 extracted from dyed cotton fibers using artificial sweat solutions. Methodology: Pieces of cotton fabric were dyed with DB38 and washed with and without rinsing (bath with a colloid dispersant). DB38 was extracted from the dyed fabric with artificial sweat solutions (pH 5.5, 6.5, 8.0) at 37°C and 42°C for 2, 8, and 12 h. HPLC-DAD analysis was performed to determine the concentration of dye extracted in each sweat extract. Both original dye and sweat extracts were evaluated by the Salmonella/microsome assay using the strains TA98 and TA100 with and without S9 mix in order to compare with the higher dye concentration extracted with sweat. Results: Original DB38 dye showed positive mutagenic response for TA98 and TA100 with S9. The migration of DB38 dye into artificial sweat resulted in 5.9 μg/mL (dyeing without rinsing, pH 8.0, 42°C, 8 h). Sweat extracts with DB38 did not induce mutagenic effects under the conditions tested. Discussion: Original dye induces mutagenicity by both base-pair substitution and frameshift mutations in presence of S9. However, these effects could no longer be observed after its extraction from dyed fabric using artificial sweat as extracting agent. Our findings showed that DB38 dye can migrate from colored fabrics to artificial sweat, however the concentration of dye extracted does not cause mutagenicity. Thus, as important as the toxicological information of textile dyes, is an investigation of the toxic effects of fabrics which contain these dyes in order to avoid human health problems.

Trichloroethylene (TCE) is an industrial solvent and common environmental contaminant. TCE is metabolized via the glutathione conjugation (GSH) pathway where the reactive metabolite, dichlorovinyl cysteine (DCVC) is formed. Previous work in the field has shown DCVC as the penultimate metabolite resulting in renal toxicity. Our studies using a functional genomics approach in yeast suggest DNA damage and repair pathways play a role in DCVC toxicity. Specifically, we identified the error-prone translesion synthesis (TLS) repair pathway and nucleotide excision repair (NER) as important for response to DCVC exposure. Preliminary work in human fibroblast cells shows initiation of translesion synthesis repair after DCVC exposure. Studies to identify potential DCVC-DNA lesions were conducted using liquid chromatography mass spectrometry (LCMS) analysis. Results indicate the potential for DCVC to cause direct DNA damage via DNA adducts with specific nucleotides. Our data suggests DCVC is genotoxic and has the potential to lead to cell death.

The BP-Deepwater Horizon event in the Gulf of Mexico unleashed an unprecedented environmental disaster where more than 650 miles of Gulf coastline was littered with Louisiana Sweet Crude oil. During this event Corexit 9500, a surfactant designed to disperse and emulsify crude oil and expedite microbial breakdown, was used to mitigate damage. However, surfactant additives can increase membrane permeability and biological uptake of exogenous compounds including components of crude oil. Recent studies indicate that although visible traces of weathered crude oil have long been absent in the estuarine environments, particular toxic mutagens persist in organisms and sediments that were once co-exposed to oil and dispersant. This research focuses on the notion that toxic components of crude oil may persist and adversely affect genomic integrity. We examined genomic DNA coding sequences, cytochrome c oxidase-subunit1 and cystic fibrosis transmembrane conductance receptor for lesion analysis. Here we show that killifish, Fundulus grandis, exposed to crude oil and dispersant have increased amounts of genetic damage in both mitochondrial and nuclear templates, relative to killifish exposed to each individual compound. Additionally, DNA lesion formation in the mitochondrial genome was increased in the co-exposures, compared to singular exposures of contaminants.

1499 Absence of Genotoxicity in a Series of 2′-O-Methyl Phosphorothioate Oligonucleotides.

SOT 2013 ANNUAL MEETING 321
A major target for sulphur mustard (SM) is DNA. DNA alkylation leads to the formation of monoadducts, mainly at the N7 position of guanine (HETE-N7Gua: N7 hydroxethylthioethyl-guanine) and in a lesser extent at the N3 position of adenine (HETE-N3Adc: N3 hydroxethylthioethyl-adenine), and biadducts (N7Gu-E-TET N7Gua: bis[N7guanine-ethyl)sulphide). It is a critical step to explain SM cytotoxicity. Therefore, we have developed a high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) method to quantify the three main SM-DNA adducts. The assay was applied to SKH-1 mice exposed to liquid SM on the dorsal skin at 2, 6 and 60 mg/kg during 4h and were sacrificed at 6h, d1 (day 1), d3, d7, d14 and d21 after exposure. SM exposed skin, skin adjacent to exposed skin and skin being located at 2 cm apart of this latter were removed. The maximum of DNA lesions in SM exposed skin was obtained at 6h post-exposure. The contribution of HETE-N3Adc to SM DNA adducts in skin was much lower than that found in isolated and cellular DNA in previous experiments. Adducts frequencies decreased from d1 likely as the result of the acid repair. Yet, an important concentration of SM-DNA adducts was observed since HETE-N7Gua and N7Gu-E-TET N7Gua were still detected at d21 after 60 mg/kg exposure. For each exposure dose, SM-DNA adducts were also measured, in skin adjacent to the exposed zone, although in lower amounts. They were quantified until d14 after 60 mg/kg exposure. For the highest dose, SM-DNA adducts were detected at 2 cm of the burn but only at d1. These results show a limited radial diffusion of SM in skin but a significant persistence in time. They also demonstrate the reliability of our method to quantify SM-DNA adducts which could be monitored as part of therapeutic tests.

The OECD Guideline 487 for the In Vitro Mammalian Cell Micronucleus Test (MNvit) became effective in July 2010. The objective of the test is to identify micronucleus formation via clastogenic and aneugenic mechanisms in cells that have completed mitosis. This work presents the assessment of various test parameters for the performance of the assay with human lymphocytes with regard to the above mentioned Guideline. With respect to the In Vitro Mammalian Cell Micronucleus Test (MNvit) aneugenic and clastogenic reference chemicals (colcemid/demecolcin, mitomycin C (MMC), and cyclophosphamide (CPA)) were tested for their potential to induce micronuclei in cultured human peripheral blood lymphocytes. The protocol given by the current OECD Guideline 487 was compared to a slightly modified protocol allowing the cells to have a recovery period between end of treatment and addition of the cytokinesis blocker cytochalasin B. Lymphocyte proliferation was studied in response to stimulation with phytohemagglutinin and the normal cell cycle time was assessed by bromodeoxyuridine uptake. The presented data show difficulties in the detection of an aneugenic compounds in binucleate cells and marked differences in the induction of micronuclei in the micronuclei in vitro by the two different test protocols employed by using the four different reference chemicals. Reproducible results were obtained with the clastogenic reference chemical MMC, regardless of the protocol used. With both aneugenic compounds robust and adequate results could be obtained including the evaluation of micronucleated cells and using the pulse treatment. Robust data were obtained with CPA when using a time schedule including a recovery period.

DNA modifications are considered a trigger for somatic mutations. However, factors such as DNA repair and cell proliferation are known to contribute to DNA modification processes, promoting gene mutations. We previously reported that specific DNA adducts are formed in the livers of rats following treatment with estragole (ES), a hepatocarcinogen in rodents. ES caused formation of the DNA adducts, ES-3'-N7Gua, ES-3'-NH2Gua, and ES-3'-N3Adc, in rat livers, as determined by LC-MS/MS analysis. To clarify associations between the number of modified bases and the mutant frequencies (MFs) in the same animal and organ, we quantified ES-specific DNA adducts and performed reporter gene mutation assays in livers, kidneys, and lungs of 6-week-old F344/N rats given ES at doses of 0, 3, 30, and 300 mg/kg/day by gavage for 4 weeks. Relative liver and kidney weights were significantly increased in rats given high-dose ES. Mitosis, single-cell necrosis in hepatocytes, and oval cell proliferation were seen in high-dose group livers. Three ES-specific DNA adducts were detected in a dose-dependent manner beginning with the low-dose group. gpt MF was significantly increased only in the high-dose group. In lungs and kidneys, DNA adducts were detected only in the high-dose group, but their frequencies were almost identical to those in the low-dose group livers. These results suggest that the site specificity observed in ES carcinogenicity may depend on the number of modified bases. In addition, the fact that ES-specific DNA adducts were detected to some extent in the livers of rats treated with moderate doses, but not gpt MFs, may indicate that involvement of in vivo-enzymatic factors, such as cell proliferation and DNA repair enzymes, in the progression from DNA modification to gene mutation. Some of these factors will be presented, along with results of gpt mutation assays in the lungs and kidneys.

Allura Red AC (Red 40) and Tartrazine (Acid yellow 23) are two of the most commonly used artificial color adducts of CE up to 25% (w/w) in foodstuff and cosmetic industries. Allura Red and Tartrazine are nitroaromatic derivatives which are the focus of studies on mutagenesis and carcinogenesis because of their transformation into aromatic amines after being metabolized by the gastrointestinal microflora. We investigated the mutagenic activity of Allura Tartrazine and Allura Red against TA98, TA100, V79-9, smp101Y and YG1041 strains of Salmonella typhimurium using the protocol described by Prival and Mitchell (1981). Both YG1041 and YG1042 strains, derived from TA98 and TA100, respectively carry a plasmid with genes for higher levels of nitroreductase and O-acetyltransferase involved in the break down of azo dyes to mutagenic aromatic amines. These strains have been shown to detect mutagenic activity of azo dyes in the effluents from textile industries, eliciting a higher mutagenic response compared to TA98 and TA100 (Umbreit et al, 2003). We used six dose levels (4mM, 2mM, 1mM, 0.5mM, 0.25mM, 0.125mM) of Allura Red and Tartrazine for testing the mutagenic activity. The assay was performed

1504 Quantitative Analysis of Specific DNA Adducts and In Vivo Mutagenicity following Exposure to the Hepatocarcinogen Estragole.

Y. Ishii1, S. Takasu1, K. Matsushita1, K. Kuroda1, T. Nohmi2, K. Ogawa1, A. Nishikawa1 and T. Umemura1. 1Pathology, National Institute of Health Sciences, Tokyo, Japan; 2Research and Development Promotion, National Institute of Biomedical Innovation, Osaka, Japan.
under hamster S9-activated and non-activated conditions. In our study, none of the four tester strains showed toxicity or an increase in the mutation frequency at the dose levels tested. Whereas, Tartrazine has been reported to have cytotoxic effect in mammalian cells (Patterson and Butler, 1982) and Allura Red has been found to cause DNA damage when tested with the comet assay (Shujii et al., 2001). European Food Safety Authority (2009) has also reported that Allura Red was negative in vitro genotoxicity as well as long term carcinogenicity studies. Our results demonstrate that the salmonella strains even with high level of nitroreductase and O-acetyltransferase activities failed to show mutagenic activity in both, Tartrazine and Allura Red.

Epidemiologically, obesity has been suggested to be associated with increased risk of several human cancers, including cancers of the liver, kidneys, and colon. In several rodent models, genetically induced obesity or high-fat diet (HFD) induced obesity has been shown to enhance carcinogenesis in the liver and colon after treatment with a regimen of respective tumor initiators. However, the factors responsible for the obesity-related progression of carcinogenesis, especially the initiation phase, are not fully elucidated. To reveal the effects of obesity induced by an HFD on spontaneous gene mutations, we performed reporter gene mutation assays in liver, kidney, and colon tissues from obese mice fed an HFD. Six-week-old male and female C57BL/6j gpt delta mice were fed either an HFD or a standard diet (STD) for 13 or 26 weeks. At the end of the experimental period, all mice were sacrificed, and reporter gene mutation assays were performed. Final body weights of male and female mice fed an HFD for 13 weeks were significantly increased compared with those fed an STD, ger and Spn mutant frequencies in the liver, kidneys, and colon of male mice fed an HFD for 13 weeks were not significantly different from those fed an STD. These results implied that HFD-induced obesity does not influence the spontaneous frequencies of somatic gene mutations, indicating that obesity may affect the tumor promotion phase rather than the tumor initiation phase to enhance carcinogenesis. Further data from the organs of mice fed an HFD for 26 weeks will be presented to evaluate the effects of long-term consumption of an HFD on spontaneous mutagenicity in vivo.

Filtered cigars, dimensionally similar to 100s cigarettes, have become popular smoking articles. Unlike cigarettes, the tobacco column is wrapped with a single ply of paper-type reconstituted tobacco. The blends in filtered cigars range from light- to full-bodied. The tobacco blend in a cigarette is typically 80% reconstituted tobacco and 20% paper, allowing for easier filtration. Filtered cigarettes are sold in packages of 10 or 20 cigarettes. However, the Rickert work used the Health Canada Intensive (HCI) smoking regimen and used king-size like products that are no longer popular or available commercially. In this research, we have used ISO smoking regimen and three contemporary small cigarettes from filtered-cigars with a similar nicotine content. The effects of ISO smoking regimen on the toxicology of the smoke relative to cigarette smoke, and the in vitro micronucleus assay was conducted to evaluate the genotoxicity of BCP. BCP was mutagenic with S9 metabolic activation, increasing the mutant frequencies in a concentration-dependent manner, up to 22- and 145-fold induction over the controls in Salmonella strains TA100 and TA1535, respectively. BCP was also positive in the in vitro micronucleus assay, resulting in up to 3.3- and 5.1-fold increase of micronucleus frequency for treatments in the absence and presence of S9, respectively; and 9.9- and 7.4-fold increase of hypodiploids without and with S9, respectively. The addition of N-acetyl-L-cysteine, an antioxidant, reduced but did not eliminate the genotoxicity of BCP in both assays. The results suggest that BCP is mutagenic, clastogenic, and aneugenic, and these activities are possibly mediated via generation of reactive metabolites.

Community Lead (Pb) Domains and Exposure Disparities: Case Study of Pre- and Post-Katrina New Orleans.

We sought to gain insight into the Pb toxicity characteristics of communities in New Orleans. Based on previous Pb mapping we divided New Orleans census tracts into two Pb domains, high (median Pb ≥100 mg/kg) and low (median Pb <100 mg/kg). Soil samples from four locations represented each of the domains: busy streets, residential streets, house sides, and open spaces (away from streets and houses). Blood and soil Pb concentrations within the high and low Pb domains of New Orleans were analyzed by permutation statistical methods (Multi-Response Permutation Procedures). The children's blood Pb prevalence ≥ 5 μg/dL for the high and low Pb domains were 58.5% and 24.8%, respectively, pre-Katrina vs. 29.6% and 7.5% in post-Katrina New Orleans. In the high Pb domain median soil Pb was 367, 313, 1228, and 103 mg/kg, respectively, busy streets, residential streets, house sides, and open space locations; in the low Pb domain median soil Pb was 64, 46, 32, and 28 mg/kg, respectively (p-Values <10E-16). After Katrina relatively small decreases in soil Pb were observed, and elevated soil Pb permeates the high Pb domain; children living there generally lack Pb safe areas for outdoor play. The low Pb domain was safer by factors ranging from 3 to 36 depending on specific location. Patterns of lead deposition from decades of Pb accumulation have not been transformed by renovations conducted post-Katrina. We expect that all large cities will exhibit the same characteristics as observed in New Orleans. Low Pb soils are available outside of cities to remedy soil Pb contamination. Mapping soil Pb delineates Pb deposition and assists with planning to improve primary prevention of Pb exposure.

Concentrations of lead and strontium in bone can serve as a long-term indicator of exposure levels, and can be more easily correlated to their respective health effects. Lead adversely affects almost all the systems in the body. High levels of strontium, on the other hand, have been correlated to skeletal abnormalities in animal and human populations. We have previously shown the viability of a portable XRF system for the in situ analysis of lead in bone, and the XRF system has since been improved to include a larger detector with an improved geometry. The new instrument was calibrated and validated to quantify lead and strontium in bone in vivo.

Nebulizers, currently used for inhaled drug delivery, have limitations in terms of deposition and targeting to specific regions of the airways, and thus could benefit from optimization. Here we demonstrate that nebulizer-enhanced delivery of 10 μg sucrose pentosidase (SPT) to the lungs of wild-type mice is accompanied by increased activity and reduced lung inflammation compared to aerosol alone. However, in models of chronic lung disease, nebulizer-enhanced delivery of the same dose of SPT was not as effective, and was accompanied by increased lung inflammation compared to aerosol alone. The administration of a therapeutic dose of SPT via aerosol was accompanied by improved lung function in a mouse model of CF, and reduced inflammation in a mouse model of COPD. We conclude that nebulizers may have clinical utility for the delivery of inhaled enzymes for the treatment of lung diseases.
The system was effectively calibrated for bone lead quantification with lead-doped bone-equivalent phantoms. However, it is difficult to calibrate the system for bone strontium quantification using strontium-doped phantoms because most of the bone equivalent materials are severely contaminated with strontium. Therefore, a new calibration method was developed, which made use of a Monte Carlo (MC) simulation model developed specifically for this instrument. In this new method, net strontium signals were obtained for different soft tissue thicknesses using MC simulations and the signals were plotted against corresponding concentrations of the strontium. The concentrations of strontium for in vivo measurements can then be calculated from the calibration lines generated from MC simulations. Three main results were obtained from this study: a) An agreement between the experimental and simulated spectra of approximately 13% were shown with the MC simulation model; b) the detection limit for bone lead and strontium is improved by a factor of 2 with the improved instrument; c) it is valid to calibrate the system with the calibration lines created by MC simulations. In conclusion, the new system with improved detection limit, combined with the use of Monte Carlo simulations for calibration can be applied to accurately quantify lead and strontium in bone in vivo.

1511 The Effect of Environmental Exposure to Lead on Blood Pressure in Korean Adults.

J. Park1, S. Choi1, S. Eom2, D. Kim1, H. Kim2, B. Choi3, K. Park1, H. Pyo1, T. Hong4, S. Sohn1 and H. Kwon1, 1Chung-Ang University, Seoul, Republic of Korea; 2Chonbuk National University, Jeonju, Republic of Korea; 3Korea Institute of Science and Technology, Seoul, Republic of Korea; 4Dong-A University, Busan, Republic of Korea; 5Chonnam National University, Gwangju, Republic of Korea; 6Dankook University, Cheonan, Republic of Korea.

General population is exposed to chronic and low level of lead (Pb). Previous studies reported that blood Pb is possibly related to the blood pressure. However, the effect of environmental exposure to Pb on blood pressure is not clear yet. This study was performed to estimate the representative blood Pb level and to assess whether blood pressure is affected by chronic and low Pb exposure in Korean adults. The total study subjects of 2,000 people (male: 908, female: 1,192) were nationwide sampled by multi-staged, sex- and age-stratified probability method, who had not been exposed to Pb occupationally. The geometric mean concentration of Pb in blood was 2.22 μg/dL. The level of blood Pb was significantly higher in males (2.60 μg/dL) than in females (1.97 μg/dL). The level of blood Pb was increased with age-dependent pattern which was the highest in the group of 50-59 years old. Also, blood Pb level was affected by individual behavioral patterns such as smoking and drinking. The mean concentration of blood Pb was higher in rural or urban inhabitants than in metropolitan, respectively. The positive relations were observed between blood Pb concentrations and systolic/diastolic blood pressure in males and in females, both. However, blood Pb was significantly correlated with systolic and diastolic blood pressure after adjustment for covariates in males, but not in females. In summary, the findings from this study suggest that chronic Pb exposure under the environment might be increase blood pressure, systolic and diastolic, both, in males.

1512 Induction of Autophagy and Aberrant MHC Class II Surface Expression in Lead-Exposed Marine Macrophage Raw 264/7 Cells: Dysregulation in Mhc-II Compartment Exocytosis.

R. M. Gogal1, R. P. Kerr1, T. M. Krunkosky1, D. J. Hurley1, B. S. Cummings3 and S. D. Holladay2, 1Department of Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA; 2Department of Population Health, University of Georgia, Athens, GA; 3Department of Pharmacological and Biomedical Sciences, University of Georgia, Athens, GA.

Aberrant major histocompatibility complex class II (MHC-II) surface expression on antigen presenting cells (APCs) is associated with dysregulated immune homeostasis. Lead (Pb) is known to increase MHC-II surface expression on murine peritoneal macrophages ex vivo at concentrations exceeding 25 μM. Little data exist examining this effect at physiologically relevant concentrations. To address this deficit, we examined the effects of Pb on MHC-II surface expression, secondary T-cell activation markers (CD80, CD86, CD40), cell viability, cellular metabolic activity, and β-hexosaminidase activity in RAW 264.7 macrophage cell lines, with changes in cell ultrastructure evaluated by electron and confocal microscopy. Pb induced a bi-phasic, dose dependent increase in MHC-II, CD86, and lysosome-associated LAMP-1 and LAMP-2 surface expression during one cell doubling cycle (17 hr), which was mirrored by increased β-hexosaminidase activity. Although cell viability was unaffected, cellular metabolism was inhibited. Electron microscopy revealed evidence of lipid vacuolization, macroautophagy and myelin figure formation in cells cultured with either Pb or LPS. Confocal microscopy with antibodies against LC3B showed a punctate pattern consistent with the presence of mature autophagosomes. Collectively, these data suggest that 1 μM Pb increased MHC-II surface expression by inhibiting metabolic activity, inducing autophagy, and increasing MHC-II trafficking in a macrophage cell line.

1513 Exposure to Cobalt Causes Changes in Gene Expression and Protein Abundance in Two Rat Liver-Derived Cell Lines.

M. Permenter1, W. E. Dennis1, J. A. Lewis1 and D. A. Jackson1, 1USACEHR, Fort Detrick, MD; 2Exect., Inc., Fort Detrick, MD.

Cobalt is an essential component of the diet, but in large doses it is acutely toxic, and chronic exposures can injure multiple organ systems. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms in liver, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MHC1, to sublethal concentrations of cobalt chloride to eliminate cell-line specific effects. We chose the treatment concentrations based on a novel qPCR assay using a panel of genes developed from previous metal toxicity studies, as opposed to traditional cytotoxicity assays, to more accurately predict gene expression endpoints at sublethal concentrations. We examined changes in gene expression using DNA microarrays and also examined changes in secreted and cytoplasmic protein abundance using mass spectrometry. We performed both gene-level and functional analyses of the results and observed changes in pathways that are involved in the Nrf2-mediated response, protein degradation, glutathione production, Hif-1 signaling, and energy metabolism. These results are consistent with the known effects of cobalt toxicity, including oxidative stress and hypoxic responses. The changes in protein abundance closely resemble and validate our conclusions drawn from the microarray analysis. This work offers key insights into the role specific genes, proteins, and pathways play in cobalt toxicity mechanisms, and provides leads, which upon validation, may characterize novel toxic effects.

Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the U.S. Army. The research described herein was sponsored by the U.S. Army Medical Research and Materiel Command, Military Operational Medicine Research Program.

1514 Dose-Response Relationships for Blood Cobalt Concentrations and Associated Health Effects.

A. Monnot1, S. Gaffney1, D. J. Paustenbach2 and B. L. Finley1, ChemRisk, San Francisco, CA.

Cobalt (Co) is an essential component of vitamin B12. As with all metals, at sufficiently high doses, Co can have detrimental effects on different organ systems, and adverse responses have been observed in patients on Co therapy, workers handling Co-containing powders, and other Co-exposed groups. Although blood Co concentrations are thought to be the most accurate indicator of ongoing Co exposure, little is known regarding the dose-response relationships between blood Co concentrations and adverse health effects. In this analysis, we reviewed the animal toxicology and epidemiology literature to identify blood Co concentrations at which effects have, and have not, been reported. Where necessary, a biokinetic model was used to convert oral doses to blood Co concentrations. Our results indicate that blood Co concentrations in humans of approximately 300 μg/L and higher have been associated with certain hematological and reversible endocrine responses (polycythemia and reduced isoleucine uptake, respectively), while blood Co concentrations of 700-800 μg Co/L and higher have been consistently associated with a risk of more serious neurological, reproductive, or cardiac effects. Although there are some anecdotal reports to the contrary, the weight of evidence from the many available studies suggest that blood Co concentrations of 300 μg/L and less have not been associated with adverse responses in healthy humans. This suggests that certain populations known to have blood Co concentrations of < 100 μg/L, such as some patients with Co-containing hip implants and those who ingest Co supplements, are unlikely to be at risk due to Co exposure.

1515 Loss of Hypoxia-Inducible Factor (HIF)-1α and Not HIF-2α, in the Lung Alveolar Epithelium of Mice Leads to Enhanced Eosinophilic Inflammation in Cobalt-Induced Lung Injury.

S. P. Proper1, K. Greenwood1, J. Harkema1 and I. J. LaPres1, Michigan State University, East Lansing, MI.

Cobalt is a known hypoxia mimic and stabilizer of hypoxia-inducible factors (HIFs). HIF-1α contributes to cobalt toxicity in vitro and previous work in our lab has shown that loss of HIF-1α in the alveolar epithelial cells led to a switch from a
neutrophilic to eosinophilic response. While HIF-1α and HIF-2α have known overlapping gene targets, HIF-2α is the predominant HIF isoform in the adult lung, and little is known about HIF-2α in the context of cobalt-induced lung injury. We therefore hypothesized that HIF-2α could be playing a more active role in cobalt toxicity. To compare the roles of HIF-1α and HIF-2α in cobalt-induced lung injury, we used mice deficient in either HIF-1α (HIF-1αΔ/Δ), HIF-2α (HIF-2αΔ/Δ) or both HIF-1α and HIF-2α (HIF-1Δ/2αΔ) in alveolar type II epithelial cells. Mice were exposed to cobalt (60 μg/day) or saline via oropharyngeal aspiration for five consecutive days, and sacrificed on day six. Bronchoalveolar lavage (BAL) cellularity, qRT-PCR, and histopathologic analyses were performed. Results confirm previous studies showing that loss of HIF-1α leads to enhanced eosinophilic inflammation, and an enhanced T helper type 2 (Th2) response. In contrast, inflammation in HIF-2α mice resembled that of control mice following cobalt exposure. HIF-1Δ/2αΔ mice showed similar cobalt-induced eosinophilic inflammation seen in HIF-1ΔαΔ mice. Together, data suggest that loss of HIF-1α in lung epithelium plays the dominant role in determining the response to cobalt-induced lung injury, and that HIF-2α has an accessory role in this setting. Coupled with other experiments performed in our lab, this indicates that epithelial HIF-1α in the postnatal developmental period plays a central role in guiding immune responses in the airway.

A Preliminary Study on Analytical Methodology for Determination of Zinc in Liver of Laboratory Rats, by ICP-QMS.

L. V. Saldivar1, H. García1, R. Leon1, T. Rodriguez Salazar1, M. G. Espejel1 and T. T. Fortuño1. Analytical Chemistry, UNAM Faculty of Chemistry, Mexico City, Mexico; Cellular and Molecular Pathology, UNAM Faculty of Medicine, Delig Coyoacán, Mexico City, Mexico. Sponsor: D. Acosta.

Zinc is an essential micromineral for living organisms. It plays a specific role in the synthesis and stabilization of proteins. Its deficiency is characterized by growth retardation, and impaired immune function. While the excess of Zn results in fever and hypotension, little is known about dosing of Zn in ferrets and pathological changes in some tissues. Excessive absorption of zinc suppresses copper and iron absorption. Therefore, Zn, Cu and Fe can be utilized as pathological indicators. The determination of these elements is of interest in the biomedical area, where laboratory rats are used as model animals, because of their physiological similarities to the human body.

The Inductively Coupled Plasma-Quadrupole Mass Spectrometry (ICP-QMS) has been applied to the analysis of trace elements in biological samples due to its characteristics: low detection limit, multielemental analysis and low sample volume. In this work, analytical methodology was optimized to determine total Zn concentration in livers of laboratory rats. Samples were dried and homogenized, and digested in a microwave oven using HNO3 and H2O2 mixture. Analytical quantification of the isotopes 66Zn using 74Ge as internal standard, was performed using an Elan DRC-e spectrometer (Perkin-Elmer). The dynamic reaction cell was not employed. Results for three replicates of certified reference material (NIST SRM 1577c, National Institute of Standards and Technology) were in good agreement with certified values: 0.21 % (mean relative error, accuracy), and 0.2 % RSD (precision). The range of Zn total concentrations found in samples of livers of rats were: 17-163 mg/kg. This study belongs to a research where it is included the determination of Zn/Cu ratio in several tissues.

The authors thank the financial support of DGAPA-PAPIIT IN29911 and PAL 3400-02.

Effects of Tungsten Chemical Species on Biochemical Pathways and Mineralization in Bone.

C. Y. Ang1, D. R. Johnson2, J. M. Seiter2, A. R. Osterburg3, G. F. Babcock3, P. G. Allison4 and A. J. Kennedy2. Badger Technical Services, Vicksburg, MS; 2Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS; 3Cincinnati Shriners Hospital for Children and the University of Cincinnati, Cincinnati, OH.

Tungsten (W) is a metal that has numerous civil and military applications. When W enters the environment, it is rapidly oxidizes and speciates based on the environmental matrix it is embedded in. Bone is the long-term storage organ for W—and presumably W chemical species if present—when taken up by organisms. It is unknown what long-term effects W has in bone, therefore, we evaluated the effects of W species on biochemical pathways in hFOB 1.19 osteoblast cells exposed to water (control), W chemical species (sodium tungstate, phosphotungstate [PW], poly tungstate [polyW], and tungstosilicic acid [TSA]) at 0-10,000 μM for 24 h at 37 degrees C. W species did not affect adenosine triphosphate (ATP) concentrations except at the highest concentration. PW, polyW, and TSA, but not tungstate, significantly increased protein tyrosine kinase activity at 10,000 μM after 4 h exposure. Tungstate and PT increased cellular cyclic adenosine monophosphate (cAMP) at ≥ 10 μM, while TSA decreased cellular cAMP at 10,000 μM. Preliminary analyses also demonstrate an effect on alkaline phosphatase, the enzyme involved in bone mineralization. Synchronous analysis of bone from female rats exposed to 200
milk/kg/d sodium tungstate in drinking water ad libitum for 90 d showed W incorporation to bone as calcium poly-tungstate (77% total W in bone) and calcium tungstate (23%). These data demonstrate that W chemical species generally only affect phosphate-dependent cell signaling and secondary messenger pathways in hFOB 1.19 cells, and may also affect bone mineralization enzymes, resulting in W species incorporation into bone in animals. Follow-up studies will analyze the effects on bone mineralization and strength associated with W incorporation due to chronic exposure.

1520 Accumulation of Manganese (Mn) in Rat Brain Ventricular Region following In Vivo Subchronic Mn Exposure: Effect on Copper (Cu) Status.
S. L. O'Neal, L. Hong and W. Zheng, School of Health Sciences, Purdue University, West Lafayette, IN.

Welders and smelters occupationally exposed to high levels of Mn have an increased risk for developing manganese, a disease similar to Parkinson's. Existing human and animal studies indicate that Mn accumulates mainly in the striatum, the area adjacent to the brain ventricular region (BVR) which houses cells implicated in adult neurogenesis. The neural stem cells in BVR are capable of migrating to striatum and hippocampus en route to the olfactory bulb. This group has previously shown Mn exposure results in Mn accumulation in the choroid plexus (CP), cerebrospinal fluid (CSF) and increases intracellular Cu concentration. This study was undertaken to test the hypothesis that a high Mn level in the CP and CSF may influence the surrounding ventricular structure and interfere with the homeostasis of other essential elements. Adult male rats received daily ip injections of MnCl2 at the doses of 6 and 15 mg Mn/kg as the low and high dose groups, respectively, or saline as the control, 5 days per week for 4 weeks. Twenty-four hr after the last injection, BVR, femur bone and liver tissues were dissected and quantified by atomic absorption spectroscopy for concentrations of Mn, Cu, iron (Fe) and zinc (Zn). Data analysis by Student's t-test showed that levels of Mn in BVR of the low- and high-dose groups increased by 94.8% and 218.5%, respectively, as compared to controls (p<0.01). In femur, Mn concentration increased by 278.2% and 1237.4% in the low- and high-dose groups, respectively (p<0.01). Interestingly, Cu concentrations in BVR decreased significantly for low and high-dose groups (p<0.05). In contrast, Cu levels in bone increased by 23.2% and 51.2% in low and high-dose groups, respectively (p<0.05). Taken together, our data provide the initial evidence that Mn accumulates in brain ventricular area following in vivo exposure. Mn's potential impairment of this region in the disease progression of Mn Parkinsonism deserves further investigation. (Supported in part by NIH RO1 ES088146)

1521 Methymercury-Induced Dopaminergic Neurotoxicity in Caenorhabditis elegans.
E. Martinez-Finley and M. Aschner, Vanderbilt University Medical Center, Nashville, TN.

Mercury is a persistent environmental contaminant that exerts its toxic effects on the nervous system through molecular mechanisms that remain unknown. Parkinson's disease (PD) is a neurodegenerative disorder characterized by the slow progression and irreversible loss of the dopaminergic (DAergic) neurons. The etiology of PD remains elusive, with aging, environmental toxicant exposure and genetic mutations contributing to the disease. Epidemiological studies have pointed to the contribution of methylmercury (MeHg) to DAergic vulnerability and the predisposition to PD. We examined the impact of early-life exposure to MeHg on DAergic neurodegeneration in Caenorhabditis elegans (C. elegans) with emphasis on gene-environment interactions. SNK-1, orthologue of mammalian Nr2f2, is a major stress-activated cytoprotective transcription factor. We hypothesized that MeHg's toxicity is dependent on an intact SNK-1 response and snk-1 knockout (KO) worms would show heightened toxicity compared to wildtype (N2). We also tested the effect of MeHg in a pdr-1KO worm, ortholog to the human parkin gene (mutated form found in juvenile PD), under the premise that these worms would show heightened sensitivity to MeHg. We identified the impact of early-life MeHg exposure on MeHg content, stress reactivity and measures of DAergic neurodegeneration in N2, snk-1KO and pdr-1KO worms exposed to 0-30µM MeHgCl2 for 30 minutes following synchronization. Our data suggests that snk-1KO (LD50=19µM) and pdr-1KO (LD50=17µM) are more sensitive to MeHg than N2 controls (LD50=25µM). MeHg uptake was higher in the pdr-1KO strain compared to the N2 strain. DAergic morphology observed via fluorescent analysis at adult life-stage revealed presence of puncta at 20µM MeHg in snk-1KOs and loss of cell body fluorescence in pdr-1KO. Dopamine (DA)-dependent behavioral analysis revealed alterations in DA following MeHg exposure, corroborated by decreased DA levels, motility and turning behavior. MeHg exposure via HPLC. Taken together this data suggests that exposure to MeHg early in the lifespan can have detrimental effects on DAergic neurons. Supported by R01ES07371 and EST32007028.

1522 Lactational Exposure to Mercury (Hg) and Evidence of Oxidative Stress.
I. Al-Saleh, M. Abdel Jabbar, R. Al-Rouqi, R. Elkharib, A. Alshababheen and N. Shiwari. Environmental Health Section, Biological & Medical Research Department, King Fahad Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.

The objective of this work was to assess exposure to Hg in mothers and their breastfed infants. We also evaluated urinary 8-hydroxy-2-deoxyguanosine (8-OHdG) and malonaldehyde (MDA) in both the mothers and infants as biomarkers of oxidative stress. The mean concentration of Hg in breast milk was 1.19µg/L (range: 0.012-6.44µg/L) with only one mother had Hg>4µg/L, the ATSDR upper limit. This corresponds to approximately a daily intake of 0.02µg Hg/(0.13-5.74µg). Based on the average infant's body weight in this study (7.7Kg) and the EPA reference dose of Hg (0.3 µg/Kg/day), this brings the highest daily intake to 2.31µg. There were 7 infants exceeding this limit. None of the mothers had total blood Hg > the EPA reference dose of 5.8µg/L. Probably, this might be due to the low exposure to organic in inorganic Hg. Furthermore, no correlation was noted between UHg in infants and Hg in breast milk (r=0.05). On the other hand, Hg in breast milk was associated with total Hg in blood (r=0.53,P=0.003) and the efficient transfer of organic form of Hg from blood to milk. Both urinary MDA (r=0.2,P=0.015) and 8-OHdG (r=0.24,P=0.003) levels increased with the mother's UHg levels. Infant's UHg levels in infants were positively associated with urinary levels of MDA (r=0.31,P=0.003) and 8-OHdG (r=0.43,P=0.003) in infants. There was also an association between Hg in breast milk and increased urinary MDA levels in infants (r=0.35,P=0.005). Our results clearly showed the transfer of Hg from the mother to infant through breastfeeding, and Hg intake from breast milk can be a factor potential health risk. Nevertheless, breastfeeding should not be discouraged; and instead efforts should be made to identify and eliminate the source of Hg exposure in the present population.
1524 The Palmitoylation of Meh1, a Component of EGO Complex, Has an Important Role in the Reduction of Methylmercury Toxicity in Budding Yeast.

G. Hwang, Z. Zhang and A. Nagamura. Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.

Methylmercury (MeHg) is an environmental pollutant that causes the severe central nervous system disorder. However, the molecular mechanism underlying MeHg toxicity remains to be clarified. We have found that deletion of the Ack1, one of palmitoyl transferase, causes hypersensitivity to MeHg in budding yeast. In this study, we found that yeast cells lacking Meh1, one of substrates for Ack1, exhibited hypersensitivity to MeHg. Palmitoylation of Meh1 was not detectable by a deletion of Ack1, suggesting that Ack1 is the main palmitoyl transferase for Meh1. Moreover, Meh1/Grt2- or Meh1/Ego3-double deletion mutants did not exhibit further increase in the susceptibility to MeHg when compared to Meh1 deletion mutant. These results suggest that Meh1 might reduce MeHg toxicity as a component of the EGO complex. It has been reported that MeH1 forms an EGO complex by binding with Ego3 on vacuole membrane. Interestingly, MeH1 with a mutation in the palmitoylation site was defective in its ability to bind with Ego3. Moreover, normal MeH1-GFP was localized in the vacuolar membrane, but the mutant MeH1-GFP was widely distributed in the cytoplasm and not in the vacuolar membrane. These phenomena proposed that the palmitoylation of Meh1 has an important role in its cellular distribution and formation of the EGO complex.

As for our result, the palmitoylation of Meh1 by Ack1 is related to the formation of the EGO complex through its localization into the vacuolar membrane, and this distribution and formation of the EGO complex.

1525 Involvement of AAT Transporters in Methylmercury Toxicity in Caenorhabditis elegans.

S. W. Cao1 and M. Achter. Department of Pediatrics/Pediatrics Toxicology, Vanderbilt University Medical Center, Nashville, TN.

Caenorhabditis elegans (C. elegans) is a powerful genetic model for the investigation of neurotoxicity of metals, such as methylmercury (MeHg). MeHg has been shown to accumulate in C. elegans, leading to decreased survival, reproductive and developmental defects, and neurodegeneration. It is unknown how MeHg is transported in the worm. In mammals, MeHg complexes with cysteine, which functionally resembles methionine; and the complex is transported into cells via a molecular mimicry mechanism involving the large neutral amino acid transporter LAT1. It is unknown if MeHg can enter cells without being complexed to cysteine or if there are additional uncharacterized MeHg transport mechanisms. C. elegans can be used to quickly identify MeHg transport mechanisms due to their ease of genetic manipulability and high degree of homology to mammals. Herein we tested the hypothesis that LAT1 homologues (AATs) are responsible for MeHg transport in C. elegans. Worms were pre-treated with 1 mM methionine to assess whether MeHg toxicity could be attenuated by increasing a competitor for AAT transporters. Treatment with MeHg resulted in decreased survival of C. elegans (LD50 = 22.91 μM), however methionine pre-treatment showed significantly less toxicity to MeHg (LD50 = 47.54 μM, p < 0.0001), implicating the AAT amino acid transport systems in MeHg toxicity. Using RNAi feeding protocols we selectively knocked down expression of the aat-1, aat-2 and aat-3 genes, and assayed for MeHg-induced lethality. Knockdown of each gene individually resulted in a significant right hand shift in the dose-response lethality curve (aat-1: LD50 = 118.1 μM, p < 0.001; aat-2: LD50 = 102.1 μM, p < 0.001; aat-3: LD50 = 44.65 μM p < 0.001), suggesting these genes may be involved in MeHg transport. As lethality of MeHg was not completely blocked by methionine pre-treatment or aat-gene knockdown, there is a possibility that additional MeHg transport mechanisms may be identified in C. elegans.

1526 Effects of Methylmercury on Heart Rate Variability in the Rat.

M. Sasaki, M. Yamamoto and M. Fujimura. Department of Basic Medical Sciences, National Institute for Minamata Disease, Minamata, Japan.

Analysis of heart rate variability (HRV) in humans has revealed that methylmercury (MeHg) exposure decreases parasympathetic nerve function or increases sympathetic nerve function. However, limited information is available on such effects in experimental animals. In the present study, 5 rats were treated 2 times per week for 5 weeks with MeHg (4 mg/kg) or vehicle orally. Several weeks before and after treatment, telemetry recordings of ECG were acquired. HRV and its power spectrum parameters were determined from 1-hour segments (approximately 16,000 to 20,000 beats) of ECG data during the day by LabChart and its HRV Module. With 4 mg/kg MeHg treatment, a decrease in body weights and the hind limb crossing sign and an increase were observed in the heart rate (HR) were observed from the analyses of the ECG. HRV analyses showed a decrease in the coefficient of HR (CVRR) and low frequency (LF) and high frequency (HF) HRV. A slight increase in the LF/HF ratio was observed due to the decrease in HF. These results suggest that a decrease in the CVRR, LF, and HF and an increase in the HR indicate the suppression of parasympathetic nervous system activities after repeat treatments with MeHg in rats. These findings also suggest similar effects of MeHg on the autonomic nervous system of humans and animals.

1527 Sex Differences in Paraaxonase Activity in Subchronic Inorganic Mercury Exposure.

A. D. Wusu1, O. Adeoluwa1, O. O. Ogungbala1, O. K. Afolabi1, E. O. Abam1, O. O. Babanmi1, E. A. Babajide1 and O. O. Oduboyi2.

Biochemistry, University of Agriculture, Abeokuta, Nigeria; 2Chemistry, University of Agriculture, Abeokuta, Nigeria.

Epidemiological evidence suggests an increased risk of cardiovascular diseases (CAD) as a result of inorganic mercury exposure. The underlying mechanisms underpinning this risk, as well as sex differences in response to mercury exposure, are not yet understood. Paraaxonase (PONase), an enzyme located in the high-density-lipoprotein (HDL) has been shown to protect against CAD. In order to investigate the association between inorganic mercury exposure and CAD, male and female rats were pre-treated with MeHg at 0.5, 1.0 and 1.5mg/kg. PON activities towards paraoxon (PONase) and phenylacetate (AREase) in plasma, lipoproteins, hepatic and brain microsomal fractions were determined using standard methods. Inhibition of PONase and activation of AREase in plasma and HDL characterised the effects of inorganic mercury in both sexes. Inorganic mercury exposure inhibited PONase by 63% (plasma) and 67% (HDL) respectively in male animals, whereas the female enzyme was inhibited by 80 and 47% respectively. AREase activity was activated by 55 and 53% in male, whereas the activation in female amounted to 25 and 49% respectively. In the VLDL, inorganic mercury inhibited PONase in both sexes whereas AREase was activated in female animals but inhibited in male. In the hepatic microsomal fractions, only the PONase enzyme was inhibited in male animals whereas in female, activation was observed in both enzymes at the highest dose of inorganic mercury. Brain microsomal cholesterol was increased in male but decreased in female by inorganic mercury resulting in altered cholesterol/phospholipid ratios. Our findings indicate that inorganic mercury exposure exerts an inhibitory effect on PONase but activated AREase. Modulation of PON activity may be an early biochemical step in the induction of CAD by mercury. This may also be mediated through changes in membrane fluidity brought about by changes in the concentration of cholesterol in the microsomes.

1528 Ethylmercury Induces ER Stress and Mitochondria Dysfunction Mediated Autophagy.

M. Dong and J. Choi. School Lifesciences and Biotechnology, Korea University, Seoul, Republic of Korea.

Mercury is one of the most important environmental and industrial pollutants throughout the world. Exposure to mercury causes strong damage to organs including the brain, blood, liver, bone and kidneys. Renal proximal tubular cells represent the primary target site. We previously investigated the cytotoxicity of seven kinds of mercury compounds in human renal proximal tubule (HK-2) cells. Ethylmercury chloride (EMC) was shown the strongest cytotoxicity among them with 2.4 and 0.76 μM of IC50 values exposed for 24 h and 48 h in HK-2 cells, respectively. In this study, we explored the mechanism of EMC induced cytotoxicity in HK-2 cells. EMC was increased the accumulation of JC-1 monomers from 0.5 to 2 μM concentrations in a dose-dependent manner. The expression of MT-1 and Hic-5, which were related to oxidative stress, was also induced by EMC treatment. In addition, calcium is a well-known regulator of many intracellular processes, including apoptosis and autophagy. Interestingly, EMC was increased in cytosolic [Ca2+], which was the tendency appears unlikely that the increased after 2μM AZ3187 treatment. EMC was up-regulated the expression of UPR target genes and proteins such as transcription factor, CHOP, XBP-1, ERδ4 and GRP 78. After the exposure of EMC to cells, LC3II formation was dose- and time-dependently increased. When cells were treated with ER inhibitor 4-Phenybutyric acid, they blocked the formation of autophagosome compared with untreated cells. However, cleaved of caspase-9, caspase-12 and PARP were weakly activated. To test whether ER stress by EMC can occur in vivo, EMC was treated to
male C57BL/6 mice with 1, 2, 5 and 10 mg/kg/day. The expression of ER stress-related marker genes were increased by immuno-blot analysis. LC53-II was significantly increased in the kidneys of EMC treated mice. Together, these results suggest that EMC induced autophagy via ER stress and mitochondria dysfunction not only in human renal proximal tubule (HK-2) cells but also in mice kidneys.

1529 Protective Role of Quercetin against Mercury-Induced Nephrotoxicity in Sprague-Dawley Rats.
J. Kim¹, Y. Kim², W. Kim¹, Y. Shin¹, A. Won¹, E. Park¹, E. Lee³, M. Yoo⁴, Z. Lan⁴, T. Kim¹ and H. Kim⁴. ¹College of Pharmacy, Pusan National University, Busan, Republic of Korea; ²Gorton School, Farmers Bay, Groton, MD; ³The Hackaday School, Dallas, TX; ⁴Seoha High School, Seoul, Republic of Korea.

Mercury chloride (HgCl₂) is a well-known nephrotoxicant. HgCl₂ preferentially accumulates in the kidneys and causes nephrotoxicity as a result of oxidative stress. The aim of this study was to investigate the possible protective role of quercetin against HgCl₂-induced acute renal damage. Quercetin, a naturally occurring phenolic compound found in fruits and vegetables, has gained considerable attention for its antioxidant properties. In this study, quercetin (250 mg/kg) was administered orally to Sprague-Dawley male rats for 3 days prior to HgCl₂ (20 mg/kg) treatment. All animals were sacrificed 24 h after the last treatment and various urine or blood biomarkers associated with renal damage were measured. Significant increases in urinary volume and decreases in urinary pH were observed in the HgCl₂-treated group. Blood urea nitrogen (BUN) and serum creatinine (sCr) levels were reduced by 51% and 43%, respectively, compared to the HgCl₂-treated group. The activities of LDH and total protein were all markedly lower than those of the HgCl₂-treated group. Micrographs of cells exposed to high concentrations of either compound (15.625 and 7.84 μM) showed decreases in cell number and increases in rounded cells with loss of processes. Micrographs of cells exposed to low concentrations (3.9 and 1.94 μM) appeared similar to control astrocytes. Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) demonstrated that treatments with both compounds resulted in a dose-related increase of Se in the cells that is significantly greater than amounts seen in the controls. Caspase 3/7 activities were assessed and significant increases in activity were observed at the 7.8 μM and 15.625 μM concentrations with both Se compounds confirming apoptotic activity. ELISA assays were used to investigate the activities of complexes III and IV of the mitochondrial respiratory chain. There were no significant changes in the activities of the two enzymes in any treatment group. GSH/GSSG ratios were significantly decreased at 7.8 and 15.625 μM of each compound indicating oxidation of sulfhydryl groups. These results suggest that selenium compounds cause cytotoxicity in rat hippocampal astrocytes resulting in apoptosis but mitochondrial complexes III and IV are not involved.

1530 Selenium Protects against the Toxic Effects of Methylmercury in Sperm Whale (Physeter macrocephalus) Skin Cells.
L. C. Sawyer¹, ², ³, A. Holmes¹, ², ³, M. Braun³, ², D. Evers³, L. Kerrel⁴, ³, R. Payne², ³, W. Thompson³, ², C. Perkins³, T. Zheng³, C. Zhu² and I. Wise², ³. ¹Wisconsin Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME; ²Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, ME; ³Department of Applied Medical Sciences, University of Southern Maine, Portland, ME; ⁴Ocean Alliance, Gloucester, MA; ⁵Biodiversity Research Institute, University of Southern Maine, Portland, ME; ⁶Center for Environmental Sciences and Engineering, University of Connecticut, Mansfield, CT; ⁷Yale School of Public Health, New Haven, CT.

Mercury (Hg) persists, bioaccumulates and is toxic to the marine environment posing risks to the marine ecosystem. Selenium (Se), an essential element, antagonizes Hg toxicity when present in equimolar amounts. The sperm whale, a toothed whale, is a sentinel of ocean health. We biopsied skin from 343 free-ranging sperm whales in 17 regions around the globe during the voyage of the Odyssey, between 2000-2005 analyzing them for total Hg and Se levels. Hg was detected in 340 samples with a global mean of 2.4 μg/g ww ranging from 0.1 to 16 μg/g. Se was detected in all samples with a global mean of 33.0 μg/g ww ranging from 2.5 to 179.0 μg. The global mean Sc/Hg molar ratio was 59.1 ranging from 3.1 to 1719.1. This excess Se may mitigate the toxic effects of Hg. Hg is known to cause neurotoxicity. Previous work in our laboratory has demonstrated toxicity of Te and Se compounds in rat hippocampal astrocytes. The purpose of this study was to evaluate the mechanism of cell death of diphenyl diselenide (DPDSe) and selenium tetrachloride (SeCl₄) and to investigate their effects in the functioning of mitochondrial complexes III and IV and depletion of the antioxidant GSH. Rat hippocampal astrocytes were used as a model system. The LC50 of both compounds had been previously found to be 7.8 μM. For the present study, concentrations of both compounds ranging from 9.15-625 μM were tested. Phase-contrast microscopy was used to study the morphological changes in the cells following treatment. Micrographs of cells exposed to high concentrations of either compound (15.625 and 7.84 μM) showed decreases in cell number and increases in rounded cells with loss of processes. Micrographs of cells exposed to low concentrations (3.9 and 1.94 μM) appeared similar to control astrocytes. Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) demonstrated that treatments with both compounds resulted in a dose-related increase of Se in the cells that is significantly greater than amounts seen in the controls. Caspase 3/7 activities were assessed and significant increases in activity were observed at the 7.8 μM and 15.625 μM concentrations with both Se compounds confirming apoptotic activity. ELISA assays were used to investigate the activities of complexes III and IV of the mitochondrial respiratory chain. There were no significant changes in the activities of the two enzymes in any treatment group. GSH/GSSG ratios were significantly decreased at 7.8 and 15.625 μM of each compound indicating oxidation of sulfhydryl groups. These results suggest that selenium compounds cause cytotoxicity in rat hippocampal astrocytes resulting in apoptosis but mitochondrial complexes III and IV are not involved.

1532 Heavy Metal Hazards of Smokeless Tobacco in Nigeria.
O. Orisadare¹, Z. N. Igweze¹ and K. O. Okoro². ¹Department of Pharmacology and Toxicology, University of Port Harcourt, Rivers State, Nigeria; ²Toxicology Unit, Department of Experimental Pharmacology & Clinical Pharmacy, University of Port Harcourt, Rivers State, Nigeria.

Smokeless tobacco (ST) or snuff prepared by grinding tobacco leaves into a very fine powder with addition of salt petre and other ingredients has been in use in Nigeria for a very long time. STis marketed for oral and nasal use. Recently there has been an upsurge in the use of ST even amongst the younger generation. Information on the public health implication and heavy metal hazards of ST in Nigeria is sparse. This study was carried out to determine the extent of heavy metal contamination in ST used in Nigeria. Concentration of five heavy metals, Lead(Pb),Cobalt(Co),Cadmium(Cd), Nickel(Ni), and Chromium(Cr) were determined in smokeless tobacco by wet digestion using HNO₃ and analysis with AAS 205A Spectrophotometer. Thirty samples of smokeless tobacco sourced from six geographical regions in Nigeria were used. Our results showed that the level of contamination with all the metals was ≤10μg/g, 1.30-40μg/g, ≤10μg/g, 20-70μg/g and 270-1140μg/g for Pb, Co, Cd, Ni and Cr. These concentrations are higher than acceptable limits. Health risks associated with ST snuffing have received little or no attention in Nigeria in spite of wide spread use. This study underscores the importance of elucidate human risk assessment of ST in Nigeria and indeed Sub Saharan Africa.

1533 Tobacco Cigarettes: A Source of Metals (Al, Cd, Co, Cr, Mn, Ni, Pb, Sr) for Humans.
C. Rubio¹, T. Garcia¹, A. Soler¹, D. Glew-Weller¹, A. J. Gutierrez¹, A. Hardisson¹ and A. Anadon². ¹Toxicología, Universidad de La Laguna, La Laguna, Spain; ²Farmacología y Toxicología, Universidad Complutense de Madrid, Madrid, Spain.

Every six seconds a smoker dies, the victim of an addiction that causes a high degree of toxicity. Al, Cd, Co, Cr, Mn, Ni, Pb and Sr were determined in 33 tobacco samples randomly obtained in Tenerife using Inductively Coupled Plasma Spectrometry by previously treating the samples according to the standard procedure, that is, by adding HNO₃ at 65% to the sample and burning it in a muffle oven for 50 hours at 450 degrees Celsius. With respect to results, 428 mg Al/kg, 0.810 mg Cd/kg, 0.558 mg Co/kg, 1.442 mg Cr/kg, 112.026 mg Mn/kg, 2.238 mg Ni/kg, 0.602 mg Pb/kg and 82.206 mg Sr/kg. Al was the metal with the greatest concentration while Co had the lowest. The tobacco was also classified according to the type of tobacco: Virginia or Dark, type of cigarette: Normal vs Light and type of cigarette manufacturer. The amount of Al in Virginia tobacco was 423 mg/kg while in Dark this was 478 mg/kg, Cd concentrations were 20-70μg/g and 270-1140μg/g for Pb, Co, Cd, Ni and Cr. These concentrations are higher than acceptable limits. Health risks associated with ST snuffing have received little or no attention in Nigeria in spite of wide spread use. This study underscores the importance of elaborate human risk assessment of ST in Nigeria and indeed Sub Saharan Africa.
and H. M. Korashy. came more evident when compared with Korean data. Blood Cd levels in this among Chinese than those of Korean and Czechs; the magnitude of increase be-
portrayed by Korean (Lee et al. Int J Hyg Env Health 2012;215:449) and Canadian
Metal concentrations in the whole blood were measured by ICP-MS. The geomet-
portraits from a total of 648 subjects from March 2009 to February 2010. Blood sam-
the differences between Light and Normal tobacco, the following values were ob-
1526 Effect of Long-Term Exposure of Heavy Metals on the Expression Profile of Cytotoxic Proteins among Individuals Living in Mining Areas.
L. Zhang (3), L. Lu (1), Y. Pan (2), C. Ding (2), D. Xu (1), J. Zhao (1), W. Zheng (1) and H. Yan (2).
1VA Medical Center, Baltimore, MD; 2School of Medicine, University of Maryland, Baltimore, MD; 3Joint Pathology Centre, Silver Spring, MD.
Recent clinical findings implicate the potential for local and systemic long-term health effects from embedded metal fragments associated with injuries from impro-
ments embedded in muscle tissue were thought to be relatively inert; however, evidence has shown that soldiers with embedded deputed uranium fragments have elevated urine U levels 20 years after exposure. To understand the potential health risks associated with embedded fragments from blast injuries, the Department of Veterans Affairs has established a medical surveillance program which integrates fragment composition data, surrounding tissue analyses, and urine biomonitoring results that characterize systemic and local tissue exposure to: Al, As, Cd, Cr, Co, Cu, Fe, Mn, Ni, Pb, U, W and Zn. These metals were chosen based on available fragment composition data and known toxicity of individual metals. We present here results from a Veteran who had 3 fragments removed several years after injury. Using EDXRF, the removed fragments were determined to be an Al-Cu alloy. Chemical analysis of adherent tissue showed levels of Al and Cu consistent with mobilization of these elements from the fragment to the surrounding tissue. Histology showed focal foreign body-type giant cell reaction and chronic inflammatory cell infiltrates, but no evidence of neoplastic changes. Prior to fragment re-
removal, biomonitoring results showed a urine Al level 1.5 fold higher than the refer-
to environmental heavy metals is one of the most global concerns, partic-
cularly among whom living around the polluted areas. These heavy metals are known to generate oxidative stress species, and induce of oxidized DNA adduct for-
and homogenized; 0.5g samples were nitric acid digested with a microwave reactor
sustainability of this practice by measuring adverse effects on corn in
as a representative crop species, our research objective was to evaluate the
to environmental heavy metals in the expression profile of some cytotoxic proteines and the level of oxidized DNA adduct formation among individuals living around mining areas. Sixty healthy vol-
to metals were within established reference ranges. These results provide further evidence that metal fragments in the body are not inert and materials rele-
fracture line, and homogenized; 0.5g samples were nitric acid digested with a microwave reactor
1535 Baseline Blood Levels of Manganese (Mn), Lead (Pb), Cadmium (Cd), Copper (Cu), and Zinc (Zn) in Residents of Beijing Suburb.
L. Zhang (1), L. Lu (1), Y. Pan (2), C. Ding (2), D. Xu (1), J. Zhao (1), W. Zheng (1) and H. Yan (2).
1Occupational Disease Control, Fengtai CDC, Beijing, China; 2Institute of Occupational Health, China Center for Disease Control and Prevention, Beijing, China; 3School of Health Science, Purdue University, West Lafayette, IN.
The baseline blood concentrations of heavy metals are important for monitoring metal exposure in the general population. The data can be used to evaluate the cur-
rent environmental pollution and also serve as the references for exposure assess-
ment in local residents as well as in occupational settings. The purpose of this study was to determine the blood levels of Mn, Pb, Cd, Cu, and Zn among the residents (aged 12-60 years old) living in the suburban southwest of Beijing, China. Blood samples were drawn from a total of 648 subjects from March 2009 to February 2010. Metal concentrations in the whole blood were measured by ICP-MS. The geometric mean of the blood levels of Mn, Pb, Cd, Cu, Zn among the residents (aged 12-60 yrs within Wilkes County were selected as sampling areas for trace metal analysis. Soils were collected prior to and after annual litter application dates and corn tissue samples were collected in thirty day intervals (30, 60 & 90 days post planting) from each field. Nearly 400 corn tissue and soil samples were lyophilized and homogenized; 0.5g samples were nitric acid digested with a microwave reactor (USEPA Method 3051); and analyzed using ICP-OES to quantify levels of Cu and Zn. ICP-OES analysis indicated that industrial broiler chicken litter contains consider-
siderably elevated Cu (388 ppm) and Zn (481 ppm) concentrations. Thirty day corn seedling Cu and Zn burdens correlate closely with soil metal levels and with significantly delayed seedling emergence time and reduced growth rates (e.g., mean leaf height and area). No correlation was observed between soil metal levels and ma-
ture corn yields. Further application may result in significantly reduced Zea mays productivity due to elevated Cu and Zn levels and therefore is not sustainable at the maximum application rates currently practiced in NC.

1536 Phytotoxicity and Trace Metal Accumulation from Long-Term Chicken Litter Amendment in Wilkes County, North Carolina: A Field Study.
Arsenic, zinc and copper are commonly integrated in chicken feeds to ensure increased weight gain in chickens and prevent chicken house diseases. These metals ultimately become part of the litter that is spread by farmers over crop fields as an alternative to expensive fertilizer. Massive growth in industrial chicken production across Wilkes County, NC has resulted in increased concentrations of phytotoxic metals in farmland soils and loss of consumer sensitive crops such as peanuts. Using Zea mays as a representative crop species, our research objective was to evaluate the long-term sustainability of this practice by measuring adverse effects on corn in fields that have received a varied number of poultry litter amendments. Three agricul-
tural fields receiving chicken litter amendment ranging from less than 10 yrs to more than 30 yrs within Wilkes County were selected as sampling areas for trace metal analysis. Soils were collected prior to and after annual litter application dates and corn tissue samples were collected in thirty day intervals (30, 60 & 90 days post planting) from each field. Nearly 400 corn tissue and soil samples were lyophilized and homogenized; 0.5g samples were nitric acid digested with a microwave reactor (USEPA Method 3051); and analyzed using ICP- OES to quantify levels of Cu and Zn. ICP-OES analysis indicated that industrial broiler chicken litter contains consider-
considerably elevated Cu (388 ppm) and Zn (481 ppm) concentrations. Thirty day corn seedling Cu and Zn burdens correlate closely with soil metal levels and with significantly delayed seedling emergence time and reduced growth rates (e.g., mean leaf height and area). No correlation was observed between soil metal levels and ma-
ture corn yields. Further application may result in significantly reduced Zea mays productivity due to elevated Cu and Zn levels and therefore is not sustainable at the maximum application rates currently practiced in NC.
Background: Data suggest that nephrotoxic metals may disrupt vitamin D metabolism and inhibit production of 1,25(OH)2D, the active vitamin D metabolite, from 25(OH)D in the kidney. Prior studies support this but are few in number and limited by small sample sizes. We sought to describe this association in a much larger sample.

Methods: Cross-sectional study of 512 adolescents in Torreon, a smelter town in Mexico. BFp was measured using atomic absorption; urine As, Cd, Mo, W, Sb, Ti, and U using ICP-MS. Vitamin D was measured using radioimmunoassay and chemiluminescent assay. Multivariate linear models with vitamin D as the outcome measured effect of metal on vitamin D level, controlling for age, sex, smoking, SES, and time outdoors.

Results: 25(OH)D was positively associated with Mo, Tl, and U (β = 3.45, 1.90). β was positively associated with As and U (β = 3.64, 2.25), even after controlling for 25(OH)D (β = 2.25, 1.46, and 0.89, respectively). 1,25(OH)2D was positively associated with U(β = 3.64, 2.25), even after controlling for 25(OH)D (β = 3.45, 1.90).

Conclusions: No evidence that metals are inhibiting production of 1,25(OH)2D. Exposure to U or As may upregulate 1,25(OH)2D, perhaps in response to proximal tubule damage. Nephrotoxic metals such as U and As may cause a sub-threshold Fanconi syndrome, wasting phosphorus, and upregulating 1,25(OH)2D to maintain homeostasis.

In the wake of the Deepwater Horizon oil disaster of 2010, we collected tissue samples from sperm whales in order to determine the effects of the oil and chemical dispersants on their population. We focused on whales because they are at the top of the food chain and they are biologically similar to humans. Sperm whales live and feed at the same depth as the Deepwater Horizon well head, placing them at high risk to this disaster. After it became apparent the spewing oil was going to be the worst incident in US history, concern largely focused on oil and dispersants while the potential threat of genotoxic metals in the oil has gone largely overlooked.

Genotoxic metals, such as chromium and nickel, damage DNA and bioaccumulate in organisms resulting in longer exposures. Analysis of sperm whale skin samples showed mean levels of Ni and Cr at significantly higher levels than those found in whales collected around the world prior to the spill. We found Cr and Ni levels ranged from 0.4-94.63 ppm in tissue collected from Gulf of Mexico whales in the wake of the crisis, with mean Ni and Cr levels of 14.9 and 12.00 ppm, respectively. In addition, we found Cr and Ni levels ranged from 0.24-8.46 ppm in crude oil from the riser, oil slacks from surface waters and tar balls from Gulf beaches. Maps of where we collected our samples showed the highest metal levels in whales closest to the epicenter. Given the capacity of these metals to break DNA, their presence in the oil and their elevated levels in whales, we believe metal exposure is an important overlooked concern for the Deepwater Horizon oil disaster. Further analysis is underway to determine the impact of this disaster on the genetic health of the whales and the long term impact in years following.

Linalool is a commonly used fragrance material that has been associated with skin sensitization. The study objective was to understand the effects of inhalation exposure in Sprague-Dawley (SD) rats when aerosolized linalool when administered to rats by nose-only inhalation at 0.1, 1, and 10 ppm (0.63, 6.3, 63 mg/m3) for 2 weeks (6 hours/day, 5 days/week). Standard endpoints evaluated included: clinical observation; body and organ weights; hematology and serum chemistry evaluation; macroscopic/microscopic examination of selected organs; and bronchoalveolar lavage fluid (BALF) analysis for cellular markers of inflammation (i.e., cytokines). As a positive control to validate the utility of cytokine measures as indicators of pulmonary inflammation, a nose-only inhalation pilot was conducted with 25 mg/m3 amorphous silica (0, 1, 2, 5 or 10 exposures). At all exposure levels, linalool was well tolerated with test substance-related effects limited to non-adverse microscopic findings in the nasal cavity. Therefore, the no-observed-adverse-effect level (NOAEL) was considered to be 10 ppm (equivalent to 63 mg/m3), the highest exposure concentration tested.

Cinnamal is a commonly used fragrance material that has been associated with skin sensitization. The study objective was to understand the effects of inhalation exposure in Sprague-Dawley (SD) rats when aerosolized cinnamal when administered to rats by nose-only inhalation at 1, 10, and 100 ppm (5.4, 54.1, 540.5 mg/m3) for 2 weeks (6 hours/day, 5 days/week). Standard endpoints evaluated included: clinical observation; body and organ weights; hematology and serum chemistry evaluation; macroscopic/microscopic examination of selected organs; and bronchoalveolar lavage fluid (BALF) and serologic analysis for cellular markers of inflammation (i.e., cytokines). As a positive control to validate the utility of cytokine measures as indicators of pulmonary inflammation, a nose-only inhalation pilot was conducted with 25 mg/m3 amorphous silica (0, 1, 2, 5 or 10 exposures). At all exposure levels, cinnamal was well tolerated with test substance-related effects limited to non-adverse microscopic findings in the nasal cavity. Therefore, the no-observed-adverse-effect level (NOAEL) was considered to be 10 ppm (equivalent to 63 mg/m3), the highest exposure concentration tested.

Linalool is a novel formulation consisting of extracts from Piper betle leaves and Dolichos biflorus seeds. Clinical research demonstrated that Linalool is effective and well-tolerated in weight management. The current study evaluated the broad spectrum safety of Linalool in a battery of animal and in vitro studies including acute oral, acute dermal, primary dermal irritation, primary eye irritation, mammalian erythrocyte microelutability and chromosomal aberration tests. A sub-chronic repeated-dose 28-day toxicity study was conducted to determine the no-observable-adverse-effect-level (NOAEL) of Linalool.

The LD50 levels of Linalool in Sprague-Dawley (SD) rats, as determined by the acute oral and acute dermal toxicity studies, were >5,000 and >2,000 mg/kg body weight, respectively. Primary skin and eye irritation studies done on New Zealand rabbits classified Linalool as non-irritating to the skin and as mildly irritating to the eye. Genotoxicity studies showed that Linalool was non-mutagenic. In a repeated-dose 28-day oral toxicity study, SD rats were administered orally with Linalool at 0, 50, 250 or 2,500 mg/kg body weight daily. Rats were sacrificed at 28 days after supplementation. Body weight, food and water consumption, select organ weights, ocular health, hematology, blood chemistry, clinical chemistry and histopathology were assessed. No morbidity, mortality, or significant adverse events were observed at 28 days. Based on these findings, NOAEL of Linalool was determined to be at least 2,500 mg/kg body weight in male and female SD rats.

These results, combined with the tolerability of Linalool in the human clinical trial, demonstrate the broad spectrum safety of Linalool.
to 5.4 or 54.1 mg/m3, respectively) did not result in any adverse findings and show a clear threshold of response for lung and liver. Therefore, the no-observed-adverse effect concentration (NOAEC) was determined to be 10 ppm (equivalent to 54.1 mg/m3).

PS 1543 Evaluation of Nose-Only Inhalation Exposure to Aerosolized Isoeugenol in Sprague-Dawley Rats.

M. Singal1, J. Randazzo2, D. Kirkpatrick3, E.G. Burleson4 and D. Vitale5.

1Research Institute for Fragrance Materials, Woodcliff Lake, NJ; 2WIL Research, Ashland, OH; 3Burleson Research Technologies, Morrisville, NC.

Isoeugenol is a commonly used fragrance material that has been associated with skin sensitization. The study objective was to understand the effects of inhalation exposure in Sprague-Dawley (SD) rats when aerosolized when administered to rats by nose-only inhalation at 0.15, 1.5, and 14.9 ppm (1, 10, and 100 mg/m3) for 2 weeks (6 hours/day, 5 days/week). Prior to the main study, a preliminary 3-day exposure (6 hours/day) was run at 89.4 and 44.7 ppm to allow selection of appropri- ate doses. At both concentrations, the animals were observed to have decreased body weight over the 3 day exposure period. Therefore, a third of the lowest dose tested, 14.9 ppm, was chosen as the high exposure level for the main study. Standard endpoints evaluated included: clinical observation; body and organ weights; hematological and serum chemistry evaluation; macroscopic/microscopic examination of selected organs; and bronchoalveolar lavage fluid (BALF) and serum analysis for cellular markers of inflammation (i.e., cytokines). As a positive control to validate the utility of cytokine measures as indicators of pulmonary inflammation, a nose-only inhalation pilot was conducted with 25 mg/m3 amorphous silica (0, 1, 2, 5 or 10 exposures). Exposure of SD rats to ≥0.15 ppm isoeugenol resulted in adverse histologic changes indicative of dose dependent epithelial irritation. These were the only findings noted following isoeugenol exposure up to 14.9 ppm.

There were no test substance-related microscopic effects in the lower respiratory tract tissues (lung, trachea or larynx), liver, or kidneys. There were no toxicologically significant effects on BALF or serum cytokine levels. Therefore, neither a no-observed-adverse-effect level (NOAEC), nor a no observed effect level (NOEC) could be determined for this study regarding upper airway irritation. For the lower airway the NOEL was considered to be 14.9 ppm.

PS 1544 Toxicological Evaluation of 4, 4, 5, 5, 6, 6, 7, 7, 8, 8-Undecafuroro Octanoic Acid (5:3 Acid).

S. MacKenzie1, T. L. Sera2, C. Carpenter1, D. L. Nabb1, R. Hoke1, S. A. Gannon1, D. Hoban1, M. Donner1 and R. C. Buck2.

1DuPont Hadley Global Centers for Health and Environmental Sciences, Newark, DE; 2E.I. du Pont de Nemours & Company, Inc., Chemicals and Fluoroproducts, Wilmington, DE.

Studies were conducted to evaluate mammalian and aquatic toxicity of 4,4,5,5,6,6,7,7,8,8-undecafuroro octanoic acid (5:3 acid) (CAS# 914657-49-3). 5:3 acid is a metabolite of 6,2-fluorotoluene alcohol (6:2 FTOH). 6:2 FTOH is a raw material for fluorotoluene-based products. Rat oral and dermal LD50 values were 2950 mg/kg and >5000 mg/kg, respectively. 5:3 acid produced no dermal irritation but irreversible eye irritation in rabbits, while a weak dermal sensitization response was observed in mice (LLNA), with an EC5 of 23%. A bacterial reverse mutagenicity assay and an in vivo rat micronucleus assay were negative. A 2-week rat gavage study identified red blood cells (anemia), liver (hypertrophy, focal necrosis, and increased beta-oxidation), kidney (tubular vacuolation), stomach (ulceration), and thyroid (follicular hyperplasia; of questionable relevance to humans) as target organs. Rats dosed at 600/900 mg/kg/day were euthanized in extremis. The NOAEL was <30 and 30 mg/kg bw/day in males and females, respectively. In vitro metabolism was evaluated in male and female rat hepatocytes and predicted half-life in males and females of 430 and 2573 min., respectively, and identified several metabolites. Preliminary evaluations (single dose and repeat dose exposures) demonstrated that 5:3 acid exhibits bifasic pharmacokinetics. Studies demonstrated low to moderate toxicity in aquatic organisms with the following results: 72-hour EC50 in Pseudokirchneriella subcapitata was 22.5 mg/L; 90-day NOEC in rainbow trout was 9.14 mg/L; 48-hour EC50 in Daphnia magna was >103 mg/L; 21-day NOEC in Daphnia magna was 1.25 mg/L. The 90-day bioconcentration factor (BCF) measured in rainbow trout was 2.23-5.85, which supports a lack of predicted bioaccumulation in fish. 5:3 Acid is not expected to be harmful to human health or the environment at environmentally relevant concentrations.

PS 1545 A 28-Day Toxicity Study of PSEO by Oral Gavage in Rats Followed by a 14-Day Recovery Period.

T. O'Brien1, N. Pechacek1, W. Aulmann2 and K. Lidlaw3. 1Ecolab, St. Paul, MN; 2Ecolab, Düsseldorf, Germany; 3Charles River, Edinburgh, United Kingdom.

The objective of this study was to determine the potential repeat dose toxicity and reversibility of any findings over a 14 day recovery period for a peroxo sulfonated fatty acid (PSEO). The study design followed OECD Guideline 407. Sprague-Dawley (Gr:CD(SD)) rats were given PSEO once daily via gavage for 28 days at doses of 0, 5, 15 and 50 mg/kg/day. The highest PSEO concentration used was 0.5%. On completion of the dosing period, designated recovery animals were re-tained for a 14 day recovery period. The following parameters and end points were evaluated in this study: clinical signs, body weights, body weight changes, food consumption, ophthalmology, functional observations, clinical pathology parameters, gross necropsy findings, organ weights, and histopathology. No early deaths were observed in the dose groups. At the end of the treatment period, gross and microscopic findings observed were of the nature and incidence commonly seen in rats of this age and strain for studies of this type, and/or were of similar incidence in control and treated animals. Differences in the incidence of dark foci in the lungs, observed in male rats sacrificed on Day 29, were shown to correlate with alveolar hemorrhage which showed no biologically significant difference in incidence between treated animals and controls. The increased incidence of minimal hemorrhage in the thymus of treated animals which were sacrificed after the recovery period on Day 43 is considered incidental, as this is a common background lesion. Overall, no test article-related findings were observed for this study. Also no impairment of the mucous membranes of the gastrointestinal tract was observed up to the highest concentration of 0.5%, which can be regarded as a No-observed-Effect-Concentration (NOEC) in terms of local toxicity after 28 days repeated exposure. In conclusion, administration of PSEO by once daily oral gavage was well tolerated in rats at levels of 5, 15 and 50 mg/kg/day. Based on these results, the No-Observed-Effect Level (NOEL) was considered to be 50 mg/kg/day.

PS 1546 Smokeless Tobacco (Gutkha)-Induced Toxicological Effects in a Mouse Model: A Nicotine Twist.

D. Willis1, M. A. Popovich2, F. Gany3, C. Hoffman1, L. E. Blum1 and J. T. Zelikoff1. 1Environmental Medicine, New York University, Tisch School, NY; 2Memorial Sloan Kettering Cancer Center, New York, NY.

The popularity of smokeless tobacco (ST), usually placed within the mouth to be chewed, sucked, or swallowed, is growing rapidly and its prevalence of use is rising globally, due (in part) to greater convenience and stricter smoking laws. Gutkha, an addictive form of ST that contains areca nut, catechu, cardamom, lime, flavored chewing tobacco, and natural and artificial flavoring materials, is particularly common amongst Southeast Asian communities throughout the world, including the US. This study seeks to determine the generalized toxic effects of Gutkha and to determine the role of nicotine in producing Gutkha-associated toxicity. Ten-week-old B6C3F1 male mice were divided randomly into three groups and treated for 3-wk (5 d/wk) via the oral mucosa with equal volumes of water (control), a water-soluble nicotine solution, containing 0.24 mg of nicotine, or a water-soluble, 21 mg hypolylzed Guthka solution. Serum cotinine, used as the exposure metric, was measured weekly in all three groups and was similar in both the Gutkha- and nicotine-treated mice (36 vs. 48 ng/mL, respectively). At sacrifice, liver, heart, spleen, tongue, kidneys, thymus, and testes were collected, weighed, and evaluated histologically; serum testosterone (T) and hepatic CYP 2A5 (equivalent to human CYP2A6 in humans and the major nicotine and cotinine oxidase in mouse liver) was also measured. Heart weight (relative to body weight) was significantly decreased following either nicotine or gutkha exposure, while normalized liver/body weight and serum T levels were significantly decreased in the Gutkha-treated group only. These findings suggest that repeated Guthka use adversely impacts body weight, organ weight, and circulating T levels and that Gutkha toxicity may be driven by toxic components other than nicotine. As the use of Guthka rapidly increases worldwide, future studies are needed to elucidate its toxicological implications. MSK Cancer Center and NIEHS Center Grant ES000260.

PS 1547 Safety Assessment of Dicamba Monooxygenase from the Biotechnology-Derived Soybean MON 87708.

M. Koch1, L. Burzio1, J. Finnissy1, T. Kaempfe1, H. Kang1, A. Silvanovich1, C. Wang and E. Bell. 1Monanto Company, St. Louis, MO.

Monsanto has developed a soybean, MON 87708, which is tolerant to dicamba herbicide. It contains a gene, dmo, that expresses dicamba monooxygenase (MON 87708 DMO). A safety evaluation of the MON 87708 DMO protein was conducted, it examined: 1) the source of the gene; 2) its function and a history of safe use for structurally similar proteins; 3) its homology to known allergens, toxins, or...
other proteins known to have adverse effects in mammals; 4) its stability to heat treatment; 5) its digestibility in simulated gastrointestinal fluid; and 6) its potential toxicity in view. The dmo gene was obtained from a strain of Stenotrophomonas maltophila, a bacterium that is found in a variety of foods (i.e., “ready to eat” salads, vegetables, frozen fish, milk, and poultry), is widespread in the home environment, and has not been reported to be allergenic. Accordingly, the gene was considered to come from a safe source. Subsequently, MON 87708 DMO classifies as a Rieske-type non-heme iron oxygenase (RO), as such it shares structural and functional similarities with related proteins in plants - including crops like corn, rice, and soybean. Thus, there is a history of safe use of RO proteins that are structural homologs of MON 87708 DMO. Similarly, protein homology searches conducted with MON 87708 DMO indicate no biologically relevant sequence similarities to allergens (including 8 amino acid epitopes), toxins, or other proteins with adverse biological activities. When subjected to temperatures approximating soybean processing, MON 87708 DMO demonstrates a loss of enzymatic activity and a change in structural stability. The protein also rapidly digests in simulated GI fluids. As well, field trial data indicates low MON 87708 DMO expressed levels in plants. Taken together, dietary exposure to intact/active MON 87708 DMO is anticipated to be negligible. MON 87708 DMO was also administered to mice in acute and 28-day toxicity studies, and the protein was not associated with signs of toxicity. The weight of evidence demonstrates that MON 87708 DMO is safe for food and feed.

1548 A 14-Day IV Infusion Exploratory Toxicity Study of Hydroxylamine in Rats.

Hydroxylamine (HA) is an important industrial reducing agent with little therapeutic value. However, it may be formed as a by-product when drugs containing hydroxamic acid functional groups are used, and thus exhibit hemotoxicities. As many of these compounds are developed as intravenously (IV) administered (infusion) drugs, understanding the dose-toxicity relationship of HA by IV infusion becomes important in risk mitigation and management. In this study, we investigated if, at the same daily doses (12, 24 or 36 mg/kg/day), either by continuous infusion (CI) or by twice daily 1-hour intermittent infusions (II), HA produced the same level of toxicity. As systemic toxicities of HA are well-known, the focus of this study was on toleration and hematologic effects. Clinical signs, body weight and quantitative food consumption were assessed. Blood samples were taken at various times to evaluate methemoglobin (metHb) and total hemoglobin (Hb) levels. Hematology parameters and morphology were evaluated in blood samples taken on Days 3, 9, and 15. Dose-dependent increases in the metHb level were observed in both CI- and II-treated animals, however, a higher level of metHb was generally observed in II animals at the same daily doses. The metHb level increased within the first 4-6 days of dosing and then declined in the remaining course of study. Clinically, administration of HA up to 36 mg/kg/day (CI or II) was well-tolerated, with only palpebral cyanosis observed in the high-dose animals (CI and II) and only in the first dose the second week. No significant effect of HA on the body weight was observed although food consumption at 36 mg/kg (CI and II) was significantly reduced. Multiple hematology parameters demonstrated HA induced a dose- and time-dependent hemolytic anemia with the formation of Heinz bodies in both CI and II animals. The reduction of total Hb worsened with daily dosing and appeared to reach a plateau after 6-9 days of dosing. These data provided useful information on the choice of infusion regimen and risk management of some hydroxamic acids by infusion.

1549 Increased Hypothalamic Dopaminergic Neuron Tyrosine Hydroxylase Expression in Lean Wistar Rats.

S. M. Plummer, M. Beltran, M. Millar, R. Wiegard and J. Wright. 1MicroMatrices Associates Ltd., Dundee, United Kingdom; 2MRC Centre for Reproductive Health, Edinburgh, United Kingdom; 3MRC Centre for Inflammation Research, Edinburgh, United Kingdom; 4Syngenta Ltd., Bracknell, United Kingdom.

Caloric restriction in Wistar rats has been reported to show a decrease in mammary and pituitary tumors and an increase in uterine tumors (1, 2) associated with delayed hypothalamic dopaminergic neuronal senescence (3). This study was designed to assay the effects of reduced body weight gain on hypothalamic dopaminergic neurons using FFPET tissue obtained from 100 female Wistar rats (50 controls; 50 with >30% body weight gain reduction) from a 2 year bioassay. A combination of immunostaining (IHC) and RNAscopeTM in situ hybridisation (ISH) was used to examine expression of tyrosine hydroxylase (TH), a rate limiting enzyme for dopamine synthesis. TH protein expression was detected in both the paraventricular(PVH)/periventricular (PeVH) nuclei and the median eminence (ME). TH RNA expression was also detected in these regions, but there was a disparity in the strength and location of TH RNA expression compared to TH protein staining. TH protein staining was strong in the PVH/PeVH nuclei and TH RNA expression is in the PVH/PeVH nuclei of the ME, respectively. These results indicate a disparity between the expression of TH RNA and protein in the rat hypothalamus, and suggest that chronic reduction in body weight gain may alter regulation of TH expression at the RNA and protein levels in hypothalamic nuclei.

(1) Roe et al 1995;
(2) Keenan et al 1995;
(3) Harfemann et al 2012

1550 Proposition 65 and Cancer Incidence in California.

Proposition 65 has been in effect in California (CA) for 25 years. It requires businesses to notify consumers if products they buy contain chemicals that are known to the State of CA to cause cancer and birth defects or other reproductive harm. This study determined the tumor types reported to be associated with the 71 carcinogens that were first added to the Proposition 65 list in 1987 and evaluated the incidence rates for these tumor types in males (M) and females (F) in CA through to 2009. Corresponding incidence rates in Washington State (WA); geographically similar) and New York State (NY); as a diverse East coast regional control) were evaluated as comparators. Of the 71 chemicals added as carcinogens to the Proposition 65 list in 1987, >10 have each been reported to be associated with urinary bladder and breast tumors and >20 each with liver and lung tumors. Between 1988 and 2009, there was a modestly decreased trend in breast cancer incidence in CA [linear slope = 0.19 (M) and 0.06 (F); R2 = 0.75 (M) and 0.77 (F)]. Less robust decreases were observed in WA (slope = 0.05 (M and F); R2 = 0.01 (M) and 0.18 (F)]; while a modestly increased trend was observed in NY. Over the same time period, there was a modestly increased trend in breast cancer incidence (slope = 0.15 to 0.41; R2 = 0.02 to 0.18) and an approximate doubling of liver cancer incidence in both sexes in all 3 states (slope = 0.07 to 0.41; R2 = 0.80 to 0.99). A substantial and comparable decrease in lung cancer incidence was observed in males in all 3 states (slope = 1.18 to 1.80; R2 = 0.90 to 0.99). For females, lung cancer incidence decreased in CA (slope = 0.36; R2 = 0.79) but increased in WA and NY. The results of this preliminary assessment indicate that since Proposition 65 came into effect 25 years ago, liver cancer incidence in CA has approximately doubled but consistent and robust decreases in incidence rates have been observed for bladder cancer in both sexes and for lung cancer in females. The contribution of Proposition 65 to these observed changes is unclear and warrants further investigation.

1551 Alternatives to Bisphenol A in Thermal Paper: Analysis of Substitution Options and Trade-Offs.

The U.S. Environmental Protection Agency (US EPA) Design for Environment (DfE) Program undertook a chemical alternatives assessment for the use of bisphenol A (BPA) in thermal paper, including cash register receipts, as part of the Action Plan for BPA in March 2010. The purpose of the alternatives assessment is to identify and compare alternative chemicals to inform decision-making. The alternatives assessment was conducted via a multi-stakeholder partnership that identified 19 functional alternatives to BPA. The hazard assessment for BPA and the alternatives used the DfE hazard evaluation criteria to assign hazard designations for human health toxicity, ecological toxicity and environmental fate endpoints. Some alternatives were well characterized for all endpoints. Other alternatives were poorly characterized, wherein analog data, predictive models, structural alerts and expert judgment were used to make hazard designations for data gaps. Trends for human health, ecological toxicity and fate characteristics were indicated in a number of the alternatives due to particular molecular size ranges and/or molecular structures. In general, alternatives have important trade-offs although if used with appropriate control measures, some of the alternatives could provide incremental benefits. Ecotoxic hazard assessment approaches, coupled with decision-making protocols that are practical tools for businesses to use in materials selections, will lead to more sustainable product development when human health or ecological toxicity concerns exist. The resulting hazard profiles should be of value to manufacturers making substitution decisions and facilitate reductions in environmental releases and subsequent exposures.
1552 Body-Residue Based Environmental Safety Assessment of Personal Care Product Ingredients: A Case Study with Benzophenone-3.

F. Liu1, V. Tu2 and N. Y. Wang2, 1Revlon Research Center, Edison, NJ; 2Environmental Assessment Scientist Serving in a Personal Capacity, Cincinnati, OH.

Personal care product (PCP) ingredients are released into aquatic ecosystems via wastewater discharge and potentially affect environmental health. The environmental safety assessment (ESA) is an important component of overall ingredient safety evaluation. We presented here an exploratory effort in applying the body-residue based approach in ESA of PCP ingredients. The traditional water-concentration based ESA has been used to evaluate the environmental impact of PCP ingredients. Compared with the water-based concentration, body residue concentration represents an internal dose, takes chemical disposition into account and provides an integrated assessment of the exposure an organism receives over space and time. With advancement of computational toxicology, critical body residues (CBRs) corresponding to toxicity endpoints and chemical bioaccumulation levels can be modeled as an alternative to animal testing. Organic UV filters are widely used in PCPs to offer sunscreen benefit. Environmental occurrence of various organic UV filters has been documented in both abiotic and biotic media. As a lipophilic UV filter, benzophenone-3 bioaccumulates in fish and concerns have been raised due to its in vitro bioaccumulative index. The CBR and body residue level of benzophenone-3 were predicted using QSAR models. Information on environmental occurrence of benzophenone-3 was compiled and analyzed. The modeled tissue levels were comparable with the measured tissue levels in the environment. Our ESA analysis indicated that the CBR was significantly higher than the tissue level of benzophenone-3 in various fish species habituated in different aquatic ecosystems. The result was in good agreement with water-concentration based approach obtained by comparing the measured water concentration with the predicted no effect concentration (PNEC). As a result of this work, an alternative approach based on available in silico methods was developed for conducting screening level ESA of PCP ingredients.

1553 Evaluation of the Potential for Establishing a Threshold for Chemical Ocular Irritation Using a Model of Repeat Topical Ocular Administration in Albino Rabbits.

Rationale: The qualification of low levels of impurities in topical ophthalmic products is often hampered by a lack of ocular safety data at levels relevant to the product; establishing a threshold would be valuable in safety assessments. Therefore, the goal of this study was to explore the possibility of a threshold level for ocular irritation from repeated topical exposure to agents in solution.

Methods: Ten compounds from 8 chemical families (acids, acrylates, alcohols, aldehydes, amines, anionic surfactants and cationic surfactants), which resulted in severe ocular irritation or corrosive effects when administered as a single drop on the rabbit eye at high concentrations. Each chemical was prepared in an appropriate vehicle (saline or sesame seed oil) to give concentrations of 20 and 100 ppm. One eye of albino rabbits (5/dose group) was administered 50 µL of the test article 4 or 6 times daily (oil- or saline-vehicle, respectively) for 3 days. The contralateral eye served as a vehicle control. Draize scoring was performed before the first daily dose and after the final daily dose and biomicroscopy was performed pre-dose and on Days 2 and 3.

Results: None of the 10 chemicals resulted in notable ocular irritation at either 20 or 100 ppm after repeated ocular administration.

Conclusion: Despite being severe irritants or corrosives when dosed as a single drop at high concentrations, the favorable ocular irritation results observed with up to 100 ppm concentrations of severe irritants or corrosives suggest that it may be possible to establish a threshold for ocular irritation.

1554 Human Health Assessment of Scented Candle Emissions.

T. Perry1, D. Vitala1, L. Cruise1, F. J. Ioachim1, R. Macareñas1, S. Schneider1, B. Smith1 and M. Singal1, 1Research Institute for Fragrance Materials, Woodcliff Lake, NJ; 2Toch Ahmed BVBA, Brussels, Belgium; 3Promet & Gamble, Cincinnati, OH; 4SC Johnson & Son, Racine, WI; 5Rockit-Benckiser, Hull, United Kingdom; 6Firmenich SA, Princeton, NJ; 7Firmenich SA, Geneva, Switzerland.

Airborne compounds in the indoor environment arise from a wide variety of sources such as environmental tobacco smoke, heating & cooking, dust, emissions from furniture and construction materials as well as outdoor sources. One product category which has received recent attention as a source of indoor airborne substances is scented candles. The potential impact of airborne candle emissions on the quality of the indoor air is highly dependent on the type and concentrations of chemical substances released. To better understand the potential of scented candles to contribute to the indoor load of airborne substances, a comprehensive candle emission testing program initiated by the consumer products and fragrance industry was undertaken to investigate the emissions of volatile and semi-volatile organic compounds (VOC; SVOC) and particulate matter (PM). Associated human exposures scenarios were derived and computer models used to estimate exposure of these materials to consumers. Measured chamber concentrations of VOC, SVOC and PM were used to predict their respective, cumulative indoor air concentrations in a standard EU-based dwelling using 2 models - the well-known and widely accepted ConsExpo 1-Box inhalation model and the recently developed, refined RIFM 2-Box indoor air dispersion model. The output from both models has been used to estimate realistic yet conservative consumer exposure to scented candle emissions measured under this program. The potential consumer health risks associated with the exposure to these was materials compared to existing air quality guideline values and established safe exposure levels. This investigation concluded that even under the conservative assumptions, potential human exposures are a minimum of one order of magnitude below established regulatory indoor air guideline values and/or published safe exposure levels.

1555 Cobalt Whole Blood Concentrations in Healthy Adult Volunteers Following Two Weeks of Ingesting a Cobalt Supplement.

B. L. Finley1, B. E. Tvermoes1, K. M. Unice1, J. M. Otani1, D. J. Paustenbach2 and D. A. Galbraith2, 1ChemRisk, Boulder, CO; 2ChemRisk, San Francisco, CA; 3ChemRisk, Pittsburgh, PA.

Recently, there has been an increase in the marketing and sales of dietary supplements, energy drinks, muscle builders and other consumer products that may contain relatively high concentrations of essential elements. Cobalt-containing supplements are readily available in the U.S. and have been marketed to consumers as energy enhancers. However, little information is available regarding cobalt (Co) body burden and steady-state blood concentrations following the intake of Co dietary supplements. We assessed Co whole blood concentrations in four healthy adult male volunteers who ingested a commercially available Co supplement (0.4 mg Co/day) for 15 or 16 days. Pre-supplementation blood Co concentrations were less than the reporting limit of 0.5 µg/L. Consistent with background concentrations reported to range between 0.2 to 0.4 µg/L. The mean whole blood Co concentration in the volunteers after 15 or 16 days of dosing was 3.6 µg Co/L and ranged from 1.8 to 5.1 µg Co/L. The mean observed concentration in the study group was approximately 9 to 18 times greater than background concentrations. Further studies of Co whole blood concentrations following supplementation over longer time periods with additional monitoring of physiological parameters may provide useful information for evaluating the health of persons who take various doses of Co.

1556 Multiparameter In Vitro Toxicity Testing of Crizotinib, Sunitinib, Erlotinib, and Nilotinib in Human Cardiomyocytes.

K. Doherty1, R. L. Wappel1, D. R. Talbert2, P. B. Trusk1, D. M. Moran1, J. W. Kramer1, A. M. Brown1, S. A. Shell1 and S. Bacus2, 1Quintiles, Westmount, IL; 2ChanTet, Cleveland, OH.

Targeted therapy has greatly improved the treatment and prognosis of multiple types of cancer. However, unexpected cardiotoxicity has arisen in a subset of patients for some of the tyrosine kinase inhibitors (TKI). For these TKI, the cardiotoxicity was not wholly predicted by pre-clinical testing, which centers around the inhibition of the human Ether-a-go-go-Related Gene (hERG) channel. Therefore, we sought to determine whether a multi-parameter panel of tests that assess a drug’s effect on cellular, molecular, and electrophysiological endpoints would more accurately predict cardiotoxicity. To do so, we examined how 4 FDA-approved drugs impacted cell viability, apoptosis, reactive oxygen species (ROS) generation, metabolic status, impedance, and ion channel function in human cardiomyocytes. The 3 drugs with known associated cardiac adverse events (crizotinib, sunitinib, and nilotinib) all proved to be cardiotoxic in our series of in vitro tests while erlotinib, a cardiac-safe drug, did not show any indications of toxicity. Crizotinib, an ALK/ MET inhibitor, was the most cardiotoxic by our panel, leading while erlotinib, a cardiac-safe drug, did not show any indications of toxicity. In vitro toxicity testing of crizotinib, sunitinib, and nilotinib was compared to existing in vivo and in vitro cardiotoxicity data. Airway Relative Gene (hERG) channel.

1552 Body-Residue Based Environmental Safety Assessment of Personal Care Product Ingredients: A Case Study with Benzophenone-3.

1553 Evaluation of the Potential for Establishing a Threshold for Chemical Ocular Irritation Using a Model of Repeat Topical Ocular Administration in Albino Rabbits.

1554 Human Health Assessment of Scented Candle Emissions.

1555 Cobalt Whole Blood Concentrations in Healthy Adult Volunteers Following Two Weeks of Ingesting a Cobalt Supplement.

1556 Multiparameter In Vitro Toxicity Testing of Crizotinib, Sunitinib, Erlotinib, and Nilotinib in Human Cardiomyocytes.
1557 Safety Assessment of Chemicals in Toys.

M. Whitehead, J. Doran, G. Goodfellow and J. Daniels. Intrinsik Health Sciences Inc., Mississauga, ON, Canada.

Numerous countries have enacted laws and regulations to protect children from the potential health hazards associated with exposures to chemicals used in the manufacture of toys, including the United States, Canada and the member states of the European Union. Assessing the risk posed to children from exposure to chemicals in toys poses a special challenge, due to the particular vulnerability of this population to both adverse effects and chemical exposure. Examples of chemical categories used in toys that may be of concern include metals, boron-containing substances, pigments and colorants, preservatives, and allergenic fragrances. The aim of this study was to evaluate the risk of substances flagged as potential chemical hazards when included as ingredients in child-intended products in various jurisdictions. Results of toxicological studies indicate that metal-containing pigments, certain azo dyes, and boric acid and its salts are associated with toxicity concerns such as reproductive, developmental, mutagenic, and carcinogenic effects. Product formulation data collected in a proprietary database over a two-year period was analyzed in order to determine the levels and frequency of use of these substances in various categories of toys. Exposure considerations and scenarios designed to specifically address the concerns of children from chemical substances as a result of the intentional use and reasonably anticipated misuse of different categories of toys were developed. Using the results of the toxicological studies and exposure scenarios developed by our group, we analyzed the margin of safety for the use of these chemicals of concern with respect to toxicity effects in toys. The results of our studies suggest that restricted chemicals are still being used to formulate toys at levels that indicate potential concern for this sensitive population.

1558 Health-Based Framework for Evaluating the Safety of Hydraulic Fracturing Products.

D. Wikel1, L. Fitzgerald1, L. C. Has1 and M. Harris2. 1T oxStrategies, Austin, TX; 2T oxStrategies, Houston, TX.

Hydraulic fracturing has made it possible to extract natural gas from dense shale rock formations and has become the fastest-growing source of gas in the U.S. Because the process involves drilling through groundwater formations, there has been concern that drinking water aquifers could become contaminated – a concern compounded by a lack of information regarding the composition and safety of the products used. In an effort to address these concerns, we developed a quantitative framework to characterize potential safety of hydraulic fracturing products. The framework consists of four evaluation criteria that are applied to each of the product components: composition and use, toxicity, exposure, and risk of release. Each of the criteria has specific requirements associated with scores ranging from 1-5 (with 1 being the best and 5 being the worst) that are based on USEPA guidelines and standard risk assessment practices. A final composite product score is calculated based on scores for each of the criteria for each of the components and this score is used to place the product into a category of use relating to its safety (not recommended for use, with caution/specialized conditions, acceptable for design use). Importantly, if any component of the hydraulic fracturing product does not achieve a score below the STOP point for any of the four criteria (indicative of a minimum level of knowledge or safety), the product is automatically placed into the not recommended for use category. This framework allows health experts to tailor the evaluation to any type of product used in the fracturing process and can be consistently conducted by independent parties. Because this process focuses on human health risk and environmental exposures, it is different than those currently available in the natural gas industry and is more in line with standard risk assessment practices. Most importantly, this framework allows for transparency in the evaluation process and provides a quantitative method upon which experts can make decisions.

1559 Novel Methodology in Hazard Assessment: Chemical Clustering for Read Across—The Phthalate Alternatives Case Study.

Phthalates are a class of compounds produced in high volume in the U.S. and are found in many products, primarily as plasticizers. The U.S. EPA published an initial Action Plan for eight phthalates in 2010 due to concern about the toxicity of phthalates and the evidence of pervasive human and environmental exposure. As indicated in the Action Plan, a Design for the Environment (DfE) alternatives assessment (AA) will be performed for these chemicals. The DfE Program publishes AAs to help industries identify safer chemicals and provide a comparison of potential human health and environmental impacts of chemical alternatives. DfE hazard criteria are used to assign hazard designations for human health toxicity, ecological toxicity and environmental fate endpoints. Over 70 substances were identified as potential alternatives to the eight action plan phthalates. Some alternatives are well characterized for all endpoints, while others are data poor. In the absence of experimental data, DfE assessment methodology designates hazards based on a read across approach to structurally similar compounds. This poster describes a novel technique for green chemistry and hazard screening that uses the EPA’s Office of Pollution Prevention and Toxics ChemACE program to cluster the alternatives based on common structures, functional groups, and molecular architectures. The ChemACE program automates chemical clustering based on structural similarities and generates reliable and organized results. Using this methodology, read across (analog) data from data-rich chemicals was used to assign in assigning and justifying hazard designations for data poor chemicals within a cluster. This allows for the determination of hazard designations for as many endpoints as possible including human health endpoints that often lack experimental data and methods for estimation. The resulting AAs should be of value to manufacturers making substitution decisions and facilitate reductions in potential human health impacts.

1560 Transdermal Toxicity of the Phorbol Ester Isolated from Biodiesel Feedstock, Jatropha Curcas.

M. Nakao, S. Kinoshita and Y. Ishihara. Kurume University, Kurume, Japan.

[Purpose] Jatropha curcas attracts rising attention as a biodiesel feedstock in the world. However, Jatropha contains various toxic components, generating concerns about its health effects. One of toxic components is potential tumor promoter, phorbol esters. Toxicity of Jatropha phorbol esters has not been fully described in this study, transdermal toxicity of main component of Jatropha phorbol esters was assessed in mice.

[Experimental procedures] One of the Jatropha phorbol esters, 12-deoxy-16-hydroxyphorbol-4-[(12,14-butanediyl)-6-[(16,18,20-noratrienyl)-bicycle[3.1.0]hexane-(13)-O-2'-[carboxylate]-16-0]-3-(8-butenic-10') ate (DHPB) (1 – 10 μg), was applied onto skin of mice. As a positive control, 12'-Tetradecanoylphorbol 13-acetate (TPA) (1 – 10 μg) a known tumor promoter was applied. Transformation activity of test compound was assayed using Bhas42 cells. Autopsy was conducted on the dead mice to observe the lesions. All survived mice were sacrificed at 8 weeks from the beginning of the study and hematological tests and splenic lymphocyte measurement using flow cytometer were carried out.

[Results] 2.5 μg of DHPB led to weight loss and over 5 μg of DHPB caused death during 5 weeks observation. There were no such symptoms in the mice treated with the same dose of TPA. Gastrointestinal bleeding and splenic atrophy was observed in the dead mice. The NOAEL of DHPB was considered to be 2 to 2.5 μg. No papilloma on the skin was observed in DHPB group in contrast to TPA which developed papilloma when the dose exceeded 1 μg. There was no significant difference in splenic lymphocyte composition among DHPB, TPA, and control groups. Hematological analyses showed that the number of red blood cells, platelet, and lymphocyte was markedly decreased in DHPB treated mice at 8 weeks.

[Conclusion] DHPB, on the contrary to TPA, showed no tumor promotion in this experiment but showed acute toxicity which was not seen in the mice treated with TPA. These results suggest that DHPB has different characteristics in transdermal toxicity in comparison with those of TPA.
A A. Fabian1, N. Bordag2, M. Herold2, H. G. Kamp1, G. Krennrich2, R. Looser2, L. Ma-Hock1, W. Mellert1, E. Peter2, A. Prokoulidou1, M. Spitzer2, V. Strauss1, T. Walk2, J. Wiemer2 and B. von Ravenzwaay1, 1Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany; 2metanomics, Berlin, Germany.

Recent advances in metabolic profiling technologies together with expert judgment offer the possibility of identifying whether differences from control values are treatment related and to discriminate between those that are adverse and those that are not. To obtain a measure of sensitivity of metabolomics vs. classical toxicology, we have used these data to analyze metabolomics changes at toxicological NOAEL doses. We have done this considering the number of statistically significant metabolite changes (p<0.05), the false-positive rate and the correlation with defined patterns for diverse modes of action (approximately 100 defined in MetaMap®Tox). Results show that in most cases where there are no toxicological effects (NOEEL), there are also only few metabolomics changes (at/below the level of the false positive rate and without a match to the predefined MoA patterns). In some cases in which the study demonstrated a NOAEL (only effect noted being liver weight increase) metabolomics changes are often present and identify the liver as target organ. Following this analysis, it would seem that metabolomics is generally not more sensitive than classical toxicology, with respect to the identification of a NOAEL.

BASF and metanomics, in a joint effort, developed the MetaMap® T ox database with more than 500 reference compounds obtained from rat studies (OECD 407 design). Metabolome analysis in plasma was performed after 7, 14 and 28 days and relative levels of endogenous metabolites in treated rats versus controls were analyzed. We have obtained metabolome data at toxicological NOAEL doses. Here we applied our Percellome Toxicogenomics Project. This project has been launched to develop a comprehensive network for the mechanism-based predictive toxicology. For this purpose, a normalization method designated as “Percellome” is developed (BMC Genomics 7:64, 2006) to generate mRNA expression values in “copy numbers per one cell” from microarrays and Q-PCR. The time- and dose-dependent alteration of gene expression induced by various exposures is indexed in mice (4 time points x 4 dose levels) and on more than 100 chemicals. Data are expressed in 3-D graphs (time x dose x mean copies per cell +/- sd): 45,000 surfaces corresponding to the probe sets of the Affymetrix Mouse Genome 430 2.0 Array. FA at concentrations close to the “Indicative indoor exposure value of SHS (Ministry of Health Labour and Welfare, Japan)” of 0.08 ppm was applied to the 22hr/day x 7 day exposure protocol (0, 0.1, 0.3 and 1.0ppm, 4 time points, triplicate). C57B/6J mice were exposed and lungs, liver and hippocampus were analyzed. As a result, strong suppression of gene expression related to neuronal activity in hippocampus, i.e. the immediate early genes including Arc, Nrl1, Fos, Junc and Egfr were shown. This study indicated that the comprehensive transcriptomic analysis will become useful for prediction of the effect on central nervous system of the very low concentration of toxicants. Our finding may be considered as a first substantial data that would explain the indefinite or unidentified complaint by this SCS-level exposure of FA. (Supported by Health Sciences Research Grants from the Ministry of Health, Labour and Welfare, Japan)
1566 Evaluation of Selected Nitrosamines As Candidates for Regulatory Determination Using a Group Approach.

J. Donohue1, M. Simic1, Z. Bain1, A. Gebhart2, S. Goldhaber2 and R. Howd2.

In May 2011, EPA Administrator, Lisa Jackson announced the Drinking Water Strategy, a new cost-efficient approach to protecting public health that included broadening the traditional regulatory framework for chemicals by addressing groups of contaminants. Common physical and/or toxicological properties are features to be considered in determining group composition. The six nitrosamines, recently monitored nationally at public water systems (PWSs) under the Second Unregulated Contaminant Monitoring Rule (2009—2011), meet the grouping criteria based on a common mutagenic mode of action plus their chemical, and metabolic properties. Their toxicological data and co-occurrence at PWSs have been integrated to evaluate the practicality of considering a group of toxicologically similar chemicals in a Regulatory Determination context. The nitrosamines evaluated include N-Nitrosodi-n-butylamine, N-Nitrosodihethylamine, N-Nitrosodimethylamine, N-Nitrosodi-n-propylamine, N-Nitrosomethylethylamine, and N-Nitrosopyrrolidine. [The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.]

1567 Key Decisions in Establishing National Ambient Air Quality Standards.

L. Fraiser1 and L. J. Bradley2. 1Environment, AECOM, Austin, TX; 2Environment, AECOM, Chelmsford, MA.

This paper provides an evaluation of key decisions made by the US Environmental Protection Agency (EPA) in establishing more stringent short-term National Ambient Air Quality Standards (NAAQS) and provides an opinion on whether the supporting science suggests that their implementation will result in additional public health protection. Although EPA states that the NAAQS are based on evaluation of all relevant scientific evidence, they routinely are not. Despite many epidemiological studies that found no association between particulate matter (PM) exposure and mortality, EPA based the current 24-h PM2.5 NAAQS on only two studies reporting associations between PM2.5 and health benefits. Only one controlled sulfur dioxide (SO2) study caused a significant response in the range used as the point of departure in establishing the 1-hr SO2 NAAQS and neither clinical nor epidemiological studies support clinically-relevant lung decrements at this level. EPA used a consistent definition for moderate decrements in the lung function of asthmatics in establishing 1-hr NAAQS for nitrogen dioxide (NO2) and SO2 but used a slightly different categorization in the latest review of the 8-hour ozone NAAQS. EPA included human exposures to NO2 by mouthpiece in establishing the NO2 NAAQS, but excluded mouthpiece exposure studies in developing the 1-hr SO2 NAAQS because of the potential for increased pollutant delivery and altered distribution/dissolution of pollutant that can occur. This evaluation of recently promulgated NAAQS reveals inconsistency in the way that EPA uses health effects studies to support its decisions, emphasizing the need to define key criteria/concepts, such as “adverse effect,” “sensitive” populations and principles of cause-effect relationships. It also highlights the need for guidelines on incorporating negative study results into weight-of-evidence evaluations. When all relevant data are considered, particularly in the context of other contributing factors, they do not support that the recent ratcheting down of NAAQS will result in additional health public protection.

1568 Development of a Proposed 24-Hour Health-Protective Air Monitoring Comparison Value for Formaldehyde for Comparison to 24-Hour Monitoring Data in the Barnett Shale Area.

A. L. Curry, J. T. Hancy and D. McCam, Toxicology Division, Texas Commission on Environmental Quality (TCEQ), Austin, TX.

The Barnett Shale is a large natural gas reserve encompassing more than 5,000 square miles and covering approximately 26 counties in North Texas. Due to public concern that natural gas compressor stations emit high formaldehyde concentrations, formaldehyde has been of increased public and regulatory interest in recent years. It has also been detected in 24-h carbonyl samples collected by the TCEQ in the Barnett Shale. However, use of these data for evaluating potential health effects is typically limited to calculating long-term annual means for comparing to chronic, health-protective air monitoring comparison values (AMCVs). For evaluation of acute exposures, the agency generally uses 1-h AMCVs, which are not designed to evaluate 24-h results. Thus, the development of a 24-h AMCV would allow the TCEQ to evaluate 24-h formaldehyde data for possible health concerns. Critical effect dose-response data for irritation (e.g., eyes, upper respiratory tract) from acute (~400 ppb) and chronic (~200 ppb) human studies suggest a narrow range for the lowest reported effect levels, indicating these irritant effects are primarily concentration dependent. The TCEQ conservatively used the same point of departure (POD) that its chronic noncancerous AMCV is based on (80 ppb) because the exposure duration (8 h/d) is more similar to the 24-h duration of interest than the 2-4 h exposure durations for the acute studies. Because the 8 h/d exposure was repeated 5 d/wk for 10 yrs, and irritation appears to be primarily concentration dependent, an 8-24-h exposure duration adjustment was not to be necessary. Dividing the POD of 70 ppb by an intrahuman uncertainty factor of 3 results in a proposed 24-h, health-protective AMCV of 23 ppb. The 24-h AMCV falls between TCEQ’s 1-h (41 ppb) and chronic (8.9 ppb) noncancerous AMCVs. To date, there has been only 1 exceedance in 1999 of the proposed formaldehyde 24-h AMCV when compared to Barnett Shale monitored data.

1569 Use of Other Scientifically- Relevant Information to Satisfy Tier 1 Testing Requirements in US EPA’s Endocrine Disruptor Screening Program.

P. L. Bishop1 and C. Willer2. 1People for the Ethical Treatment of Animals, Norfolk, VA; 2The Humane Society of the United States, Washington DC.

The Endocrine Disruptor Screening Program (EDSP) has been designed to determine whether certain substances may have effects on the estrogen, androgen and thyroid hormonal systems. EPA is using an initial Tier 1 screening battery consisting of five in vitro and six in vivo assays to evaluate a chemical’s potential to interact with the hormone systems in mammals and other animals. By order of the Office of Management and Budget, EPA must also consider Other Scientifically Relevant Information (OSRI) that is directly or functionally equivalent to data gathered in Tier 1, in lieu of developing new test data. This study characterizes the types of OSRI submitted by recipients of the first 67 tests ordered by EPA and reviews EPA’s approach to acceptance of OSRI. It also assesses the impact of OSRI acceptance on reducing the number of animals used in screening this first round of chemicals. Companies submitted OSRI in lieu of some or all Tier 1 assays for 47 chemicals and sought waivers for 412 assays. EPA granted only 94 waivers, an overall acceptance rate of 23%; of these, 50 were for in vivo tests. For 20 of the 47 chemicals, EPA denied all OSRI and required the entire battery of assays to be performed. In most instances, the OSRI accepted was either identical to data that would have been generated by the Tier 1 test or indicated a positive response by the chemical in question. Although identified as potential sources of OSRI in EPA’s guidance to test order recipients, guideline studies for pesticide registration, such as the mammalian two-generation reproductive toxicity study and 90-day rodent or dog studies, were all consistently rejected by EPA as satisfying Tier 1 data requirements. The 50 in vivo waivers EPA granted saved about 2,800 animals; however, nearly 26,000 were killed in the Tier 1 assays EPA required. The study concludes with a discussion of the implications for future use of OSRI in the EDSP.

1570 A New Approach to Academic and Guideline Research: The CLARITY-BPA Research Program.

The Endocrine Disruptor Screening Program (EDSP) has been designed to determine whether certain substances may have effects on the estrogen, androgen and thyroid hormonal systems. EPA is using an initial Tier 1 screening battery consisting of five in vitro and six in vivo assays to evaluate a chemical’s potential to interact with the hormone systems in mammals and other animals. By order of the Office of Management and Budget, EPA must also consider Other Scientifically Relevant Information (OSRI) that is directly or functionally equivalent to data gathered in Tier 1, in lieu of developing new test data. This study characterizes the types of OSRI submitted by recipients of the first 67 tests ordered by EPA and reviews EPA’s approach to acceptance of OSRI. It also assesses the impact of OSRI acceptance on reducing the number of animals used in screening this first round of chemicals. Companies submitted OSRI in lieu of some or all Tier 1 assays for 47 chemicals and sought waivers for 412 assays. EPA granted only 94 waivers, an overall acceptance rate of 23%; of these, 50 were for in vivo tests. For 20 of the 47 chemicals, EPA denied all OSRI and required the entire battery of assays to be performed. In most instances, the OSRI accepted was either identical to data that would have been generated by the Tier 1 test or indicated a positive response by the chemical in question. Although identified as potential sources of OSRI in EPA’s guidance to test order recipients, guideline studies for pesticide registration, such as the mammalian two-generation reproductive toxicity study and 90-day rodent or dog studies, were all consistently rejected by EPA as satisfying Tier 1 data requirements. The 50 in vivo waivers EPA granted saved about 2,800 animals; however, nearly 26,000 were killed in the Tier 1 assays EPA required. The study concludes with a discussion of the implications for future use of OSRI in the EDSP.

Recently, medical research has seen a strong push toward translational research, or “bench to bedside” collaborations, which strive to enhance the utility of laboratory science for improving medical treatment. The success of that paradigm supports the potential application of the process to other fields, such as risk assessment. Close collaboration among academic, government, and industry scientists may facilitate the application of scientific findings to regulatory decision making. The National Toxicology Program (NTP), National Institute of Environmental Health Sciences (NIEHS), and U.S. Food and Drug Administration (FDA) developed a consortium-based research program to more effectively link academic and guideline-compliant research. An initial proof-of-concept collaboration, the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA), uses bisphenol A (BPA) as a test chemical. The CLARITY-BPA program combines a core perinatal guideline-compliant 2-year chronic toxicity study with mechanistic
studies/endpoints led by academic investigators. Twelve extramural grantees were selected by NIEHS through an RFA-based initiative to participate in the overall study design and conduct disease-relevant investigations using tissues and animals from the core study. While the study is expected to contribute to our understanding of potential effects of BPA, it also has ramifications beyond this specific focus. Through CLARITY-BPA, NIEHS has established an unprecedented level of collaboration among extramural grantees and regulatory researchers. The CLARITY-BPA represents a potential new model for filling knowledge gaps, informing chemical risk assessment, and identifying new methods or endpoints for regulatory hazard assessments.

1571 How Consistent Are the Derived No-Effect Levels (DNELs) in the European REACH Legislation?

L. Schenk1,2, U. Deng and G. Johnson1. Work Environment Toxicology, Karolinska Institute, Stockholm, Sweden; 2Division of Philosophy, Royal Institute of Technology, Stockholm, Sweden.

The new European REACH regulation places more responsibility than hitherto on manufacturers and importers of chemicals ("industry") to provide safety information. An important part of the development of a REACH Chemical Safety Report (CSR) is derivation of Derived No-Effect Levels (DNELs) which represent "the level of exposure above which humans should not be exposed". In order to study the consistency, we compared DNELs presented by industry at the website of the European Chemicals Agency (ECHA) with those derived by us in our interpretation of the REACH guidance (Chapter R.8: Characterisation of dose [concentration]-response for human health, http://echa.europa.eu/documents/10162/13632/information_requirements_r8_en.pdf). There are various DNELs, e.g. representing short-term, long-term, inhalation and dermal exposure, as well as workers and the whole population. We limited our study to "worker-DNELs long-term" for inhalation route as they resemble occupational exposure limits (OELs). We found 24 substances for which (1) such DNELs were given in the ECHA chemical database (http://echa.europa.eu/web/guest/information-on-chemicals/registered-substances) and (2) a scientific basis for OEL had been published by the Swedish Criteria Group with the 15 year review of the Swedish National Arbete och Hälsa (https://gupsea ub.gu.se/handle/2077/3194/localse-en). The results were startling, as the DNELs given by industry were 2 to 1,100 times higher than ours for 23 substances and 260,000 times higher for trinitrotoluene. Some of the discrepancy is explained by different choice of key studies/points of departure (PODs). However, the choice of assessment factors (AFs) also differed markedly, as industry's total AFs (calculated implicitly from the POD and the DNEL) were 1 to 230 times lower than ours. We conclude that although the REACH guidance is relatively detailed, many arbitrary choices remain that will influence the DNEL. A major problem is that little advice is given on when and how to depart from default AFs.

1572 Animal Use for Testing Involving Unrelieved Pain and Distress.

M. Paris1, L. Rinckel1, W. Casey2 and W. Stokes2. 1ILS, Inc., Research Triangle Park, NC; 2NTP/NICEATM, NIEHS, Research Triangle Park, NC.

Each facility in the United States that uses live animals for research, tests, experiments, or teaching must submit an annual report to the U.S. Department of Agriculture (USDA) that includes "the common names and the numbers of animals upon which experiments, teaching, research, surgery, or tests were conducted involving accompanying pain or distress to the animals and for which appropriate anesthetic, analgesic, or tranquilizing drugs were (or were not) used" (9 CFR, Chapter 1 Part 2, Section 2.36). In accordance with the definitions in §2132 of the Animal Welfare Act (7 U.S.C. §4), it is not necessary to report birds, rats of the genus Rattus and mice of the genus Mus bred for use in research, or fish, amphibians and livestock or poultry used in agricultural research. In the 2010 USDA annual report on animal usage, a total of 1,134,693 animals were reported, with 97,123 of those reported as experiencing unrelieved pain and distress. Based on an analysis of the USDA database by the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), 95% (91,997/97,123) of the animals reported to the USDA as experiencing unrelieved pain and distress were used for testing. Of these animals, 57% (54,889/97,123) were used for vaccine testing, and 38% (37,108/97,123) were used for toxicity testing. Most of the animals used for toxicity testing were used for safety testing and drug efficacy testing. NICEATM is currently investigating and promoting alternative test methods to further reduce the number of animals used in painful procedures. Supported by ILS staff under NIEHS Contract N01-ES-35504.

1573 A Reference Database for the Evaluation of Alternative Tests for Acute Dermal Systemic Toxicity.

J. Strickland1, F. Stack1, M. Paris1, L. Rinckel1, W. Casey2 and W. Stokes2. 1ILS, Inc., Research Triangle Park, NC; 2NTP/NICEATM, NIEHS, Research Triangle Park, NC.

Alternatives for acute systemic toxicity testing are one of the highest priorities of ICCVAM and NICEATM. These are the most commonly performed product safety tests worldwide and are required by multiple U.S. Federal agencies. Acute toxicity testing can involve large numbers of animals and result in significant unrelied pain and distress to test animals. High quality reference data are needed to evaluate alternative toxicity tests that may reduce, refine (enhance animal well-being and lessen or avoid pain and distress), and replace the use of animals for acute dermal systemic toxicity testing. To identify appropriate reference data for the acute dermal systemic toxicity test, NICEATM collected and analyzed data for 1897 substances. Rabbits were used for 28% (526) of the studies, and rats were used for 72% (1371). Of the 1897 substances, 84% (1598/1897) had data for both male and female animals, and 98% (1561/1598) of those substances were in the same GHS dermal hazard category. For the 37 substances that showed a different dermal hazard category between the sexes, female values were more often in a higher hazard category (21 for females vs. 16 for males). Two hundred forty six studies reported day of death. Approximately two thirds of the deaths (67% of male deaths [513/761]; 63% of female deaths [463/733]) occurred by Day 2 after a 24-hour dermal treatment on Day 0. Eighty-five substances had sufficient data to calculate dermal dose–mortality slopes. Dose–mortality slopes did not vary by species, sex, or GHS hazard category. As expected, the dermal dose–mortality slopes were lower than acute oral dose–mortality slopes. These data were used to design a proposed sequential test for acute dermal systemic toxicity, the dermal up-and-down procedure, to reduce the number of animals tested for acute dermal hazard classification. Supported by ILS staff under NIEHS Contract N01-ES-35504.

1574 Regulatory Acceptance of the BG1Luc Estrogen Receptor Transactivation Test Method.

W. Casey1, P. Ceger1, J. Strickland2, L. Rinckel1, E. Grignard3, S. Bremer3, H. Kojima1, S. Han1 and W. Stokes2. 1NTP/NICEATM, NIEHS, Research Triangle Park, NC; 2ILS, Inc., Research Triangle Park, NC; 3EURO-ECVAM, Igra, Italy; 4JaCVAM, Tokyo, Japan; 5KeCVAM, NEIDSKFED, Cheongsong-gun, Chungcheongbuk-do, Republic of Korea.

NICEATM coordinated an international interlaboratory validation study of the BG1Luc estrogen receptor transactivation test method (BG1Luc ER TA, LumiCell®) developed by Xenobiotic Detection Systems, Inc. In 2010, the validation study completed its goal to evaluate the usefulness and limitations of the BG1Luc ER TA test method to screen for substances in vitro ER agonist or antagonist activity. The international validation study was sponsored by NICEATM, with participation from the European Centre for the Validation of Alternative Methods, and the Japanese Center for the Validation of Alternative Methods. In 2012, NICEATM–ICCVAM released a test method evaluation report on the usefulness and limitations of the BG1Luc ER TA test method. ICCVAM recommended the use of the BG1Luc ER TA as a screening test to identify substances with in vitro ER agonist or antagonist activity. Based on a review of the literature and the feedback from the member agencies, including the US Environmental Protection Agency, concurred with the ICCVAM recommendations. NICEATM sponsored the new method for evaluation by the Organisation for Economic Co-operation and Development (OECD), which approved the BG1Luc test method and added the BG1 agonist protocol to the existing Test Guideline 455. The BG1 antagonist method has been adopted as OECD Test Guideline 457. Acceptance of the BG1Luc ER TA test method by U.S. and international agencies is an example of increased cooperation and collaboration to support the international adoption of scientifically valid test methods that will protect people, animals, and the environment while reducing, refining, and replacing animal use. Supported by ILS staff under NIEHS Contract N01-ES-35504.

1575 Quantitative Risk Assessment As the Basis for a Proposed NIOSH Recommended Exposure Limit for Hexavalent Chromium Compounds.

To update the National Institute for Occupational Safety and Health (NIOSH) recommendations for protecting workers with occupational exposure to Cr(VI) compounds, all aspects of occupational exposure to and control of hexavalent
chromium compounds (Cr(VI)); e.g., chromic acid, CAS No. 1333-82-0; sodium dichromate, CAS No. 7758-10-4) were evaluated including toxicology, risk assessment, analytical methods, and industrial hygiene practices. Derivation of a proposed Recommended Exposure Limit (REL) was one component of the updated risk management recommendations. The NIOSH proposed REL was derived based on the results of a quantitative risk assessment (QRA) of lung cancer. This methodology was selected because it was previously based on the quantitative limitation of the 1975 analytical method; at that time NIOSH recommended that occupational carcinogens be controlled to the lowest feasible concentration. Data from a cohort of Baltimore chromate production workers were selected for analysis due to the availability of extensive exposure assessment data, information about smoking histories, strong statistical power, and relative lack of confounding exposures. Excess lifetime risk at the REL of 1 μg Cr(VI)/m3 was estimated at 0.95% (95% confidence limits–3-12) lung cancer deaths per 1000 persons based on these results, NIOSH proposed a REL of 0.2 μg Cr(VI)/m3 8-hour time-weighted average exposure during a 40-hour workweek. The proposed REL of 0.2 μg Cr(VI)/m3 was derived by applying a 50-year exposure, a progression factor for subsequent doses is 4.2. If the expected LD50 is less than the starting dose of 5000 mg/kg, default doses are 5000, 1200, 300, 70, 15, and lower doses. Conversely, if no significant toxicity is observed, the next animal is tested at a higher dose, with the highest dose not to exceed a pre-specified limit. The next animal is tested at a lower dose. Conversely, if no significant toxicity is observed, the next animal is tested at a higher dose, with the highest dose not to exceed a pre-specified limit. Otherwise, if the expected LD50 is less than the default starting dose, testing is started at one dose below the lowest default dose. Using a starting dose of 5000 μg/kg, default doses are 5000, 1200, 300, 70, 15, and 4 μg/kg, while the default doses for a starting dose of 2000 μg/kg are 2000, 500, 100, 25, and 5 μg/kg. The dermal UDP provides LD50 point estimates and confidence limits for dermal hazard classifications while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals. The proposed dermal UDP can support accurate hazard identification while using up to 85% fewer animals.
Skin corrosion or irritation refers to the production of irreversible or reversible damage to the skin following the application of a test substance, respectively. An effective way of predicting test substance toxicity is to make use of testing strategies which incorporate a range of alternative test methods. For the determination of skin irritation and corrosion, hazard assessments for both endpoints could be conducted using in vitro test methods that have been regulatory accepted (OECD TG431 & TG439). In the present study, skin irritation and corrosion evaluations were performed on Reconstructed human Epidermis (RhE) models i.e. EpiSkin and SkinEthic RHE. In the case of skin corrosion, GHS guidelines differentiate between non corrosive (NC) to corrosive (C) substances with 3 subcategories: 1A, 1B and 1C. The current evaluation of the test method was performed on 81 test substances from a wide range of chemical for each subcategory class (38 NC, 31 CatI/B/1C and 12 CatI/A) enhancing the efficacy base associated with this method. Using the EpiSkin test method, within-laboratory variability (>87%) was assessed in 3 runs. Therefore a sensitivity of 98% and overall accuracy of 89% (with an accuracy of 1A, 1B/1C, NC, of 79%) were obtained. The test method able to discriminate 1A, from 1B and 1C classes with the highest well-prediction rate for sub categories the substances in comparison with the others validated methods, was submitted to OECD for scientific review and adoption. Adoption of the EpiSkin seems sufficient to fill the gaps in terms of sub-categorisation predictions leading to a significant impact on the sub-group transport package labeling.

The heavy metal lead (Pb) can induce a wide-range of adverse health effects depending on dose and duration of exposure. During development the nervous system is most sensitive to Pb toxicity with epidemiological studies linking neurological deficits at and below the previous CDC blood Pb level of concern. Although the toxicity of Pb is extensively studied, the underlying genetic, epigenetic, and molecular mechanisms of Pb neurotoxicity are not completely understood. Moreover, recent studies link developmental Pb exposure with latent effects that do not appear until late in life, indicating a developmental origin of adult neurodegenerative disorders. More specifically, the latent overexpression of hallmark genes and proteins in Alzheimer's disease (AD) are reported in these studies. This session brings together a group of investigators that are actively applying systems biology (transcriptomics and epigenomics) and targeted approaches to define the mechanisms and identify biomarkers of both the developmental and late-life neurological alterations associated with a developmental Pb exposure in a variety of model systems and in human populations. Topics cover a study with a zebrafish model on the genetic mechanisms of developmental Pb neurotoxicity with an emphasis on transcriptomic alterations in a human comparative transcriptomic study in young adults aiming at establishing biomarkers between early-life Pb exposure and AD. The session also addresses the transcriptomic and epigenomic pathways of the developmental origin of Pb-induced neurodegenerative alterations with a specific focus on AD in rodent and primate models. Furthermore, the mechanism by which Pb increases the formation of amyloid β plaques in a transgenic mouse model is discussed. Overall, this session highlights the latest findings on the genetic, epigenetic, and molecular mechanisms of Pb neurotoxicity linking neurodevelopmental and later life impacts to further deduce the developmental origin of Pb-induced neurodegenerative disease with a specific focus on AD.
Brain extracellular milieu (Crossgrove et al., Exp Biol Med 2005;230:771) and that lead (Pb) exposure can alter the property of the Abeta transport protein (LRP1) leading to abnormal accumulation of Abeta in brain tissues (Buhl et al., TAAP 2009;240:245; Neurotox 2010;31:524). In the current study, we used transgenic PDAPP mice which over-express amyloid precursor protein (APP) and exhibit amyloid plaques in brain tissues to investigate if in vivo Pb exposure shortened the onset of αs2A plaques in mouse brain and increased the plaque aggregation. Our data show that in vivo Pb exposure resulted in an increased deposition of amyloid plaques in these transgenic mouse brains. Mechanistic investigation revealed that Pb reduced Abeta clearance from the central nervous system by inhibiting LRP1 at brain barriers, Pb also directly participated in physicochemical reaction with Abeta oligomers in the test tube. Moreover, Pb increased the concentrations of other metals (i.e., Fe, Zn) in amyloid plaques in the mouse brain by synchrotron X-ray fluorescence (XRF) quantitation. Within the plaques, Pb concentrations were found to be significantly correlated with those of Fe and Zn. Our data support a role of Pb in the formation of amyloid plaques; how these findings may relate to human AD etiology deserves further investigation (Supported in part by NIH/NIJEHS ES008146 and ES017055).

Brain brings to mind the strong, but light, organ that provides the skeleton for vertebrates. However, bone is more than just inert, osseous tissue. The bone marrow is a multifunctional organ that supports not only ongoing bone remodeling, but also provides the microenvironmental niche for hematopoiesis and regulates whole body energy homeostasis as such, represents a significant target for environmental toxicants. Critical cell types in the bone marrow include multipotent mesenchymal stromal cells (MSCs) and hematopoietic stem cells (HSCs). MSCs are the source of all blood cell lineages and the bone-resorbing osteoclasts. The interaction between osteoblasts and osteoclasts creates a balance of bone formation and resorption, which is essential for maintenance of bone quality. There also is essential crosstalk between the mesenchymal and hematopoietic compartments that supports lifelong blood cell generation. Lymphocyte development, in particular, requires stromal cell support/interaction. Understanding how environmental toxicants disturb the interplay of bone marrow compartments requires attention given the rapidly aging population who are already at risk for loss of bone quality and immune suppression. We will explore new data suggesting that bone is responsive to many environmental toxicants, which may perturb the delicate balance between bone marrow cell types. A series of presentations will define interactions within both the mesenchymal and hematopoietic compartments and how exposure to toxicants may impact bone biology. Presentations will move from a broad, multispecies analysis of the effects of persistent organic pollutants on bone to more focused analyses of effects of ethanol and metals (lead, organotins, and tungsten) on bone and the bone marrow microenvironment.
RXR, opening the possibility that they may activate multiple permissive nuclear receptor pathways. We investigated the hypothesis that tributyltin (TBT) is a potent DNA damaging modifier of BM-MSC differentiation and thus a negative regulator of bone quality and lymphopoiesis. In vitro TBT exposure results in decreased cortical bone and increased marrow adiposity without significantly altering bone resorption. B cell populations are altered in both the bone marrow and the spleen of TBT-treated mice. In primary BM-MSC cultures, TBT potently induces adipogenesis and suppresses osteogenesis. Surprisingly, female-derived BM-MSCs are significantly more sensitive to TBT-mediated suppressive effects than male-derived cells. In addition to activating a PPARγ-mediated gene expression pathway (FABP4 and adipin) and suppressing a Runx2-mediated pathway (ostestin and osteocalcin), TBT activates the LXRα in vivo and in vitro, another nuclear receptor that contributes to bone homeostasis. Finally, TBT completely suppresses the development of hematopoietic cells in culture. Given its potency and ubiquitous environmental presence, TBT presents a risk to bone health and may accelerate the accumulation of adipocytes and loss of lymphopoiesis that occurs during aging.

1591 Tungsten: Effects on Bone Marrow and Lymphocyte Development.

K. K. Mann, Oncology, McGill University, Montréal, QC, Canada.

Very little is known about the toxicity of tungsten. Recently, increased environmental tungsten levels were found near sites of pediatric leukemia clusters. These leukemias occur predominantly in the pre-B lymphocyte subtype of acute lymphoblastic leukemia. While no data link tungsten exposure to leukaemogenesis, tungsten is known to accumulate within the bone, the site of B cell development. This important hematopoietic compartment is likely the site where leukemogenic events occur. We have explored the effects of tungsten exposure on developing B lymphocytes using in vitro and in vivo models. In vitro, B lymphocytes are more sensitive to tungsten-induced DNA damage and growth inhibition than the supporting mesenchymal stromal cells. In wild-type mice, we have shown that tungsten concentrations rapidly increase in the bone and reach a plateau after approximately 4 weeks of exposure. Removal of tungsten results in a slow release of tungsten from the bone with a much slower “off” rate. In addition, we see alterations in bone mineral content and density following tungsten exposure. Tungsten exposure increases the rate of SH production. The intact animal leads to an even higher order of magnitude increase in SH production leading to reduced intratesticular levels of testosterone and the consequence inhibition of spermatogenesis and supraphysiological levels restore intratesticular testosterone and maintain spermatogenesis. Discussion of the molecular pharmacology of SH action will provide the mechanistic basis for examples discussed by the other speakers.

1592 Nonmonotonic Dose-Response Curves and Endocrine-Disrupting Chemicals: Fact or Falderal?

L. E. Gray1 and P. M. Foster2. 1RTB, US EPA, Research Triangle Park, NC; 2NTP, NIEHS, Research Triangle Park, NC.

“All substances are poisons. It’s the dose that makes the poison.” (Paracelsus, 1493–1541) is a fundamental tenet in toxicology: the severity of a response to a toxicant increases proportionally to the dose. Furthermore, it is generally assumed that dose-response curves for noncancer effects display a threshold below which there is no effect. Currently these assumptions are being challenged by claims that endocrine-disrupting chemicals (EDCs) often display U-shaped or inverted U-shaped nonmonotonic dose-response curves (NMDRCs) at low, environmentally-relevant exposure levels; levels below traditional NOAELs (“Current Chemical Testing Missing Low-Dose Effects of Endocrine-Disrupting Chemicals—Endocrinology Society. 2012). In addition, the US EPA’s Endocrine Disruptor Screening program (EDC program) has been severely criticized, sometimes unfairly. This symposium will review the state of the science on EDCs concerning the shape of the dose-response curve in the low-dose range and the prevalence of NMDRCs. Talks will include discussions of mechanisms of action, the biologically plausibility for NMDRCs, and their role in human regulatory agencies and the prevalence of in vivo and in vitro NMDRCs. Presentations will also discuss the shape of the dose-response curves from “case studies” of estrogenic chemicals. These “case studies” are robust, multigenerational studies conducted in a government laboratory using a protocol that had been “enhanced” to include several estrogen-sensitive endpoints in addition to the standard endpoints. Finally, we will discuss how some governmental agencies are addressing the NMDRC-low dose issue and views on how this might impact the risk assessment of EDCs and other chemicals. Changing how EDCs are tested to accommodate NMDRCs would significantly increase the resources need for testing as it would require the addition of several “low” dose groups and if NMDRCs are prevalent, the potentially impact several of the default assumptions used in risk assessment, including noncancer health effects displaying a threshold, and that adverse effects do not occur below the NOAELs.
Case studies of chemicals that disrupt reproductive development and function via the androgen and estrogen signaling pathways were reviewed, including in vitro and in vivo multigenerational studies for LNT, threshold and NMDRCs responses. In vivo studies selected included comprehensive, robust, well designed studies that administered the chemical via a relevant route of exposure over a broad dose response range, including low doses. The chemicals include ethinyl estradiol, estradiol, genistein, bisphenol A, trenbolone, finasteride, flutamide, phthalate esters, selective estrogen receptor modulators and inhibitors of aromatase.

Current conclusions are: 1) EDCs appear to induce some LNT effects. 2) NMDRCs are biologically plausible and occur frequently in vitro, but the points of inflection occur at high concentrations that are not relevant in vivo. 3) NMDRCs appear to be more common a) in short- versus long-term exposures and b) with upstream, mechanistic events vs. downstream phenotypic effects. 4) A few adverse effects of EDCs are non-monotonic, but other effects in these studies displayed monotonic responses at lower dose levels. 5) A number of robust multigenerational studies of estrogens and antiandrogens showed NMDRCs were uncommon at low dose levels. 6) Multigenerational Test guidelines can be enhanced on a case-by-case basis to improve the sensitivity to low dose effects of some EDCs. 7) Additional data needs to be examined from robust, multigenerational studies using a broad range of dosage levels for other toxicity pathways. This abstract does not reflect USEPA policy.

One aspect of endocrine disruptors is their ability to cause effects at low doses. Just as many forms of hormones can have large effects on physiological systems, tiny amounts of chemicals that mimic hormones can have similar large effects. A feature related to low dose effects is the non-monotonic dose-response behavior of EDCs. In the past, basic toxicology focused on the simple dichotomy of toxic versus nontoxic, which implies that all substances can be harmful at high doses while at some lower levels, there is no harm. One cannot help but wonder if EDCs can create physiologically relevant effects at low doses, and these effects can have a substantial impact on our health. These effects may be beneficial at certain doses and deleterious at others. This modern understanding of non-monotonic effects is critical to understanding the behavior of chemical agents and also how resulting health effects may differ based on various exposures.

Accumulation of excess neutral lipids in the liver, referred to as fatty liver disease (FLD), is a major metabolic disorder and risk factor for development of hepatotoxicity. It is a progressive disease that initially manifests as reversible fatty liver, which upon infliction of inflammation advances to a nonreversible steatohepatitis, and finally leading to hepatic cirrhosis. FLD is generally categorized on the basis of its etiology, the two main types being alcohol-induced steatohepatitis (ASH) and obesity-induced (nonalcoholic steatohepatitis, NASH). Another class of FLD, drug/toxicant-induced FLD (TASH), is a major cause of pharmaceutical candidate attrition. The underlying pathogenic mechanisms of hepatic lipid accumulation and their implications are not completely understood. In this symposium, recent advances in the pathogenic role of microRNAs in the development of FLD will be introduced. The molecular mechanisms by which fatty liver promotes liver injury will be discussed using examples of drug overdose, hepatic ischemia-reperfusion, and obstructive cholestasis. Further, the implications of excess hepatic lipid accumulation in regards to altered drug metabolism and cellular uptake will be presented. The symposium will end with a comparative analysis of novel clinical biomarkers of ASH, NASH, and TASH. Students, as well as toxicologists working in academia, federal, and pharmaceutical industries interested in animal models, pathogenic mechanisms, biomarkers, and drug metabolism and toxicity of ASH, NASH, and TASH will benefit from this symposium.

The incidence of conditions such as diabetes, obesity, asthma, neurodevelopmental, and reproductive problems has increased substantially in the past 20 years. The human genome has not changed in that period of time, which leads to the hypothesis that the environment is likely the cause of much of this increase. The endocrine system is a highly organized system of glands and hormones that regulates vital functions such as growth, response to stress, sexual development and behavior, production and utilization of insulin, metabolism, intelligence and behavior, and the ability to reproduce. This system can be perturbed by environmental chemicals that were designed for one effect but have been shown to interfere with endocrine signaling.

To date, there are over 800 identified endocrine disrupting chemicals (EDCs) and they are found in many everyday products. Recent evidence shows that the mechanisms by which EDCs, as well as endogenous hormones, act are much more intricate than originally recognized.

Accumulation of excess neutral lipids in the liver, referred to as fatty liver disease (FLD), is a major metabolic disorder and risk factor for development of hepatotoxicity. It is a progressive disease that initially manifests as reversible fatty liver, which upon infliction of inflammation advances to a nonreversible steatohepatitis, and finally leading to hepatic cirrhosis. FLD is generally categorized on the basis of its etiology, the two main types being alcohol-induced steatohepatitis (ASH) and obesity-induced (nonalcoholic steatohepatitis, NASH). Another class of FLD, drug/toxicant-induced FLD (TASH), is a major cause of pharmaceutical candidate attrition. The underlying pathogenic mechanisms of hepatic lipid accumulation and their implications are not completely understood. In this symposium, recent advances in the pathogenic role of microRNAs in the development of FLD will be introduced. The molecular mechanisms by which fatty liver promotes liver injury will be discussed using examples of drug overdose, hepatic ischemia-reperfusion, and obstructive cholestasis. Further, the implications of excess hepatic lipid accumulation in regards to altered drug metabolism and cellular uptake will be presented. The symposium will end with a comparative analysis of novel clinical biomarkers of ASH, NASH, and TASH. Students, as well as toxicologists working in academia, federal, and pharmaceutical industries interested in animal models, pathogenic mechanisms, biomarkers, and drug metabolism and toxicity of ASH, NASH, and TASH will benefit from this symposium.

Alcohol-mediated inhibition of hepatic sirtuin 1 (SIRT1) plays a central role in the pathogenesis of alcoholic fatty liver disease. Our group has investigated the underlying molecular mechanisms of this inhibition by identifying a new hepatic target of alcohol, microRNA-217 (mir-217). We have found that, in cultured hepatocytes and in mouse livers, chronic alcohol administration dramatically and specifically induced miR-217 levels and caused excess fat accumulation. Our studies have further revealed that overexpression of miR-217 in hepatocytes promoted ethanol-mediated impairments of SIRT1 signaling. More importantly, mir-217 impairs lipin-1, a vital lipid regulator, in hepatocytes. Taken together, our novel findings suggest that mir-217 is a specific target of alcohol in the liver and may present as a potential therapeutic target for treating human alcoholic fatty liver disease. This presentation will discuss the results and implications of these novel findings in the pathogenesis of alcoholic fatty liver disease.
Enhanced Susceptibility of Fatty Livers to Drug Hepatotoxicity and Innate Immune Responses.

H. Jieschke, Department of Pharmacology, Toxicology & Therapeutics, The University of Kansas Medical Center, Kansas City, KS.

Steatosis is a risk factor for enhanced liver injury during drug hepatotoxicity and sterile inflammation. However, the mechanisms of this aggravated liver damage can vary dependent on the degree of steatosis and the pathophysiology. Steatosis can trigger microcirculatory disturbances, mitochondrial dysfunction and cause inflammation, which are important contributing factors for the increased susceptibility to liver cell death. The molecular mechanisms by which fatty liver promotes liver injury in genetic versus diet-induced steatosis models will be discussed in detail using examples of drug overdose (acetaminophen), hepatic ischemia-reperfusion and obstructive cholestasis.

Increased Risk of Drug Toxicity due to Altered Pharmacokinetics in Nonalcoholic Steatohepatitis.

N. J. Cherstington, Pharmacology and Toxicology, University of Arizona, Tucson, AZ.

Many severe adverse drug reactions occur when a patient is unable to metabolize and eliminate the standard dose of a drug due to alterations in drug metabolizing enzymes or transporters. Sources for this inter-individual variability include genetic polymorphisms or environmental factors such as inflammatory diseases that directly or indirectly alter the function of the enzymes and transporters that determine the pharmacokinetics of the drug. This presentation will discuss obesity-related and other possible sources of inter-individual variation in the transcriptional regulation, post-translational modification, and sub-cellular localization of specific drug metabolizing enzymes and transporters, thereby altering the pharmacokinetics and toxicity of drugs in patients that are at greater risk of adverse drug reactions.

Biomarkers and Mechanisms for Steatohepatitis.

C. McClain, Pharmacology and Toxicology, University of Louisville, Louisville, KY.

Steatohepatitis may be caused by toxicants (TASH), obesity (NASH), or alcohol (ASH) among other causes. Mechanistic similarities and differences appear to exist between different types of steatohepatitis. We compared serum adipocytokines, cytokinin 18 (CK18), and antioxidant in human subjects with ASH, NASH, and TASH. All forms of steatohepatitis were associated with reduced serum antioxidants and insulin resistance (although adiponectin levels differed by etiology). ASH and TASH were characterized by higher levels of pro-inflammatory cytokines. Likewise, ASH and TASH were associated with increased hepatocellular necrosis:apoptosis ratios compared with NASH which had a similar ratio to healthy controls. Lastly, complementary studies in mice showed major interactions between diet (high fat) and environmental toxins. This presentation will describe these findings and highlight the similarities and differences of novel clinical biomarkers of TASH, NASH, and ASH.

A. K. Farraj, EPHD, NHEERL, US EPA, Durham, NC.

Dramatic reductions in air pollution over the last three decades have largely been driven by the enactment of federal regulations (e.g., the Clean Air Act in the United States). Today, policymakers and air quality managers rely on cutting-edge science to reduce and control air pollution. Toxicology is at the forefront of this effort providing critical input on health effects of air pollution including dose-dependence, the role of constituents and size, mode of action, and relative toxicity of air pollution sources. Despite these advances, serious adverse health effects including cardiopulmonary mortality are still measurable at ambient air levels to which millions of people are currently exposed. Risk assessment of these air sheds is likely to get further complicated in light of the uncertainty posed by several emerging issues that intersect air quality and health. Climate change is one such issue that may affect health via direct effects of weather (i.e., heat and precipitation) and indirectly through increasing concentrations in ground-level ozone and particulate matter, two key air pollutants linked to adverse health effects. The burgeoning increase in obesity and associated metabolic disorders, groups with exaggerated sensitivity to the adverse effects of air pollution, is likely to aggravate health outcomes. With the implementation of new fuel standards and increasing popularity of alternative fuels, it is unclear what impact these changes may have on health effects of traffic-related emissions. Finally, several methods of power generation, including modern coal technology, nuclear energy, and hydrofracking have recently captured public interest, yet their impacts on air quality are unknown. This workshop discusses the current state of the science including key toxicological findings and recent innovations as well as challenges in the study of these emerging issues. The workshop concludes with a prospective look at air pollution research with a discussion session that engages the audience in an effort to define data gaps and potential mitigation strategies.

Health Impacts from Climate Change through Atmospheric Systems: Recent Findings and Challenges.

M. Bell, Environmental Health, Yale University, New Haven, CT. Sponsor: A. Farraj.

Climate change is anticipated to exacerbate many existing human health burdens such as through an increase in the duration and intensity of heat waves and through accelerated formation of tropospheric ozone. However, many questions on the nature of these impacts remain. This presentation discusses case studies of research on how atmospheric systems (air pollution, weather) could be impacted by climate change, thereby affecting human health, and will explore the challenges of this type of research. The case studies involve linking air quality, meteorological, and climate modeling to estimate the health consequences from changes in ozone levels in 50 U.S. cities and the mortality impacts from changes in heat waves in Chicago, Illinois, U.S. Challenges and assumptions of approaches to estimate health impacts from a changing climate include uncertainty in the various modeling systems (e.g., air quality models, climate change models), the use of current day relationships for weather or pollution and health for future scenarios, the changing distribution of susceptible subpopulations (e.g., elderly), and adaptive measures (e.g., air conditioning).

Environmental Factors and Cardiometabolic Disease: Signals in the Air.

S. Rajagopalan, Cardiovascular Medicine, Ohio State University, Columbus, OH. Sponsor: A. Farraj.

Cardiometabolic diseases represent a pandemic, with the World Health Organization (WHO) projecting that more than 2.3 billion people will be overweight/obese by 2015. Technology innovations, globalization with its free movement of food and services, seismic shifts in agrarian practices coupled with rural-urban migration, nutritional transition to freely available high-caloric diets have irrevocably altered energy expenditures during work and leisure. These factors are helping to foster the continued "epidemiological transition" occurring across the globe. Scientific effort over the last few decades has focused on components of urbanization such as inactivity and dietary factors. More recent observations provide additional links between chronic exposure to environmental factors in air/water and propensity to diseases. This issue is of importance given the extraordinary confluence of high levels of airborne and water pollutants in urbanized environments. Multiple studies in China, India and other rapidly urbanizing economies demonstrate a steep gradient in urban-rural prevalence. This presentation summarizes recent evidence on how air pollution may represent an under-appreciated yet critical linkage between urbanization and the emergence of cardiometabolic disease, with a focus on diabetes mellitus.

M. S. Hazari, Environmental Public Health Division, US EPA, Research Triangle Park, NC.

The environmental impacts of combustion-derived vehicular emissions are well-established. In an effort to reduce greenhouse gas (GHGs) emissions, improve fuel economy, and expand the nation’s renewable fuel sector, new standards detailing the minimum volume of renewable fuel, which includes cellulosic biofuel, biomass-based diesel, advanced biofuel and total renewable fuel, contained in transportation fuel sold in the United States were recently proposed. Although it is assumed that these alternative energy sources will provide a "greener" fuel option, it is still largely unknown how their combustion emissions will impact human health, particularly when combined with traditional sources such as gasoline or diesel. Each biofuel has a unique chemical makeup, which will impact emissions characteristics and potential toxicity. Thus, this presentation highlights the new 2012 standards for renewable fuel, addresses the complexity of emissions arising from the combustion of various biofuel types, and examines the potential human health implications of incorporating biofuels into the transportation fuel sold in the U.S. For this last point, many of the health effects of vehicular air pollution in the last 10 years have
focused on particulate matter (PM). Recent studies suggest that certain biodegradable blends contain less PM and may be less toxic. This innovative study is discussed with respect to chemical composition and component analysis, and toxicological effects, including cardiovascular, pulmonary and carcinogenic endpoints, in several rodent models.

1608 Fracking, Coal, and Nuclear Energy: Impacts of Contemporary Methods of Power Generation on Air Quality and Remediation Efforts.

J. D. McDonald. Toxicology, Lovelace Respiratory Institute, Albuquerque, NM.

The complexity of the world’s power production needs requires that a number of approaches be used to generate and distribute power. Natural gas, coal, nuclear, and other sources are all in play. Each of these energy sources is subject to intense regulation at targeting potential air and other contamination, recently including mitigation of carbon dioxide. The increase in demand for natural gas has led to new methods for harvesting and obtaining it, including the controversial techniques such as fracking. Carbon capture and sequestration offers a number of engineering challenges, and methods for capturing include potential approaches that may initiate additional environmental concerns. Of course nuclear energy, especially considering the recent events in Fukushima, has its own environmental challenges. This presentation focuses on emerging considerations related to the impact of power generation on air quality. The emphasis will be on coal emissions (modern vs traditional), carbon capture and sequestration (CCS), and natural gas (including fracking). Some mention of nuclear concerns will be considered. The presentation includes recent toxicology data on the health effects of inhaled amines and their degradation products used in CCS, and data on emissions from coal after they are atmospherically transformed in the environment and on air contaminants associated with fracking.

1609 Predicting the Future: Getting Ahead of Problems—A Presentation and Discussion.

Despite dramatic reductions in air pollution since 1970, the impact of pollutants on health and the environment remains a concern to both regulators and the general public. Studies have not been able to show thresholds of effect for prominent “criteria” pollutants like particulate matter (PM) and ozone (O3) and much uncertainty remains with air toxic pollutants that vary across sources. Millions of people are exposed to the criteria pollutants, but there are subpopulations which are at risk due to unusual exposure circumstances or underlying biologic susceptibility or increasing age. Science continues to chip away at these concerns through human population studies, and human and animal toxicological studies. But as we look to the future with increasing national demand for energy and global population and industrial growth, there is increasing pressure on resources and the atmospheric reservoir for pollutants. Climate change with its impacts on air pollution chemistry as well as regional weather is widely thought to be undermining the gains we’ve seen in reducing the national air pollution burden through challenging environmental complexities. New technologies, fuels, and ambient pollutant profiles require systematic assessments and innovative tools if we are to dissect these many interlaced issues to ensure optimal strategies to protect human and environmental health. This presentation attempts to draw on what we know and speculate on what we need to know from our science to forecast both emerging issues and solutions—preferably preventative—that have been discussed in this workshop. The audience will be engaged to embellish and enhance this discourse.

1610 Breaking the Routine: Is There Room for Modern Techniques of Neuropathology Assessment in Routine Preclinical Safety Studies?

C. D. Toscano1 and J. P. O’Callaghan2. FDA/CDER/OND/DNP, Silver Spring, MD; 2CDC/NIOSH/Neurotoxicology Laboratory, Morgantown, WV.

Neurotoxicity in routine preclinical safety studies is traditionally assessed with three H&E-stained brain sections and may be less toxic. Hence, a recent soy biodiesel study is supported by the finding that routine neuropathology assessments would fail to detect MPTP, ethanol and carbonyl sulfide induced-CNS lesions. Increasing the number of brain sections sampled and inclusion of additional histology stains have been recommended but there is no expert consensus on the feasibility of incorporating modern methods of assessment into routine preclinical safety studies. We will explore and comment on the adequacy of the traditional approach to neuropathology assessment in routine preclinical safety studies. We will also examine the current regulatory guidance on neurotoxicity assessment in routine preclinical safety studies and discuss the feasibility of changing the current approach. Examples of emerging methods, such as MRI-directed histology and detection of circulating biomarkers of CNS damage, along with strategies for incorporating these techniques into standard preclinical safety studies will also be discussed. Finally, we will attempt to build consensus on appropriate approaches for improving the sensitivity of neurotoxicity assessment in routine preclinical safety studies by fostering a discussion between the audience and panel members. This discussion will focus on the feasibility of employing the proposed new markers, endpoints, and approaches and potential issues with interpretation of results of these studies. In conclusion, we believe that by examining the adequacy of current approaches of neuropathology assessment, discussing possible improvements to regulatory guidance and proposing emerging approaches of neurotoxicity assessment that this workshop will allow for a much-needed dialogue on the need and feasibility of improving the current methods of neuropathology assessment in routine preclinical safety studies.

1611 Routine Neuropathology Analysis for Nonclinical General Toxicology Studies.

B. Bulon. Veterinary Biosciences, Ohio State University, Columbus, OH.

Microscopic neuropathological evaluation in Good Laboratory Practice (GLP)-type nonclinical general toxicology studies is one component of a battery of assays performed to assess potential nervous system toxicity of new chemical entities. Strategic incorporation of neuropathological assessment in such studies vary by species and among different industries and regulatory bodies. A Society of Toxicologic Pathology (STP) Working Group has recommended the following neuropathological strategy as suitable for all GLP-type nonclinical general toxicology studies. Selected brain areas should be examined routinely: caudate; putamen; cerebellum; cortical motor somatic and autonomic regions; motor nerve root; olfactory bulb (in rodents only); pons; and thalamus. In rodents, these regions can be assessed in 6-7 full coronal sections on 2 standard-size slides; in non-rodents, they may be evaluated unilaterally in 6-7 standard slides each bearing 1 coronal hemisection. Spinal cord (cervical, thoracic, and lumbar regions) and peripheral nerve (sciatic and/or tibial) should be viewed in longitudinal/oblique and transverse sections. Current neurohistological practices—inclusion fixation in 10% formalin, embedding in paraffin, and initial analysis only of H&E-stained sections—is acceptable for nonclinical general toxicology studies. These recommendations slightly expand current practice (i.e., analysis of 3-4 transverse brain sections in rodents) to improve sampling consistency using available technology. These recommendations affirm the importance of consistent routine neuropathological evaluation in GLP-type nonclinical general toxicology studies while acknowledging that histopathology is only one component of neural safety testing in such studies. Therefore, institutions should retain flexibility in devising the neuropathology portion of GLP-type nonclinical general toxicology studies as long as major nervous system regions are evaluated systematically.

1612 A Regulatory Perspective on the Current State of Neuropathological Assessments in Drug Development.

R. Mellon. FDA/CDER/OND/DAAAAP, Silver Spring, MD. Sponsor: C. Toscano.

Neurotoxicological assessment of drug products is currently accomplished in preclinical studies by evaluation of central nervous system (CNS) safety pharmacology studies and general toxicology studies, which include simple behavioral observations and histopathological evaluation of the brain. Histopathological assessments in routine toxicology studies have identified adverse findings not detected by behavioral observation and therefore generate critical safety data. The scientific community has raised concern that histopathology in routine toxicology studies lacks adequate granularity for such a complex organ as the brain and therefore may not be appropriate for initial evaluations nor do they adequately identify when detailed “second tier” neurotoxicology studies are necessary. For example, the standard sampling and staining approach used in general toxicology studies may not be sufficient to detect certain CNS lesions (e.g. “Olney” lesions associated with NMDA receptor antagonists). Adopting an expanded sampling routine, such as the recently proposed Society of Toxicologic Pathology recommendations for the sampling and assessment of the brain in routine safety into Tier 1 testing, would increase the sensitivity of these studies. As there is currently no official CDER guidance on the assessment of the neurotoxicity of drug candidates, many approaches have been taken to addressing and reviewing the neurotoxicity of drug candidates; examples of these approaches and the level of success of such approaches will be provided. A regulatory perspective of the limitations of the current standard approach and feasibility of including modern methods of neuropathology assessment will be discussed. Overall, incorporation of modern methods of neuropathology assessment and improving the documentation of procedures used into the final study reports would provide greater confidence in the quality of the assessment. Such changes have the
potential to impact the safety assessment of a drug candidate prior to first-in-human clinical studies, throughout drug development and as part of post-marketing safety assessments.

1613 Utilization of MRI Imaging to Optimize the Selection of Brain Sections for Assessment by Classical Neurohistopathology.

L. P. Hanig1, M. G. Paule1, J. Ramu1, L. Schmedt2, and S. Lachenko3. 1OTR, FDA/CDER, Silver Spring, MD; 2Neurotoxicology, NCTR/FDA, Little Rock, AR.

Sampling of 3 coronal brain sections for morphological assessment in routine preclinical toxicology studies is clearly insufficient to reliably characterize all potential neuropathologies that may be caused by new drug candidates. It has been estimated that 60 coronal sections would be required to adequately insure that this can be accomplished. This is never done in routine safety studies. Using a panel of classical neurotoxicants, including kainic acid, trimethyltin, domoic acid and nitropropionic acid that target different brain areas and structures and that exhibit effects varying from the massive to the subtle, a method has been developed for using MRI imaging to complement routine preclinical toxicology studies by allowing for a focused targeting and selection of candidate sections for histology in the rat. Proof-of-concept involves in-vivo MRI scanning to create files that can be compared and registered with coronal sections of the same brain sample after it has been fixed and stained appropriately for traditional neuropathology. Validation involves the establishment of concordance between the loci of pathological manifestation in each of these imaging approaches. Issues of comparability with respect to sensitivity, temporal equivalence of damage detection and whether MRI signals always predict morphological damage will be discussed. Successive in vivo MRI scans also allow subjects to be used as their own controls and for establishing time of onset, development and repair of morphologic damage. The MRI information may be used to optimize time of sacrifice for maximal visualization of traditional neuropathology in support of preclinical drug safety studies. Overall, we show that low resolution MRI imaging in the intact rat, may represent a powerful biomarker that can inform classical neurohistopathology assessment, but is not a substitute for it.

1614 Translational Safety Biomarker Assessment of Neurotoxicity.

Neurotoxic effects of drugs pose a significant hurdle in the drug development process. Traditionally, neurotoxicity is assessed pre-clinically by classical histopathology, which has limited translational value for clinical development. Recent advances in imaging, functional assessment and the identification of fluid-based biomarkers of neurotoxicity might allow for the nomination of novel translational safety in neurotoxicity. Ideally, fluid based biomarkers of neurotoxicity detected in either CSF or blood could be combined with histopathology in support of preclinical drug safety studies. Overall, we show that low resolution MRI imaging in the intact rat, may represent a powerful biomarker that can inform classical neurohistopathology assessment, but is not a substitute for it.

1615 Drug Safety Assessment and Regulatory Landscape in Emerging Markets.

P. Mu1 and G. Krishnan2. 1TootedOn LLC, Rockville, MD; 2Supernu Pharmaceuticals Inc., Rockville, MD.

With 85% of world’s population and rapid economic growth, the emerging market countries are up and coming, and are now actively counted by large global pharmaceutical industries. Within the next decade, Asia is expected to overtake Europe in pharmaceutical sales. For example, China is predicted to be the second largest pharmaceutical market after the United States by 2015 (Nature Reviews Drug Discovery, 2010). Many large pharmaceutical companies have increased their presence in emerging markets for research and discovery, and are seeking to market their products locally. Due to the short history of innovative pharmaceutical research and development, many of the emerging countries have limited experience of first-hand review of new drug applications, hence rely mostly on the review decisions taken elsewhere to grant the approval in local markets. However, regulatory agencies of the emerging countries are working diligently to catch up with the international standards and in the process establishing the regulations that address their country-specific needs to promote innovation and bring drugs that are appropriately tested to demonstrate safety for their own population. The establishment and expansion of regulatory agencies functions is creating local job opportunities for people with specialized skills, to help with the review of various components of the new drug applications while at the same time presenting challenges never experienced before due to the nature of innovation. This has sometimes led to regulations that are not well defined and open to interpretation. The drug safety assessment and regulatory landscape in China, India, Korea, and Brazil will be introduced during the presentations. The similarity and difference of the regulatory environment in the emerging countries will be compared with the major ICH guidelines. The challenges and possible solutions for companies seeking regulatory approval in emerging markets will be discussed. This will also provide an open forum for regulators from emerging markets to exchange ideas on how to tackle unique situation they experience.

1616 Framing the Workshop Theme.

S. Goel. Supernu Pharmaceuticals, Inc., Rockville, MD.

Countries in emerging markets are gaining increased focus regarding research and development activities and regulatory filings to market drugs due to an increase in consumer demand and rapid growth of their economies. To this end, it is essential to understand the progress and the intricacies in the regulatory filings among emerging markets. The speakers of this workshop will address several common questions on regulatory filing in their respective countries, including 1) The overall structure of the regulatory agencies and divisions under which various classes of drugs applications are submitted for reviews, 2) Comparison of various milestones in regulatory review process, preIND meeting, IND, SPA, end of Phase 2 meeting, and NDA, 3) Discovery and nonclinical safety studies required to support various stages of drug development and general comparison with ICH guidelines, 4) Requirements for country of origin of data, 5) Expertise and composition of nonclinical reviewers, 6) State of GLP compliance in contract research organizations within their countries, 7) Language used in regulatory submissions, 8) Regulatory outcomes and issue resolution.
India is emerging as a major center for research and development of new chemical entities for therapeutic use. The Drug and Cosmetic Rules, 1945 and all its amendments set the foundation for manufacture and sale of drugs. The “Schedule Y” of the above rule specifies the studies that must be done in animals to establish safety and efficacy of new drugs prior to trails in humans. However, until recently India has been a center for manufacture of generic drugs. The Government of India, Ministry of Health and Family Welfare established the Office of Central Drugs Standard Control Organization (CDSCO) headed by the Drugs Controller General (India) [DCG(I)] to regulate drug development. The current and up to date information on CDSCO can be found at http://www.cdsco.nic.in. In March 2011, the DCG(I) formed 12 New Drug Advisory Committee (NDAC) based on broad categorization of use of drugs on various systems in the body, such as Reproductive & Urology, Cardiovascular & Renal, Ophthalmology, Vaccines, Dermatology and Allergy, etc. The NDACs consists of expert members to advise on the matters of review and regulatory approval of clinical trials & new drugs. The charter for NDACs specifies that the drugs under development should consider relevance to population, innovation, and un-met medical need in India. India is unique in that it officially recognizes the development and marketing of traditional medicines (Ayurvedic, Siddha, and Unani drugs) for therapeutic use. India also prohibits certain drugs for manufacture and sale that it considers detrimental to its populations health. In India, the regulatory compliance of non-clinical studies is monitored by National Good Laboratory Practices (GLP) Compliance Monitoring Authority in Department of Science and Technology of Government of India. The Indian GLPs are based on the OECD guidelines due to initial close working relation between OECD countries in audit and GLP certification of Indian CROs.

Vertebrate development is replete with instances of tissue fusion in which two tissues – each with its own complement of mesenchymal and epithelial cells – meet, adhere and eventually fuse into a seamless mesenchyme and epithelium. Such fusion is critical for proper morphogenesis of multiple organs, with failure implicated in several developmental defects: cleft lip/palate; closure defects of the neural tube; omphalocele (body wall); coloboma (optic cup); and hypospadias (urethra). Some of these defects are context-dependent – e.g., instances of cleft palate caused by failure of the palatal shelves to elevate, or hypospadias concomitant with impaired growth of the genital tubercle. Nonetheless, there is mounting evidence for fusion-specific defects (e.g., Pallister-Killian syndrome and VACTERL association). Furthermore, a predictive model built from ToxCast Phase-I data and ToxCastDB mapped cleft palate to Gene Ontology terms for diverse biological processes (balanced accuracies of 0.66-0.76); negative regulation of epithelial cell proliferation; epithelial-mesenchymal transitions (EMT); TGFβ2 production and type-II TGFβ receptor binding; and neural crest migration. We have thus constructed a cell-level computational model of tissue fusion that incorporates cellular adhesion and viscoelasticity with paracrine/juxtacrine control of proliferation, apoptosis, EMT, and cell migration. The model includes three growing tissues – only two of which normally fuse – to explicitly model failures of both fusion competence and specificity. As a first demonstration, we model secondary palate fusion by tuning the relative contributions of apoptosis, EMT and cell migration to match dissolution of the midline epithelial seam. This flexible model is a platform for computational toxicology that can elucidate the varying interplay of such cell behaviors in the normal course of different tissue fusion events and their role in differential susceptibility to chemical disruption. (This work does not reflect EPA policy).
A dataset of over 200 compounds covering experimental data in a number of relevant screens (measuring individual complex activity, cellular ATP levels, reactive oxygen species (ROS) generation, oxygen consumption, mitochondrial membrane potential and cytotoxicity) was constructed. Seven model compounds were identified as having sufficient data and plausible mechanistic evidence to construct AOPs. The compounds used were: Rotenone, Thionethiophenacetone, 3-Nitropotassium acid, Antimycin A, Methylazol, and Cyanide for mapping the ETC pathway, and Oligomycin A for ATP synthase. Using these representative model compounds an AOP was mapped for each complex from the molecular initiating event (MIE) to effects at the cellular level. The AOPs for inhibition of complexes of the ETC were then combined to create a single pathway.

We report the construction of AOPs for oxidative phosphorylation in mitochondria and their speculative extrapolation to in vivo endpoints such as cardiotoxicity, neurotoxicity and hepatotoxicity. The AOP maps are described in terms of the normal physiological pathway processes and potential intervention points, with reference to experimental in vitro assays which were used to support the elucidated steps. Not all compounds with mitochondrial effects may go on to display in vivo toxicology. An AOP view of such pathways is an useful construct in providing information in a form suitable for assessing outcomes relevant to risk assessment.

The Comparative Toxicogenomics Database (CTD, http://ctdbase.org) aims to capture interactions of drug candidates with chemotypes to improve Chemical-Disease Prediction Inferences and Mode-of-Action QSAR Models. A. Mostrag-Szlichtying1, C. Yang1, J. Rathman1,2, C. Mattinug1, A. Davis1, A. Planchart1 and A. M. Richard1,1 Altamira, LLC, Columbus, OH; 2The Ohio State University, Columbus, OH; 3North Carolina State University, Raleigh, NC; 4US EPA, Research Triangle Park, NC.

The Comparative Toxicogenomics Database (CTD, http://ctdbase.org) aims to shed light on the connection between chemical exposures and human health outcomes by inferring relationships via integration of curated chemical-gene, disease and chemical-disease data from the scientific literature. Independent of CTD, structural knowledge via chemotypes, features linking chemicals to phenotypes, has been developed based on in vivo studies from toxicity databases, including regulatory sources at the US EPA and the US FDA. A chemotype is defined as a chemical substructure annotated with atom/bond properties that carry biological activity information. We explored whether the chemical-disease links in CTD could contribute to the further development of chemotypes, and whether mode-of-action Quantitative Structure Activity Relationship (QSAR) models for toxicity endpoints built around chemotypes could be used to validate CTD disease inferences or further delineate phenotypic effects. We applied a set of previously developed MOA models and chemotypes, e.g., for cleft palate, to the data found in CTD. Many of the same chemotypes (representing attributes of glucocorticoids, retinoids, conozoles, dioxanes, and phthalic esters) were found to be associated with cleft palate in CTD, either by direct curation or inferred via common interacting genes. The structural feature space enriched with cleft palate chemotypes was highly populated by the chemicals deemed associated with this condition in CTD. This work demonstrates that data mining of these adverse effects, mice were exposed by inhalation to gas metal arc-stainless steel (GMA-SS) welding fume at 40 mg/m3 for 3 hr/d for 5 days, and lung at 24 hr and 28 d post-exposure. New features in Ingenuity Pathway Analysis (IPA) were used to analyze the expression data. The analysis results establish the importance of interferons and the IRF-family of transcription factors, predicting that they are activated at 4 hours and maintained through 28 days in both blood and lung. The IPA Upstream Regulator Analysis also predicted involvement of several toxicants, such as nickel and ozone, which have been detected in welding aerosol thereby highlighting the utility of Upstream Regulator Analysis for toxicogenomics applications. In addition, as an important drug-discovery tool, IPA predicted several compounds that might be useful to ameliorate the inflammatory phenotype. One such compound was LY294002, a PI3K inhibitor that has already been shown to be efficacious in a mouse model of asthma. The new Mechanistic Network Analysis in IPA was used to computationally construct a plausible hypothesis that TRIM24 inactivation may lead to activation of IRF7 and STAT1 and other upstream regulators to drive the gene expression profile after the first exposure. Finally, Downstream Effects Analysis in IPA predicted large increases in proliferation, chemotaxis, and trafficking of immune cells in the lung after 4 hours. In summary, IPA has a unique new set of capabilities to enhance the mechanistic understanding of toxicological datasets and to provide support for new hypotheses that can be tested in the lab.

S. Tugendreich1, N. Ng1, P. C. Zeidler-Erdey2, J. M. Antonini1, M. L. Kashon2 and A. Erdely1. 1Ingenuity Systems, Redwood City, CA; 2NIOSH, Morgantown, WV.

COPD ranks among the top leading causes of death worldwide. The transcriptional factor T box 2 (TBX2) plays an important role in the COPD molecular etiology. A senescence hypothesis for the etiology of COPD has emerged. TBX2 and related genes have anti-senescence activity. Their expressions are suppressed in COPD, but elevated in many cancers. The purpose of this study was to identify the directional- ity of regulatory relationships between TBX2 and other genes involved in cellular senescence. From a compendium of lung epithelial cell microarrays generated using the Robust Multi-Array Average procedure, a subset of genes of interest was used for structure learning, The Bayesian Network Structure Learning approach was then used to learn the regulatory relationships. The Bayesian Network Inference with Java Objects toolkit (Banjo) was used, in each instance, to generate the single best-scoring direct acyclic network, given the expression data. In order to focus the large search space, an initial network of genes that TBX2 interacts with including ANF, NKK2-5, NDRG1, CNDN1A, PML, E2F, CNDN2B, and CNDN2B was identified. Simulated Annealing and Greedy Search were the network search algorithms used. The results predicted that TBX2 regulates both COL4A3 and PML. Reports in the literature confirm that TBX2 interacts with both COL4A3 and PML. Subsequently, the original known network was updated with these two interactions, and a new iteration of the learning procedure initiated.

S. Tran and G. Acquaah-Mensah, Massachusetts College of Pharmacy and Health Sciences, Worcester, MA.
As part of this new iteration, the compendium subset with expression data of genes of interest was updated to include non-sense coding receptors. The results revealed the identification of new TBX2 interaction partners including WNT3, WNT6, WNT7B, WNT11, IL12RBI, IL13, IL13RA1, IL27RA, CTNNND1, E2F4, and FOXO3. The published literature, a functional mapping prediction, and the Tomato Database were used to obtain information on the human metabolites of the T illness. Hence, further development is necessary to improve the predic-

cation were compared to the known human metabolites.

Methods: The WHO ATC index was used to extract drugs for the therapeutic classes of antineoplastics (A07E, M01A, S01BA, G02CC, M02AA, S01BC), central nervous system drugs and muscle relaxants (N, M03), cardiovascular drugs (C), on-

cology substances (L01) and vitamins (J05, D06BB, S01AD). Additional infor-

ation was received by queries in the DrugBank database. PhamPendium and DrugBank were the sources of information on the human metabolites of the therapeutic drugs observed in clinical studies. Meteor (version 13.0.0, Lhasa Ltd.) is a so-called knowledge-based expert system. As such it uses structured expert knowledge and its output offers the structures of metabolites with a guess on the probability of the occurrence of the metabolite. The evaluation shows that the reliability of the prediction of human metabolites is presently limited. Hence, further development is necessary to improve the predic-

potential.

Relative to microarrays, differential gene expression analysis using RNA-Seq data has been reported to offer higher precision estimates of transcript abundances, a greater dynamic range of transcript detection, and detection of novel transcripts. However, appropriate methods of analyzing RNA-Seq data and the number of reads required to match the sensitivity of microarrays are still a subject of debate. Moreover, comparisons of the two technologies have not covered dose-response experiments that are relevant to toxicology. Male F344 Rats were exposed for 13 weeks to 5 concentrations of bromobenzene. RNA was extracted from livers of five animals per dose level and used for measuring gene expression changes using both Affymetrix HG U133A 2.0 and HG U34A microarrays and ABI SOLID 50bp single read RNA-Seq. Sequencing produced an average of 9.3M reads per sample mapping to exons. The sequencing data was normalized using RPKM (Reads Per Kilobase per Million) and the microarray data was normalized using RMA. A standard one-way ANOVA was used to analyze the data across doses. Results were compared based on statistical significance (FDR < 0.05) and fold change (FC > 1.5) for 5,906 genes which had read counts > 10 and matched unambiguously to genes on the microar-

tory. The results showed that paired fold-change values were highly correlated be-

between microarrays and RNA-Seq, while the -Log p-values showed little correlation. Random sampling at different read depths showed that RNA-Seq and microarrays produced similar numbers of significant genes based on fold-change (FC > 1.5) at 6-8M mapped reads per sample. However, RNA-Seq produced significantly less significant genes based on p-value (FDR < 0.05) at even the highest read depth of 9.3M mapped reads per sample. Among the significant genes, ~50% overlapped be-

tween RNA-Seq and microarrays at each dose. The results highlight the need for additional studies examining the use of RNA-Seq data in toxicology.

M. Kanes, T. Ling, L. D. Kintzen-Delewa, and A. Brigo. Non-Clincial Safety, F. Hoffman-La Roche Ltd., Basel, Switzerland; 2Institute of Clinical Pharmacology and Toxicology, Charité University Medical School Berlin, Berlin, Germany.

An increasing number of computational tools are nowadays available, which are claimed to predict drug metabolism. Those tools could most probably be used in an extended way to consider potential drug metabolites earlier in toxicity prediction of for example, genotoxicity or carcinogenicity. Therefore it’s important to understand the quality and limitations of metabolism prediction tools if applied in a broader context. However, to date, the software packages used in metabolism prediction have only been validated with relative small datasets containing limited number of compounds. Hence, they require a more comprehensive and explorative evaluation.

Aim: Meteor (Lhasa Ltd., Leeds, UK), an available prediction tool, has been used to predict the metabolites of 325 drugs in therapeutic use. The results of the prediction were compared to the known human metabolites.

Methods: The WHO ATC index was used to extract drugs for the therapeutic classes of antineoplastics (A07E, M01A, S01BA, G02CC, M02AA, S01BC), central nervous system drugs and muscle relaxants (N, M03), cardiovascular drugs (C), on-

cology substances (L01) and vitamins (J05, D06BB, S01AD). Additional infor-

ation was received by queries in the DrugBank database. PhamPendium and DrugBank were the sources of information on the human metabolites of the therapeutic drugs observed in clinical studies. Meteor (version 13.0.0, Lhasa Ltd.) is a so-called knowledge-based expert system. As such it uses structured expert knowledge and its output offers the structures of metabolites with a guess on the probability of the occurrence of the metabolite. The evaluation shows that the reliability of the prediction of human metabolites is presently limited. Hence, further development is necessary to improve the predic-

potential.

M. B. Black, E. Healy, B. B. Parks, L. Pluta, T. Chu, R. Palenski, and T. Wolfinger. 1Reproductive Toxicology Branch, US EPA, Research Triangle Park, NC; 2NTTP, NIEHS, Research Triangle Park, NC; 3Molecular & Cellular Medicine, Texas A&M University, College Station, TX; 4The Dow Chemical Company, Midland, MI; 5Laboratory of Cancer Biology & Genetics, National Cancer Institute, Bethesda, MD.

Systematic and holistic methodologies, and the use of tools such as toxicogenomics and computational toxicology, have been developed to better understand toxicological mechanisms and inform risk assessment. However, a key challenge is the integration of these data sources with existing toxicological and risk assessment frameworks. In this session, current state-of-the-art approaches and emerging technologies for toxicogenomics and computational toxicology will be reviewed, along with considerations for regulatory decision-making.
that link in vivo outcomes (including malformations, fetal weight reductions, and prenatal loss) with potential mechanisms of toxicity. This approach uses in vivo data from guideline and literature studies and over 3 million in vitro data points from high-throughput and high-content screening techniques on chemical-biological interactions. Specifically, these assays are obtained from biochemical, cell-free and cell culture assays, along with embryonic stem cells and zebrafish embryos. The predictive models developed confirm known pathways, such as retinoic acid receptor and transforming growth factor, and suggest novel pathways such as G-protein-coupled receptors and inflammatory pathways to be important pathways involved in developmental toxicity of environmental chemicals. These models have the potential to aid in the prioritization of chemicals for further targeted toxicity testing and risk assessment, to generate hypotheses about mechanistic pathways leading to adverse developmental outcomes, and to reduce cost and increase throughput of chemical testing.

1633 Multiple Organ-Omic Integration for HBCD Developmental Neurotoxicity Hazard Identification.

Exposure to environmental chemicals during critical windows of development has shown to disrupt adult neurobehavioral function; however, the mode-of-action is not always well understood. A systems biology approach was taken to identify toxicity pathways after exposure to the major brominated flame retardant mixture, hexabromocyclododecane (HBCD), along with the individual chemicals that make up the commercial mixture to better characterize developmental neurotoxicity, strengthen its overall weight-of-evidence, and support its hazard identification for risk assessment. Short-term disruptions to the developmental profile of genes, proteins, and metabolites in the hippocampus, liver, and systemic circulation were identified after exposure to the commercial mixture and individual stereoisomers. Different molecular pathway profiles generated in several organs suggest the necessity to assess the effects from the individual isomers as well as the mixture when evaluating HBCD and can be used as a model for other environmental mixtures for chemical risk assessment. This presentation will demonstrate the utility of an omics and systems biology strategy to capture information on various facets of brain development that can be altered after environmental exposures and to provide focus for further toxicity studies in determining possible modes-of-action including methods to prioritize individual chemicals in mixtures for chemical risk assessments.

1634 Assessing Antigenic Effects of In Utero Exposure to Dibutyl Phthalate and Other Xenobiotics.

D. Spade and E. Rockelbeche. Department of Pathology and Laboratory Medicine, Brown University, Providence, RI.

The rates of male reproductive tract malformations such as cryptorchidism and hypospadias have increased in the United States throughout the latter half of the 20th century. These disruptions in androgen-sensitive development may be influenced by early life exposures to environmental anti-androgens. However, determining the impact of exposure on human fetal development is hindered by species differences and a lack of human data. Using a fetal testis xenograft model, we have shown that human fetal testis is more resistant than fetal rat testis to the anti-androgenic effects of dibutyl phthalate (DBP). We are expanding this analysis to determine how environmental anti-androgens affect human fetal testis, particularly through alterations in gene expression and DNA methylation. To provide a baseline for this analysis, 12 unimplanted human fetal testis samples aged 14 to 23 weeks gestation have been evaluated using Affymetrix Human Gene 1.0 ST gene expression microarrays and the Illumina Infinium 450k methylation arrays to reveal developmental trends in fetal testis gene expression and DNA methylation. This will provide a baseline for ongoing analysis of xenografted tissues after exposure to anti-androgens. During this window, global testis DNA methylation increases significantly, although not at all genes. DNA methylation at imprinted sites consistently increases throughout this time frame, and there are significant changes in DNA methylation of genes related to testosterone biosynthesis, cell cycle, and transcriptional control. Therefore, reprogramming of testis DNA methylation during this developmental time period aligns with the existing data in mouse, and suggests that this window may be sensitive to disruption by xenobiotics. Assessing the anti-androgenic effect of various environmental compounds in human systems is essential for determining the risk that environmental chemicals pose for the in utero development of the male reproductive system, including understanding the fetal origins of disorders of the male reproductive tract.

1635 Mechanistic Pathways Underlying Low-Dose PFOA Effects on Mammary Gland Growth.

M. B. Macon1 and S. E. Fenton. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC; 2National Toxicology Program, NIEHS, Research Triangle Park, NC.

Perfluorooctanoic acid (PFOA) is a synthetic surfactant and, in areas of high contamination in the US, has recently been found to have a probable link to several human diseases. Prenatal exposure to PFOA causes delayed mammary gland growth in female mice. Exposure to low levels of PFOA throughout gestation results in persistent mammary gland abnormalities in female offspring that remain until late in life. Although activation of peroxisome proliferator activated receptor alpha (PPARα) is thought to mediate PFOA-induced liver toxicity, the role of this transcription factor in the mammary gland is unclear. Genome-wide microarray analysis, protein expression approaches, and morphological analysis were used to identify molecular mechanisms of the delayed following prenatal PFOA exposure. Our studies followed female mice exposed to environmentally relevant levels of PFOA in utero spanning neonatal time-points to late adolescence. Through analysis of whole mammary tissues and isolated cell types, it was found that PFOA altered pathways involved in epithelial-stromal interactions, including endocrine disruption, leaving the mammary gland more susceptible to the development of disease. The dosing levels of PFOA used in our studies produce body burdens in mice that are similar to those found in humans living in highly contaminated areas, therefore, these findings have implications related to the human risk assessment of PFOA.

1636 Molecular Mechanisms Linking Maternal Diet-Induced Obesity to Offspring Metabolic Syndrome.

Population studies have suggested that the maternal nutritional status during key stages of development is able to influence offspring risk of metabolic diseases. Recent focus has been on maternal over-nutrition and obesity in programming metabolic disorder in offspring. This stems from human data which has correlated maternal body-mass index (BMI), maternal weight gain during pregnancy, and gestational diabetes to offspring BMI and risk of metabolic disorders such as type 2 diabetes. A large number of studies have reported dysregulation of key organs involved in glucose homeostasis and feeding regulation in the offspring of obese mothers. We have utilized a mouse model in which dams are fed a western-style diet (highly palatable, high-fat, high-sugar diet) during gestation and lactation and taken a whole systems approach to establish mechanisms through which metabolic disease in the offspring arises. Our studies incorporate analysis at the whole body, tissue and cellular level. Offspring of these dams are hyperphagic from a young age, leading to increased body weight and the development of type 2 diabetes later in life. Hyperinsulinemia is an early observation in these offspring compared to offspring in the control group fed regular chow and we have associated this with impaired insulin signaling protein expression, especially in adipose tissue. We have employed both candidate and genome-wide mRNA and microRNA array approaches to explore the mechanisms by which the programmed changes in insulin signaling protein expression occurs and to identify novel genes and regulatory elements that are associated with metabolic disorders in the offspring. These findings have important implications for the identification of markers of disease risk and identification of susceptible populations to adverse effects resulting from sub-optimal early life exposures.

1637 Toxicoepigenomics, Disease Susceptibility, and Implications for Risk Assessment.

K. Kurzani and M. Verma. 1Biochemical Toxicology, National Center for Toxicological Research, US FDA, Jefferson, AR; 2Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Bethesda, MD.

In the past, classical toxicology has largely focused on the genotoxic effects of environmental toxicants and chemicals. Recent studies have clearly indicated that environmental chemicals, along with their genotoxic abilities, can cause epigenetic alterations that, in concert, may lead to the development of a number of pathological states. The field of toxicoepigenomics has since emerged from the combination of epigenetics, which studies the methylation of DNA, histone modifications, and chromatin condensation, and toxicology. During the last few years, excellent progress has been made in detecting altered epigenomic profiles in response to various chemical insults. Future investigations, however, are needed to link chemical
exposure to epigenetic alterations which develop over time, and, in turn, may in- crease the risk of disease. Although whole populations may be exposed to toxic sub- stances, only a few people develop the disease, which may, in part, be due to the dif- ferent epigenomic backgrounds of individuals. That is why the potential role of epigenetics in disease susceptibility, along with the potential opportunities for epi- genetic biomarkers in the assessment of toxicity and carcinogenicity of chemicals have received a lot of attention recently. Specifically, the following key aspects need to be addressed: 1) How stable are the epigenetic alterations induced by environ- mental toxicants?; 2) What periods of development across the lifespan are windows of vulnerability and/or opportunity for an altered epigenome?; 3) How can expo- sure to toxicants in utero affect the epigenome and predispose individuals to various diseases throughout life?; 4) Are there methodological and measurement gaps to be filled to advance our understanding of toxicopeigenomics?; and 5) How can we de- velop risk prediction models? Evidence that epigenetic alterations can be potentially reversed may be helpful in developing treatment and preventative strategies.

1638 Epigenetic Alterations in Response to Exposure to Environmental Toxicants.
J. Koturbash. Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR.

Epigenetics is the study of heritable changes in gene expression that are not associ- ated with alterations in DNA sequence. Epigenetic mechanisms include DNA methylation, post-translational histone modifications, and nucleosome positioning along DNA, and are important for maintenance of normal cellular homeostasis. Disruption of epigenetic mechanisms may compromise the balance of the cellular epigenome and lead to development of various pathological states, including can- cer. Accumulating evidence clearly indicates that various environmental toxicants, independently of their genotoxic abilities, can cause epigenetic alterations. These changes in the cellular epigenome are exhibited as decreases in global DNA methyl- ation, aberrant gene-specific DNA methylation, changes in histone modifications, as well as associated alterations in chromatin status. Importantly, epigenetic alter- ations can be detected long before the occurrence of genetic changes; and are stable, persisting after the initial exposure-related DNA damage has been repaired. These findings highlight the significance of epigenetic alterations in the mechanisms of toxicity and carcinogenicity.

1639 Application of Cancer Toxicoepigenomics in Identifying High-Risk Populations.

The epigenome is dynamic and very susceptible to environmental changes. Toxicoepigenetic studies are conducted to explain the epigenetic effects of envi- ronmental exposures. Epigenetic programming occurs during development and re- flects altered gene expression in disease states. This programming differs from ge- netic polymorphisms or mutations because genetic changes are reflected in all cells, whereas epigenetic changes are cell- and tissue-specific. Studies that involve the measurement of epigenetic changes that occur at the genome-wide level and their association with disease are called epigenome-wide association studies (EWAS). Epigenetic alterations respond quickly to environmental changes, and technologies are available to measure these changes. During the last 5 years, excellent progress has been made in the field of altered epigenomic profiling in response to toxins and environmental. It is now possible to use high-throughput technologies to measure epigenetic patterns that are altered by toxin exposure. Different environmental ex- posures, including toxins, affect different components of the epigenetic machinery and alter the methylation and acetylation equilibrium. Epidemiologic studies help to identify the etiology of a disease, especially factors that contribute to disease de- velopment. In the case of cancer, such factors include toxic substances, radiation, infectious agents, specific dietary components, tobacco, alcohol, and environmen- tal factors. It makes sense to identify epigenetic markers in normal and exposed populations. The advantages of identifying epigenetic biomarkers of exposure in- clude improved exposure assessment, documentation of early alterations preceding cancer development, and identification of high-risk populations. Examples of inter- action between toxic substances and cancer initiation and progression will be dis- cussed.

1640 Changes in Histone Tail Modifications and Gene Expression in PBMC from Subjects Exposed to Nickel and Arsenic.
M. Costas. Environmental Medicine, New York University School of Medicine, Tuxedo Park, NY.

A major target of Nickel (Ni) ions in cells is the iron- and ascorbic acid-dependent dioxygenase enzymes. The family of histone H3 demethylases is an example of these enzymes. Since Fe binding is required for catalytic activity and Ni ions readily displace the Fe from all of these enzymes, Ni exposure results in inactive enzyme which increases global levels of the activating mark H3K4 trimethylation (H3K4me3) and the silencing mark H3K9 dimethylation (H3K9me2). Arsenic (As) induces oxidative stress in cells and will deplete reduced ascorbate which is re- quired for the activity of these histone demethylases. In vitro exposure to Ni or As increases the levels of posttranslational modifications of histone tails. Here we show changes in global levels of histone modifications in peripheral blood mononuclear cells (PBMCs) of subjects with occupational exposure to Ni by inhalation in a Nickel refinery in China and subjects from Bangladesh exposed to As in their drinking water. Occupational exposure to Ni was associated with an increase in H3K4me3 and decrease in H3K9me2. A global increase in H3K9me2 and decrease in H3K9ac was found in subjects exposed to As. Additionally, exposure to As re- sulted in opposite changes in a number of histone modifications in males compared to females (H3Ac), or histone deacetylases (HDACs) altered the gene expression changes in PBMC in a smaller subset of individuals exposed to Ni and As. Hierarchical clustering revealed that several thousand genes were similarly changed across subjects highly exposed to Ni, and there was similar clustering with low Ni exposure and with controls. With As the results were more complex because of the strong effect of gender. With As there were genes that changed in a gender depend- ent manner and also with As exposure independent of gender. The results of these two studies suggest that exposure to Ni or As compounds, and possibly other car- cinogenic metal compounds, can induce changes in global levels of posttransla- tional histone modifications and gene expression in PBMC.

1641 Chromatin Remodeling As a Driver and Target for Lung Cancer.
S. A. Belinsky. Lovelace Respiratory Research Institute, Albuquerque, NM. Sponsor: K. Kutanzi.

Epigenetic silencing of genes and microRNAs (miRs) via chromatin remodeling and cytosine methylation has emerged as a major mechanism in lung cancer etio- logy. The reversal of gene and miR silencing using pharmacological agents and po- tentially dietary supplements (e.g., omega-3 polyunsaturated fatty acids [n-3 PUFA]) by affecting cytosine-DNA methyltransferases (DNMTs), histone methyl- transferases, and cytosine methylation has emerged as a major mechanism in lung cancer etiology. The reversal of gene and miR silencing using pharmacological agents and potentially dietary supplements (e.g., omega-3 polyunsaturated fatty acids [n-3 PUFA]) by affecting cytosine-DNA methyltransferases (DNMTs), histone methyl- transferases, and cytosine methylation has emerged as a major mechanism in lung cancer etiology. The reversal of gene and miR silencing using pharmacological agents and potentially dietary supplements (e.g., omega-3 polyunsaturated fatty acids [n-3 PUFA]) by affecting cytosine-DNA methyltransferases (DNMTs), histone methyl- transferases, and cytosine methylation has emerged as a major mechanism in lung cancer etiology.
in humans, occurring in eight newborns from every 1000 live births and constituting 25–30% of all cases of human cardiovascular malformation. These two congenital heart defects are the leading cause of neonatal and infant death and, underscoring the fetal origin of adult disease concept, are also a major cause of adult cardiac insufficiency, linking fetal and adult cardiovascular disease. The main known risk factors for these abnormalities in cardiac development are genetic inheritance and maternal exposure to hazardous chemicals, but their precise molecular etiology remains elusive. We have recently found that treatment of differentiating mouse ES cells with dioxin represses Nkx2.5 gene expression and other cardiac markers as a consequence of AHR activation. By following the expression trajectories of cardiomyocyte markers during ES cell differentiation we found that dioxin silenced the expression of Nkx2.5 and other cardiomyocyte-specific genes, including the genes coding for cardiac troponin-T and α- and β-myosin heavy chains, and inhibited the formation of beating cardiomyocytes, a characteristic phenotype of differentiating mouse ES cells. The key mediator of these effects was the aryl hydrocarbon receptor (AHR), epigenetically silenced in pluripotent ES cells and activated during differentiation. Our work with ES cells may, be molecular and epigenetic mechanisms responsible for human cardiac malformations due to environmental (organochlorinated compounds) or genetic (Nkx2.5 mutations) causes. Nkx2.5 repression by dioxin-mediated AHR activation may help us identify the regulatory loops controlling the Nkx2.5 functions that determine embryonic identity and progression of cardiac tissue differentiation, and how these functions are silenced by the activated AHR. (Supported by NIGR grants 5R01ES006273 and 5P30ES06096).

1643 Dietary Arsenic—Forms, Hazards, and Risks.

P. M. Bolger. Exponent, Annapolis, MD.

Arsenic, particularly inorganic arsenic, is a well known and ubiquitous environmental contaminant, particularly in drinking water, and it originates from both anthropogenic and natural sources. It demonstrates a myriad of toxicological effects across a broad spectrum of organ systems. It has generally been believed that arsenic in food occurs in organic forms that demonstrate minimal, if any, toxicological activity. This is particularly the case with the forms found in seafood (e.g., arsenosugars). However, there has been concern for some time that organic forms may not be the predominant forms in certain foods, like rice, where concentrations of inorganic forms in certain cultivars may be significant. In addition, other organic forms, like trimethyl- and dimethyl forms, may be found, and at levels that are not insignificant, and could potentially pose a health hazard. These organic forms may not be as innocuous as the organic forms found in seafood. This session will explore the current state of knowledge regarding the occurrence of various forms of arsenic found in foods, as well as their potential exposures, hazards (e.g., toxicological, epidemiological) and risks to public health, and what risk management options may be available.

1644 Noncancer Disease Risk Promoted by Low Level Arsenic Exposures.

A. Barchowsky. Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA.

Exposure to arsenic through drinking water and diet increases risk for a number of cancers and non-cancer diseases. Cardiovascular diseases contribute to a large portion of non-cancer arsenic-promoted morbidity and mortality, and may occur at relatively low levels of arsenic exposure that were considered safe based on cancer risk. While epidemiological studies have established the disease risk to low level exposures, basic studies have lagged in demonstrating mechanism for disease. However, recent low level exposure studies in mice and cultured human cells suggest novel receptor mediated and reactive oxygen species-dependent modes of action for arsenic induced pathogenic vascular and tissue remodeling, as well as metabolic dysfunction. This talk will review the current state of understanding of arsenic-induced cardiovascular disease risk and potential modes of action.

1645 Exposure Assessment Methods for Dietary Arsenic.

L. Barraj and N. Tran. Exponent, Washington DC.

A brief overview of types of dietary exposure assessments and discusses the associated data requirements will be presented. Existing food consumption data sources that can be used for estimating dietary exposure to arsenic are reviewed and their strengths and limitations are discussed. Algorithms and models typically used are presented and their applicability to the various exposure scenarios (e.g., short term versus long term) are discussed.

1646 Recent Epidemiologic Studies of Arsenic and How They Apply to the Health Evaluation of Arsenic in Food.

H. J. Gibb. Tetra Tech Sciences, Arlington, VA. Sponsor: P. Bolger.

The association of arsenic in drinking water with an increased risk of skin, lung, bladder, and kidney cancer has been recognized for several decades. In addition to the association of arsenic with increased risks of various forms of cancer, studies have found an association of arsenic in drinking water with a variety of noncancer effects including skin lesions, cardiovascular disease, diabetes, liver damage, and kidney disease. Some of these effects have been reported to occur at drinking water concentrations lower than 100 μg As/L. Several studies indicate that exposures at younger ages have a disproportionately greater effect than exposures at older ages. Recent reports of arsenic in brown rice syrup and apple juice have raised concern whether arsenic in food products may also present a health problem, particularly for infants. The development of an epidemiologic database that focuses primarily on recent studies and how such studies may affect the risk assessment of arsenic in food will be presented.

1647 Potential Risks to Human Health from Arsenic in the Diet: A European Food Safety Authority (EFSA) Perspective.

J. B. Schlatter. Federal Office of Public Health (retired), Zurich, Switzerland.

In 2010, the Panel on Contaminants in the Food Chain (CONTAM Panel) of the European Food Safety Authority (EFSA) assessed the risks to human health related to the presence of arsenic in food. More than 100,000 occurrence data on arsenic in food were considered with approximately 98% reported as total arsenic. Making a number of assumptions for the contribution of inorganic arsenic to total arsenic, the inorganic arsenic exposure from food and water across 19 European countries was estimated for average consumers, for 95th percentile consumers and for children. The CONTAM Panel modeled the dose-response data from key epidemiological studies and selected a benchmark dose response of 1% extra risk. A range of benchmark dose lower confidence limit (BMDL01) was identified for cancers of the lung, skin, and bladder, as well as skin lesions. The estimated dietary exposures to inorganic arsenic for average and high level consumers in Europe as well as for childrens are within the range of the BMDL01 values identified, and therefore there is little or no margin of exposure and the possibility of a risk to some consumers cannot be excluded.

1648 Pulmonomics, the Exposome, and Microbiomes in Immunotoxicology.

M. A. Williams. US EPA, Research Triangle Park, NC.

The exposome has revealed itself to be a powerful approach for assessing environmental exposures and their influences on human diseases. As we explore the origins of human disease, and the contributions made by environmental pollutants, a comprehensive understanding of systems biology is needed. This requires an integrated understanding of how environmental chemicals and other stressors of gene and protein expression are not only linked to a toxicological outcome but which may impact on chronic inflammatory diseases such as allergic asthma, COPD, and even lung cancer. Perturbations in normal cell cycle kinetics, apoptotic cell-death pathways, immune dysfunction, and a recent appreciation of the consequences of inadvertent dysregulation of the gut and lung microbiomes collectively distort normal systems biology homeostasis and the advent of adverse health effects. For the first time, this symposium presents emerging critical issues and paradigms that discuss the contributions and interplay of systems biology, the exposome, and microbiomes as they relate to immunotoxicology, dysregulation of inflammatory pathways, and chronic diseases. Invited speakers will place in context and share state-of-the-art approaches for advancing our understanding of the interplay of gene and environment and of the exposome in initiating and prolonging chronic inflammatory disease.

1649 Breath Biomarkers from Viable Pulmonary Aerosols: Discovery of Human Microbiome Contributions.

J. Prill. Methods Development and Applications Branch, National Exposure Research Laboratory (NERL), US EPA, Research Triangle Park, NC.

Exhaled breath and exhaled breath condensate (EBC) are two human biological fluids collected non-invasively to assess previous exposures to exogenous compounds and to evaluate metabolic (or health) effects. Although expression of volatile organic compounds (VOCs) in exhaled breath is considered a window into the circulatory blood representing external exposures and human metabolism, it also represents contributions from the life cycles of the human microbiome. We have
developed methodology for distinguishing between human and bacterial contributions via collection of human generated aerosols in EBC, culturing them in growth media, and analyzing headspace with gas chromatography – mass spectrometry. We have cataloged a series of VOCs from both aerobic and anaerobic conditions to inform human biomonitoring efforts for the assessment of in-vitro and in-vivo studies of the safety of manufactured chemicals.

1650 Experimental Exposure of Mice to House Dust Alters Gut Microbiome and Attenuates Allergic Pulmonary Responses.
N. Lukacs, Pathology, University of Michigan Medical School, Ann Arbor, MI. Sponsor: M. Williams.

Atopic asthma is more common in clean Western countries and its prevalence has increased greatly during the last century, along with improved hygiene and housing conditions. Exposure to a more diverse microbiome during childhood correlates with a lower risk of developing asthma during later life. Recent data has suggested that a diverse microbiome is associated with growing up with older siblings and pets. Dietary sampling from the environment can directly impact the gut microbiome. Interaction between intestinal microbiome and Gut Associated Lymphoid Tissue (GALT) not only directs local immune responses but also appears to affect the outcome of antigen-driven responses in the respiratory system. Using 2 different mouse models of allergic asthma (using the model-antigen ovalbumin – OVA – and the clinically relevant cockroach allergen – CRA), we set out to study pulmonary immune responses after dietary supplementation with household dust collected from homes with or without pets. Daily dosing of sieved dust administered to 6-8 week old BALB/c mice via oral gavage for 2 weeks was used for controlled exposure. Following the dust treatment, mice were sensitized and challenged with CRA, or alternatively received a transfer of OVA-specific DO11.10 T-cells and a subsequent OVA challenge. In the dust exposed animals a significant decrease in Th2 cytokine protein expression and total IgE levels was observed in pet dust-treated animals exposed to allergen. Moreover, these mice showed reduced mucous hypersecretion in the lung, as determined by PAS staining and RT-PCR for gob5. Interestingly, phylochip analysis of the cecal content of these mice revealed that the pet dust treatment altered the microbiome in favor of Lactobacillus species. Altogether these data demonstrate that short-term oral sampling of dust from homes with pets, but not without pets, significantly alters the gut microbiome and can subsequently attenuate pulmonary allergen-induced immune responses.

1651 Translating the Airway Transcriptome into Biomarkers of Tobacco-Related Lung Disease.
A. Spira. The Pulmonary Center, Boston University School of Medicine, Boston, MA. Sponsor: M. Williams.

While cigarette smoke exposure is associated with lung cancer, COPD and a number of chronic inflammatory diseases of the lungs, only a fraction of smokers develop these diseases and there are currently no effective tools for identifying those smokers at highest risk for disease. Furthermore, we lack biomarkers for measuring the host response to inhaled toxins like cigarette smoke. This talk will focus on applying whole-genome gene-expression studies to airway epithelial cells in order to gain insights into the physiological responses to tobacco smoke exposure. The goal of the presentation will be to explore how individual variability in the airway genonomic response to tobacco smoke associates with risk of tobacco-related lung diseases and how this information can be leveraged to serve as clinically-relevant biomarkers of disease activity in both lung cancer and COPD. This talk will be of broad interest to the biomedical research community including those with expertise in genomics, molecular biology, and epidemiology related to tobacco exposure and pulmonary disease.

1652 Immune-Mediated Adverse Effects of Drugs and Environmental Agents.
J. Uetrecht. Pharmacy, University of Toronto, Toronto, ON, Canada.

Many adverse effects of drugs and environmental agents are immune-mediated. Exposure to drugs is easier to determine than most environmental agents, and most drugs can cause idiosyncratic (i.e. specific to an individual) adverse reactions (IDRs) such as skin rash, liver injury, bone marrow injury, and autoimmunity, most of which are immune-mediated. This provides a clear example of how different people can be affected by agents in different ways. Most drugs associated with a significant risk of IDRs form chemically reactive metabolites, which suggests that a major factor is the ability of the drug to form a hapten. However, this observation is also consistent with the danger hypothesis because reactive metabolites can also cause cell injury leading to the release of danger signals that promote an immune response. There are also environmental agents that form reactive intermediates and lead to an immune response, e.g. poison ivy and hair dyes can cause contact hypersensitivity. However, not all drugs that cause IDRs form reactive metabolites so there must be other possible mechanisms. Other apparent mechanisms involve epitope spreading and reactive autoantibodies. A recent example of an environmental agent that binds to MHC leading to an immune response is beryllium, which binds to HLA-DBP1 that has a glutamic acid at AA 69, and very low exposures to beryllium can lead to severe chronic lung disease in patients with this genotype. Other agents such as vinyl chloride can lead to autoimmunity. Although IDRs are frequently referred to as dose independent, this is not true; drugs given at a dose of 10 mg/day are associated with a very low risk of IDRs. This may reflect a threshold in hapten density required to induce an immune response. This suggests that most environmental agents are unlikely to cause immune-mediated adverse reactions; however, beryllium is an exception, and this threshold may be significantly lower for agents that act more directly to modulate immune responses. Environmental agents such as benzene can also lead to immunosuppression. Funded by grants from CIHR.

1653 Targeted ‘Omics Research in the Regulatory Environment.
J. Sobus. Exposure Measurements and Analysis Branch, US EPA, Research Triangle Park, NC.

The US EPA’s Office of Research and Development (ORD) has recently implemented the “Chemical Safety for Sustainability” (CSS) research program. Much of this program is dedicated to “facilitating faster, more efficient, more certain, and sustainable chemical assessments and management decisions”. Achieving these goals will require high-throughput and multi-chemical assessments of environments, living intact organisms, and surrogate (in vitro) systems. Single chemical assessment strategies alone cannot support these requirements, and will be supplemented using ‘omic-based approaches to exposure- and health-based assessments. This presentation will highlight opportunities to integrate cutting-edge ‘omics approaches into existing regulatory-based research frameworks. Special attention will be given to biomarker-based ‘omics tools that can be used to link across environmental, biological (in vivo), and in vitro sample environments.

C. G. Markgraf1 and M. Guha.1 1Drug Safety Evaluation, Bristol-Meyers Squibb Co., Mt Vernon, IN; 2DSS, Merck, Kenilworth, NJ.

Preclinical assessment of abuse liability potential for new drugs with central nervous system (CNS) activity has been a recent focus of both regulatory and industry interest. The standard animal models used for evaluation of abuse potential for these pharmaceutical candidates are self-administration and drug discrimination. These models have been well characterized in both rats and monkeys with known drugs of abuse. However, unique challenges encountered when evaluating drugs with novel mechanisms or with difficult pharmaceutical properties raise questions: How can reinforcing properties be evaluated if there is no acceptable IV formulation? What comparator drug is appropriate for a candidate compound with a novel CNS-active mechanism? In these situations, using a nonstandard model may offer an attractive alternative. The promise of such alternative animal models is balanced by the challenge in data interpretation and in incorporation of the data into a comprehensive risk assessment. This workshop will start with a discussion of the regulatory requirements and standard data collected for a preclinical abuse potential assessment, followed by presentations on conditioned place preference (CPP) and intracranial self stimulation (ICSS)—both nonstandard animal models of drug abuse potential in a regulatory setting. The scientific rationale for their use, their use of standard animal models, and the use of their data in risk assessment and in an abuse potential package for submission to health authorities will be discussed.

K. Horn. Drug Safety Evaluation, Bristol-Meyers Squibb, Mt Vernon, IN.

Preclinical data from abuse liability assessments are required to support the registration and scheduling of new drugs with central nervous system activity. Despite the availability of a standard set of well characterized animal models (self-administration and drug discrimination), there may be circumstances for compounds with
novel mechanisms of action where the standard models are not suitable or cannot be utilized for the lack of suitable comparators for training or due formulation issues. In these cases, investigators may wish to turn to alternative approaches to understand the abuse liability potential for drugs under development. The purpose of this presentation is to highlight the complexity and challenges associated with designing an abuse liability package for drugs with novel or unknown mechanisms of action where the use of standard models may not be appropriate or when pharmacological properties prevent the use of standard assays. The first part of the presentation will focus on the standard pre-clinical models of abuse liability (self-administration, drug discrimination, and withdrawal/dependence). Following this introduction, the presentation will discuss specific circumstances, situations, and/or challenges that investigators may encounter during drug development which may require consideration of unconventional approaches.

using several experimental approaches that focus on establishing pharmacological equivalency to known drugs of abuse, ability to induce physical dependence, and reinforcing effects. This report discusses intracranial self-stimulation (ICSS; brain stimulation reward) as a tool that could complement existing assessment strategies. Many drugs of abuse facilitate ICSS in laboratory animals prepared with electrodes implanted into brain "reward" areas. In addition to fairly robust predictive validity, ICSS has a number of important advantages in studying: i) drug-drug interactions; ii) quantitative comparisons among drugs; iii) complex drug formulations, especially those intended to be abuse-resistant; and iv) multiple, repeated drug exposures. This report limits a review of the ICSS literature to that pertinent to its usefulness as a procedure predictive of the abuse liability of drugs, and argues for the standardization of experimental protocols to enable a more final assessment of its usefulness in this regard.

1656 The Assessment of Abuse Liability: The Regulatory Perspective.
S. N. Calderon-Gurkind. CDER, FDA, Silver Springs, MD. Sponsor: M. Guha.

The assessment of the abuse liability of a drug is part of the evaluation performed by FDA, according to the requirements of the Federal Food, Drug and Cosmetic Act. Issues concerned with the assessment of potential for abuse and with scheduling a drug under the U.S. Controlled Substances Act (CSA) are the responsibilities of the Office of the Center Director, Controlled Substance Staff. When a new drug has structural or pharmacological similarity to a known drug of abuse, sponsors are required to thoroughly characterize its abuse potential and submit study results for scientific review. A drug's abuse potential is determined relative to a pharmaceutically similar or other appropriate comparator drug. The abuse potential assessment is based upon comprehensive evaluation of chemistry, pharmacology (preclinical and clinical), pharmacokinetics, and pharmacodynamic profiles of the drug, and adverse events observed in clinical trials, as well as anticipated public health risks that may follow introduction of the drug on the market. This presentation will focus on the current guidance trends for industry on the assessment of the abuse potential of drugs, and on the particular challenges encountered when assessing the abuse potential of drugs with novel mechanisms of action or pharmacological profiles.

M. Kallman. Discovery and Translational Services, Covance, Greenfield, IN.

Although most pharmaceutical companies have transitioned to provide non-clinical data to address regulatory requirements for scheduling decisions on new drugs these studies have typically been the traditional dependence, drug discrimination, and self-administration studies. Alternative models of conditioned place preference and intracranial self-administration have been available as scientific tools for sometime but they have only rarely been conducted to support the regulatory environment. The reason for the emphasis on the traditional models will be considered. In addition, a discussion of the advantages and potential applications of the non-standard models for scheduling decision making may provide insight into the utility of these models. The emphasis of the talk will be what the future environment might be and how we can develop scientific data packages using these non-standard models to meet the future decisions for scheduling.

1660 The Placenta in Toxicology: Target or Travel Agent?
C. L. Bowman1 and W. Foster2, 1Developmental & Reproductive Toxicology, Pfizer Inc., Groton, CT; 2Department of Obstetrics & Gynecology, McMaster University, Hamilton, ON, Canada.

The placenta is a fascinating organ in its dynamic form and function appearing as a transient and critical tissue in the reproductive cycle. It is a collaboration of maternal and zygotic cellular layers whose major function is a conduit between mother and fetus focused on the growth and viability of the next generation whilst preserving maternal well-being. The unique physiology of biodistribution and metabolism of the placenta also render it sensitive as a target of toxicity. The human placenta is a complicated organ and understanding the comparative physiology of nonclinical species can be a critical component for drug and chemical safety assessment; both as a potential target of toxicity and as a presumed barrier to undesirable xenobiotics. As in much of toxicology, it is important to appreciate different perspectives including clinical, epidemiological, basic research, industry, and regulatory. It is only when this information is integrated and applied that we can appreciate the value and importance of basic research and the views of regulatory and industrial sciences.

1661 How Predictive Are Animal Studies in Detecting Fetal Risks in Humans?
G. Koren1, 2, 1The Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada; 2Molecular Toxicology, The University of Western Ontario, Toronto, ON, Canada. Sponsor: C. Bowman.

Every year scores of new molecules enter the market. Because half of all pregnancies are unplanned, fetal exposure to these drugs is inevitable. Unfortunately, due to wide variability and differences between and human placenta in anatomy and physiology, making animal models of placental transfer difficult to interpret. There is an urgent need for non human models to predict human risk/safety. The placenta is the only human organ that can be ethically harvested and kept alive ex vivo for 4-6 hr. By cannulating maternal and fetal vessels, the perfusion model can be used to study rates and extent of drug transfer across the human placenta, as well as placental functions such as oxygen consumption, hCG secretion etc. Using placental perfusion, we have established a model of predicting in vivo drug transfer, correlating it with results of in vivo fetal and neonatal sampling (Hutson et al, Clin Pharmacol Ther, 2011). Implementation of this model can revolutionize the prediction of fetal exposure to drugs in vivo.
Environmental pollution is shown to affect reproductive functions in humans. In some situations exposures are unavoidable, such as traffic-derived air pollution in urban areas. The relationship between gestational exposure to air pollution and fetal outcomes is receiving progressively greater attention. Epidemiological findings correlate low birth weight, higher frequency of preterm birth, neonatal mortality and compromised specific reproductive endpoints such as infertility with air pollution. The limitations of epidemiological studies are associated with difficulties of identifying individual exposure levels as well as the presence and management of many confounder factors such as nutritional and social status and smoking that challenges the establishment of causal relationships. To overcome these factors our group conducted experimental studies (murine model) using realistic concentrations of air pollutants, which mimic human exposures. Experimentation using real-world exposures to air pollutants provided corroboration of epidemiologic data and was used to identify the pathophysiological mechanisms involved. Changes in estrous cyclicity, fertility, number of ovarian follicles, embryonic implantation index, fetal development and placentation were some of the outcomes observed. In summary, this session will provide an overview of the effects of environmental air pollution on reproductive functions; in particular, adverse effects on pregnancy outcome and placentation.

The limitations of epidemiological studies are associated with difficulties of identifying individual exposure levels as well as the presence and management of many confounder factors such as nutritional and social status and smoking that challenges the establishment of causal relationships. To overcome these factors our group conducted experimental studies (murine model) using realistic concentrations of air pollutants, which mimic human exposures. Experimentation using real-world exposures to air pollutants provided corroboration of epidemiologic data and was used to identify the pathophysiological mechanisms involved. Changes in estrous cyclicity, fertility, number of ovarian follicles, embryonic implantation index, fetal development and placentation were some of the outcomes observed. In summary, this session will provide an overview of the effects of environmental air pollution on reproductive functions; in particular, adverse effects on pregnancy outcome and placentation.

Environmental pollution is shown to affect reproductive functions in humans. In some situations exposures are unavoidable, such as traffic-derived air pollution in urban areas. The relationship between gestational exposure to air pollution and fetal outcomes is receiving progressively greater attention. Epidemiological findings correlate low birth weight, higher frequency of preterm birth, neonatal mortality and compromised specific reproductive endpoints such as infertility with air pollution. The limitations of epidemiological studies are associated with difficulties of identifying individual exposure levels as well as the presence and management of many confounder factors such as nutritional and social status and smoking that challenges the establishment of causal relationships. To overcome these factors our group conducted experimental studies (murine model) using realistic concentrations of air pollutants, which mimic human exposures. Experimentation using real-world exposures to air pollutants provided corroboration of epidemiologic data and was used to identify the pathophysiological mechanisms involved. Changes in estrous cyclicity, fertility, number of ovarian follicles, embryonic implantation index, fetal development and placentation were some of the outcomes observed. In summary, this session will provide an overview of the effects of environmental air pollution on reproductive functions; in particular, adverse effects on pregnancy outcome and placentation.

Environmental pollution is shown to affect reproductive functions in humans. In some situations exposures are unavoidable, such as traffic-derived air pollution in urban areas. The relationship between gestational exposure to air pollution and fetal outcomes is receiving progressively greater attention. Epidemiological findings correlate low birth weight, higher frequency of preterm birth, neonatal mortality and compromised specific reproductive endpoints such as infertility with air pollution. The limitations of epidemiological studies are associated with difficulties of identifying individual exposure levels as well as the presence and management of many confounder factors such as nutritional and social status and smoking that challenges the establishment of causal relationships. To overcome these factors our group conducted experimental studies (murine model) using realistic concentrations of air pollutants, which mimic human exposures. Experimentation using real-world exposures to air pollutants provided corroboration of epidemiologic data and was used to identify the pathophysiological mechanisms involved. Changes in estrous cyclicity, fertility, number of ovarian follicles, embryonic implantation index, fetal development and placentation were some of the outcomes observed. In summary, this session will provide an overview of the effects of environmental air pollution on reproductive functions; in particular, adverse effects on pregnancy outcome and placentation.

Environmental pollution is shown to affect reproductive functions in humans. In some situations exposures are unavoidable, such as traffic-derived air pollution in urban areas. The relationship between gestational exposure to air pollution and fetal outcomes is receiving progressively greater attention. Epidemiological findings correlate low birth weight, higher frequency of preterm birth, neonatal mortality and compromised specific reproductive endpoints such as infertility with air pollution. The limitations of epidemiological studies are associated with difficulties of identifying individual exposure levels as well as the presence and management of many confounder factors such as nutritional and social status and smoking that challenges the establishment of causal relationships. To overcome these factors our group conducted experimental studies (murine model) using realistic concentrations of air pollutants, which mimic human exposures. Experimentation using real-world exposures to air pollutants provided corroboration of epidemiologic data and was used to identify the pathophysiological mechanisms involved. Changes in estrous cyclicity, fertility, number of ovarian follicles, embryonic implantation index, fetal development and placentation were some of the outcomes observed. In summary, this session will provide an overview of the effects of environmental air pollution on reproductive functions; in particular, adverse effects on pregnancy outcome and placentation.

Environmental pollution is shown to affect reproductive functions in humans. In some situations exposures are unavoidable, such as traffic-derived air pollution in urban areas. The relationship between gestational exposure to air pollution and fetal outcomes is receiving progressively greater attention. Epidemiological findings correlate low birth weight, higher frequency of preterm birth, neonatal mortality and compromised specific reproductive endpoints such as infertility with air pollution. The limitations of epidemiological studies are associated with difficulties of identifying individual exposure levels as well as the presence and management of many confounder factors such as nutritional and social status and smoking that challenges the establishment of causal relationships. To overcome these factors our group conducted experimental studies (murine model) using realistic concentrations of air pollutants, which mimic human exposures. Experimentation using real-world exposures to air pollutants provided corroboration of epidemiologic data and was used to identify the pathophysiological mechanisms involved. Changes in estrous cyclicity, fertility, number of ovarian follicles, embryonic implantation index, fetal development and placentation were some of the outcomes observed. In summary, this session will provide an overview of the effects of environmental air pollution on reproductive functions; in particular, adverse effects on pregnancy outcome and placentation.

Environmental pollution is shown to affect reproductive functions in humans. In some situations exposures are unavoidable, such as traffic-derived air pollution in urban areas. The relationship between gestational exposure to air pollution and fetal outcomes is receiving progressively greater attention. Epidemiological findings correlate low birth weight, higher frequency of preterm birth, neonatal mortality and compromised specific reproductive endpoints such as infertility with air pollution. The limitations of epidemiological studies are associated with difficulties of identifying individual exposure levels as well as the presence and management of many confounder factors such as nutritional and social status and smoking that challenges the establishment of causal relationships. To overcome these factors our group conducted experimental studies (murine model) using realistic concentrations of air pollutants, which mimic human exposures. Experimentation using real-world exposures to air pollutants provided corroboration of epidemiologic data and was used to identify the pathophysiological mechanisms involved. Changes in estrous cyclicity, fertility, number of ovarian follicles, embryonic implantation index, fetal development and placentation were some of the outcomes observed. In summary, this session will provide an overview of the effects of environmental air pollution on reproductive functions; in particular, adverse effects on pregnancy outcome and placentation.
The "Strange Case of Jennifer Strange" is based on the true story of the water intoxication death of a California mother. The activities will be demonstrated, and the pedagogical advantages of the 5E model for science education will be discussed.

1668 Inspector Tox Outreach Activity.

D. Hardej and A. Scharf. Department of Pharmaceutical Sciences, St. John's University, Jamaica, NY; Merck & Co., Whitehouse Station, NJ.

Inspector Tox was developed by the Mid-Atlantic SOT (MASOT) chapter as a means of introducing the basic concepts of toxicology to school-aged children. This program includes Inspector Tox an investigator of harmful or toxic events and helps guide the audience through determining if several "toxic scenes" set in the house, backyard, and at the beach are relatively safe or dangerous. The various scenes are devised to introduce a mix of potentially toxic compounds including chemicals (pesticides), natural toxins (bee sting, poison ivy), UV radiation (sunlight), social/behavioral toxicants (alcohol, cigarette smoking, and poor diet), and even includes components that the audience might not initially recognize as toxic, such as food allergies (peanuts) and dust.

1669 Silly Science and Other Activities for K–12 Outreach.

M. M. Bourgeois. EOH, University of South Florida, COPH, Tampa, FL.

Activities to explore dose, toxicity and therapeutic windows of drugs will be demonstrated and include describing dosages using familiar measurements (i.e. tablets, teaspoons, medicine cups, glasses, buckets and kiddie pools) that are toxic by showing children the different amounts of specific household substances (water, salt, sugar, baby aspirin, etc.) necessary to do them harm.

1670 Exploring Toxicology: Designing Learning Goals and Evaluation Strategies for Outreach Activities.

E. Shanee and K. L. Blank. Molecular and Environmental Toxicology Center, University of Wisconsin Madison, Madison, WI.

Molecular & Environmental Toxicology Center (METC) graduate students at the University of Wisconsin-Madison participate in toxicology outreach events to promote a better understanding of toxicology to the local community. METC currently has 37 graduate students, and 15 students (41%) have participated in at least one educational outreach activity over the past year. Two activities graduate students use to teach about toxicology are Carnation Intoxication and Tox Land. Carnation Intoxication uses colored dye added to the water of white carnations to show that plants can take up toxins from their environment along with water and nutrients. Learning goals for this activity are age dependent and include a basic understanding of toxicology and the concepts of bioaccumulation and experimental design. Tox Land is a game that takes participants on a path through global events related to toxicology while also highlighting local daily activities that have a minimal, if any, risk, and are overlooked in discussions of hazardous substances. Are the regulations currently in place adequate? What is the US government's viewpoint? What is the stance of industry and advocacy groups on the cosmetics regulatory framework? How does the European Union handle issues involving the safety of cosmetics? Recent scientific issues surrounding production, safety, and testing of cosmetics could well influence the regulatory arena in years to come. These include 1) the increasing use of nanomaterials in cosmetic products and 2) computational and high-throughput alternative test methodologies. Both these topics will offer a backdrop to current and future regulatory approaches.

1671 Resources for Toxicology K–12 Education Outreach: Updating the SOT K–12 Website.

The Society of Toxicology's Education K-12 Sub-Committee is updating the SOT website to increase support for K-12 education activities, share resources across the membership and with the public, and increase effectiveness in interacting with educators, parents and students. One main goal is to work with the Society membership to create the most useful resource website to help support excitement for toxicology through K-12 education outreach. Ideally, this website would be accessible to the public, easily searchable and contain hands-on activities, PowerPoint presentations and recommendations for increasing K-12 education outreach. Many SOT members are active in toxicology outreach, and many more would like to be but don't know where to start. Working with Society members, the K-12 Sub-Committee will include links to successful activities, including past Annual Meeting activities and ongoing Regional Chapter outreach activities. This resource website will serve as a tool for those interested in getting involved in K-12 education outreach, as well as for those interested in learning more about what toxicologists do.

1672 The Regulatory Framework for Cosmetics: Current Status, Recent Science, and Future Prospects.

P. Wedder. Toxicology and Environmental Health Information Program, National Library of Medicine, Bethesda, MD.

Cosmetic products represent an immense global industry. It has been estimated that the $60 billion cosmetics industry uses some 12,500 unique chemical ingredients in personal care products. These products and their chemical components are subject to varying degrees of regulation globally. In the US, the US FDA's regulatory authority over cosmetics is relatively minimal and different from that of other products regulated by the Agency, such as drugs, biologics, and medical devices. Although the US FDA can inspect cosmetic manufacturing facilities, respond to complaints of adverse reactions, and conduct research on cosmetics and their ingredients to address safety concerns, the Food, Drug, and Cosmetic Act does not subject cosmetics to US FDA premarket approval. The regulation of cosmetics in the European Union is considerably more stringent. A Safe Cosmetics Act of 2011 was introduced in the US House of Representatives in June, 2011, with the aim of ensuring that all personal care products are safe. It would establish labeling requirements, and a safety standard, and issue guidance prescribing good manufacturing practices for cosmetics and ingredients. People, largely though not exclusively women, are exposed to vast quantities of cosmetics over their lifetimes. Compared with the safety of most other products, cosmetics are commonly believed to present a minimal, if any, risk, and are overlooked in discussions of hazardous substances. Are the regulations currently in place adequate? What is the US government's viewpoint? What is the stance of industry and advocacy groups on the cosmetics regulatory framework? How does the European Union handle issues involving the safety of cosmetics? Recent scientific issues surrounding production, safety, and testing of cosmetics could well influence the regulatory arena in years to come. These include 1) the increasing use of nanomaterials in cosmetic products and 2) computational and high-throughput alternative test methodologies. Both these topics will offer a backdrop to current and future regulatory approaches.

1673 Safety Evaluation of Nanoparticles and Skin.

N. A. Monteiro-Riviere. Anatomy and Physiology, Kansas State University, Manhattan, KS.

This presentation will review the physicochemical properties such as size, shape, coatings, vehicles and charge on skin penetration of nanoparticles (NP) that may enhance or prevent toxicity. There are properties of a chemical/ NP that determines its propensity to cause dermatoxicity, which is the ability to penetrate skin and subsequently interact with biological components that could elicit a toxicological response. Recent advances of NP in consumer products such as cosmetics indicate safety concerns. Penetration of NP in skin is a controversial subject, partly because many factors that influence absorption were not studied and opinions of some investigators were generalized and based on limited studies of a few NP, many on large particles and not nanosize. Discrepancies may relate to differences in NP composition, surface chemistry, vehicles or solvents, techniques and methods of exposure, and analytical analysis, and duration of the experiment. This review will show how formulation, surface chemical alterations and mechanical stressing of skin and species can modulate the results.

1674 US EPA Computational Toxicology Predicting Cancer and Noncancer Outcomes for Cosmetics and Industrial Chemicals.

N. Kleinsteuber. National Center for Computational Toxicology, US EPA, Research Triangle Park, NC.

EPA's Computational Toxicology Research Program (CompTox), part of the broader Chemical Safety for Sustainability Research Program, is at the forefront of a major transformation in the field of toxicology in how chemicals are evaluated for potential effects on human health and the environment. EPA is partnering with the cosmetics company L’Oréal, pharmaceutical companies, European regulatory authorities, and other U.S. government agencies to research ways CompTox can decrease the cost of testing large numbers of chemicals, reduce animal use, identify
targeted testing strategies, and understand potential mechanisms of toxicity. Broad compound libraries may be screened and prioritized using rapid, automated high-throughput screening (HTS) assays with human gene and protein targets. Multiple HTS assay targets, e.g. chemokine expression in human primary skin cells, are highly relevant to cosmetics safety assessments. CompTox has already screened more than 1,000 chemicals in over 650 HTS assays in the ToxCast (toxicity forecaster) research program, including many key ingredients in personal care products, fragrances, and cosmetics. The L’Oréal partnership provides collaborative research funding and access to existing cosmetics ingredients safety data, which are compared to the ToxCast results to determine the utility of CompTox tools in the safety assessment of chemicals in cosmetics. CompTox research has also developed predictive models for cancer and non-cancer toxicity endpoints, with a focus on the molecular and cellular pathways that are the targets of chemical interactions. Using computational approaches, EPA is building decision support tools based on ToxCast in vitro HTS results to help prioritize cosmetics chemicals for further investigation, as well as applying and refining predictive models for a number of adverse health outcomes. This abstract does not necessarily represent EPA policy.

1675 Cosmetics—US FDA Regulatory Perspectives.

The two most important laws pertaining to cosmetics marketed in the United States are the Federal Food, Drug, and Cosmetic Act (FD&C Act) and the Fair Packaging and Labeling Act (FPLA). The presentation will cover the specific legal authorities granted to FDA under these two laws and the regulatory tools FDA uses to implement them. These regulatory tools include regulations, guidance, inspections, import monitoring, and other programs. The presentation will also cover other activities important to the oversight of cosmetic safety, such as FDA’s Volunteer Cosmetic Registration Program, the agency’s adverse event monitoring systems, outreach to consumers and health professionals, and more. The role of FDA’s research and other scientific efforts will be discussed. Examples of recent activities in areas important to cosmetic safety will be highlighted. Additional authorities that have been suggested for strengthening FDA’s monitoring of cosmetic safety and labeling will also be presented.

1676 Assessing the Safety of Cosmetics in the US.

Cosmetics in the United States have been regulated under the same legal framework for almost 75 years. The Cosmetic Safety Amendments Act of 2012 proposes to modernize the existing regulatory framework, and the proposed provisions in that legislation will be discussed. The responsibility for the pre-market assessment of the safety of cosmetics prior in the US, as in the EU, rests with the manufacturers. This presentation will compare the US regulatory system with that in the EU and discuss how the industry assesses the safety of cosmetic ingredients and products. The Cosmetic Ingredient Review (CIR) Expert Panel, is an independent group of dermatologists, toxicologists and others scientists who have, for over 35 years, assessed the safety of cosmetic ingredients in an open and public manner. The CIR is funded by the industry, but operates independently in a transparent manner. Current issues of interest in safety evaluation of cosmetic ingredients and products will be discussed.

1677 Safety Evaluation of Cosmetics and Their Ingredients in Europe: New Challenges Ahead.

Cosmetic products present on the European market must be safe for the consumer. In Europe, product safety is based on the safety of the ingredients (chemical structure, toxicological profile, exposure) and is the responsibility of the manufacturer, first importer or marketer. In July 2013, the EC Regulation n°1223/2009 will replace in all Member States the well-known Cosmetic Directive 76/768/EEC with its important sixth and seventh amendments. Under this RECAST, a so-called responsible person gets a key function in the follow-up of the safety of the products under consideration. This is not an easy task as the safety of cosmetics and their ingredients has to be guaranteed by the use of in vitro methods, replacing experimental animal testing. In the EU, during the last years the 3R principle (Reduction, Restriction, Replacement) of Russell and Burch has been implemented in the specific legislation of several types of products, including chemicals, pesticides, pharmaceuticals, food additives, … but the cosmetics legislation is the only one in the world allowing only replacement methods, which additionally need to be validated. Therefore, complete banning of animal testing of cosmetics and their ingredients has a tremendous impact with far reaching consequences. This presentation will cover the safety assessment process of cosmetics and their ingredients and the changes that have been introduced by shifting from legislation to a regulation (including special considerations for CMRs, nanomaterials…). Also, the actual status of validated in vitro methods will be given and the prospective for the near future will be discussed.

1678 Cosmetics: Health Risks, Choices, and Opportunities for Change.

The $60 billion cosmetics industry relies on over 8,000 unique ingredients to produce tens of thousands of products sold in the U.S. Women use an average of 12 products daily, with an average of 167 ingredients, and men use about half that. Products go on skin, lips, hands and around eyes. Consumers ingest, inhale, and dermally absorb ingredients, in various amounts. Biomonitoring studies have established that cosmetic chemicals are common pollutants in blood and urine. Are these exposures safe? FDA regulates the cosmetic industry, but lacks the authority to require premarket testing, review products before they are sold, or recall products known to pose risks. Lacking a mandatory safety standard for cosmetics, the industry makes its own determinations about what is safe enough for consumers. But recent studies have detected lead, formaldehyde and other hazardous compounds in some everyday cosmetic products. And many other ingredients are poorly tested, or show no toxicity information at all in the public scientific literature. With the industry under growing scrutiny and pressure, change is in progress. Consumer awareness is on the rise, some companies are removing ingredients of greatest concern, and Congress has introduced legislation to modernize cosmetics safety regulations.

1679 The DNT-EST: A Predictive Embryonic Stem Cell Test for Developmental Neurotoxicity Testing In Vitro.

Disturbances and diseases of the brain and nervous system such as attention-deficit hyperactivity disorder, dyslexia, sensory deficits, mental retardation, autism-like disorders, learning disabilities, and cerebral palsy has also put the vulnerability of the developing human brain to environmental chemicals exposure into the focus of public awareness. Most of the chemicals on the market have not been evaluated for their toxic potency, an issue now being addressed by the registration, evaluation and authorization of chemicals (REACH) legislation of the European Union. In order to answer the increasing need for toxicity testing, the development of reliable methods ensuring a higher throughput than the currently available test guidelines became a matter of risk assessment. One of the key aspects in this context is the application of alternative, non-animal approaches including in vitro test methods. Recently, we developed a new in vitro assay using mouse embryonic stem cells (mESC) to predict adverse effects of chemicals and other compounds on neural development - the so-called DNT-EST. After treatment of differentiating stem cells for 48 h or 72 h at two key developmental stages, endpoints for neural differentiation, viability and proliferation were assessed. As a reference we treated undifferentiated stem cells 2 days after plating for 48 h or 72 h in parallel to the differentiating stem cells, also measuring viability and proliferation. Here, we show that chemical testing of a training set comprising nine substances (six substances of known developmental toxicity and three without specific developmental neurotoxicity) enabled a mathematical prediction model to be formulated that can discriminate positive from negative DNT compounds with an in vivo - in vitro concordance of 100%. Thus, the mESC model introduced here might represent a useful tool for predicting adverse health effects of exogenous agents that affect brain development.

1680 Identification of Pathways of Developmental Neurotoxicity for High-Throughput Testing by Metabolomics.

1. The Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD;
2. University of Barcelona, Augst Pi i Sunyer Biomedical Research Institute, Barcelona, Spain.

Tox-21c proposed a paradigm shift in the field of toxicology. Instead of relying on traditional animal experiments, the report proposes the application of the latest advances in science and technology to develop more relevant test strategies. An area of the...
toxicology where Tox-21c could have a significant impact is developmental neurotoxicity (DNT). It is clear that cytotoxic concentrations, while Pb decreased neurite outgrowth in the absence of cytotoxicity. Rat neurons were less sensitive than hN2 cells in that no chemical was cytotoxic at the concentrations tested; however, tricresyl phosphate, t-butylyphenyl diphenyl phosphate, isodecyl diphenyl phosphate, and isopropylated phenyl phosphate decreased neurite outgrowth at 30 μM. These data suggest that some OPFs have the ability to affect neurodevelopmental processes in vitro at micromolar concentrations, and that human neurons may be more sensitive compared to rats. This abstract does not necessarily reflect U.S. EPA policy.

PL 1681 Reduced Nrf2 Signaling Contributes to Human Neuroprogenitor Cell (hNPC) Aging.
E. Fritsche, J. Schuwalow, S. Giersiepen and K. Gassmann. IUE, Düsseldorf, Germany.

During the normal brain aging process, neural progenitor cells (NPC) lose their capacities to proliferate and differentiate into neurons, which is associated with age-related impairment of cognitive functions. Molecular mechanisms causing NPC aging are unknown and also effects of chemicals, which might induce extrinsic brain aging are so far enigmatic. One common mechanism, however, well known to be involved in cellular aging processes, is oxidative stress. As a wide variety of toxicants cause cell damage through their ability to elicit oxidative stress, this study tests the hypothesis if changes in the oxidative stress response contributes to NPC aging. Therefore, young (1-2 months in culture (MIC)) and aged (3-9 MIC) human NPC, which grow as neurospheres, were studied for their abilities to proliferate and differentiate into neurons. Moreover, their capabilities to activate the nuclear factor erythroid 2-related factor2 (Nrf2) pathway and thus respond towards oxidative stress were investigated. Finally, Nrf2 was knocked down via lentiviral transduction.

Our data indicate that aged neurospheres reproduce the aging phenotype observed in brains in vivo: NPC proliferation and the potential to differentiate into neurons is decreased. Moreover, old’ NPC accumulate beta-galactosidase, which is an established aging marker. With regard to the antioxidant defense, young and old NPCs express mRNA for the transcription factor (Nrf2). However, Nrf2 protein is not induced in old NPC as it is challenged with H2O2 or tetrachlorohydroquinone (TCHQ) like it is in young cells. As a consequence, the Nrf2 downstream targets superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) are not up-regulated in aged NPCs either. Knocking down Nrf2 indicates that NPC proliferation and neuronal differentiation are dependent on sufficient Nrf2 signaling.

PL 1682 Effect of Organophosphorus Flame Retardants on Neuronal Development In Vitro.
W. Mundy1, T. Freudenreich1, K. Wallace1 and M. Behl1. 1ISTD, US EPA, Research Triangle Park, NC; 2Kelly Government Solutions, NTP/NIEHS, Research Triangle Park, NC.

The increased use of organophosphorus compounds as alternatives to brominated flame retardants (BFRs) has led to widespread human exposure. There is, however, limited information on their potential health effects. This study compared the effects of nine organophosphorus flame retardants (OPFs) with the BFR etraborombisphenol A and the known developmental neurotoxicants Pb and t-retinoic acid on neuronal proliferation and neurite outgrowth in vitro. Proliferation was assessed in human stem cell-derived neuroprogenitor (hNPC1) cells after a 24 hr exposure by counting the number of cells incorporating BrdU. Neurite outgrowth was assessed in human stem cell-derived (hN2) neurons and rat primary cortical neurons after 48 hr of exposure by measuring the length and branching of neurites labeled with βIII-tubulin antibody. Cytotoxicity was estimated by total cell counts. Cells were cultured and exposed to chemicals (0.003 to 30 μM) in 96-well plates and endpoints quantified using the Cellomics ArrayScan high content imager. In hNPC1 cells, Pb, t- retinoic acid, tetraborombisphenol A and a majority of the OPFs were cytotoxic at concentrations > 3 μM; however, tricresyl phosphate and triphenyl phosphate both decreased proliferation at 30 μM in the absence of cytotoxicity. In hN2 cells OPFs, tetraborombisphenol A and t-retinoic acid decreased neurite outgrowth at corresponding concentrations, while Pb decreased neurite outgrowth in the absence of cytotoxicity. Rat neurons were less sensitive than hN2 cells in that no chemical was cytotoxic at the concentrations tested; however, tricresyl phosphate, t-butylyphenyl diphenyl phosphate, isodecyl diphenyl phosphate, and isopropylated phenyl phosphate decreased neurite outgrowth at 30 μM. These data suggest that some OPFs have the ability to affect neurodevelopmental processes in vitro at micromolar concentrations, and that human neurons may be more sensitive compared to rats. This abstract does not necessarily reflect U.S. EPA policy.

PL 1683 PCB 95-Induced Dendritic Growth in Primary Cultures of Rat Hippocampal Neurons Is Dependent on mTOR Activation.

Despite being banned since the late 1970s, polychlorinated biphenyls (PCBs) remain persistent environmental toxicants that pose significant risk to the developing nervous system. We recently demonstrated that the non-dioxin-like PCB 95 alters neuronal connectivity by promoting dendritic arborization in cultured hippocampal neurons via ryanodine receptor (RyR)-mediated, transcriptionally driven mechanisms. PCB 95 sensitizes RyR and this interaction requires FKBP12. Interestingly, FKBP12 also regulates mammalian target of rapamycin (mTOR), and the mTOR signaling pathway enhances dendritic growth via increased protein synthesis. Based on these observations, we hypothesize that mTOR signaling contributes to the dendritic promoting activity of PCBs. To test this hypothesis, primary cell cultures dissociated from hippocampi of wildtype (Sprague Dawley) postnatal rats were plated at high density and exposed to PCB 95 (2,2′,3,3′,4,4′,5-tetachlorobiphenyl, 20 μM – 2 nM) in the absence or presence of rapamycin. Exposure to PCB 95 from days 7 to 9 in vitro increased dendritic growth in pyramidal hippocampal neurons in a concentration-dependent manner. Subsequent exposure to rapamycin at 20 nM, a concentration that inhibits mTOR activation, ameliorated the dendrite promoting activity of PCB 95. Ongoing studies are confirming that PCB 95 activates the mTOR signaling pathway implicated in dendritic growth, and determining whether these effects are RyR- or mTOR-dependent is a novel mechanism by which low level exposures to non-dioxin-like PCBs cause developmental neurotoxicity, and perhaps dysfunction of other cell types, such as immune cells, whose function is heavily dependent on mTOR signaling. Supported by NIH grants R01 ES014901 and P42 ES04699.

PL 1684 Diazinon and Diazoxon Impair Glial-Neuronal Interactions and Production of Neuritogenic Proteins in Primary Astrocytes.
D. M. Pizzurro1, G. Giordano1 and L. G. Costa1, 2. 1Department of Environmental and Occupational Health Sciences, University of Washington Seattle, Seattle, WA; 2Department of Neuroscience, University of Parma Medical School, Parma, Italy.

Many organophosphorus insecticides (OPs) are increasingly recognized as developmental neurotoxicants. However, the mechanisms by which they exert their neurotoxicity remain unclear. This project focuses on a widely-used OP, diazinon (DZ), and its active metabolite, diazoxon (DZO), and their potential to impair astrocytes’ ability to foster neuronal development. We have previously shown that astrocytes play a major role in fostering neurite outgrowth in neurons; in this project, a 50% decrease in the longest neurite length was observed in primary hippocampal neurons incubated with primary astrocytes previously exposed to 10 μM DZ or DZO. We have also shown that this effect is largely mediated by increased oxidative stress in astrocytes that results from exposure to DZ or DZO. To further elucidate how these compounds adversely affect astrocytes and disrupt normal glial-neuronal interactions, levels of the pro-neuritogenic extracellular matrix proteins fibronectin and laminin were evaluated by Western blot analysis and confocal microscopy. Fibronectin and laminin have been extensively shown to play a vital role in a variety of neurodevelopmental processes, including neurite outgrowth and differentiation. At the same concentrations that significantly inhibit neurite outgrowth, both DZ and DZO cause a 30–40% decrease in fibronectin and laminin protein levels in astrocytes. These decreases are prevented by astrocyte pre-treatment with the antioxidants melatonin and N-t-butyl-alpha phenylnitrone (PBN), further supporting the role of oxidative stress in the mechanism of neurotoxicity. These findings were confirmed by confocal microscopy analysis of extracellular fibronectin expression, which showed a 40% decrease after exposure to DZ or DZO. These results suggest that DZ and DZO impair neuronal development by adversely affecting astrocyte production and secretion of important neuritogenic factors.
Increased Oxidative Stress and Mitochondrial Dysfunction in a PARK2-Mutant iPSC Model of Environmental Risk in Parkinson’s Disease.

A. Aboud1, A. M. Tidball1, K. K. Kumar1, B. Han1, G. G. Li1, K. M. Erikson1, P. Hedera1, M. Neely1, K. C. Ess1 and A. B. Bowman1. Neurology, Vanderbilt University, Nashville, TN; 2University of North Carolina Greensboro, Greensboro, NC.

Interactions of environmental and genetic risk factors for Parkinson’s disease (PD) are believed to modify disease onset and progression in a patient-specific manner. We sought to examine such interactions by assessing sensitivities of neural progenitor cells (NPCs) differentiated from human induced pluripotent stem cells (iPSCs) to PD-relevant environmental toxicants. These iPSCs were derived from a patient (SM) with biallelic PARK2 mutations and preclinical PD as assessed by DaTScan, and from healthy control subjects (CA and CB). Mn exposure resulted in significantly higher ROS generation in SM than CA NPCs, but no difference in cytotoxicity or mitochondrial fragmentation was observed. Moreover, we found that SM NPCs accumulate significantly less intracellular Mn than CA NPCs. These results indicate heightened susceptibility of SM NPCs to Mn given the higher rate of ROS generation and the comparable cytotoxicity and mitochondrial fragmentation in the presence of significantly less intracellular Mn. While the accumulation of Ca was not different between SM and CA NPCs, it induced significantly greater ROS generation, loss of mitochondrial function and cytotoxicity in SM than CA NPCs. These differences in Ca exposure-associated phenotypes were not observed in the primary fibroblasts used to generate the iPSC lines. Given the role of PARK2 in mitochondrial integrity, heightened sensitivity of SM NPCs to manganese and copper may be due to suboptimal mitochondrial function in cells that lack functional PARK2. Our results support the hypothesis that genetic alterations may increase sensitivity to specific toxicants. We demonstrate here that iPSC technology can detect patient-specific and cell type-specific differences in vulnerability to PD environmental risk factors. Support: NIH ES016931 and NS078289

Different Micronuclear Induction of Mice Exposed to N-Ethyl-N-Nitrosourea at Light and Dark Dosing Times.

K. Ito1,2, S. Maumori1, M. Nakajima1, M. Hayashi1, H. Sakakibara2 and K. Shimoi1,2. Public Interest Incorporated Foundation Biostudy Research Center, Iwata, Japan; 2Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan; 3Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan; 4Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Japan.

Mammals, including human beings, have a circadian clock system to regulate behavioral and physiological processes. In this study, we investigated the effect of dosing time on micronuclear induction in the bone marrow by evaluating the frequencies of micronucleated peripheral reticulocytes (MNRETs) in mice exposed to N-ethyl-N-nitrosourea (ENU) to assess any difference in genotoxic sensitivity to chemicals between light and dark periods (inactive phase/deep sleep for rodents and active phase/awake phase for rodents). Nine-week-old male C3H/HeNc mice were treated intraperitoneally with ENU (12.5 or 25 mg/kg body weight) at zeitgeber time (ZT) 3 in the light period or ZT15 in the dark period, and then the time courses of the frequencies of the MNRETs were determined. The frequencies of the MNRETs induced by ENU increased time-dependently and peaked at 48 hr after treatment for ZT3 and ZT15, and were obviously higher in the ZT15 treatment group than the ZT3 treatment group. The MNRETs were measured at 48 hr after treatment with ENU (25 mg/kg body weight) at various dosing times (ZT0, 3, 6, 12, 15 and 18). The frequencies of the MNRETs in mice treated at ZT0, 15 and 18 were significantly higher than those in mice treated at ZT3, 6 and 12. These results suggest that genotoxic sensitivity to ENU in mouse bone marrow is different between light and dark periods maybe due to different biological responses (detoxification, cell cycle, DNA repair, etc.) related to treatment rhythms. These results in this study also suggest that varying treatment time points may change the toxicological activity of chemicals.

The Use of Immunofluorescent Techniques in the CB Human Lymphocyte Micronucleus Test for Discrimination of Clastogenic and Aneugenic Compounds.

A. Pohth and S. Bohnenberger. Genotoxicity and Alternative Toxicology, Harlan Interidget Cell Research, Rossdorf, Germany.

The micronuclear assay in human lymphocytes was developed as a short term screening test for the detection of both clastogenic and aneugenic chemicals. For human lymphocytes it is recommended to score micronuclei by the cytokinesis block (CB) method using cytochalasin B. The method was developed by Fenech and Morley, 1985, focuses exclusively on binucleated cells. However, recent studies suggest that micronuclei in mononucleated cells could provide complementary information. Results obtained with aneugenic compounds show a dose-dependent increase of micronuclei in mononucleated cells. At present, the underlying mechanism has not been clearly identified. In order to obtain more information a immunofluorescence technique was employed involving CREST analysis for detection of kinetochores proteins. As reference positive controls, Ethylmethanesulfonate (EMS) and Mitomycin C (MMC) were used as clastogenic.
compounds and Colcemid as an aneugenic compound. Both, MMC and EMS exert a clastogenic activity which lead to a dose-dependent increase in micronuclear-positive binucleates only. In contrast treatment with colcemid resulted in an increase in micronuclei in both mononucleated and binucleated cells. The high level of CREST+ micronuclei in mononucleated cells suggest that polyplloid cells which have undergone an incomplete endomitosis might be the case. Our results suggest that micronuclei in mononucleated cells can be used to investigate the aneugenic activity of chemicals in a fast and easy way, and can be included in the CB assay with human lymphocytes.

1690 Induction of Nucleotide Excision Repair Is Diminished in Heterozygous p53 Knockout Mice following Chronic Dietary Exposure to Aflatoxin B1

J.L. Mulder1, R. Mehta1, G.S. Bondy3, and T.E. Massey1. 1Pharmacology and Toxicology, Queen's University, Kingston, ON, Canada; 2Toxicology Research Division, Health Canada, Ottawa, ON, Canada.

Aflatoxin B1 (AFB1), is produced by Aspergillus species, molds that grow on grains, oilseeds and spices. AFB1, is biotransformed in vitro into a highly reactive metabolite that binds to DNA, forming DNA adducts that may induce cancer if not repaired. p53 is a tumour suppressor gene implicated in both AFB1 carcinogenesis and the p53 that binds to DNA, forming DNA adducts that may induce cancer if not repaired.

Extracts from lungs of mice treated with 1.0 ppm AFB1 or extracts from chronic AFB1 exposure indicates a homeostatic response to DNA damage. This study determined the haplotype structure of XPC and found a correlation between XPC haplotypes to low UV dose to chromosomal damage.

In conclusion, the increase in NER activity seen in wild type mice following extracts from lungs of mice exposed to 0.2 ppm AFB1 (p<0.05), and no difference was observed in extracts from lungs of mice exposed to 0.2 ppm AFB1, (p>0.05). In p53(-/-) mice, repair of AFB1,N7-Gua adducts was 124% and 96% greater than control in lung extracts from mice exposed to 0.2 ppm or 1.0 ppm AFB1, respectively, and 224% greater than control in liver extracts from mice exposed to 0.2 ppm AFB1, (p<0.05). In p53(+/-) mice, repair of AFB1,N7-Gua was only 45% greater than control in extracts from lungs of mice exposed to 0.2 ppm AFB1, (p>0.05), and no difference was observed in extracts from lungs of mice treated with 1.0 ppm AFB1, or extracts from livers of mice treated with either AFB1, concentration. When comparing AFB1, effects on NER activity after normalizing to untreated tissue, the induction of NER activity was significantly attenuated in p53(-/-) mice compared to wild type controls in both lung and liver and AFB1, dose had a significant effect in p53(-/-) mice. In conclusion, the increase in NER activity seen in wild type mice following chronic AFB1 exposure indicates a homeostatic response to DNA damage. This hematopoietic response was diminished or lost in p53(+/-) mice, which is consistent with p53 having a key role in regulating NER. (Supported by CIHR Grant No. MOP-89098 and GRDII)

1691 XPC Haplotypes Alter Nucleotide Excision Repair and Levels of UV-Induced Genetic Damage

C.M. Rondelli1,2, C.J. Eret1, C.E. Cross1, M. Xu1 and S.Z. Abdel-Rahman1,2, 1Cell Biology & Environmental Toxicology, University of Texas Medical Branch, Galveston, TX; 2Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX; 3Epidemiology, MD Anderson Cancer Center, University of Texas, Houston, TX.

The XPC protein encoded by the polymorphic XPC gene is essential for initiating global genome nucleotide excision repair (NER). Over 90 single nucleotide polymorphisms (SNPs) have been reported in XPC, but only a few were evaluated as disease risk modifiers with conflicting results. SNPs do not exist as independent variants in the genome but as combinations forming specific haplotypes due to linkage disequilibrium (LD) between them. The impact of XPC haplotypes on DNA repair capacity (DRC) is not known. Using bioinformatics, we recently determined the haplotype structure of XPC and found a correlation between XPC haplotypes and genetic damage in smokers. In this study we test the hypothesis that XPC haplotypes influence DNA damage by altering NER capacity through modifying transcription and/or translation. To test this hypothesis, we exposed human lymphoblastoid cell lines representing different XPC haplotypes to low UV dose to induce pyrimidine-6-4-pyrimidone photoproducts (6-4PPs) and cyclobutane dimers (CPDs) formation. Levels of these adducts (reflecting DNA damage) and their rate of removal over time (representing DRC of the cells) were determined to evaluate the effect of XPC haplotypes on NER. We found that XPC haplotypes do not only influence NER, but that the haplotype influence is affected by the adduct being repaired. To provide a mechanistic explanation to our findings, we determined XPC mRNA and protein expression levels in different cell lines as a function of time after exposure. Our data indicate that XPC haplotypes significantly influence the rate of translation and transcription. Additional in-depth mechanistic studies examining the effects of haplotypes on XPC transcription, translation, and function are currently in progress to clarify the role of XPC haplotypes in disease risk. (Supported by F31-013953; T32-07454; P30-006676; K07-CA093592; CA123208.)

1692 Evaluation of High-Throughput Mutation Test with Proprietary Pharmaceutical Candidates

[Background] High-Throughput Fluctuation Test (HTFT) is a bacterial gene mutation assay in Salmonella typhimurium with the same endpoint as that of the Ames assay. HTFT requires only a few mg of a test sample for the assay, which makes it possible to incorporate the assay into an early drug developmental stage. It is reported that the results in HTFT have a high concordance with the Ames assay results for well-known positive and negative control compounds. In the present study, to assess the availability of the test to early drug screening, we tested our proprietary pharmaceutical candidates in HTFT.

[Method] HTFT was performed for 47 our proprietary pharmaceutical candidate compounds in TA100 and TA98 with and without metabolic activation system prepared from rat liver (S9). Most of the compounds tested in this study were predicted as not having any obvious structural alerts for mutagenicity by a commercially available in silico system, DEREK for Windows. Microplates were used during the pre-incubation and incubation period, and mutation was detected with a pH indicator, which reflects the bacterial growth in medium. All the test compounds were also evaluated in the conventional Ames assay using five strains and the results were compared with HTFT results.

[Results and Discussion] The sensitivity (the proportion of positives in Ames assay correctly identified by HTFT), specificity (the proportion of negatives in Ames assay correctly identified by HTFT) and the concordance between the both assay results for a total of 47 test compounds were 88% (23/26), 86% (18/21) and 87% (41/47), respectively. In conclusion, the results of the present study indicate that HTFT is a reliable assay with a high sensitivity and specificity for detecting genotoxic compounds even among pharmaceutical candidates without obvious mutagenic structural alerts as well. Considering the advantage with respect to the amount of required sample and potential throughput capacity, HTFT is therefore thought to be a good screening tool for genotoxicity in the earlier drug screening.

1693 Establishment of the Comet Assay and Micronucleus Test Using Chimeric PXB-Mice® with Humanized Liver

C. Tateno1,2, Y. Ishida1,2, M. Kakuni1, M. Fukushima1, J. Tanaka1, S. Masumori2, M. Nakajima3 and M. Hayashi2, 1PhoenixBio Co., Ltd., 2Higashimurooka, Japan; 3Liver Research Project Center, Higashimurooka University, Higashimurooka, Japan; 4Public Interest Incorporated Foundation, Bioafety Research Center, Iwata, Japan.

Genotoxicity studies have been performed as in vitro screening tests to predict carcinogenesis and genetic disorders in humans. Notably, the comet assay and micronucleus test may be used to detect the in vivo genotoxicity of test compounds and their metabolites in rodents. However, metabolic activities differ between humans and rodents. Thus, we developed humanized chimeric PXB-mice®—whose liver retains human-type metabolic activities—by using albumin enhancer/promoter-driven urokinase plasminogen activator transgenic/severe combined immunodeficiency disease (uPA/SCID) recipient mice. Using the PXB-mice, we performed a comet assay and micronucleus test of N-ethyl-N-nitrosourea (ENU). At the SOT 2012 Annual Meeting, we presented that a dose-dependent increase in the number of positive cells was observed (i) in the comet assay using liver, (ii) in the micronucleus test using bone marrow, but not (iii) in the micronucleus test using liver, which is probably because of insufficient mitotic condition in the liver. In the present study, we established a new type of PXB-mice by using cDNA-uPA/SCID recipient mice, which would be expected to supply a higher mitotic condition for human hepatocytes. Cryopreserved human hepatocytes from a 2-year-old Hispanic were transplanted into cDNA-uPA/SCID mice. The 7- or 9-week-old male new PXB-mice were orally treated daily with ENU at 25 mg/kg body weight for 2 or 4 weeks. The liver and femur bone marrow were collected from the PXB-mice and employed in the comet assay and micronucleus test. The number of positive cells significantly increased (i) in the comet assay using hepatocytes and also in the micronucleus test using (ii) bone marrow or (iii) hepatocytes from the 7-week-old male PXB-mice treated orally with ENU for 4 weeks. In conclusion, we established comet assays and micronucleus tests using a new type of PXB-mice to predict human genotoxicity in vivo.
1694 Reconstructed 3D Human Skin Micronucleus Assay: Preliminary Prevalidation Results.
1Kao Germany GmbH, Dormstadt, Germany; 2Procter & Gamble Company, Cincinnati, OH; 3Marilyn Aardema Consulting LLC, Fairfield, OH; 4Otsuka, Paris, France; 5IVS Inc., Gathersburg, MD; 6Hewitt Consulting, Erbachsen, Germany; 7Consulting+Services, Koeln, Germany; 8Cosmetics Europe, Brussels, Belgium.

The skin is the main route of exposure of many chemicals and cosmetic ingredients; therefore, Cosmetics Europe (formerly COLIPA) has funded projects to establish, and evaluate more realistic models for genotoxicity using 3D reconstructed skin (RS) tissues. The aim is to use these to follow-up on positive results from the in vitro genotoxicity battery[1], which has been criticized for its low specificity. The RS model, EpiDermTM, was combined with the micronucleus (MN) assay and the resulting “RSMN” assay exhibited good intra- and inter-laboratory reproducibility[2], and correctly identified 3 coded chemicals as being either positive or negative[3]. A detailed protocol for the RSMN assay was published, together with a harmonized scoring atlas for micronuclei[4]. We have extended the number of coded chemicals to 29 as part of the pre-validation process. Eight of these were true positives, 11 were false positives and 10 were negatives. There was an excellent specificity (88%), demonstrating that the RSMN has a good potential to improve the specificity of in vitro genotoxicity assays as a whole. Of the 8 carcinogens with a suggested genotoxic mode of action, 5 were correctly predicted. While this indicates that the model shows decent sensitivity, the total number of true positives was considered too low to draw a final conclusion about the sensitivity of this assay. Therefore more coded compounds will be tested in a next project phase with a focus on genotoxic carcinogens. Overall, these data support the use of the 3D skin EpiDerm™ model for genotoxicity testing of dermally applied chemicals. [1] Pfühler et al. 2010, Reg Pharm Tox; [2] Hu et al. Mutat Res. 2009, 673(2):92; [3] Aardema et al. 2010, Mutat Res. 2010, 701(1-2):123, [4] Dahl et al. Mutat Res. 2011, 720(1-2):12. Sponsored by CoEur and ECVAM

1695 Reduction of Ataxia telangiectasia Associated Death Rates in ATM KO Mice with Yel002.
M. J. Davoren and R. H. Schiestl. Environmental Health Science, University of California Los Angeles, Los Angeles, CA.

Ataxia Telangiectasia is a devastating disease that affects 1 in every 40,000–100,000 individuals worldwide. 1% of Americans carry a copy of a compromised Ataxia Telangiectasia Mutated (ATM) gene, an important signaling protein involved in both DNA repair and apoptosis. Having two copies of defective or null alleles leads to the disease, symptoms including motor defects (ataxia), extreme sensitivity to ionizing radiation, immunodeficiency, and predisposition to cancer. Lymphoma rates, in particular, occur at nearly 100 times the normal. Despite all of the defects, patients with AT are mentally normal, and many promising young high school and college graduates have their lives cut short by 22, the median age of death. The only treatments are palliative, focused on treating inclusions that result due to the compromised immune system. The Schiestl Lab investigated the nature of DNA damage and its repair. During a yeast based high-throughput screen for agents that mitigate the damaging effects of radiation, the candidate drug Yel002 was identified. In later trials on healthy mice subjected to lethal radiation doses, Yel002 was found to significantly increase survival, even when administered a day after the insult. As radiation damage leads largely via strand breaks in DNA, it was thought to act by upregulating the DNA repair process. As AT patients symptoms result from DNA repair deficiency, we decided to treat ATM KO mice with the drug weekly in a long term study to test death rates. Previous data on this same mouse strain showed that these mice usually die of cancer in the sterile facility by 50 weeks on average. Mice treated with a weekly injection of 75mg/kg Yel002 showed far lower death rates – over 80% are still alive at week 60, and survival looks promising as it continues.

1696 Classification of Genotoxic Mode of Action in TK6 Cells via a High Content, Flow Cytometric In Vitro Micronucleus Assay.

This laboratory has previously described a high content flow cytometric method for scoring micronuclei (In Vitro MicroFlow®) in CHO-K1 cells that is capable of discriminating aneugenic from clastogenic modes of action (MoA). It would be useful to capture MoA information when studying other cell lines, for instance the human cell line TK6. Previous reports suggested that the proportion of metaphase cells representing a specific mode of action can effectively discriminate between clastogenic and aneugenic MoA. Therefore, we set out to combine a flow cytometric micronucleus scoring method with a technique for enumerating metaphase cells and evaluate the multiplexed assay’s ability to discriminate clastogenic and aneugenic responses. In order to accomplish metaphase scoring, the fluorescent reagent anti-histone H3 (pS28) which recognizes phosphorylated form of the histone, was incorporated into the flow cytometric micronucleus assay procedure. TK6 cells were cultured in a continuous exposure design with each of ten reference clastogens and seven reference aneugens. At the time of harvest (24 to 27 hrs after treatments were initiated), cells were processed according to In Vitro MicroFlow kit instructions; with the exception that anti-H3-P was incorporated into the sample processing. Data acquisition occurred for 4 mins per sample and provided approximately 2,000 metaphase cells per replicate. Each of the genotoxicants was observed to cause increased MN frequencies and relative survival values to decrease in a concentration-dependant manner. Whereas the proportion of metaphase cells to total cells (as well as the proportion of metaphase cells to G2/M cells) were decreased by each of the ten reference clastogens, they were elevated by each of the seven aneugens. These data indicate that automated and multiplexed micronuclei and metaphase cell-scoring of TK6 cells provide strong aneugenic versus clastogenic MoA signatures that effectively discriminate between these classes of genotoxic agents.

1697 Qualification of 96-Well High-Throughput In Vitro Micronucleus and Comet Assays. T. E. Lawlor1, K. Punt1, M. Aardema2 and L. F. Stankowski, 1BioReliability by SAFC, Rockville, MD; 2Marilyn Aardema Consulting, Fairfield, OH.

We recently qualified 96-well high throughput versions of the in vitro micronucleus (MN) assay in CHO cells, and the Comet assay in TK6 cells. The MN assay evaluated the ten reference compounds in OECD TG 487 using MicroFlow® kits (Litron Laboratories; 10 independent trials), while the Comet assay evaluated six reference compounds using the Japanese Center for Validation of Alternative Methods (JaCVM) Comet validation protocol (version 6.2; 4 independent trials). All trials were performed, using 7-10 concentrations in duplicate cultures with and without exogenous metabolic activation (S9), to assess inter- and intra-experimental variability, as well as sensitivity and specificity. Using an empirical analysis of the results, it was possible to reduce the criteria for a positive response for micronuclei and hypodiploidy to 2- and 6-fold concurrent vehicle control values, respectively, thereby increasing sensitivity without an appreciable loss of specificity. Mitomycin C and cyanine arabinoside were reproducibly positive without S9, as were benzo[a]pyrene and cyclophosphamide with S9; all four compounds produced a clastogenic signature. Colchicine and vinblastine were positive with and/or without S9, and both produced a significant increase in micronuclei and hypodiploid cells, indicative of an aneugenic mechanism of action. In contrast, di(2-ethyl-hydroxyethyl)stilbestrol, mitomycin C, and glyphosate were negative in all trials and at dose levels with and without S9 except for one concentration of glyphosate in one trial with S9. Reproducible positive results were observed in the Comet assay for the genotoxins 2-aminoanthracene +S9, and 9-aminoacridine, ethyl methanesulfonate and methyl methanesulfonate ~S9, while reproducible negative results were observed for the nongenotoxins cycloheximide and triton-X ~S9. These results support the utility of these high throughput assays for genotoxicity screening in general and are being employed in the US EPA ToxCast program.

1698 Integration of Pig-a and Micronucleus Endpoints into a 28-Day Rodent Toxicity Assay with Urethane. L. F. Stankowski1, M. Aardema2, T. E. Lawlor1, S. E. Miller1, S. Roy1, Y. Xu1 and R. H. Ellekai1. 1BioReliability by SAFC, Rockville, MD; 2Marilyn Aardema Consulting, Fairfield, OH.

Urethane is a rodent carcinogen (by po, ip, sc and inhalation routes) and is mutagenic and clastogenic in vivo, but generally considered non-genotoxic in vitro. Thus, it is an important chemical to evaluate the utility of the Pig-a in vivo gene mutation assay. As part of the Pig-a international validation trial, we examined the induction of CDS9-negative reversion and total red blood cells (RET+ and RBC+CD71+) in the peripheral blood of male Sprague Dawley® rats treated with urethane for 29 consecutive days (25.0, 100 and 250 mg/kg/day, po). Animals also were evaluated for micronucleated reticulocytes (mnRET) in peripheral blood on Days 4, 15 and 29. Ethylmethane sulfonate (EMS; 200 mg/kg/day on Days 3, 4, 13, 14, 15, 27, 28 and 29) and sterile saline (daily) were evaluated as positive and vehicle controls, respectively (all n = 6). All animals survived to Day 29, no animals exhibited overt signs of toxicity due to urethane, and there were no significant differences in body weight gain between urethane and control groups. Significant,
Safety assessment of new products for human use requires genotoxicity testing. Current in vitro assays have low specificity resulting in a high rate of false positives that may be due to use of transformed cell lines, non-physiological exposures, and lack of normal metabolism. Furthermore, the 7th amendment to the Cosmetics Directive banned in vivo genotoxicity testing in 2009.

The EpiDerm is a 3D normal human cell-based epidermal model that is highly reproducible, contains a skin-like barrier, and possesses biotransformation capabilities including CYP450, GST, and UDP enzyme activity. The RSMN assay utilizes topical application of test materials in a similar fashion to actual human contact. Test materials are dosed 2 to 4 times every 24 h in the presence of Cytochalasin B and are removed from the EpiDerm 4 h after dosing. Altogether, 50 materials (24 direct genotoxins, 14 non-genotoxins, and 12 genotoxins that require metabolic activation) have been analyzed in the RSMN assay.

Analysis of the complete set of chemicals resulted in 93.3% Sensitivity, 100% Specificity, and 95.5% Accuracy. In addition, a co-culture system that utilized a lymphoblast cell line TK6 cultured beneath of the EpiDerm tissues was used as a target to expand the relevance of dermally applied compounds to systemic carcinogenicity. Micronucleus induction in TK6 cells was assessed after treatment of the EpiDerm with Mitomycin C, β-Propiolactone, and Ethyl Methanesulfonate. The βEpiDerm with Mitomycin C, α-EpiDerm with Mitomycin C, and βEpiDerm with Mitomycin C were also co-cultured with nontoxic and toxic compounds, respectively, to evaluate the utility and sensitivity of the Pig-a in vivo gene mutation assay. Samples also were collected for evaluation of chromosome aberrations in peripheral blood lymphocytes; micronucleus induction in bone marrow; and DNA damage in peripheral blood and various organs using the Comet assay (the 29th dose being required for the Comet endpoint at terminal sacrifice). However, these latter analyses are ongoing.

Identification of compounds with the potential to induce DNA damage is an important component of the chemical safety evaluation process. Micronuclei (MN), a frequently used endpoint for genotoxicity studies, are formed by clastogens inducing acentric chromosome fragments or aneugens disrupting anaphase during cell division. The traditional in vitro micronucleus (IVMN) test uses trained individuals to manually count MN, which is both labor intensive and time consuming. Here, we compare the performance of two automated high throughput methods for MN detection using CHO-k1 cells in 384-well format. Method 1 is a high-content MN assay using the Thermo Scientific Arrayscan VTI. Method 2 is the IntelliCyt Corp high capacity flow (HCF)-based High Throughput Flow Cytometry (HTFC) Screening System® using the In Vitro MicroFlow® (IntelliCyte Laboratories). For this comparison, cells were exposed to 10 compounds (2 dilutions, selection based on solubility, cytotoxicity, dose range finding, or 100 μM limit concentration) for 24 h, and processed on both systems, or incubated with cytochalasin B (CB) for another 24 h prior to Arrayscan analysis. The compounds used included clastogens (etoposide, camptothecin, methyl methanesulfonate, bleomycin), aneugens (colchicine, griseofulvin, vincristine, geldanamycin), and non-genotoxic ones (nalidixic acid, sodium chloride). Both platforms correctly identified the known MN-inducing compounds and the 2 non-genotoxic compounds. Scoring of a 384-well plate required ~3h for the ArrayScan and 30m for the HTFC; the latter platform was also able to distinguish aneugens from clastogens. These data show that the output of the IVMN test can be increased dramatically to permit screening large chemical libraries on a robotic platform. Supported by NIEHS Interagency Agreement Y3-ES-7020-01.

Human susceptibility to environmental carcinogens is highly variable. Epidemiological studies have identified genes that confer resistance; however, these studies are limited due to small sample sizes. We use Saccharomyces cerevisiae (yeast) to profile eukaryotic genes that confer resistance to environmental carcinogens, such as the potent hepatocarcinogen, aflatoxin B1 (AFB1). A yeast collection is available containing ~5,000 diploid strains homzyogous for individual gene knock-outs. Each gene knock-out is bar-coded and can be identified by high-throughput DNA sequencing. Since many carcinogens require P450-mediated activation, we introduced human CYP1A2, constitutively expressed on a high-copy expression vector, in the yeast diploid collection. We verified P450 expression in selected mutants by Western blots. To identify which strains are AFB1 sensitive, cells were inoculated in 96 well plates and growth was measured in a plate reader. To expedite results, we switched to high-throughput DNA sequencing of bar code sequences using an illumina platform. Results indicate the importance of the recombinational and excision repair pathways in conferring AFB1 resistance, and the accumulation of AFB1-N7-guanine DNA adducts in nucleotide excision repair (NER) mutants. The functional importance of both recombination and NER repair is also further indicated by the presence of carcinogen-associated DNA repair foci that appear in AFB1-exposed cells, and the extreme sensitivity of double mutants lacking both recombinational and nucleotide excision repair. Conclusions: We have modified the yeast diploid strain collection to profile the genome resistance to P450-activated carcinogens, and identified genes in the recombinational and NER pathways that confer resistance. Further studies will identify orthologous human genes that confer carcinogen resistance. The yeast strain collection will be valuable in monitoring resistance to additional P450-activated chemicals and drugs.
Ultra-violet (UV) irradiation is the most ubiquitous environmental inducer of skin cancer and melanoma. UV exposure creates DNA photoproducts primarily cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4 PP). These cause mutations and block DNA replication, unless repaired by nucleotide excision repair (NER). Thymine repeats (TT) on G-rich strands of telomeric DNA are hotspots for CPD formation. Telomeres are DNA-shelterin protein complexes at ends of chromosomes, reported to lack a defined NER pathway for CPD repair. Diminished binding or loss of shelterin proteins TRF1 and TRF2 at telomeres cause telomere deprotection and end-to-end fusions directly leading to genomic instability. Also TRF2 binds to the key NER protein XPF-ERCC1 and recruits it to telomeres. Our working hypothesis is that telomeric photoproducts are repaired at slower rates compared to genomic lesions and that this repair inhibition involves interactions between XPF-ERCC1 with TRF2.

We measured photoproduct formation and repair in telomeres purified from human osteosarcoma(U2OS) cells exposed to UVC via a novel dot blot assay. We report a method for direct quantification of photoproducts formed in vivo and ensuing repair based on a standardized qPCR assay for DNA damage. Photoproducts were detected in genomic and telomeric DNA using specific antibodies following exposure of cells to 10 J/m2 UVC and after recovery times of 0 to 12 hours. CPDs decreased in genomic DNA after 12 hours but persisted in telomeric DNA. Southern blot assays using radio-labeled oligonucleotides that bind to telomeric DNA confirmed enrichment of photoproducts in purified fractions. To investigate possible mechanisms for repair inhibition, we tested directly effect of TRF2 on NER protein XPF-ERCC1 via enzyme activity assays. We discovered that nuclease cleavage activity of purified XPF-ERCC1 on a stem-loop DNA substrate was completely abolished by TRF2. We also find that the repair process is not the same in genomic and telomeric DNA. Our results provide the first direct biochemical evidence towards quantifying critical UV damage at telomeres and elucidating NER pathway regulation by shelterin.

1704 Oxidative Stress-Induced PIGO Mutations in DT40 Cells: Critical Role of NHEJ and TLS Repair Pathways in ROS-Induced Mutations.

V. Sharma¹, L. B. Collins¹, L. A. Sweeney², and I. Nakamura².¹Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC; ²Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC.

A major mechanism resulting in the genetic alterations that can lead to cancer is through the induction of mutations in genes controlling vital cellular functions. Genotoxic chemicals cause chemically specific DNA adducts that can result in gene mutations, whereas non-genotoxic carcinogens can exert their effects through oxidative stress. The cells in animals, humans, and cell culture are subjected to continuous endogenous DNA damage arising mainly from oxidative stress and depurination. To understand mechanisms by which oxidative stress causes mutations, hydrogen peroxide (H2O2) was chosen as a model compound. 8-oxo-dG, a major DNA lesion generated during oxidative DNA damage showed non-linear increases following H2O2 treatment. Similarly, H2O2 caused a significant increase in PIGO gene mutations in parental DT40 cells. In addition, to study the critical DNA repair pathways associated with the oxidative stress, DNA damage response analyses were performed in different repair protein deficient DT40 cells. Hetersensitivity of RAD18, REV1, Rad54, Rad51c, Fen1, POLk, POLo, Ku70, LigII deficient cells to H2O2 suggests that homologous recombination (HR), non-homologous end joining (NHEJ), translesion synthesis (TLS), and base excision repair (BER) are essential for tolerance to oxidative DNA damage. Due to the error prone nature of NHEJ and TLS repair pathways, we hypothesize that H2O2 induced mutation levels may be decreased in NHEJ and TLS deficient cells. As we expected, Ku70 (NHEJ) and REV1 (TLS) deficient cells revealed a significant decrease in PIGO mutation frequency which might be due to the lack of these error prone pathways in the cells. This indicates that NHEJ and TLS pathway may play an important role in the mutagenesis observed during oxidative stress.

1705 Evaluating the Role of p53 in Cellular Fate and Micronuclear Induction following Exposure to Etoposide and MMS.

R. A. Cleweli¹, B. Sun¹, S. M. Ross¹, A. Scotti², Y. Adelye¹ and M. E. Andersen¹.¹The Hamner Institutes, Research Triangle Park, NC; ²Unilever, Colworth, United Kingdom.

Etoposide (ETP) and methyl methanesulfonate (MMS) represent genotoxic chemicals with direct and indirect mechanisms of DNA damage. ETP inhibits topoisomerase II, leading to double strand breaks (DSBs). MMS is an alkylating agent that induces single strand breaks and DSBs. To evaluate the role of p53 in downstream protein response and cell fate with ETP and MMS exposure, we generated p53 knockdown (KD) HT1080 cells and utilized HCT116 p53 knockout (KO) cells for comparison with wild-type human HT1080 fibrosarcoma and HCT116 colon carcinoma cells. In WT cells, MMS and ETP induce DSBs (μ- H2AX), (s15)p-p53, and p53 protein at 100 μM and 0.2 μM, respectively. Despite similar induction of p53, cellular response was different for the chemicals: ETP induced apoptosis, M-phase arrest, and a large increase in micronuclei (MN), while MMS induced S-phase arrest and showed little induction of apoptosis or MN. p53 regulated protein MDM2, p21 and Wip1 responses were reduced in KD HT1080s and completely abolished in KO HCT116s. Apoptosis was also significantly reduced in p53 KD/KO cells. Cell cycle arrest, however, was similar in WT and p53 KD/KO cells. Basal MN levels were approximately 1.8-fold higher in p53 KO cells than WT cells at 27 and 40 hr. However, chemical induction of MN in WT and p53 KO HCT116 cells showed notable time-dependencies. MN were slower to form in p53 KO cells; only the 40 hr time point showed a strong increase in MN induction in KO cells compared to WT cells after ETP or MMS treatment. While the total frequency of MN 40 hours after treatment was higher in KO cells than WT. Interestingly, the ratio of MN in p53 KO cells to WT cells remained constant across doses (KO:WT ~ 2:1) and chemicals. It appears that the efficiency of DSB break repair is similarly affected by p53 in the naive and chemical treated cell at the tested doses (≤ 1 μM ETP; ≤ 200 μM MMS). Mechanistic studies of the relationship between DSBs, p53 function and MN are important in assessing the value of MN as functional marker of DNA damage.
Ethylene oxide (EO), a reactive industrial chemical, induced alveolar/bronchiolar adenomas and carcinomas in the lungs of B6C3F1 male mice at atmospheric concentrations of 50 and 100 ppm. The purpose of the current study was to characterize the mode of action (MoA) for lung tumors induced by EO. Male B6C3F1 mice were exposed by inhalation (6 hours/day, 5 consecutive days/week) to 0, 10, 50, 100, or 200 ppm (4 weeks) or 0, 100, or 200 ppm (8 or 12 weeks) and examined for incidence of micronuclei in the peripheral blood (MNT), DNA damage (Comet assay), histopathology of the lung, and characterization of DNA- and glutathione-adducts and lipid peroxidation in the tumor target and non-target tissues. In general, reactive oxygen species-related adducts (8-OHdG, CrotongG, M1GdG) were only minimally affected, whereas alkylated DNA adducts (O6-HEdG, N1-HEdA, N6-HEdA, and N7-HEG) were increased more robustly. There was a dose-dependent increase in glutathione adducts (HESG) in all tissues, although severe GSH depletion was not noted. There were no treatment-related changes in the MN-RET (reticulocyte) frequency or %RET. Comet analysis of the lung revealed a dose-dependent, statistically significant increase in DNA damage at 50 ppm and above. There was no treatment-related histopathology in the lung, although a slight decrease in the proportion of Ki-67 positive cells was observed at 4 and 8 weeks in the terminal bronchioles. In summary, these observations reveal a complex sequela above. There was no treatment-related histopathology in the lung, although a slight decrease in the proportion of Ki-67 positive cells was observed at 4 and 8 weeks in the terminal bronchioles. In summary, these observations reveal a complex sequela above. Therefore, the shift in K-ras mutation spectrum observed in EO-induced mouse lung tumors may be due to effects on intracellular signaling pathways and selection of preexisting mutant cells, rather than direct mutagenesis of the K-ras gene by EO.

Genotoxic and Epigenetic Effects of Tamoxifen Exposure in Mouse Liver.

Tamoxifen is a widely used non-steroidal anti-estrogenic drug for treatment and prevention of breast cancer in women; however, there is sufficient evidence that tamoxifen is hepatocarcinogenic in rats, but not in mice. Currently, there is insufficient knowledge to clarify the absence of hepatocarcinogenic effect of tamoxifen in mice. In light of this, the goal of the present study was to investigate the mechanisms of mouse resistance to tamoxifen-induced liver carcinogenesis. Feeding female WSB/EiJ mice a 420 p.p.m. tamoxifen-containing diet for 12 weeks resulted in substantial accumulation of tamoxifen-DNA adducts, e.g., (E)-α-(4-hydroxy-3-nitrobenzyl)phenyl-ether (E-NBPE) and (E)-α-(4-nitrobenzyl)phenyl-ether (E-NBPE), which are believed to be the major DNA adducts formed in tamoxifen-treated mice. These data suggest a role for autophagy in DIP and supports Reg3γ, a pancreatic acute response protein, as an IHC marker of pancreatic injury. These data suggest a role for autophagy in DIP and supports Reg3γ, a pancreatic acute response protein, as an IHC marker of pancreatic injury.

Acinar Cell Autophagy in Experimental Pancreatic Injury: Immunolocalization and Response of Relevant Proteins.

Drug-induced pancreatitis (DIP) is an under-diagnosed condition that lacks sensitive and specific biomarkers. In vivo and in vitro studies were designed to identify models and potential biomarkers for DIP. As a part of these studies, experimental pancreatitis was created in male C57BL/6 mice by intraperitoneal injection of caerulein. K-ras codon 12, allele-specific competitive blocker PCR (ASCR) was used to measure the levels of three different K-ras codon 12 mutations (codon 12 GGT→GGT, GGT→GTT, and GGT→TGT) in lung DNAs of male Big B6C3F1 mice exposed to EO. Ten mice per group were exposed to EO by inhalation, six hours/day, five days/week for 4 (0, 10, 50, 100, or 200 ppm EO), 8 or 12 weeks (0, 100, or 200 ppm EO). Four weeks of exposure to 100 ppm EO caused a significant increase in K-ras codon 12 GGT→GGT mutant fraction (MF) relative to controls, and 50, 100, and 200 ppm EO caused significant increases in K-ras codon 12 GGT→GTT and GGT→GTT MF. Surprisingly, 8 weeks of exposure to 100 and 200 ppm EO caused significant decreases in K-ras codon 12 GGT→GTT and GGT→GTT MFs relative to controls. The increases and subsequent decreases in K-ras-MF may be interpreted as mutant cell proliferation, followed by selective killing of K-ras-mutant cells, mediated by EO dose-dependent production of reactive oxygen species. Therefore, the shift in K-ras mutation spectrum observed in EO-induced mouse lung tumors may be due to effects on intracellular signaling pathways and selection of preexisting mutant cells, rather than direct mutagenesis of the K-ras gene by EO.
1712 Deciphering the Role of TraI in Altering Spermatogenesis by Controlling Germ Cell Apoptosis.
Y. Lin and J. Richburg, The University of Texas at Austin, Austin, TX.

TRA-I (TNFSF10/Apo2L) is a member of the tumor necrosis factor (TNF) superfamily of proteins, expressed in human and rodent testis. TRAIL is known to induce apoptosis via binding to its receptors DR4 (TRAIL-R1/TNFSF10A) and DR5 (TRAIL-R2/TNFSF10B) in humans, and TRAIL-R (MK/mDR5) in mice. TRAIL is found in Leydig cells and germ cells during development and TRAIL-R is predominantly expressed in post-mitotic germ cells in the rat. The major role of TRAIL in male reproduction is still unclear. In this study, we investigated TRAIL-R/- mice and evaluated the possible role of TRAIL in germ cell development by measuring testis weight, germ cell apoptosis, and spermatid head count in peri- and postnatal day-old young adult animals (44 day-old). Our results revealed that there was a significant difference in testis to body weight ratio between C57 and TRAIL-R/- mice. Also, peri- and postnatal TRAIL-R/- mice show a dramatic increase in the basal germ cell apoptotic index (A.I. 21.54%) as compared to the C57BL/6j wild-type strain (5.16%). The A.I. in adult C57 mice had dropped to 1.5%, but remained elevated in adult TRAIL-R/- mice (20.2%); indicating a sustained high incidence of germ cell apoptosis. Spermatid head counts in adult TRAIL-R/- mice were dramatically reduced compared with C57 (39%), indicating these animals suffer a marked decline in the production of mature spermatozoa. We hypothesize that TRAIL is an important factor for maintaining germ cell homeostasis during germ cell development via a death receptor-dependent mechanism.

1713 Investigation of Sex-Dependent Toxicity of Cysteinyl Leukotriene Receptor 1 Antagonist Zafirlukast.

The FDA-approved prescription drug label states zafirlukast, a cysteinyl leukotriene receptor 1 (CysLT1) antagonist, induces adverse hepatic events “predominantly in females.” To model this possible sex-dependent toxicity, we examined suspension cultured hepatocytes from male and female rats. Concentrations ranging from 1-200 μM were tested at multiple time points (1-4 hr). Three parameters were examined: cytotoxicity (lactate dehydrogenase (LDH) leakage), energy level (cellular adenosine triphosphate (ATP)) and cellular respiration (O2 consumption). Hepatocytes from female rats were more sensitive than male rats in all three parameters. Changes in ATP and cellular respiration were seen as early as 1 hr while cytotoxicity was not observed until 2 hr. Additional studies are underway and include two pharmacological counterparts to zafirlukast (montelukast and pranlukast). Changes in ATP and cellular respiration were seen as early as 1 hr while cytotoxicity was not observed until 2 hr. Additional studies are underway and include two pharmacological counterparts to zafirlukast (montelukast and pranlukast).

1714 1,3-Dinitropropene (1,3-DNP) and 1,8-DNP-Induced DNA Damage and Cell Death: Possible Link to Carcinogenic Effects.
J. A. Holme1, H. E. Nyvold1, V. M. Arlt2, R. Becker2, K. B. Gutzkow1, A. Solhaug1, L. Ekeren1, M. Løge1, P. E. Schrøvåge1, M. A. Refsheim1 and J. Øvrevik1. 1Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway; 2King’s College London, London, United Kingdom; 3Norwegian Veterinary Institute, Oslo, Norway. Sponsor: M. Levik.

Nitro-polyacrylic aromatic hydrocarbons (nitro-PAHs) are found on particulate matter from diesel and gasoline exhaust. Often they are found to have greater mutagenic and carcinogenic potencies when compared with their parent PAHs. In the present study we have compared the genotoxic and cytotoxic effects of two closely related carcinogenic dinitropropylenes (DNP); 1,3-DNP and the more potent 1,8-DNP. In human lung BEAS-2B cells, both compounds induced reactive oxygen species (H2O2; flow cytometry), oxidative DNA damage (comet assay), and a DNA damage response measured as phosphorylation of p53 (Western blotting) at non-cytotoxic concentrations (3-30 μM). In mu-rine hepatoma Hepa1c1c7 cells, 1,3-DNP (>3 μM) induced cell death (a mixture of apoptosis and necrosis), while 1,8-DNP had no cytotoxic effects. The compounds caused little/less H2O2, and oxidative DNA damage than in BEAS-2B. Interestingly, 1,8-DNP was overall more potent than 1,3-DNP with regard to the induction of single-strand DNA breaks (comet) and the formation of DNA adducts (32P-postlabelling). Furthermore, 1,8-DNP gave a stronger DNA damage response (phosphorylation of H2AX and p53) than 1,3-DNP in Hepa1c1c7 cells. Thus, there was an apparent link between the induction of cell death and early increases in ROS-formation or DNA damage/DNA damage responses in the two cell lines. 1,3-DNP-induced apoptosis in Hepa1c1c7 cells was specifically associated with mitochondrial damage (increase formation of superoxide anion; flow cytometry), but was also dependent on the p53-linked transcriptional apoptotic pathway (inhibitors and siRNA).

We suggest that the stronger carcinogenic potency of 1,8-DNP compared to 1,3-DNP is due to its greater DNA damage properties, which in combination with its lower potency to induce cell death increases the probability of causing mutations.

1715 Role of NOX Mediated Autophagy in Reducing Cytotoxic Effects of Erlotinib in Head and Neck Cancer Cells.
A. Sobhakumari1,2, E. V. Fletcher1,2, A. Raeburn2, L. Love-Homan2 and A. M. Simon2. 1Human Toxicology, University of Iowa, Iowa City, IA; 2Department of Pathology, University of Iowa, Iowa City, IA.

Most head and neck squamous cell carcinomas (HNSCC) overexpress Epidermal Growth Factor Receptor (EGFR) which makes it an attractive candidate for molecular targeted therapies. A combination of surgery, radiation and chemotherapeutic agents like EGFR inhibitors are routinely used in the treatment, however, many HNSCC tumors become resistant to EGFR inhibitors. The cellular self-degradation process autophagy is activated by oxidative stress and has recently been reported to reduce the efficacy of chemotherapy. Previous work in our lab has shown that the EGFR inhibitor Erlotinib induces oxidative stress via NADPH Oxidase 4 (NOX4) in HNSCC cells. The purpose of this study is to determine if Erlotinib induces autophagy in HNSCC cells via NOX4 and if autophagy is a pro-survival or pro-death mechanism. Erlotinib induced cytotoxicity (as determined by clonogenic assay) in FaDu and Cal-27 HNSCC cells compared to control treated cells. Erlotinib induced the expression of the autophagy marker LC3B-II in both cell lines as determined by western blot and immunofluorescence assays. Knockdown of autophagy genes Beclin-1 and Atg5 sensitized both cell lines to the cytotoxic effect of Erlotinib, suggesting that autophagy may be a pro-survival mechanism. Erlotinib increased NOX4 mRNA and protein levels in FaDu and Cal-27 cells. Treatment with DPI (diphenyleneiodonium) and a p58 inhibitor in the presence of Erlotinib suppressed the increase in LC3B-II expression in FaDu and Cal-27 cells. Finally, knockdown of NOX4 using ademoviral siNOX4, partially suppressed the activation of LC3B-II in FaDu and Cal-27 cells. These results suggest that Erlotinib may activate autophagy in HNSCC cells as a pro-survival mechanism, and NOX4 may play a role in mediating this effect. In conclusion, NOX4-induced autophagy may play a role in reducing the efficacy of Erlotinib. [Supported by NIH grant K01-CA134941 and ACS grant IRG-77-004-34].

1716 The Aryl Hydrocarbon Receptor (AhR) Suppresses Apoptosis in UVB-Irradiated Keratinocytes and May Serve As a New Target for Chemoprevention.
T. Haarmann-Stemmann1, K. Frauenstein1, J. Tiggess1, F. Engel1, C. Wick2, H. Hanenberg3, E. Fritsche1 and J. Krutmann1. 1Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; 2Otorhinolaryngology, Heinrich Heine University, Dusseldorf, Germany.

Exposure of keratinocytes to ultraviolet (UV) radiation results in the initiation of apoptosis, a protective mechanism that eliminates cells harbouring irreparable DNA damage. Hence, a modulation of this process may significantly influence the initiation and progression of UV-induced skin cancer. We have found that the aryl hydrocarbon receptor (AhR), a ligand-activated and UV-sensitive transcription factor, serves an anti-apoptotic function in UVB-irradiated human keratinocytes. Chemical and siRNA-mediated disturbance of AhR signaling significantly enhanced UVB-induced apoptosis. This effect was due to a loss of expression of E2F1 and its downstream target checkpoint kinase-1 (CHK1), two factors critical for cell-cycle control and DNA damage response. Ectopic overexpression of E2F1 in AhR-knockdown keratinocytes restored CHK1 expression and diminished the observed sensitization to UVB-induced apoptosis. Accordingly, experimental CHK1 recovery alone was also sufficient to attenuate UVB-induced apoptosis in AhR-knockdown keratinocytes, indicating that the loss of proper checkpoint control drives damaged keratinocytes into programmed cell death. Our results demonstrate for the first time an interplay between AhR, E2F1 and CHK1 and identify this signaling axis as a novel anti-apoptotic pathway in keratinocytes, which may represent a putative target for chemoprevention of non-melanoma skin cancer.

1717 Role of Secretory Phospholipase A2 in the Toxicity of Bile Aids to Prostate Cancer Cells.
S. L. Wilding and B. S. Cummings, University of Georgia, Athens, GA.

Bile acids mediate the digestion and absorption of fats and fat-soluble vitamins; however, pathological increases are associated with cholesterolosis and cell death. Recent studies show that high concentrations of bile acids can induce apoptosis in...
several cells, including cancer cells, by mechanisms that are not fully understood. The goals of this study were to determine the toxicity of three different bile acids (chenodeoxycholic acid, deoxycholic acid, and lithocholic acid) in prostate cancer cell lines (PC-3, LNCaP, and DU-145). Treatment of cells with bile acids induced time- and concentration-dependent decreases in MTT staining, a marker of cytotoxicity, with IC50 values of approximately 100-200 μM after 72 hr. In general, lithocholic acid was more potent than chenodeoxycholic acid, followed by deoxycholic acid. Further, LNCaP cells tended to be more susceptible to bile acid-induced toxicity, than either DU-145 or PC-3 cells. Based on reports that bile acids increase the expression of inflammatory enzymes called secretory phospholipase A2 (sPLA2), we tested the hypothesis that these enzymes regulate the mechanisms of bile acid-induced cell death. Analysis of sPLA2 expression using quantitative PCR showed that several sPLA2 isoforms were expressed in PC-3, LNCaP and DU-145 cells, including Group IB, IIA, V and X sPLA2. Nevertheless, treatment of cells with the sPLA2 inhibitor LY317727, prior to exposure to bile acids, did not alter MTT staining compared to cells exposed to bile acids alone. Similar results were seen with the calcium-independent PLA2 (iPLA2) inhibitor bromenol lactone. Collectively, these data show the novel finding that bile acids can induce toxicity to prostate cancer cells and suggest the use of sPLA2 inhibitors may be used to reduce bile acid-induced toxicity.

Etoposide-Induced Mitochondria-Dependent Apoptosis through C-Jun N-Terminal Kinases, Extracellular Signal-Regulated Kinases, and Glycogen Synthesis Kinase-3ζβ Pathway in Pancreatic β-Cells.

K. Lee1, S. Oh1, S. Oh2, D. Hung3, K. Chen4, T. Tseng5, T. Lu5, S. Liu6, Y. Chen7 and C. Huang8, 1Department of Emergency, Buddhist Tzu Chi General Hospital, Taichung, Taiwan; 2Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan; 3Department of China Medical University Hospital, Taichung, Taiwan; 4Department of Urology, China Medical University Hospital, Taichung, Taiwan; 5Department of Anatomy, China Medical University, Taichung, Taiwan; 6Department of Physiology and Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; 7Institute of Toxicology, National Taiwan University, Taipai, Taiwan; 8School of Chinese Medicine, China Medical University, Taichung, Taiwan.

Etoposide, a semisynthetic derivative of podophyllotoxin, is an important chemotherapeutic agent and widely used to treat human cancers. Etoposide also can produce the severe side effects and cause cell damages and the physiological dysfunctions. However, the toxicological effects of etoposide-induced pancreatic β-cell death remain unclear. Here, we investigate the cytotoxic effect and its possible mechanisms of etoposide on pancreatic β-cells. Treatment of pancreatic β-cell-derived RIN-m5F cells with etoposide (1-100 M) for 24 h significantly reduced cell viability and underwent apoptosis, accompanied with mitochondrial dysfunctions. Moreover, etoposide triggered the protein phosphorylation of glycogen synthesis kinase (GSK)-3ζβ at 8 h treatment and maintained to 24 h, which could be reversed by lithium chloride (LiCl, a specific inhibitor of GSK-3ζβ). In addition, etoposide (20 μM) markedly increased the phosphorylation of JNK and ERK1/2, but not p38. Pharmacological inhibitors SP600125 and PD98059 effectively attenuated etoposide-induced caspase-3 activity and JNK and ERK1/2 activation, but LiCl could not reverse the phosphorylation of JNK and ERK1/2 induced by etoposide. In conclusion, these results suggest that etoposide exerts its cytotoxicity on pancreatic β-cells by inducing the mitochondria-dependent apoptosis through JNK/ERK activation-regulated GSK-3ζβ signaling pathway.

Berberine Induces Human Tongue Squamous Carcinoma Cell Apoptosis through PI3K-Regulated ER Stress Pathway.

C. Su1, T. Lu2, D. Hung3, K. Chen4, T. Tseng5, C. Huang6 and Y. Chen7, 1Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan; 2Department of Physiology and Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; 3Department of Toxicology, Taichung and Emergency Center, China Medical University Hospital, Taichung, Taiwan; 4Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan; 5Department of Physiolo 2013 ANNUAL MEETING 365 g and Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; 6Department of Anatomy, China Medical University, Taichung, Taiwan; 7School of Chinese Medicine, China Medical University, Taichung, Taiwan.

Until now, oral cavity squamous cell carcinoma (OSCC) is the most common head-and-neck cancer, which accounts for approximately 3% of all newly diagnosed cancer cases. Despite of recent advances in surgical, radiotherapy, and chemotherapy treatment protocols, it has been discussed that OSCC could not be eradicated. Berberine is a natural alkaloid. Recently, berberine has been showed to inhibit metastasis in lung cancer cells, and cytotoxic in glioma, prostate and nasopharyngeal cancer cells. However, the therapeutic effects and the possible mechanisms of berberine in OSCC are still unclear. Results found that berberine significantly decreased cell viability in human tongue squamous carcinoma derived SAS cells line. Besides, berberine increased the ER-stress signals, including Grp78, CHOP Xbp-1 mRNAs and proteins. Further, the pro-caspase-12 protein level was decreased, and the caspase-12 mRNA level was increased. Therefore, the caspase-related mitochondrial pathway, berberine increased Bax, Bak, Bid mRNAs and proteins levels and decreased Bcl-2 mRNAs and proteins levels. Besides, the pro-caspase-9, pro-caspase-7, and pro-caspase-3 protein levels was decreased. We also found that phospho-AKT protein level was decreased after berberine treatment in cells. Besides, L1294002, the inhibitor of phosphoinositide 3-kinases (PI3Ks), promoted ER-stress and mitochondrial related apoptosis signals. Through this study, suggested berberine may be a useful compound in inhibition of OSCC through PI3K-AKT regulated ER-stress and mitochondrial pathways.
the phosphorylation of JNK and ERK1/2. Taken together, these results suggest that PQ exerts its cytotoxicity on hepatocytes by inducing apoptosis via an oxidative stress-induced JNK and ERK1/2 activation-regulated mitochondria-dependent signaling pathway.

1722 Oxidative DNA Damage and Apoptosis Induction after Enniatin B Exposure in Caco2 Cells.

M. Ruiz, A. Prosperini, A. Juan Garcia and G. Font, Preventive Medicine, University of Valencia, Burjassot Valencia, Spain.

Enniatin (EN) B is a cyclohexadepsipeptide mycotoxin produced by Fusarium spp. often found in cereals and cereal-based products. Its cytotoxic potential has been reported but the mechanisms involved in its toxicity remain to be elucidated. Since the oxidative pathway could be implicated in mycotoxin's toxicity, in this study the generation of reactive oxygen species (ROS) and lipid peroxidation (LPO) have been investigated in human colorectal adenocarcinoma (Caco-2) cells. Subsequently the induction of oxidative stress have been assumed to be directly related to DNA damage and apoptosis. Cells were exposed to EN B at sub-cytotoxic concentration of 1.5 and 3 μM. A significant increase (p<0.05) in ROS production was observed by the fluorescent probe H2DCFDA after 3 μM exposure in Caco-2 cells from 10 up to 120 min. LPO was determined by thiobarbituric acid reactive substances (TBARS) after 24 h of exposure. Significant increase of malondialdehide (MDA) was observed after the highest (3 μM) concentration tested of 48% (p<0.05), as compared to control. Genotoxicity was evaluated through the alkaline Comet assay after 2 and 24 h of exposure. Median tail moment (μM) was significantly high respect to the control with a dose-dependent relationship (p<0.05) after short and longer exposure. The induction of apoptosis and necrosis was assessed by flow cytometry. Annexin V coupled to FITC in combination with PI was used to determine different apoptotic phases after 24 h of exposure to EN B (1.5 and 3 μM). Both concentrations induced apoptosis and necrosis in a dose-dependent manner. These findings show that 3 μM concentration of EN B caused oxidative damage, by means of ROS generation that could be responsible of LPO, DNA damage and triggers apoptosis in Caco2 cells.

Acknowledgements: The Science and Innovation Spanish Ministry (AGL2010-17024/ALI).

A. Prosperini thanks “Santiago Grisolía” fellowship (Conselleria de Educación, Comunitat Valenciana)

1723 Mevalonate Pathway Plays a Major Role in Adriamycin Resistance.

T. Takahashi, S. Nakashima, T. Masuda, S. Yoneda and A. Naganuma, Graduate School of Pharmaceutical Sciences, Tokoh University, Sendai, Japan.

In a search for novel mechanisms of resistance to adriamycin, an anthracycline anti-tumor antibiotic used in cancer chemotherapy, we have previously screened a ORF library derived from budding yeast for genes related to adriamycin resistance and found that overexpression of the gene for HMG-CoA synthase, an enzyme in mevalonate pathway, confers resistance to adriamycin in budding yeast. We have also found that promotion of mevalonate pathway decreased the toxicity of adriamycin in yeast cells.

In this study, we examined the relationships between enzymes involved in mevalonate pathway and the adriamycin resistance. First, we found that deletion of the gene for Ram1, a farnesyltransferase, reduced the degree of adriamycin resistance induced by overexpression of HMG-CoA synthase. These results suggest that overexpression of HMG-CoA synthase might decrease the adriamycin toxicity through promotion of farnesylation of proteins. Moreover, overexpression of HMG-CoA synthase or addition of mevalonate to culture medium decreased the toxicity of adriamycin in human breast MCF7 cells, suggesting that mevalonate pathway plays a key role in mechanism of adriamycin resistance not only in yeast cells but also in human cells.

1724 Carbamazepine Suppresses Ischemia/Reperfusion Injury to Mouse Livers by Enhancing Autophagic Flux.

J. Kim, J. Wang and K. E. Behrens, Surgery, University of Florida, Gainesville, FL.

BACKGROUND: Onset of the mitochondrial permeability transition (MPT) plays a causative role in ischemia/reperfusion (I/R) injury, a pathological event occurring during organ transplantation, cardiac failure and hemorrhagic shock. Current therapeutic strategies for reducing reperfusion injury remain disappointing. As autophagy selectively and timely eliminates abnormal or damaged cellular constituents and organelles such as dysfunctional mitochondria, this lysosome-mediated catabolic process confers cytoprotection against I/R injury and various diseases. We have shown that carbamazepine-related proteins (Atg) causes the MPT and hepatocyte death after I/R. Carbamazepine (CBZ), an FDA approved anticonvulsant drug, has recently been reported to increase autophagy. The AIM of this study was to investigate the effects of CBZ on hepatic I/R injury.

METHODS: Hepatocytes and livers from male C57BL/6 mice were subjected to simulated and in vivo I/R, respectively. Cell death, intracellular calcium, calpain activity, changes in ATP, autophagic flux, MPT and mitochondrial membrane potential after I/R were analyzed in the presence and absence of 20 μM CBZ.

RESULTS: CBZ significantly increased hepatocyte viability after reperfusion, as judged by propidium iodide fluorometry. Confocal microscopy of rhod-2, fluo-4, calcine and tetramethylrhodamine ethylster revealed that CBZ prevented reperfusion-induced mitochondrial calcium loading, onset of the MPT and mitochondrial depolarization. Immunoblotting and fluorometric analysis showed that CBZ blocked calpain activation, Atg6 depletion, and loss of autophagic flux after reperfusion. Intravital multiphoton imaging of anesthetized mice demonstrated that CBZ substantially reversed autophagic defects and mitochondrial dysfunction after I/R in vivo.

CONCLUSION: CBZ protects hepatocytes against I/R injury by preventing a temporal sequence of calcium overloadung, calpain activation, Atg6 depletion, defective autophagy, onset of the MPT, and cell death.

1725 A Multiplexed Assay for Differentially Examining Cytostatic and Cytotoxic Effects.

A. L. Niles1, M. Zhou1, T. L. Rice1 and D. Lazar1, 1Promega Biosciences, San Luis Obispo, CA; 2Promega, Madison, WI.

We have developed a multiplexed assay which can conveniently differentiate between cytostatic and cytotoxic effects produced in cell culture under standard compound screening conditions. The assay first employs a pro-fluorescent, cell-impermeant, DNA probe which changes fluorescent intensity only with changes in membrane integrity due to cytotoxicity. Second, an ATP detection chemistry is applied to examine the relative number of viable cells after treatment. We examined the utility of this multiplex by dosing a suspension cancer cell line (K562) and attachment-dependent cancer line (HeLa) with serially diluted compounds for a period of 72hrs. We chose the antimetabolite compounds, 6-aminomercaptopurine and methotrexate, because of their anti-neoplastic properties and mechanistic relevance in halting cell growth at specific points. Here we show that for two conventional biomarkers for viability and cytotoxicity, we can define the differences between anti-proliferative and cytotoxic effects. The distinction between cytostatic and cytotoxic effects on particular target cell populations may ultimately help direct prioritization of oncology drug development efforts or offer insight into rational combinations during chemosensitivity testing.

1726 Amiodarone-Induced Perturbations in Rat Pleural Mesothelial Cells.

S. Chappidi and J. M. Cerreta, PHS, St. John’s University, Queens, NY. Sponsor: L. Trombeta.

Amiodarone (AM) is an anti-arrhythmic drug whose clinical use is often limited due to its toxic effect on the lungs. AM’s pulmonary toxicity is mediated in part through apoptosis of the epithelial cells and their replacement with fibrotic tissue. Our laboratory has previously determined that Caspase 8 and 9 levels are increased in cells exposed to AM. Such increases suggest that both the extrinsic and intrinsic pathways have a role in AM induced apoptosis. The current study was carried out to further examine the pathway of AM induced cell injury and determine cellular changes caused by such injury in rat pleural mesothelial cells (RPMCs). RPMCs were grown to confluence in Ham’s F-12 medium containing 15% FBS at 37 °C in a humidified, 5% CO2 environment. Cultures were treated with increasing concentrations (12.5, 25, 50, or 100 μg/ml) of AM for 1, 6, 12, or 24 hours. Cytotoxicity of AM was determined by MTT assay. Cell membrane integrity was observed indirectly by measuring the levels of LDH released into the supernatant after 24hr of treatment with AM. To examine activation of the apoptotic pathway, translocation of BAX protein from cytosol to mitochondria was measured by Western Blot analysis. To examine activation of the apoptotic pathway, translocation of BAX protein from cytosol to mitochondria was measured by Western Blot analysis.
Characterization of Cigarette Smoke and Menthol on Human Alveolar Adenocarcinoma (A549) Cells.

E. R. Esposito, B. Greene, M. L. Coronel and H. Tran, Pharmaceutical Sciences, Sullivan University College of Pharmacy, Louisville, KY.

Purpose: Menthol provides local anesthesia to nerve endings, allowing smokers to take deeper, longer inhalations, thus giving longer exposure to carcinogenic elements found in cigarette smoke. There are few cellular studies addressing evidence concerning the risk of developing lung cancer between mentholated and non-mentholated cigarettes. We would like to determine if an association exists between mentholated cigarettes and incidence of lung cancer in the smoker population. Using an in vitro model, we aimed to characterize the effects of cigarette smoke, with or without menthol, in human alveolar adenocarcinoma (A549) cells and determine if the rate of cell proliferation and cell death is altered.

Results: Data suggest that menthol alone decreased cell viability and increased Annexin positive cells while co-treatment with CSC + menthol did not affect cell viability. Pan-caspase activation was not significantly altered for CSC, menthol, or CSC + menthol treated cells. Interestingly, cells treated with CSC only appeared to affect cell viability. Flow cytometric applications. Early and late indicators of apoptosis were assessed using Annexin-V and propidium iodide detection assay.

Apoptosis is a programmed form of cell death executed by caspases (cysteine proteases) that cleave substrates exclusively after aspartic acid residues. In response to stress, often activate the intrinsic apoptotic pathway, wherein mitochondrial outer membrane permeabilization (MOMP) initiates the release of proapoptogenic proteins, such as cytochrome c and Smac, into the cytosol. In particular, cytochrome c promotes formation of a caspase-activating complex known as the Apaf-1-caspase-9 apoptosome. Heat shock (HS) is an ancient stress that activates both prosurvival (thermotolerance) and prodeath cellular responses, and we have previously shown that HS induces apoptosis through pathways that involve MOMP and downstream effector caspase-3 activation, but do not require activation of the apoptosome. HS-induced MOMP is strictly controlled by BCL-2 family members, which include both pro-apoptotic (e.g. Bax, Bim, Bid, etc.) and anti-apoptotic (e.g. Bcl-2, Mcl-1, etc.) proteins. Other studies suggest that HS induces MOMP following cleavage of Bid by caspase-2. However, we observe that mouse embryonic fibroblasts (MEFs), lacking either caspase-2 or Bid, remain sensitive to HS. In contrast, we find that bim-/- MEFs are highly resistant to HS-induced apoptosis and exhibit significantly decreased levels of MOMP. Thus, our findings indicate that Bid is essential for HS-induced death, while caspase-2 and Bid function as part of an amplification loop. Interestingly, Bim is known to induce MOMP through direct activation of Bax and/or Bak, but we find that bax-/-/bak-/- MEFs are only partially resistant to HS-induced cell death, implying the existence of a Bim-independent, Bax/Bak-independent pathway. We speculate that another prosurvival Bcl-2 family, namely Bok, may functionally substitute for Bax and Bak, or alternatively that Bim may directly permeabilize lysosomal membranes, resulting in the release of proapoptotic cathepsins. (These studies were supported by grants, CA129521 and GM096101, from the NIH.)

1Molecular Carcinogenesis, UT Austin/MD Anderson Cancer Center, Smithville, TX; 2Pharmacology and Toxicology, University of Texas at Austin, Austin, TX.

Induction of Late-Apoptosis on Chinese Hamster Ovary Cells by Sandalwood Essential Oil

C. M. Ortiz-Sanchez, I. Morales-Torres and I. L. Matta, Physiology, Pharmacology and Toxicology, Ponce School of Medicine and Health Sciences, Ponce, Puerto Rico.

Essential oils (EOs) are volatile aromatic compounds that can be extracted from any part of a given medicinal or aromatic plant. EOs have a wide range of applications in the pharmaceutical, food, and cosmetic industries. Recently, there has been an increased interest regarding the pharmacological properties of EOs. Among the large diversity of commercially available EOs, sandalwood essential oil (SEO) is used in food industry as a flavoring ingredient with a daily consumption of 0.0074 mg/kg. It is also used in perfumery and other cosmetic products. SEO has antiviral and antimicrobial properties. However, its pharmacological activity on mammalian cells is largely unknown. The aim of this study was to determine the effect of SEO on Chinese hamster ovary cell (CHO-K1) proliferation and viability. These cells were exposed to concentrations of SEO ranging from 1 – 600 μg/mL for 24, 48, 72, and 96 hours. Cell viability was measured by Trypan blue exclusion using the Cellometer Auto T4, while cell proliferation was determined by the tetrazolium salt (MTT) assay. Apoptosis detection was performed by flow cytometry using Annexin-V-FITC (a marker for early apoptosis) and 7-ADD (a marker for late apoptotic/necrotic cells). Among all exposure times studied, the same tendency was seen at 24, 48, 72, and 96 hours: SEO decreased cell proliferation in a dose-dependent manner to around 80%. The inhibitory concentration (IC50) was approximately 31 μg/mL. Apoptotic effects were studied in concentrations above and below the IC50 using three doses: 25, 30 and 35 μg/mL. An increase of 3% and 15% in late apoptotic cells was detected with increasing SEO concentration at 30 and 35 μg/mL, respectively (p<0.05). In conclusion, SEO has the potential to decrease cell proliferation by inducing late apoptosis in CHO-K1 cells. However, further analyses are needed to elucidate the pathways involved in this process. Research supported by the NIGMS-NIH Award # R25GM082406.

Investigating the Role of HO-1/BVR Expression on Apoptosis Regulation.

C. George and M. L. Jenny, Department of Biological Sciences, University of Alabama, Tuscaloosa, AL.

Cadmium (Cd)-resistant cells, when exposed to a variety of chemicals capable of inducing oxidative stress, exhibit significantly lower occurrences of apoptosis compared to non-resistant cells, suggesting that Cd-resistance is in part an adaptation to oxidative stress. Previous studies have attributed this adaptation to increased expression of metallothionein genes and genes involved in the glutathione synthesis/recycling pathway. However, recent studies over the last several years have demonstrated novel anti-oxidant and anti-apoptotic properties with members of the heme oxygenase-1 (HO-1)/biliverdin reductase (BVR) pathway. To investigate the role of HO-1/BVR in resistance to Cd-toxicity we established a Cd-adapted human hepatocellular liver (HepG2) Tet-On cell line by continuously culturing the cells in 5µM Cd for 16 weeks, with routine media change and cell passage every 3-4 days. After 16 weeks, control and Cd-adapted cells were dosed with additional 0.1, 0.5, 1, 10 and 20µM Cd treatments and real-time PCR was used to compare expression of HO-1, BVRa, BVRb and glutathione reductase (GSR). Interestingly, basal expression of GSR was significantly down-regulated while HO-1, BVRa and BVRb was up-regulated in the Cd-adapted cell line. In addition, there was greater induction of BVRa and BVRb expression in the Cd-adapted cells after additional Cd treatment as compared to control cells. Custom PCR arrays (QIAGEN Inc) were used to analyze expression of genes related to stress and toxicity when control and Cd-adapted cells were dosed with 10µM Cd. The Cd-adapted cells displayed significant alterations in other genes related to oxidative stress, DNA repair and cell division/apoptosis signaling pathways, including many pathways linked to BVRa/ERK regulation, such as tumor necrosis factor (TNF), TNF receptor, lymphotoxin alpha, early growth response 1, insulin-like growth factor 1, interferon alpha and interferon beta 1. Future studies will investigate the direct role of HO-1 and BVR in regulating the potential anti-apoptotic properties of these Cd-adapted cells. [Supported by R00ES017044]
apoptosis whereas IL-6 siRNA abolished the protective effect of SDF-1β. CXCR7 siRNA, but not CXCR4 antagonist abolished SDF-1β’s protective effect and above related signal transduction. These in vitro results suggest that SDF-1β prevents palmitate-induced cardiac apoptosis via its receptor CXCR7 and further activating AMPK-mediated IL-6 excretion. In vivo studies, by using type 2 diabetes models, we confirmed that high fat diet induced cardiac apoptosis, and that SDF-1β prevented high fat diet-induced cardiac apoptosis along with its activation of AMPK. This important finding opens a new road for the research of SDF-1β’s cardiac protection that is irrelevant with its well-known function of stem cell mobilization.

Results:

Our results shown that BDE-154 are capable of inhibiting cell proliferation of HepG2 cells which can lead to apoptosis in the concentration of 25 μM.

Conclusions:

According to our results, BDE-154 presents a significant potential to interfere with the mitochondrial homeostasis of HepG2 cells which can lead to apoptosis in the concentration of 25 μM.

References:

1. D. Telesca, J. G. Teguarden, T. Xia, H. Zhang, A. Nel, J. G. Pounds and B. D. Thrall. Biological Sciences, Pacific Northwest National Laboratory, Richland, WA; 2-Biostatistics, University of California Los Angeles, Los Angeles, CA; 3-Nanomedicine, California Nanosystems Institute, University of California Los Angeles, CA. Seeking to integrate broad sets of mechanistic and more traditional dose-response data across in vitro and in vivo systems, and between species, the nanotoxicology field faces the challenge of translating these data into knowledge that will impact public health policy for this emerging class of materials. Using a rich data set on in vitro toxicity of 25 metal oxides as an example, we present framework for nanomaterial risk assessment and hazard ranking based on a paradigm for nanomaterial dosimetry in vitro and in vivo that is consistent with current practice for chemical risk assessment. Integrating cytotoxicity and high-throughput data on 25 metal oxide nanoparticles with cellular dosimetry data derived from in vitro and in vivo models of nanoparticle dosimetry, we demonstrate the impact of cellular dosimetry on hazard ranking schemes. Specifically, the dosimetry hazard ranking approach showed that on a cellular dose and tissue-dose basis, the relative toxicity of the metal oxides is fundamentally different than those based solely on exposure measures (μg/ml). For example, Co3O4 was ranked #10 based on in vitro studies, but scaled based on tissue doses in exposed humans, Co3O4 was the most hazardous material. Human exposure equivalents calculated using ISDD and MPPD models for each nanomaterial ranged from 0.1 to 10,000 mg/m3, indicating some but not all might pose a hazard for exposed humans. Making dosimetry corrections for iron oxide particles, we also show good correspondence between in vitro and in vivo inflammatory responses. The framework, along with high-throughput in vitro data, can clearly be used to rank nanomaterial hazards for broad classes of particles, though it remains an untested hypothesis that such approaches accurately reflect risk in exposed humans.

Methods:

We performed a cell proliferation test using SRB colorimetric assay, that was performed to investigate relationships between the inhibitory potential of cell growth with the induction of cell death. Pharmacological inhibition of caspases with Z-VAD during treatment with BDE-154 also induced caspase activation in these cells. Pharmacological inhibition of caspases with Z-VAD during paraoxon treatment protected against paraoxon-induced cell death.

Conclusions:

These combined data suggest that paraoxon induces cell death in NHBECs and SAECs, at least in part, through the activation of caspases.
Coating Nanoporous Alumina: Cellular Responses to Surface Layers of Zinc and Titanium Oxides.

Nanoporous anodic aluminum oxide (AAO) membranes have applications in skin wound repair; the surface topography of these materials has been shown to modulate wound healing. Previous work by our group has shown that coating titanium dioxide (TiO2) onto nanoporous AAO does not affect cell viability and that zinc oxide (ZnO)-coated AAO membranes exhibit antimicrobial activity against several bacterial strains associated with skin infection. In this study, the nanoporous structure of 20, 100, or 200 nm pore diameter AAO membrane substrates was maintained by depositing ultrathin layers of TiO2 or ZnO using an atomic layer deposition (ALD) process involving alternative adsorption/hydrolysis of Ti isopropoxide or diethyl Zn, respectively. X-ray spectroscopy (EDX) confirmed the presence of ZnO or TiO2 on AAO membranes. Cell viability and inflammatory responses were evaluated on ZnO- and TiO2-coated AAO membranes. RAW 264.7 macrophages cultured on ZnO-coated AAO exhibited a significant decrease in metabolic activity (MTT reduction) after 24 or 48 h; however, no changes were observed in lactate dehydrogenase (LDH) release or reactive oxygen species (ROS) production. L929 fibroblasts grown on TiO2-coated AAO had higher viability (MTT assay) than controls (uncoated AAO) after 48 h; no change in viability was observed using the Neutral Red assay. No significant increase in fibroblast cell proliferation (DNA assay) was observed. No TNF-α production or decrease in viability was seen in RAW 264.7 macrophages grown on TiO2-coated membranes. The total adsorbed protein per unit area on uncoated and TiO2-coated AAO was up to 12-times greater than that on tissue culture polystyrene. The results show that thin ALD coatings maintain the nanoporous structure of AAO membranes. Further, antimicrobial ZnO coatings decrease cell viability and TiO2 coatings appear to be more biocompatible in vitro.

Potential Phototoxicity of Aged Al(OH)3-Coated TiO2 Nanoparticles in Retinal Pigment Epithelial Cells.

Titanium dioxide (TiO2) nanoparticles (NPs) exposed to UVA radiation generate reactive oxygen species (ROS). As a component of sunscreen formulations, TiO2 NPs may be coated with Al(OH)3 to prevent ROS from causing oxidative damage to tissues. Simulated swimming pool water (SSPW) degrades the Al(OH)3 coating which could reduce the coating's protective function. We examined the potential phototoxicity of aged TiO2 NPs coated with Al(OH)3 to see if the coatings remained protective over time.

The core focus of our effort was to develop human three-dimensional (3-D) in vitro tissue models to serve as a realistic representation of human exposures and for assessing NM toxicity to decisively rank what physico-chemical parameters can drive toxicity. Core NM parameters including composition, shape, redox activity, functionalization and charge were all tested by investigating a multitude of NMAs. Kinetics of bioreponses such as necrosis, apoptosis, oxidative stress, cytokine secretion and changes in gene and protein expression were all evaluated in response to nanomaterial exposure. We also developed novel computational analytics to differentiate bioreponses as a factor of NM property. Network-inference-based methods, such as context-likelihood of relatedness (CLR), as well as clustering-based methods, such as principal component analysis (PCA) were used to identify a set of known regulators as well as other co-regulated transcripts potentially unique to nanotoxicity. Further investigation revealed that NM composition, followed closely by charge, were parameters which significantly influenced NM-driven toxicity. Moreover, we found significant differences between the molecular mechanisms of NM toxicity in monolayer cell culture models versus our complex, more physiologically relevant tissue models. As such, we conclude that further development of human 3-D tissue models is warranted in order to gain accurate information regarding the risk and consequences of NM exposure.

Genotoxicity of TiO2, Anatase Nanoparticles in B6C3F1 Male Mice Pig-4 and Flow Cytometric Micronucleus Assays.

In vivo micronucleus and Pig-4 (phosphatidylinositol glycan, class A gene) mutation assays were conducted to evaluate the genotoxicity of 10 nm titanium dioxide anatase nanoparticles (TiO2-NPs) in mice. Groups of five 6- to 7-week-old male B6C3F1 mice were treated intravenously for three consecutive days with 0.5, 5.0, and 50 mg/kg TiO2-NPs for the two assays; mouse blood was sampled one day before the treatment and on Day 4, and Weeks 1, 2, 4 and 6 after the beginning of the treatment; Pig-4-mutant frequencies were determined at Day-1 and Weeks 1, 2, 4 and 6, while percent micronucleated-erythrocyte (MN-RET) frequencies were measured on Day 4 only. Additional animals were treated intravenously with three
daily doses of 50 mg/kg TiO$_2$-NPs for the measurement of titanium levels in bone marrow after 6, 24, and 48 hrs of the last treatment. The measurement indicated that the accumulation of the nanoparticles reached the peak in the tissue 4 hrs after the administration and the levels were maintained for a few days. No increase in either Pig-a mutant frequency or the frequency of %MN-RETS was detected, although the %RETS was reduced in the treated animals on Day 4 in a dose-dependent manner indicating cytototoxicity of TiO$_2$-NPs in the bone marrow. These results suggest that although TiO$_2$-NPs can reach the mouse bone marrow and are capable of inducing cytototoxicity, the nanoparticles are not genotoxic when assessed with in vitro micronucleus and Pig-a gene mutation tests.

1741 Comparative Assessment of Nanomaterial Definitions and Considerations for Implementation.

R. David1, D. R. Boverholf1, J. H. Buta1, S. Clancy1, M. Lafranconi1 and J. West2. 1The Dow Chemical Company, Midland, MI; 2Ferro Corp, Cleveland, OH.

The use of nanomaterials is bringing promising new advances to science and technology. In concert have come calls for increased regulatory oversight to ensure their appropriate identification and control. If nanomaterial-specific regulations are implemented, it will be critical that they are accompanied by definitions that are clear, consistent and practical to apply. Numerous definitions for nanomaterials have been proposed by various government, industry, and standards organizations; however, these definitions differ in their core elements and scope. A comprehensive comparative assessment was conducted on existing nanomaterial definitions with the goal of identifying elements essential for a sound regulatory definition. Common elements across definitions included size and dimensions; however, size limits were inconsistent and several important elements were not captured consistently including: consideration of agglomerates and aggregates, distributional thresholds, novel properties and solubility. Other important differences included number size distributions versus weight distributions and natural versus intentionally-manufactured materials. Accordingly, this analysis was extended to identify the critical elements to clearly define the materials subject to a nanomaterial regulation. The analysis also evaluated the extent of characterization required to determine whether a material falls within current nanomaterial definitions and found that some are not aligned with currently available analytical capabilities. Overall, this analysis highlights the similarities and differences in currently proposed nanomaterial definitions as well as the technical constraints that will need to be addressed for the successful implementation of a regulatory nanomaterial definition.

1742 Cytotoxicity and Genotoxicity Studies in A549 Cells Cultured with Metal Oxide Nanoparticles.

A. Miyajima-Tabata1, K. Sakai2, T. Kawakami1, R. Kato1, A. Matsuoka1 and K. Isama1. 1Division of Medical Devices, National Institute of Health Sciences, Tokyo, Japan; 2Division of Environmental Chemistry, National Institute of Health Sciences, Tokyo, Japan. Sponsor: A. Hibino.

Nanomaterials are now widely used in various fields of science, technology and medicine. However, there are many unclear safety issues because they are new materials. An in vitro cellular toxicological study using well-characterized nanoparticles is conducted for the evaluation of the biological effects of nanoparticles. In this study, we compared the sensitivity of human lung-derived epithelial-like cell line A549 cells and Chinese hamster lung fibroblast (CHL) cells to nanoparticles. This study also evaluated the cytotoxicity and the genotoxicity of ten kinds of metal oxide nanoparticles (MNPs; primary diameter: <50 nm) in A549 cells. A549 and CHL cells were treated with ZnO or polystyrene as typical nanoparticles and the cytotoxicity and the genotoxicity were examined. A549 cells were treated with MNPs and the cytotoxicity and the genotoxicity of MNPs were evaluated. The cytotoxicity was evaluated with colony formation in MTT assay and the genotoxicity test was evaluated with an in vitro micronucleus test. The physical and chemical properties, such as the hydrodynamic diameter of secondary MNPs, the zeta potential etc., were determined in both suspension and 10%FBS-MEM. No remarkable difference was observed between A549 and CHL cells in the cytotoxicity and the genotoxicity when treated with ZnO or polystyrene. A549 cells were treated with MNPs and the cytotoxicity and the genotoxicity of MNPs were evaluated. The cytotoxicity was evaluated with colony formation in MTT assay and the genotoxicity test was evaluated with an in vitro micronucleus test. The physical and chemical properties, such as the hydrodynamic diameter of secondary MNPs, the zeta potential etc., were determined in both suspension and 10%FBS-MEM. No remarkable difference was observed between A549 and CHL cells in the cytotoxicity and the genotoxicity when treated with ZnO or polystyrene. A549 cells were treated with MNPs and the cytotoxicity and the genotoxicity of MNPs were evaluated. The cytotoxicity was evaluated with colony formation in MTT assay and the genotoxicity test was evaluated with an in vitro micronucleus test. The physical and chemical properties, such as the hydrodynamic diameter of secondary MNPs, the zeta potential etc., were determined in both suspension and 10%FBS-MEM. No remarkable difference was observed between A549 and CHL cells in the cytotoxicity and the genotoxicity when treated with ZnO or polystyrene. A549 cells were treated with MNPs and the cytotoxicity and the genotoxicity of MNPs were evaluated. The cytotoxicity was evaluated with colony formation in MTT assay and the genotoxicity test was evaluated with an in vitro micronucleus test.

1743 In Vitro Toxicity Evaluation of Chemical Biological Defense (CBD) Nanomaterials.

Nanomaterials are gaining in commercial and military applications which yield new capabilities applicable to CBD. US Army Public Health Command (US-APHC) and Office of the Surgeon General (OTSG) have made efforts in chemical, biological, radiological and nuclear incident response for protecting the work force, civilian and military, from the unintended consequences of nanotechnology processes and materials exposures. The study used the Microtox® Toxicity Test System and Neutral Red Uptake (NRU) assay to fast evaluate four CBD nanomaterials for their aquatic toxicity in marine organisms, Vibrio fischeri, and basal cytotoxicity in human liver cells in support of the ongoing USAPHC/OTSG efforts. Four nanomaterials: RNP-212 and FAST-ACT®, proprietary formulation of nanocrystalline metal oxides used for neutralizing a wide range of toxic chemicals and chemical warfare agents; PhotoScrubTM, a fiberglass cloth coated with TiO$_2$ that uses UV light induced catalytic ionization of TiO$_2$ to destroy chemical/biological warfare agents; Nano SBC, a nanosized sodium bicarbonate being investigated as a replacement fire extinguishing agent in hand held fire extinguishers of Army Aviation Weapon Systems, were selected for these tests. Microtox toxicity (EC50 15min: mg/l) shows FAST-ACT (13.78) > RNP-212 (362) > Nano SBC (1394) > PhotoScrub (>2500). Using US Fish and Wildlife Service aquatic toxicity criteria, FAST-ACT and RNP-212 are considered “slightly toxic” and “practically nontoxic”, respectively; both Nano SBC and PhotoScrub are considered “relatively harmless”. The Microtox study fills the data gap for aquatic toxicity information for the new nanomaterials. Neither FAST-ACT, RNP-212, PhotoScrub at 1250 µg/mL, nor Nano SBC at 2500 µg/mL were found toxic to human cells with NRU assay. The human basal cytotoxicity data and predicted LD50 are comparable with the results from animal studies. Both in vitro and in vivo studies assessed these four nanomaterials as low hazard.

1744 Inhibition of Adipogenic Differentiation of Human Mesenchymal Stem Cells by TiO2 Nanoparticles.

Y. Zhang1, L. Guo2, L. Yu1, Y. Gao2, Y. Jones1, A. Keasling1, B. Green2, D. Hansen1, A. Inselman1, L. Shi1, P. C. Howard1 and B. Ning2. NCTR/ORA Nanotechnology Core Facility, Office of Scientific Coordination, NCTR/ID, Jefferson, AR. 2Division of Systems Biology, NCTR/ID, Jefferson, AR.

Nanotechnology has resulted in the creation of many new materials and devices with a vast range of applications. TiO$_2$ has historically been used as a pigment with many applications, and nanoscale TiO$_2$ is additionally appearing in consumer products, raising safety issues of human health and environmental concerns. Stem cells are proposed to be attractive tools for toxicology testing because of their sensitivity to external stimuli during differentiation. The physical and chemical properties of TiO2 nanoparticles were characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis, dynamic light scattering, Brunauer-Emmett-Teller, Raman and X-ray fluorescence spectroscopy. We examined the impact of TiO$_2$, and other nanomaterials, on cytotoxicity and differentiation of human mesenchymal stem cells (hMSC). TiO2 nanoparticles induced cytotoxicity in a concentration-dependent manner in hMSCs. Additionally, the differentiation of hMSCs to adipocytes, determined using imaging and oil red O staining, was inhibited in a concentration-dependent manner. Moreover, uptake of the TiO2 nanoparticles by hMSCs was confirmed using TEM, suggesting a possible endocytosis pathway. The mRNA expression for the adipogenic markers adiponectin, aP2, and LPL were significantly reduced to 61%, 53%, and 61% of control levels following exposure to TiO$_2$ nanoparticles. Furthermore, incubation of the TiO2 with the mesenchymal stem cell lysate resulted in the identification of 208 proteins associated with the nanoparticles using proteomic and mass spectrometry analyses. These results indicate (i) the interaction and impact of nanoparticles with stem cells is selective (other nanoparticles did not induce this effect), (ii) TiO2 nanoparticles inhibited differentiation of mesenchymal stem cells, and (iii) further work is needed to elucidate the mechanism of action of TiO2 in this cell population.
We pursue a better quality of life as well as a rich life through the development of science and technology. However, the scientific principles and its application threaten our health sometimes. In this study, we compared the toxicity of phospholipid-coated iron oxide nanoparticles (PLC-FeNPs) and bare-FeNPs in different cell lines. PLC-FeNPs showed higher negative charge than that of bare-FeNPs in the vehicle, but not in the cell culture media containing fetal bovine serum. In addition, the trend of uptake in each cell lines was very similar between both types of FeNPs, despite differences in their diameters. However, cell cycle changes varied according to the cell line and the type of FeNPs. We performed further study using two macrophage cell lines. At 1 h after exposure, MH-S cells exposed to both types of FeNPs showed a strong correlation between gene expression changes despite the uptake process was different, but RAW264.7 cells exposed to both types of FeNPs showed a weak correlation between gene expression changes despite the uptake process was similar. At 24 h after exposure, two macrophage cells exposed to PLC-FeNPs and RAW264.7 cells exposed to bare-FeNPs induced the increase in the number of autophagosome-like vacuoles. While, the cytosolic component of MH-S cells exposed to bare FeNPs completely disappeared, although the membrane remained intact. The predominant gene in MH-S and RAW264.7 cells was also different. Furthermore, when treated with both types of FeNPs, RAW264.7 cells secreted TNFα only, whereas MH-S cells secreted IL-1β and IL-6 along with TNFα. Based on these results, choice of cell line is very important to improve the reliability of in vitro toxicity data. Further, we think that the increase of autophagosome-like vacuoles may be an important cause of cell death which is caused by nanoparticles.

Mechanisms of Silica Nanoparticle-Induced Interleukin-8: Requirement of p38/TACE-EGFR Cascade and NF-κB Signalling in Lung Epithelial Cells.

1Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea; 2Department of Chemical Engineering, Kwangwoon University, Seoul, Republic of Korea. Sponsor: E. Park.

Nanoparticles (NPs) of non-crystalline (amorphous) silica particles (SiNPs) are used in a large range of products. Ingestion of NPs represents a potential health hazard and may induce inflammation in lung tissue. We have previously shown that SiNPs induced marked cytokine responses independently of particle uptake in human bronchial epithelial cells (BEAS-2B). In the present study the mechanisms involved in SiNP-induced IL-8 responses were further examined. SiNP-exposure induced an early increase in phosphorylation of p65 (NF-κB) as well as the three main MAP kinases ERK1/2, p38 and JNK, concurrent with an early up-regulation of IL-8 mRNA. SiNP also induced a time-dependent increase in phosphorylation of the epidermal growth factor receptor (EGFR) and release of the EGFR-ligand transforming growth factor (TGF)-α. SiNP-induced IL-8 responses were attenuated by the p38-inhibitor SB202190, the NFκB-inhibitor PDT-p65 and siRNA against p65, as well as the EGFR-inhibitor AG1478, a TGF-α-neutralizing antibody and TAPI-1 (inhibitor of the metalloproteinase TACE which cleaves pro-TGF-α to TGF-α). However, inhibitors of ERK and JNK did not exert any effect on SiNP-induced IL-8. Moreover, SiNP-induced EGFR-phosphorylation was inhibited by AG1478 and TAPI-1, and SB202190 reduced the SiNP-induced TGF-α response. The SiNP-induced phosphorylations of p38 and p65 were not affected by TAPI-1 or AG1478. Thus, SiNP appeared to induce EGFR-phosphorylation through a p38- and TACE-dependent cleavage/release of TGF-α. Interestingly, EGFR and TGF-α induced little effect on IL-8 release compared to SiNP suggesting that EGFR-signalling alone is an insufficient stimuli for IL-8 induction. In conclusion, SiNP-induced IL-8 responses seemed to require activation of p38/TACE/TGF-α/EGFR-cascade, presumably acting in concert with the classical NF-κB pathway in BEAS-2B cells.
Dissolution is 0 to 0.1% per month; extrapolated on the chronic inhalation study, ing and recrystallization in PSF and HCl, but retain their crystallinity. HCl. All materials, incl. TiO₂, undergo morphological changes by Ostwald ripen-control SiO₂ dissolves as expected. The solubility of BaSO₄ NM212 in all media, projects. The solubility of CeO₂ NM212 is as low as TiO₂ NM105. The positive formity with earlier work on the OECD batches by PROSPECT and NanoCare (TEM, SEM) and selected area electron diffraction (SAD). Analysis included released ions by atom spectroscopy, agglomeration by analytical ultracentrifugation and laser diffraction, morphology by electron microscopy (TEM, SEM) and selected area electron diffraction (SAD). The re-characterization of CeO₂ NM212 and BaSO₄ NM220 confirms their conformity with earlier work on the OECD batches by PROSPECT and NanoCare projects. The solubility of CeO₂ NM212 is as low as TiO₂ NM105. The positive control SiO₂ dissolves as expected. The solubility of BaSO₄ NM212 in all media, including PSF, is vanishing against the positive control, and noticeable only in 0.1 HCl. All materials, incl. TiO₂, undergo morphological changes by Ostwald ripen-ing and recrystallization in PSF and HCl, but retain their crystallinity. Dissolution is 0 to 0.1% per month; extrapolated on the chronic inhalation study, CeO₂ NM212 and BaSO₄ NM220 remain 99% persistent.

Manganese nanoparticles (MnNP) have been identified as potential therapeutic agents for the treatment of various diseases, including cancer and neurodegenerative disorders. However, the toxicological implications of these nanoparticles are not well understood. In this study, we investigated the cytotoxic effects of MnNP on human lung epithelial cells (A549) in vitro. We found that MnNP induced a dose-dependent decrease in cell viability, as measured by the MTT assay. Furthermore, MnNP treatment led to a decrease in mitochondrial membrane potential, as determined by the JC-1 assay. These results suggest that MnNP may have potential applications in cancer therapy, but further studies are needed to fully understand their toxicological effects.

Cellulose nanocrystals (CNCs) are a renewable nanomaterial that holds promise for a range of applications, including drug delivery and reinforcing nanocomposites. However, the toxicological implications of these materials are not well understood. In this study, we investigated the cytotoxic effects of CNCs on human lung epithelial cells (A549) in vitro. We found that CNCs induced a dose-dependent decrease in cell viability, as measured by the MTT assay. Furthermore, CNC treatment led to a decrease in mitochondrial membrane potential, as determined by the JC-1 assay. These results suggest that CNCs may have potential applications in drug delivery and reinforcing nanocomposites, but further studies are needed to fully understand their toxicological effects.

Electronic cigarettes (EC) deliver aerosol by heating fluid containing nicotine, flavors, and a humectant. EC cartomizers combine the fluid chamber and heating element in a single unit. Because EC do not burn tobacco, they may be safer than conventional cigarettes. Their use is rapidly increasing worldwide with little prior testing of their aerosol. We hypothesized that EC aerosol contains metals derived from tobacco, nicotine, and other chemicals. In this study, we analyzed the aerosol from various EC brands and found that they contain a variety of metals, including nickel, cobalt, and chromium. These results suggest that EC may be a source of metal particulates and should be further studied for their potential health effects.

Cellulose nanocrystals (CNCs) are a renewable nanomaterial that holds promise for a range of applications, including drug delivery and reinforcing nanocomposites. However, the toxicological implications of these materials are not well understood. In this study, we investigated the cytotoxic effects of CNCs on human lung epithelial cells (A549) in vitro. We found that CNCs induced a dose-dependent decrease in cell viability, as measured by the MTT assay. Furthermore, CNC treatment led to a decrease in mitochondrial membrane potential, as determined by the JC-1 assay. These results suggest that CNCs may have potential applications in drug delivery and reinforcing nanocomposites, but further studies are needed to fully understand their toxicological effects.
using microscopy, cytotoxicity testing, x-ray microanalysis, particle counting, and indirectly optical emission spectrometry. A nickel-chromium filament was coupled to a thicker silver coated copper wire. The silver coating was sometimes missing. Four tin solder joints attached the wires to each other and coupled the copper/silver wire to the air tube and mouthpiece. All cartomizers had evidence of use before packaging (burn spots on the fibers and electrostatic movement of fluid in the fibers). Fibers in two cartomizers had green deposits that contained copper. Centrifugation of the fibers produced large pellets containing tin. Tin particles and tin whiskers were identified in cartridge fluid and outer fibers. Cartomizer fluid with tin particles was cytotoxic in assays using human pulmonary fibroblasts. The aerosol contained particles >1µm comprised of tin, silver, iron, nickel, aluminum, and silicate and nanoparticles (<100nm) of tin, chromium, and nickel. Of 22 elements identified, 12 were present in concentrations higher than the minimum risk level. Many of the elements identified in EC aerosol are known to cause respiratory distress and disease. The presence of metal and silicate particles in cartomizer aerosol, often at very minimal risk levels, demonstrates the need for improved quality control in EC design and manufacture and studies on how EC aerosol impacts the health of users and bystanders.

The interest in manufactured nanomaterials with potential new properties has led to increasing concern about their potential systemic uptake and fate as well as the associated risk to humans. Materials applied in processed food are of special interest. Synthetic amorphous silica (SAS) is a nanostructured material formed by flame hydrolysis or precipitation that has been used for decades. In commercial products, basic structural elements are submicron aggregates (fused nanosized primary particles) that themselves form micrometer (or even larger) agglomerates. SAS is employed in a variety of products, e.g., as free-flow agent in soup powders. To assess risk evaluation, it is important to understand whether structural changes may occur during the further processing or after oral uptake. In a first step, we addressed possible effects of heating in water (modeled processing of soup powder) and acid environment (pH of gastric juice) on the structure and size distribution of SAS. Methods for the reproducible dispersion of SAS and the reliable determination of the volume weighted particle size distribution of SAS suspensions were developed and validated. Two food grade SAS types were studied: precipitated SAS and pyrogenic (fumed) SAS. SAS was first heated in water (100°C) and then poured into HCl to reach pH=1.3 (paddle apparatus). During both steps time-dependent changes in the volume weighted size distribution were monitored using laser diffraction (LD). LD with validation, e.g., by comparison to microsieve analysis, proved to be a reliable technique to characterize the dispersity of SAS suspensions and to evaluate the volume fraction of fine particles. Heating of SAS in water is only a weak dispersion leading to size distributions well above 1µm. In acid environment (2 hours, pH=1.3) no significant changes in dispersity of SAS – neither agglomeration nor erosion of agglomerates or aggregates – was observed. In separate animal studies (rats, oral, repeated dose), no isolated nanosized primary particles of SAS were detected in the blood or organs.

In situ characterization of nanoparticles: surface properties affecting agglomeration and particle’s corona.
A. Haase1, M. D. Driessen1, C. Schulze2, M. Wiemann3, H. Galla4, M. Lehr2, M. Maier1, F. Babick2, R. R. Retamal Marin2 and M. Stintz2.
1Evonik Industries AG, Hanau, Germany; 2Technische Universität Dresden, Dresden, Germany. Sponsor: D. Warheit.

The surface coating controls the dispersability and the corona of particles and lipids with kinetic properties. However, nanoparticles behave completely different in lung lining fluid compared to serum containing cell culture media. This has implications for the validity of toxicity testing.

In situ characterization of nanoparticles: surface properties affecting agglomeration and particle’s corona.
A. Haase1, M. D. Driessen1, C. Schulze2, M. Wiemann3, H. Galla4, M. Lehr2, A. Luch1 and W. Wohlenbe1.
1Federal Institute for Risk Assessment (BfR), Berlin, Germany; 2Saarland University, Saarbrücken, Germany; 3IBE, Münster, Germany; 4University of Münster, Münster, Germany; 5Helmholtz Institute for Pharmaceutical Research, Saarbrücken, Germany; 6BASF SE, Ludwigshafen, Germany. Sponsor: M. Pallardy.

In situ characterization of 'as-tested' nanoparticles is essential to understand their toxic effect and to develop Nano-QSARs. The national project nanoGEM correlated and released properties, and further to uptake and effects in vitro and in vivo. Here we report on lipid and protein interactions of 16 nanoparticles in a) serum containing cell culture medium, b) pure phospholipids vs. CuroSurf vs. native lung surfactant. The surface of suspended nanoparticles with sizes of 10nm (ZrO2), 15nm (SiO2) and 50nm or 200nm (Ag) was furnished either with acidic, amino-functional, PEG, acrylic and electro-steric functionalities. Characterization followed the nanospecific REACH guidance R7.1, benchmarked against OECD reference materials TiO2, ZnO, BaSO4, AIOOH. We assessed in situ agglomeration by light scattering, nanoparticle tracking and analytical ultracentrifugation; protein corona by 1D/2D gel electrophoresis with mass spectrometry; lipid interaction by secondary ion mass spectrometry (SIMS), phosphate assays and film balances.

In protein containing media, only nanoparticles with electro-steric functionalities remained dispersed, partially due to negative charge; all nanoparticles attracted a corona with BSA as main component that often decreased during 1h to 24h. Astonishingly, phospholipids had a low affinity to nanoparticles. Only few functionalities attracted lipids and then agglomerated afterwards. The presence of proteins in CuroSurf or native surfactant may induce lipid binding in some cases but not vice versa.

The surface coating controls the dispersibility and the corona of proteins and lipids with kinetic properties. However, nanoparticles behave completely different in lung lining fluid compared to serum containing cell culture media. This has implications for the validity of toxicity testing.

M. Maier1, F. Babick2, R. R. Retamal Marin2 and M. Stintz2.
1Evonik Industries AG, Hanau, Germany; 2Technische Universität Dresden, Dresden, Germany. Sponsor: D. Warheit.

The adjuvant activity of airway pollution particles on allergic airway sensitization is well known, but a similar role of manufactured nanoparticles in allergic sensitization following chemical exposure has not been clarified. Much mixed exposure situations may be relevant to daily life activities.

The goal of our study is to assess the possible adjuvant effect of manufactured nanoparticles (NPs) on a chemical-induced sensitization response in vitro. Human cord blood-derived CD34+ progenitor cells that are differentiated into immature myeloid dendritic cells (CD34-DC) are used as in vitro antigen-presenting cell model. These are exposed to sensitizing model chemicals, such as nickel sulphate, and spherical Au-NPs (5, 50 and 250 nm) for 6 and 24 hours, either as separate inductors or as a mixture. Concentration-response series of the chemicals are used. Cytotoxic effects of the chemicals and NPs are assessed using flow cytometric analysis of propidium iodide incorporation. Triggering of antigen-presenting properties of the exposed CD34-DC is assessed by expression analysis of the VITOSSENS® genes CCR2 and CREM (Lambrechts et al., Toxicol. Lett. 2011) on mRNA samples of lysed cells after 6 hours of exposure using RT-qPCR. Additionally, maturation of CD34-DC is assessed by quantifying cell surface expression of HLA-DR and the co-stimulatory molecules CD80, CD86, and CD83 after 24 hours using flow cytometry.

The results that are obtained in this study, clarify whether gold nanoparticles operate as adjuvants for allergic responses and as such enhance our insight in the risks that nanoparticle exposure may pose to our health.

Y. Suzuki1, S. Tada-Oikawa1, G. Ichihara1 and S. Ichihara1. 1Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan; 2Department of Occupational & Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.

Background: Metal oxide nanoparticles have been widely used in industry, cosmetics, as well as biomedicine. However, the correlation between exposure to metal oxide nanoparticles and the increased incidence of cardiovascular disease remains elusive. The present study investigated the migration of monocytes and macrophage cholesterol uptake that are essential for atherosclerotic progression induced by nano-sized metal oxide particles.

Methods and results: Human umbilical vein endothelial cells (HUVECs) were cultured and exposed to nano-sized TiO2 and ZnO. Exposure to ZnO for 6 hours reduced the cellular viability in a dose-dependent manner and increased the production of reactive oxygen species (ROS) whereas there were no changes by the exposure to TiO2. Exposure to ZnO for 21 hours increased the level of monocyte chemotactic protein-1 (MCP-1) in HUVECs, and cell migration of human monocytic leukemia (THP-1) was observed after incubation with HUVEC supernatants. We also investigated the effect of nano-sized metal oxide particles on cholesterol uptake in THP-1 macrophages after stimulation with acetylated-LDL. The exposure to ZnO up-regulated the expression of membrane scavenger receptors of modified LDL particles and increased cholesterol uptake.

Conclusion: The exposure to ZnO reduced the cellular viability in a dose-dependent manner and increased the production of ROS in HUVECs. The exposure to ZnO also induced THP-1 cell migration and increased macrophage cholesterol uptake. The study indicates that nano-sized ZnO nanoparticles accelerate foam cell formation in THP-1 macrophages.

B. Baré1, N. Lambrechts1, P. Hoet1 and E. Nelissen1. 1Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; 2Lang Toxicology Unit, Catholic University Leuven (KULeuven), Leuven, Belgium.

1756 Possible Adjuvant Role of Manufactured Nanoparticles in Chemical-Induced Sensitization.

Y. Suzuki1, S. Tada-Oikawa1, G. Ichihara1 and S. Ichihara1.
1Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan; 2Department of Occupational & Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.

1757 Zinc Oxide Particles Induced Migration of Monocytes and Increased Macrophage Cholesterol Uptake.

SOT 2013 ANNUAL MEETING 373
1758 Comparison of Cellular Uptake of Titane Nanomaterials by Human Monocytes.

Titanate nanomaterials (TiNMs) have been applied in various industrial products, including cosmetics, dye sensitized solar cells, and photocatalytic materials. There is also increasing concern on human health risk due to exposure to these nanomaterials during production and application of the products. Therefore, safety assessment of TiNMs is required. Several studies have been focused on toxicity and biological interactions of titane nanoparticles (TiNPs), but less is known for titane nanofibrils (TiNf). The aim of this study was to investigate the uptake patterns and toxicity of two TiNPs with different dimensions (about 50 and 70 nm in diameter and 500 and 1500 nm in length, respectively) compared with a spherical TiNP (about 170 nm in diameter) in human monocytes. THP-1 cells. The uptake of TiNMs into the cells was observed over the time for up to 24 hours using side scatter cytometry (SSC), which reflect internal cellular complexity, and electron microscopy. The results showed that all of TiNMs were immediately absorbed on plasma membrane when they exposed to the cells as observed by SEM and SSC. Engulfment of both TiNPs and TiNf was observed by THP-1 cells occurred within 10 minutes exposure. Interestingly, SSC profile may suggest the different uptake patterns between TiNPs and TiNf. In addition, the results from SSC and SEM suggested that TiNPs were taken up by the cells which took longer time than that of TiNPs because of their length. TiNPs with concentrations up to 100 μg/ml did not reduce cell viability, while TiNPs significantly reduced cell viability at concentration of 100 μg/ml. None of TiNMs (with concentrations up to 100 μg/ml) significantly trigger intracellular ROS generation. This information on cellular uptake and response might be useful for risk assessment of nanomaterials.

1759 Air-Liquid Interface Exposure of Lung Cells to Metal Nanoparticles Generated by a Spark Discharge System.

J. King, J. Park, T. M. Peters and P. S. Thorne. Occupational and Environmental Health, The University of Iowa, Iowa City, IA.

Metal-based nanoparticles (NPs) are generated from a variety of processes including welding, cutting and brazing. Airborne NPs are of particular concern over human exposure, as they can readily move in ambient air and enter the body through inhalation. The objective of this study was to investigate toxic effects on human alveolar type-II cells (A549) after air-delivery of various metal NPs. We used a spark discharge system (SDS) capable of generating and depositing airborne NPs directly onto cells at an air-liquid interface (ALI). The generated NPs (from various source materials including Cu, Zn electrodes and welding rods) were characterized by using a scanning mobility particle sizer, inductively coupled plasma-mass spectrometer and electron microscopes (SEM, TEM). To model in vivo repeated-low dose protocols we sequentially exposed lung cells to NPs in vitro (4 h exposure-2 h rest in an incubator-4 h exposure) and cell viability was determined by Alamar Blue assay at 4 h post-exposure. The SDS produced stable NP aerosols for 4 h (Cu, 8 x 10^10; Zn, 6 x 10^10; welding rods, 7 x 10^10 particles/cm^3). Particle size distribution indicated the geometric mean diameter of the generated particles to be about 15 (Cu), 25 (Zn) and 16 nm (welding rods) with a geometric standard deviation of 1.5, 1.7 and 1.4, respectively. SEM and TEM results confirmed the deposition of nano-sized particles on cell-free transwells. The cellular concentration of CuNPs was 5.9 μg Cu/transwell (4.7 cm^2) and a substantial amount of Cu was released to the basolateral medium (0.3 μg/g) during air-delivery of Cu NPs in 4 h. Viability for cells exposed to Cu NPs was significantly reduced to 79% (p<0.05) at 4 h post-exposure compared to cells maintained in an incubator. Our results demonstrated that the SDS can be useful for generating metal NPs and simulating welding fumes for their toxicity assessment. In addition, integrated ALI exposures of human lung cells with SDS can provide screening data to aid prediction of toxicity of metal NPs.

1760 Engineered Nanoparticles Enhanced CD8+ T Cell Cytokine Production.

B. L. Kaplan,1, 4, W. Chen,2, 4, Q. Zhang3, G. L. Baker3 and N. E. Kaminski1, 4. 1Pharmacology and Toxicology, Michigan State University, East Lansing, MI; 2Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI; 3Chemistry, Michigan State University, East Lansing, MI; 4Center for Integrative Toxicology, Michigan State University, East Lansing, MI.

Engineered nanoparticles are being used in various commercial products; however, a significant concern is the potential of these particles to cause adverse effects on human health, as evidenced by exacerbation of allergic airway disease. The objective of this interdisciplinary research is to investigate the putative adjuvant properties of engineered nanoparticles on biological responses at the animal, cell, and membrane levels. Metal-based nanoparticles (SNPs) were modified with alkyne-containing surfaces and appended with polyethylene glycol azides via "click" chemistry. At the cell level, in vitro mouse models were utilized to examine the effect of modified SNPs on dendritic cell (DC)-induced T cell effector function. Ovalbumin (OVA)-derived peptides OVA257-264 or OVA323-339 were presented by endogenous antigen presenting cells in in vitro DC lines (DC2.4, IPN-1). Inhibition of CD8+ or CD4+ T cells in response to OVA peptides was measured by flow cytometry. At modest peptide stimulation levels, modified SNPs (up to 10 μg/ml) enhanced the proportion of CD8+, but not CD4+, T cells that produced cytokines. Various functional groups (-COOH, -NH2, -OH) on modified SNPs enhanced cytokine production to different levels, with -COOH SNPs being the most effective. Furthermore, 50 nm -COOH SNPs exhibited greater enhancement effect on CD8+ T cell response than the other sizes. Importantly, modified SNPs did not aggregate in in vitro culture media, demonstrating their effect at the true nanoscale. Collectively, our results demonstrated the potential adjuvant effect of modified SNPs on CD8+ T cell function and will also complement other studies being conducted by the team at the membrane and the intact animal level. (Supported by NIH Grant R01 ES018756)

1761 Biological Impacts of Ferroelectric Nanoparticles: Comparison between Lead and Bismuth.

M. Esquivel-Gaón,1, 3, M. Uribe-Ramírez,1, E. Herrera-Jiménez2, J. Muñoz-Saldaña1, L. Del Razo1, M. Monopolí1, K. A. Dawson1, S. Anguissola1 and A. De Vizcaya-Ruiz2. 1Toxicology, Cinvestav, Mexico City, Mexico; 2Unidad Queretaro, Cinvestav, Queretaro, Mexico; 3CBNI, University College Dublin, Dublin, Ireland.

The risk posed by lead during manufacturing of ferroelectric ceramics has led to efforts to develop lead-free options, bismuth sodium titanate with barium titanate (BNT-BT) nanoparticles (NP) have become a strong candidate to replace lead zirconate titanate (PZT)-based ceramics. In order to evaluate the biological effects generated by PZT and BNT-BT NP we investigated their interaction with biomolecules adsorbed on the NP surface, which defines the interface with cellular membranes, the uptake and potential toxicity in human cell lines. The NP were dispersed, stabilized with bovine serum albumin (BSA) and characterized in complete culture medium showing an average size of 188 nm (BNT-BT) and 168 nm (PZT), as measured by differential centrifugal sedimentation. The analysis of the proteins absorbed with high affinity to the NP surface (hard corona) after the incubation with FBS showed prevalently BSA and complex protein profiles dependent on the concentration of FBS. Uptake studies in cell cultures rely on fluoroscopically labeled NPs; we generated BNT-BT and PZT NP showing fluorescent properties by labeling BSA used to stabilize the dispersions. The NP were tracked through the endosomal pathway using a time lapse live cell imaging approach. For cytotoxicity assessment, membrane damage and mitochondrial activity were measured in Hep G2, LLC-PK1, A549 and SH-SY5Y cells after exposure to increasing concentrations of BNT-BT and PZT NP for 24 or 48 h. The integrity of the cell membrane was not significantly affected; however the mitochondrial activity decreased after 48 h with 100 μg/ml for both NP being more evident for the PZT NP in neuroblastoma cells. Our results suggest that BNT-BT showed lower levels of toxicity compared to PZT thus it could be a good replacement for PZT-based ceramics. Funding from the European Community Seven Framework Program and CONA-CVT (Grant agreements #263878 and 12514) and Epitope Map Program.

1762 Role of Lung Surfactant Lipid and Protein Corona in Airborne Positively Charged Nanoparticle Exposure.

Airborne nanoparticles (NPs) that reach the alveolar region are likely to be presented to alveolar epithelial cells coated with a corona of lung surfactant proteins and lipids. However, the effect of the corona on airborne NP toxicity is still unclear, mainly because most studies were conducted in cells exposed to NPs in growth media, limiting the corona to molecules found in the media. Furthermore, accumulating observations support a role for positive surface charge in NP toxicity, but the impact of the corona, which shifts the NP surface charge to more negative values, is unclear. To understand the role of corona in airborne NP exposure, we exposed alveolar epithelial cells at the air-liquid interface (ALI) to aerosolized NPs that were pre-incubated with a natural surfactant lipid and protein (Infasurf®) or BSA solution. Bare polystyrene (PS) NPs, showing no toxicity, were compared with NPs showing low or high level of toxicity, respectively. Cellular response was compared between NPs at the same cellular dose, measured as μg/cm^2 using a quartz crystal microbalance. We found that the lowest dose required to induce toxicity by aminated NPs with no corona was 3 folds lower than the dose required to induce toxicity by aminated NPs with a surfactant co-
rona, and 1.8 folds lower than the dose required by aminated NPs with a BSA coro-
non. In contrast, BSA corona eliminated toxicity of carboxylated NPs at all meas-
ured doses. With no corona, the level of aminated NPs at the cell surface or inside the cytoplasm was significantly higher than the level of carboxylated NPs. To eval-
uate the possibility that the observed protective effect of surfactant or BSA coronas from aminated or carboxylated NP toxicity, respectively, is due in part to a decrease in NP-cell interaction and internalization, we currently quantify any changes in these processes that might be induced by the coronas. This work was funded by NIEHS grant 1R2E5018786-01 to GO.

1763 Metastatic Capacity Induced by Cells Exposed to Titanium Dioxide Nanoparticles.
A. Déciga-Alcaraz1, V. Freyre-Fonseca1,2, E. I. Medina-Reyes1, N. L. Delgado Buenrostro1 and Y. J. Chirino1, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico; 2Departamento de Graduado e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.

Background. Titanium dioxide nanoparticles (TiO2 NPs) have been classified as a possibly carcinogenic to humans (Group 2B) by the International Agency for Research in Cancer. In this regard, its potential carcinogenic effects have been under research. However, less has been investigated about the effects of cells ex-
posed to TiO2 NPs when they reach bloodstream, especially if TiO2 NPs exposed cells could proceed from a tumor.

Aim. We hypothesized that tumor cells exposed to TiO2 NPs could promote a metastatic events. To test this hypothesis, lung adenocarcinoma cells were exposed to TiO2 NPs (1, 5 and 10 μg/cm2) for 7 days and 30,000 cells of each condition were injected into bloodstream of chicken chorioallantoic membrane (CAM) of free pathogens fertilized eggs previously incubated during 11 days at 37°C and 20% humidity. Analysis of morphological changes was performed at 16th day. Results. TiO2 NPs were characterized by transmission electronic microscopy (TEM) suspended in F12K medium with 10% Serum Fetal Bovine (SFB) and zeta potential was -20.98±0.75, and TiO2 NPs agglomerate size was 212.3 ±4.417 nm, 630.2±20.94 nm and 588.3±43.11 nm for 1, 5 and 10 μg TiO2/mL respectively. Images showed that there is an increase in distance between blood vessels and a de-
crease in number of nodes in CAM treated with cells exposed to 10 μg/cm2 of TiO2. In addition, there were observed cell clusters on the CAM treated with cells exposed to 1 and 5 μg/cm2 of TiO2 NPs.

Conclusion. TiO2 NPs exposure (10 μg/cm2) to lung adenocarcinoma cells induced an increase in blood vessel distance and a decrease the number of nodes, which seems to be a downregulation effect in angiogenesis. However, pre-exposed lung adenocarcinoma cells to 1 and 5 μg/cm2 of TiO2 NPs exposed a capacity to form clusters, which could represent a higher metastatic effect.

1764 Phenotypic Polarization and Attenuation of Toll Receptor Signaling Functions in Macrophages Exposed to Engineered Nanoparticles.
V. K. Kodali1, M. H. Linke1, S. C. Tilton1, G. T. Teegarden1, L. Shi1, C. W. Frevert1, W. Wang1, J. G. Pounds1 and B. D. Thrall1, Systems Toxicology, Pacific Northwest National Laboratory, Richland, WA; 2Computational Sciences Division, Pacific Northwest National Laboratory, Richland, WA; 3Department of Comparative Medicine, University of Washington, Seattle, WA; 4Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN.

Although macrophages play a critical role in scavenging engineered nanoparticles (ENPs) from tissue, relatively little is known about how their normal immune function is impacted. We investigated how pretreatment of macrophages with 33 nm superparamagnetic iron oxide (SPIO) or 50 nm amorphous silica modulated the transcriptional response of macrophages to the toll 4 receptor (TLR4) ligand LPS. Affymetrix microarray analysis showed over 5000 mRNAA were differentially regulated (>1.5 fold, p<0.05) in response to LPS (10 ng/ml, 6 hrs). SPIO pretreatment (25 μg/ml) alone altered expression of a smaller set of genes (1029 total), but modulated expression of nearly 560 LPS regulated genes in a greater than additive manner. In contrast to SPIO, relatively few LPS regulated genes were modulated by silica pretreatment. Pathway analysis showed that pretreatment with SPIO suppressed LPS activation of several key cellular functions like chemotaxis, interferon and Jak-Stat inflammation signaling while enhancing cell adhesion and oxidative/nitrative stress responses. Pretreatment of macrophages with SPIO also caused a dose dependent decrease in phagocytosis of S.pneumoniae and S.py-
phirum, whereas silica pretreatment had no effect. Flow cytometry studies using fluorescent LPS or antibodies against TLR4 revealed that SPIO exposure caused dose-dependent down regulation of cell surface TLR4 level while silica had no effect. Our results demonstrate that macrophages exposed to SPIO NPs are po-
talized toward an anti-inflammatory phenotype which attenuates pro-inflamma-
tory signaling by TLR4, and suppresses their phagocytic activity against pathogens.

This work was supported by NIEHS Grant U19-ES019544.

1765 Intracellular Trafficking and Accumulation Dynamics of Zinc Ions in Alveolar Epithelial Cells Exposed to Airborne ZnO Nanoparticles at the Air-Liquid Interface.

Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of the studies were done in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To better represent the exposure in the respiratory tract and focus on the dissolution of airborne NPs in the cellular environment, we exposed alveolar ep- thelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescence indicator for zinc ions (Zn2+) and organelle-specific fluorescent proteins, we quantified Zn2+ in single cells and organelles over time and correlated these values with toxicity. We found that intracellular Zn2+ in cells exposed at the ALI peaked 3 h post exposure and decayed to normal levels by 24 h, which was in contrast to expo-
sures in submersed cultures where intracellular Zn2+ continued to increase over time. For the lowest toxic dose at 24 h, the peak at the ALI was -3 folds lower than the 24 h value in submersed cells, and -8 folds lower than the 24 h value in sub-
mersed cells exposed to Zn2+ only. At the ALI, 45% of intracellular Zn2+ was found in endosomes at 1 h post exposure, decreasing to 24% by 3 h. In contrast, 20% of intracellular Zn2+ was found in lysosomes at 1 h, increasing to 42% by 3 h. Interestingly, exposure of submersed cells to Zn2+ only, led to a minimal accumu-
lolation of ions in either the endosomes or lysosomes, with the majority of ions found in larger vesicles. Our observations indicate that airborne ZnO NPs induce toxicity at the ALI at intracellular Zn2+ levels that are significantly lower than those de-
tected when toxicity is induced in submersed cultures. The localized dissolution and trafficking of Zn2+ in endosomes following with their accumulation in lysosomes play critical roles in airborne NP toxicity. This work was funded by NIEHS grant 1RCE5018786-01 to GO.

1766 Aggregation Dynamics and Structure Measurements of Nanomaterials in Biologically Relevant Conditions.
N. B. Saleh1, S. M. Hussain2 and A. Afroz1, 1Civil and Environmental Engineering, University of South Carolina, Columbia, SC; 2Wright-Patterson AFB, US Air Force, Dayton, OH.

Nanomaterial dosimetry for in vitro studies continues to be debated in nanotoxi-
cology literature, particularly due to the propensity of aggregation of highly diffu-
sive nano-scale materials. In classical nanotoxicology literature, average particle size and surface charge are the typical measured parameters either initially or at the end of exposure time period; with no information on the dynamic behavior throughout the process. Moreover, aggregate structural information is mostly ignored. This study focuses on monitoring dynamic aggregation behavior of metal and car-
bonaceous nanoparticles under biological (i.e., in exposure media with added peni-
cillin streptomycin, at 37 ºC) exposure conditions. The aggregation dynamics is monitored by employing state-of-the-art ALV goniometer system. Suspension-
phase fractal dimension was measured with angle-dependent static light scattering for an angular range of 12°-120°. Aggregation dynamics results indicate that electro-
static interaction serves as the key interfacial force to providing stability to nano-
materials. In addition, continuous measurements of aggregate size in physiological condition show network formation. Furthermore, time dependent fractal dimen-
sion results indicate that aggregate structure remains unchanged over time; how-
ever, were significantly altered by the background solution chemistry. The key im-
plications of the study include: consideration of intermediate time-endpoint (instead of 24 h); aggregation dynamics and network formation can minimize size-
effects on nanotoxicology; aggregation dynamics with aggregate structure informa-
tion can better determine nanomaterial dosimetry.

1767 Targeting Alternatively Activated Rat Macrophages Using Mannose Functionalized Nanocarriers.
P. Chen1, X. Zhang1, A. Venosa2, Z. Szekely1, D. L. Laskin2 and P. J. Sinko1, 1Pharmaceutical Science, Rutgers University, Piscataway, NJ; 2Department of Pharmacology & Toxicology, Rutgers University, Piscataway, NJ.

In response to inflammatory signals generated at sites of injury, macrophages are ac-
tivated into two main phenotypes: classically activated M1 cells and alternatively activated M2 cells. Whereas M1 macrophages release cytotoxic/proinflammatory
mediators that contribute to tissue injury. M2 macrophage-derived mediators suppress inflammation and initiate wound repair. Mannose receptor (MR) is known to be expressed at high levels on M2 macrophages. In these studies, a mannose functionalized nanocarrier (NC) was designed and developed with the goal of selectively targeting M2 macrophages. Mannose functionalized NC (FITC-Gaba-Ser(Man)-PEG12-Ser(Man)-Gaba-Gaba-Cys) were prepared using solid phase synthesis and their identity confirmed by MALDI-TOF-MS and HPLC analysis. Rat peritoneal macrophages (PMs) were incubated for 24-48 h with IFN-γ (20 ng/ml) or IL-4/IL-13 (10 ng/ml), to induce M1 or M2 activation, respectively. MRI of the M1 marker, inductible nitric oxide synthase (iNOS) and the M2 marker, arginase (Arg)-1 were quantified by RT-PCR, and protein levels by western blotting. Treatment of PMs with IFN-γ resulted in increased expression of mRNA and protein for iNOS, whereas IL-4/IL-13 upregulated Arg-1 expression. After incubating for 60 min, NC binding to macrophages was quantified by confocal microscopy. Confocal microscopy showed that uptake of mannosylated NC into M2 PMs was 2.4 fold greater than control PMs, and 11.8 fold greater than M1 PMs. M2 macrophage phenotype-specific uptake was completely abolished by mannan, suggesting MR-targeting. NCs were co-localized with rhodamine-dextran, a general fluid phase endocytosis marker, indicating that the NCs were internalized by PMs. The present studies demonstrate that mannosylated NCs are specific for macrophages expressing mannose receptor. These NC may be useful for delivery of drugs to sites of injury and infection.

Support: NIH AI51214, AR055073, CA132624, ES004738, ES005022, and GM034310

1768 Synthesis, Characterization and Toxicological In Vitro Activity of Nanomaterials Containing Active Ingredients of Matricaria chamomilla L.

A. Vera1, L. A. Flores1, F. M. Mercado1, R. Vazquez1, J. A. Soriano1, R. L. Ortega1, A. Jair1, P. Sengar2, G. A. Hira1, R. E. Cachau1, R. Hernandez1, U. Pal1, Z. N. Juarez1, M. C. Miranda1 and T. D. Palacios-Hernandez1. 1Ciencias Biológicas, UAPED, Puebla, Mexico; 2School of Biosciences and Technology, VIT, Vellore, India; 3Centro de Nanociencias y Nanotecnología, UNAM, Ensenada, México; 4Frederick National Laboratory for Cancer Research, Frederick, MD; 5Centros Químico-Biológicos, UDLAP, Puebla, Mexico; 6Instituto de Física, BUAP, Puebla, Mexico.

In this contribution, the synthesis, characterization and biological activity of polymeric nanocapsules (PNC) and iron oxide nanoparticles (NPs) containing active ingredients of Matricaria chamomilla L., is being evaluated. M. chamomilla L. specimens were collected and dried, to obtain the chloroform, hexane and water extracts. Iron oxide NPs were prepared by a co-precipitation method using FeCl3, Na2SO3 and NH4OH. PNC were prepared by emulsion method using aqueous solutions of sodium alginate containing the active principle, calcium chloride and sodium dodecyl sulphate. Characterization of all the materials was done by dynamic light scattering (DLS), transmission electron microscopy (TEM), phase contrast microscope, RAMAN spectroscopy, X-ray diffraction (XRD), Fourier Transformed Infrared spectroscopy (FTIR). Plant extracts are being purified by column chromatography and were characterized by proton (1H) and carbon (13C) Nuclear Magnetic Resonance (NMR). TEM analysis confirmed the presence of nanoparticles in a size range of 6-10 nm, and RAMAN showed the magnetite phase at SPION and FTIR showed the characteristic vibrations of BH in magnetite NPS and organic groups at PNC. A high particle size distribution (93-200 nm) was obtained in polymeric nanocapsules by DLS and confocal microscopy, due the presence of aggregates. NMR showed in the hexane extract the presence of flavonoids, sugars and phenols. At this moment we are still working on the purification of M. chamomilla L. extracts and the biological evaluation of active principles upon bacterial cultures, to determine ecotoxicity of all the materials synthesized.

1769 Comparative In Vitro Cell Uptake of Bismuth and Bismuth-Derivatives Nanoparticles in Lung Cells.

L. M. Del Razo1, B. Quintanilla-Vega1, O. C. Barbier1, J. E. Quisvel-Gaón1,2, M. Uribe-Ramírez1, A. Barrera-Hernández1, L. J. Sanchez-Peña1, K. A. Dawson2, S. Angussola2 and A. Del Vincaya-Ruiz1. 1Toxicology, Cinvestav-Instituto Politécnico Nacional, Mexico, City; 2CIBN, University College Dublin, Dublin, Ireland.

Bismuth (Bi) has exceptionally low magnetic susceptibility and very low thermal conductivity which favors their use as a thermoelectric material. Therefore, low-dimensional Bi compounds are good candidates as nanomaterials. In this study, the physiochemical properties of Bi-derivatized nanoparticles (Bi-NP) — Bi trioxide (Bi2O3), Bi vanadate (BiVO4), and zero valent Bi in colloidal form (ZV-Bi) — and uptake in A549 lung cells were evaluated. The properties include the dispersion and stability, elemental composition and uptake in lung cell cultures. Testing for bio-compatible descriptors for biological and toxicological evaluations was performed using sonication and centrifugation steps, combined with stabilization of the NP surface with bovine serum albumin (BSA: 10 mg/ml) to reduce agglomeration. Its dispersion properties and elemental composition were confirmed using dynamic light scattering and energy dispersive X-ray spectroscopy. Average size of Bi2O3, BiVO4, and LTO-TiO2 was 9.2 nm (0.34 pdl), 49.9 nm (1 pdl) and 3.3 ± 1 nm, respectively. Elemental content was in 67.6%-Bi, 32.4%-O in Bi2O3, 55.5%-Bi, 25.9%-V and 18.6%-O in BiVO4 and 49.9%-Bi, 33.7%-O and 16.4%-Na in ZV-Bi. From a parallel cytotoxicity study of the exposure to Bi2O3, BiVO4, and ZV-Bi the 50 μg/ml non-cytotoxic level was chosen to assess the cellular uptake of Bi at 6, 24 or 48 h in lung cells by atomic fluorescence spectrophotometry by hydride generation. A differential uptake of Bi was observed. BiVO4 was internalized in cells in 86.6% while Bi2O3 and ZV-Bi in 27.8 and 26.1%, respectively. Our results suggest that Bi-NP cellular internalization is dependent of the physiochemical properties, where a more conductive NP such as BiVO4 was more effectively internalized; therefore, NP transport and uptake is a relevant process that needs to be thoroughly investigated. Funding from the European Community Seventh Framework Programme and CONACYT (Grant agreements #263878 & 12514).

1770 Oxidative Stress, Cell Viability and Types of Cell Death Induced by Transition Metal Oxide Nanoparticles Depend on Surface Charge, Available Surface Binding Site, and Ion Dissolution.

Y. Huang1, C. C. Chusuri2, C. Wu1, S. Mallavarapu2, J. G. Winiarek3 and R. S. Aronstam1. 1Biological Sciences, Missouri University of Science and Technology, Rolla, MO; 2Chemistry, Middle Tennessee State University, Murfreesboro, TN; 3Chemistry, Missouri University of Science and Technology, Rolla, MO.

We investigated physicochemical properties of nano-sized oxides of Fourth Period transition metals that contribute to cytotoxicity: The cytotoxicity (i.e., cell killing) of nanoparticles (NPs) TiO2, Cr2O3, Mn2O3, Fe2O3, NiO, CuO, and ZrO2 increases as atomic number increases. This trend is not cell type specific, as it is observed in nontransformed human lung (BEAS-2B) and adenocarcinomic human alveolar basal (A549) epithelial cell lines. We assessed physiochemical properties of NPs to discover the determinants of cytotoxicity: 1) the point-of-zero charge (PZC) (i.e., isoelectric point) describes the surface charge of NPs in cytosolic and lysosomal compartments; 2) the relative number of available binding sites on the NP surface was used to estimate the probability of biomolecular interactions on the particle surface; 3) band-gap energy predicts electron abstraction from NPs which might lead to oxidative stress and subsequent cell death; and 4) ion dissolution. Our results indicate that that cytotoxicity is a function of particle surface charge, relative number of available surface binding site, and metal dissolution from NPs. These NPs are capable of inducing oxidative stress that is consistent with the trend of cell killing; however, H2DCFDA is not a suitable dye to accurately assess oxidative stress due to quenching effect. Ratio of apoptosis and necrosis also follows the trend of cell killing. Our findings provide a basis for both risk assessment and the design of safer nanomaterials.

1771 Cytotoxic and Antitumor Effect of Vitamin E Analogues Functionalized to Magnetite Nanoparticles.

A. Angulo Molina1,2, 3, J. Reyes Leyva1, J. Hernández1, T. D. Palacios-Hernandez1,4, M. A. Méndez Rojas2, M. Cerro López1, J. Flores1, F. Ruiz4, O. Contreras3 and G. A. Hira1. 1Centro de Investigación en Alimentación y Desarrollo, CIAD, AC, Hermosillo, Mexico; 2Universidad de las Américas Puebla, UDLAP, Puebla, Mexico; 3Centro de Investigaciones Biomédicas de Oriente CIBIOR, UDLAP, Puebla, Mexico; 4Centro de Nanociencias y Nanotecnología, CINyN, Ensenada, Mexico.

BACKGROUND: Magnetite nanoparticles (NPs) can be used as nanocarriers to enhance and improve the efficiency of delivery of vitamin E analogues. Herein we report the citotoxic and antitumor effect of magnetite NPs functionalized with alpha tocopheryl succinate (α-TOS), the most effective analogue of vitamin E in inducing death in cancer cells. One problem with α-TOS is its vulnerability to esterification making impossible its use on cancer cells with high levels of esterases. OBJECTIVE: To investigate the cytotoxicity and antitumor effect of magnetite NPs functionalized with α-TOS (Nps-α-TOS). METHODS: Magnetite Nps-α-TOS were functionalized mixing Nps, silane agents and α-TOS under vigorous stirring (40ºC) for 4 h. The Nps-α-TOS were characterized by FTIR, EDX, TEM, SEM and DLS. Then a human cervix cancer cell line (A549) in ethelial cell lines. We assessed physiochemical properties of NPs-α-TOS under vigorous stirring (40ºC) for 4 h. The Nps-α-TOS were characterized by FTIR, EDX, TEM, SEM and DLS and cytotoxicity studies on cancer cells with high levels of esterases. Thus, H2DCFDA is not a suitable dye to accurately assess oxidative stress due to quenching effect. Ratio of apoptosis and necrosis also follows the trend of cell killing. Our findings provide a basis for both risk assessment and the design of safer nanomaterials.
RESULTS: Electronic microscopy studies revealed an average NPs size of 130 nm (± 32.7 nm) and irregular spherical in shape. IR, EDS and DLS results support the formation of NPs detecting mineral and organics constituents respectively with high stability. The in vitro tests shows by first time the Nps-α-TOS can be internalized and are more cytotoxic and effective that α-TOS alone and inhibits the growth of resistant cervix cancer cell.

CONCLUSION: In this study we found that magnetite NPs can work as nanocarriers of α-TOS. This composite protect the anticancer activity of α-TOS and enhances the anti-tumor effect in resistant cancer cells.

1772 Cellular Internalization and Trafficking of Individual Nanoparticles Investigated with Nanometer Resolution Using Super Resolution Fluorescence Microscopy.

The cellular internalization mechanism of engineered nanoparticles (NPs) and their intracellular trafficking govern the cellular interactions of the particles, which ultimately determine their impact on the cell. These cellular mechanisms largely depend on the size of the NPs or the aggregates that are often formed. To identify mechanisms specific to individual NPs or small nano-scale aggregates, we used stochastic optical reconstruction microscopy (STORM) to resolve nanometer localization of individual NPs within organelles and in respect to subcellular structures with 10-20 nanometer resolution. Using FastLime, a photo-switching derivative of green fluorescent protein, we created fluorescent chimeras for clathrin, caveolin and actin, and expressed the proteins in alveolar epithelial cells. The transfected cells were exposed to amorphous silica NPs, tagged with a photo-switching dye, and imaged at 2 h and 16 h post exposure. We found NPs within clathrin and caveolin coated vesicles in both time-points, supporting a preferential binding of the NPs to molecules found in clathrin-coated pits and caveolae at the cell surface. A significant number of NPs were found aligned along actin filaments at 16 h post exposure. The distance between the NPs and the filaments was calculated for more than a cant number of NPs were found aligned along actin filaments at 16 h post exposure. Together, our observations suggest a mechanism for internalization and trafficking of amorphous silica NPs in alveolar epithelial cells. A significant number of NPs were found aligned along actin filaments at 16 h post exposure.

The effect of titanium dioxide nanoparticles (nano-TiO2, Degussa p25, 86% anatase and 14% rutile) treatment of human lung epithelial cells (BEAS-2B) was examined by analyzing changes in messenger [mRNA] and microRNA [miRNA]. BEAS-2B cells were treated with 0, 3, 10, 30 or 100 ug/ml nano-TiO2 for 1 day (for mRNA analysis) or 3 days (for miRNA analysis). Differentially expressed mRNA and miRNA were analyzed using Affymetrix microarrays (human U133 Plus 2.0) and Affymetrix miRNA microarrays, respectively. Although, the tested doses were not cytotoxic, there were alterations in both mRNA and miRNA expression. The expression of mRNA/miRNA changes were examined in MetaCore (GeneGo) and IPA (Ingenuity Pathway Analysis) to delineate associated signaling pathways. Signaling pathways altered by nano-TiO2 treatments included cell cycle regulation, apoptosis, calcium signaling, translation, NRF2-mediated oxidative response, IGF1 signaling, RAS signaling, PI3K/AKT signaling, cytokostatin remodeling, cell adhesion, BMP signaling, and inflammatory response. Many of the genes in these signaling pathways are known to be regulated by the miRNAs that were altered by the nano-TiO2 treatment. The mRNA 17-92 cluster and let-7 miRNA family that are reportedly involved in lung cancer formation were altered by nano-TiO2 treatment. The miR-17-92 cluster, an oncogenic microRNA cluster, is induced while the tumor suppressor microRNA, let-7 family, is suppressed. The observed changes in miRNA expression introduces an additional mechanistic dimension that supports the significance of the observed mRNA expression changes, and demonstrated that the nano-TiO2 treatment can cause diverse but co-ordinated pathway alterations associated with changes in vivo response to tumorigene. [This abstract does not necessarily reflect the policies of the U.S. EPA.]

1774 In Vitro Co-Culture System to Examine the Effects of Inhaled Nanoparticles.

K. B. Donohue¹, A. M. Mayo¹, D. R. Johnson¹, R. Nellums², S. F. Son³ and I. A. Sievenpiper¹. ¹Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS; ²Badger Technical Services, Vicksburg, MS; ³Purdue University, West Lafayette, IN.

Engineered nanoparticles (NPs) possess numerous potential benefits to society in fields as diverse as electronics, textiles, medicine, energy and construction. The respiratory system represents a unique target for the potential toxicity of NPs. Due to their dimensions, inhaled NPs can reasonably be expected to penetrate to the deepest part of the lungs, the alveolar sacs. Completed inhalation studies in laboratory rats have demonstrated that some NPs induce oxidative stress, inflammation and fibrosis. In this study, we examine the effects of nanoparticles and parent nano-materials (bismuth oxide [Bi2O3] and copper oxide [CuO] spheres and rods) on an alveolar co-culture model consisting of human type II pneumocytes and alveolar macrophages. Co-cultures were set up with a ratio of 3:1 of type II pneumocytes to each alveolar macrophage 24 h prior to treatment. Media was then removed and cultures were treated with 0.001 100 mg/ml NPs for 24 h. Cell viability was only affected by CuO at 100 mg/l; CuO spheres and rods had similar effects. These studies demonstrate that only high concentrations of raw Bi2O3 and CuO NPs affect respiratory co-cultures and that CuO NP size does not affect respiratory co-culture viability. Additional phagocytosis studies and cytotoxicity analysis of cultures (intracellular and extracellular concentrations) are being conducted to evaluate inflammatory effects of these NPs in the respiratory co-culture immune cells.

1775 Metabolic Studies of the Nanotoxicity of TiO2 and CeO2.

K. T. Kitchin¹, B. Robinette¹, B. Castellon¹ and R. Michalek². ¹US EPA, Durham, NC; ²Metabolon, Durham, NC.

Nanomaterial exposures to humans and wildlife pose unknown degrees of risk to major organ systems including the liver. TiO2 and CeO2 nanomaterial exposures (3 or 30 ug/ml for 3 days) were performed in cultures of human liver HepG2 cells. TiO2 and CeO2 nanomaterial exposures altered the concentrations of biochemistry associated with arginine metabolism, lipids and fatty acids, TCA cycle and glutathione. Some metabolites that were significantly altered in 4 or more of the 8 TiO2 or CeO2 nanomaterial treatments were cysteine, GSH, asymmetric dimethylarginine and gamma-glutamyl amino acids. Asymmetric dimethylarginine (a competitive inhibitor of nitric oxide synthase) was significantly increased by the high stability. The in vitro tests shows by first time the Nps-α-TOS alone and inhibits the growth of resistant cervix cancer cell.

1776 Neurotoxicity of Au-NPs in an In Vitro Blood Brain Barrier (BBB) Model.

M. Sharma¹, C. E. Suletnic¹, J. L. Schelker¹ and S. M. Hussain¹,². ¹HPW/RHDJ, AFRL, Wright-Patterson AFB, Dayton, OH; ²Department of PharmTox, WSU, Dayton, OH.

Gold nanoparticles (Au-NPs) have demonstrated great potential in the development of a variety of tools with applications ranging from biomedical to military fields. Biodistribution studies indicate differential uptake of NPs depending on their functionalization, treatment conditions, and location in the body. Unlike other organ systems, brain vasculature is comprised of endothelial cells that form an anatomical and physiological barrier that protects neurons from metabolic fluctuations and toxins. The cost and extent of expertise required for in vivo studies, pose limitations, and therefore, better in vitro models are pursued to study toxicological aspects of the BBB. The main aim of this study is to modify a previously described static in vitro BBB model by adding a constant flow of media containing NPs and then studying the NP trafficking across the endothelial cells. Murine brain endothelial cells (bEnd3) and astrocytes (CSD11A) were cultured on the luminal bloodbrain barrier, and the effects of NP concentration on cell viability, proliferation, and the expression of BBB markers were investigated.
was confirmed in the samples obtained by the most alkaline pH ranges (above 10), while at pH 9 we obtained a mixture between hydroxyapatite and monetite phases. To evaluate the biological in vitro activity of our materials, MTT assay is being performed upon mouse fibroblasts that are treated with representative samples of Eu-HAp nanoparticles previously synthesized by our group.

1777 Effect of Surface Modification of Metal Oxide Nanoparticles upon Cell Viability and Genotoxicity of Epithelial Breast Cells.

In this work, the biological activity of different metal oxide nanoparticles (Fe3O4, Co3O4, CuO) upon epithelial breast cells MCF-10A have been evaluated. The first step is the fabrication and characterization of the metal-oxide nanoparticles (MONPs) followed by the functionalization with folic acid, L-arginine and L-cysteine which is confirmed by Fourier Transform Infrared Spectroscopy (FTIR) and Low Voltage Electron Microscopy (LVEM) measurements. In order to determine real time cell viability, semi-confluent cells were exposed to either 0, or 0.2 mg/mL of particles with and without functionalization. 2 x 103 cells/well were grown in a gold wired 16-well plate for 15 hours, with readings of impedance collected every 15 minutes to monitor cell proliferation. To determine cell-nanoparticle interactions, cells were grown for 24 hours, exposed to 1 mg/mL of particles (PEG) and fixed for additional 48 hours. After that, cells were fixed and stained with DAPI to evaluate apoptosis necrosis and characterization of normal nuclear morphology. Additionally a dose-response growth curve using Fe3O4 nanoparticles, presumably, the less toxic exposure, free and functionalized with folic acid (Fe-AP), was carried out. Results indicate that the most toxic treatment was Fe3O4 and the less toxic was Fe3O4 functionalized with folic acid, although all the MONPs evaluated didn't cause a strong toxic response due the values of cell index obtained by impedance evaluation. However, the presence of particles interacting with the cell and nucleus showed the possibility of genotoxic effects, and for that reason, in an attempt to explore this condition, the micronucleus assay employing Cytochalasin B (Cytome assay) is being conducted as a follow up.

1778 Synthesis, Characterization and Evaluation of Biological In Vitro Activity of Eu3+ Doped Hydroxyapatite.

In this work, the synthesis, characterization and biological in vitro activity of Eu3+ doped hydroxyapatite (Eu-HAp) is being evaluated. Hydroxyapatite synthesis is being carried out by microwave-hydrothermal techniques, modifying parameters such as temperature, power, pH and calcium precursors. In a typical process, the synthesis was carried out by the mixture of CaCl2 or Ca(NO3)2, H2O2 and Eu(NO3)3.5H2O. After that, a solution of (NH4)2HPO4 was added. The full products obtained, as powders, were ground and characterized by X-Ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (SEM, TEM), Atomic Force Microscopy (AFM) and Fourier-Transformed Infrared Spectroscopy (FTIR). As preliminary results, infrared spectroscopy showed the signals corresponding to O-H stretching at approximately 3500 cm-1. Regarding PO4 vibrations, we found approximately at 1000 and 1000 cm-1 the characteristic vibration of this group. Regarding XRD, we have obtained nanocrystals at a size range of 37-50 nm, and the crystalline phase corresponding to hydroxyapatite was confirmed by the samples obtained by the most alkaline pH ranges (above 10), while at pH 9 we obtained a mixture between hydroxyapatite and monetite phases. To evaluate the biological in vitro activity of our materials, MTT assay is being performed upon mouse fibroblasts that are treated with representative samples of Eu-HAp nanoparticles previously synthesized by our group.

1779 Interactive Toxicity of Uronic Acid and Lipopolysaccharide in Human Liver HepG2 Cells.

Uronic acid (UA), a natural botanical product, is a constituent of some dietary supplements used for weight loss. It has been associated with clinical hepatotoxicity leading to liver failure in humans. The present study was undertaken to evaluate the interactive toxicity, if any, of UA with lipopolysaccharides (LPS), a potential contaminant of food, at low nontoxic concentrations. The human hepatoblastoma HepG2 cells were treated with the vehicle control and test agents, separately and in combination (UA+LPS) at concentrations of UA 1.0 μM and LPS 1.0 ng/ml, for 24 h at 370 C in 5% CO2. Following the treatment period, the cells were evaluated by the traditional biochemical endpoints of toxicity in combination with the toxicogenic endpoints that included cytotoxicity, oxidative stress, mitochondrial injury and changes in pathway-focused gene expression profiles. Compared to the controls, low nontoxic concentrations of UA and LPS separately showed no effect on the cells as determined by the biochemical endpoints. However, the simultaneous mixed exposure of the cells to their mixture resulted in increased cytotoxicity, oxidative stress and mitochondrial injury. The pathway-focused gene expression analysis resulted in the altered expression of several genes out of 84 genes examined. Most altered gene expressions induced by the mixture of UA and LPS were different from those induced by the individual constituents. The genes affected by the mixture were not modulated by either UA or LPS. The results of this study suggest that the interactions of low nontoxic concentrations of UA and LPS produce toxicity in HepG2 cells.

1780 Dihydroartemisinin Inhibits PMA-Induced Cyclooxygenase-2 Expression through Downregulating AKT and MAPK Signaling Pathways in Murine Macrophages.

E. Han1, H. Kim1, J. Choi1, Y. Hwang2 and H. Jeong1.

Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin isolated from the traditional Chinese herb Artemisia annua L., has recently been shown to possess antitumor activity in various cancer cells. However, the effect of anti-inflammatory potentials of DHA in murine macrophages RAW 264.7 cells has not been studied. The present study investigated the effect of COX-2 and molecular mechanisms by DHA in phorbol 12-myristate 13-acetate (PMA)-stimulated RAW 264.7 cells. DHA dose-dependently decreased PMA-induced COX-2 expression and PGE2 production, as well as COX-2 promoter-driven luciferase activity. Additionally, DHA decreased luciferase activity of COX-2 regulation-related transcription factors including NF-κB, AP-1, C/EBP and CREB. DHA also remarkably reduced PMA-induced p65, C/EBPβ, c-jun and CREB nuclear translocation. Furthermore, DHA evidently inhibited PMA-induced phosphorylation of AKT and the MAP Kinases, such as ERK, JNK and p38. These data indicated that DHA effectively attenuates COX-2 production via down-regulation of AKT and MAPK pathway, revering partial molecular basis for the anti-inflammatory properties of DHA. These findings demonstrate that DHA effectively attenuates COX-2 production, and provide further insight into the signal transduction pathways involved in the anti-inflammatory effects of DHA.

1781 Protective Role of Silymarin against Oxidative Stress Induced in Human Neuroblastoma Cell Line SH-SY5Y.

Silymarin (SM) is a mixture of bioactive flavonolignans isolated from Silybum marianum (L.) Gaertn., employed usually in the treatment of alcoholic liver disease and as anti-hepatotoxic agent in humans. The essential activity of SM is an antioxidant...
effect of its flavonolignans. Because of the importance of oxidative stress and mito-
chondrial dysfunction in causing neuronal death, prompted us to investigate the ef-
fects of SM against an in vitro model of reactive oxygen species (ROS) production in
the human neuroblastoma cell line SH-SY5Y. We selected two cytotoxic stimuli,
for one, hydrogen peroxide (H2O2)(500 μM), and on the other hand the combination of 30 mM rotenone plus 10 μM oligomycin-A (R/O) that inhibit mito-
chondrial respiration complexes I and V, respectively. Cell viability, measured as
MTT reduction, was decreased to 70% in cells treated with H2O2 and to 60% in
cells exposed to R/O. Cell incubation with increasing concentrations of SM (1-
1000 μM) for 24 hr, followed by a 24-hr period with H2O2 (extracellular ROS) or
R/O (intracellular ROS). Maximum protection was achieved with 300 μM SM
(30% protection). Our results showed that R/O and H2O2-induced cytotoxicity in
SH-SY5Y cells was suppressed by treatment with SM. Because, it is currently re-
ported that SM crosses the blood–brain barrier and enters the CNS and it is non-
toxic even at higher doses, this flavonoid may be useful in diseases known to be
gagrivated by reactive oxygen species and in the development of novel treatments for
neurodegenerative disorders. This work was supported by projects Ref. BSCHRGR58/08(UCM), Ref. No. S2009/AGR-1469(CAM) and Consolidator-
Ingenio 2010 No.CSD2007-063(MEC), Spain.

1782 Thymoquinone, a Bioactive Component of Nigella sativa, Modulates Redox Status and Insulin Secretion from Pancreatic Beta Cells.

J. P. Grau1, 2, R. Follmer1, R. Rebar1, N. Seeram3 and E. Heart4. 1Science, US
Coast Guard Academy, New London, CT; 2Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI; 3Cellular Dynamics, Marine Biological Laboratory, Woods Hole, MA.

Nigella Sativa is a traditional medicine that has been used in the Mediterranean to
treat a variety of disorders, including type 2 diabetes. A primary component of
Nigella sativa extract is thymoquinone which, like Nigella sativa extract, attenuates
diabetes symptoms. The molecular targets and interactions of thymoquinone with
metabolic pathways relevant to glucose-stimulated insulin secretion (GSIS) from
pancreatic β-cells have not yet been identified. Our laboratory previously demon-
strated that low (nM-nM) doses of various quinones such as menadione stimulate
insulin secretion from β-cells, and this action was coupled to the generation of low
levels of H2O2, a putative mediator of GSIS. Here we compared the mechanism of
action of thymoquinone to that of menadione in β-cells. Like menadione, thymo-
quinone induced a dose-dependent increase in the production of H2O2. Unlike
menadione, the redox cycling of thymoquinone was not dependent on the glucose
concentration. Both NADPH and NADH supported the redox cycling of thymo-
quinone in cytosolic and mitochondrial fractions. This was consistent with the abil-
ity of thymoquinone to decrease NADH/NAD+ and NADPH/NADP+ ratios, thus
reducing intracellular redox poise. Thymoquinone-dependent redox cycling activi-
ties were inhibited by diphenylene iodonium, an inhibitor of flavin-containing ox-
doreductases. Dicoumarol and MAC220, NQO1 inhibitors previously shown to
inhibit menadione-dependent redox cycling, failed to inhibit thymoquinone-de-
pendent redox cycling. Unlike menadione, thymoquinone was found to potentiate
GSIS in a dose-dependent manner at stimulatory glucose (concentrations which
potently stimulate insulin secretion). These data suggest that while the mechanisms
of thymoquinone redox cycling are different than those of menadione, thymo-
quinone retains the ability to regulate both redox status and insulin secretion from
β-cells.

1783 Antioxidant and DPPH-Scavenging Activities of Compounds and Ethanolic Extract of the Leaf and Twigs of Caesalpinia bonducella. L. Roxb.

O. O. Oluhanka1, 2, Ö. E. Ogunlana1, 2, A. T. Lawa3, 4, J. O. Olagunju5, 6, A. A. Akindahunsi7, 8, 9 and N. H. Tan10, 11. 1Biological Sciences, Covenant University, Ota,
Nigeria; 2Biological Sciences, Cranfield University, UK; 3Ouza University, Nigeria; 4Medical Biochemistry, College of Medicine, Lagos State University, Ika;
Nigeria; 5Biochemistry, Federal University of Technology, Akure, Nigeria; 6State Key Laboratory of Phytochemistry and Plant Resources, Kunming Institute of Botany, Kunming,
China.

Antioxidant effects of ethanolic extract of Caesalpinia bonducella and its isolated bioac-

dic compounds were evaluated in vitro. The compounds included two new caffe-
diterpenes, 1β,7α-diacetoxy-5β,6δ-dihydroxy-21-cis(14)-epoxy-12,13-olide (1) and
12α-ethoxy-1,1α,4β-diacetoxy-2,5α-dihydroxycal-13(15)-en-16,12-olide (2); and others, bonducellin (3), 7,4'-dihydroxy-3,11-dehydromoisoflavone
(4), daucosterol (5), luteolin (6), quercetin-3-methyl ether (7) and kaempferol-3-
O-glucuronide (8). The antioxidant proper-
ties of the extract and compounds were assessed by the measurement of the total
phenolic content, ascorbic acid content, total antioxidant capacity and 1,1-
diphenyl-2-picryl hydrazyl (DPPH) and hydrogen peroxide radicals scavenging ac-
tivities. Compounds 3, 6, 7 and ethanolic extract had DPPH scavenging activities with IC50 values of 186.75, 17 and 102 μg/ml respectively when compared to vita-
mcin C with 15 μg/ml. On the other hand, no significant results were obtained for
hydrogen peroxide radical. In addition, compound 7 has the highest phenolic con-
tent of 0.81±0.01 mg/ml of gallic acid equivalent while compound 8 showed the
highest total antioxidant capacity with 254.31±3.54 and 199.82±2.78 μg/ml galic
and ascorbic acid equivalent respectively. Compound 4 and ethanolic extract
showed a high ascorbic acid content of 2.26±0.01 and 6.78±0.03 mg/ml respec-
tively. The results obtained showed the antioxidant activity of the ethanolic extract of
C. bonducella and deduced that this activity was mediated by its isolated bioactive
compounds.

1784 Selective Elimination of Malignant Melanomas through Autophagic and Mitochondria-Based Mechanisms by the Antitumor Agent Osv-1.

K. Riaz Ahmed, C. Garcia-Prieto, L. Feng and P. Huang. Molecular Pathology,
University of Texas MD Anderson Cancer Center, Houston, TX; Sponsor: M. Smith.

Drug resistance and lack of therapeutic selectivity are two of the biggest challenges
to successful melanoma therapy. Constitutive activation of Extracellular Signal
Regulated Kinase 1/2 (ERK1/2) and subsequent chemoresistance has been reported
in malignant melanomas. ERK1/2 has also been implicated in activation of mito-
ochondrial gene expression and regulation of autophagy thus making it an important
therapeutic target.

The natural product, Osv-1, isolated from the bulbs of ivory coast lily, has been
demonstrated to be highly cytotoxic in numerous cancer cell lines with yet undefined
mechanisms of action. Herein, we report our results on the anticancer activity and
selectivity of Osv-1 in malignant melanoma cells and its potential mechanisms of
action.

Our preliminary results demonstrated that Osv-1 was highly effective in killing
tumor cells that are resistant to most of the currently available anticancer drugs,
with IC50 values in sub-nM concentrations. Importantly, Osv-1 preferentially
killed melanoma cells and exerted much lower toxicity to normal melanocytes in
culture. Biochemical analysis revealed that Osv-1 treatment caused damage of the
mitochondrial membrane integrity, leading to a decrease in transmembrane potent-
tial and subsequently initiating cell death, apparently through autophagy. Further
study demonstrated that Osv-1 inhibited ERK1/2 expression in melanoma cells
and caused a significant disturbance of cellular calcium homeostasis, leading to
aberrant calcium-mediated processes including mitochondrial impairment. Based
on these results, we postulate that Osv-1 inhibits ERK1/2 mediated signaling and
triggers mitochondrial damage in cells leading to a significant disturbance of cellu-
lar calcium and cell death through autophagy. This study is of great significance
since ERK1/2 signaling is important to melanoma cell survival and inhibition of
ERK1/2 expression and induction of autophagic cell death by Osv-1 will be criti-
cal to combat therapeutic resistance and enhance drug selectivity.

1785 3-Caffeoyl, 4-Dihydrocaffeoylquinic Acid from Salicornia herbacea Attenuates High Glucose-Induced Hepatic Lipogenesis in Human HepG2 Cells.

H. Chun1, Y. Hwang1, C. Choi1, H. Kim1, Y. Chung2 and H. Jeong1. 1Pharmacy, Chungnam National University, Daejeon, Republic of Korea; 2Korea Research
Institute of Bioscience and Biotechnology, Jongno, Republic of Korea; 3International University of Korea, Jinju, Republic of Korea.

3-Caffeoyl, 4-dihydrocaffeoylquinic acid (CDCQ) from Salicornia herbacea has a
variety of pharmacological properties, including antioxidant and anti-inflammatory
and hepatoprotective properties. The aims of our study were to provide new data
on the molecular mechanisms underlying the role of CDCQ in prevention of high
glucose-induced lipid accumulation in human HepG2 cells. We found that CDCQ
suppressed high glucose-induced lipid accumulation in HepG2 cells. CDCQ
strongly inhibited the high glucose-induced FAS expression by modulating SREBP-1c activation. Moreover, the use of a specific inhibitor or liver kinase B1
(LKB1)-siRNA transfected HepG2 cells showed that CDCQ activated AMP-acti-
vated protein kinase (AMPK) via silent information regulator T1 (SIRT1) or LKB1
in HepG2 cells. These results indicate that CDCQ prevents lipid accumulation by
Effects of Saponins from the Roots of *Platycodon grandiflorum* on TGF-β1-Induced Epithelial-Mesenchymal Transition in in A549 Cells.

C. Ho, Y. Kim, Y. Hwang, Y. Chung and H. Jeong. Pharmacy, Chungnam National University, Daejeon, Republic of Korea; International University of Korea, Jinju, Republic of Korea.

Epithelial to mesenchymal transition (EMT) is a key event in the progression of cancer. EMT is characterized by the loss of epithelial and the gain of mesenchymal features. Previous studies have revealed that treatment with CKS, saponins from the roots of *Platycodon grandiflorum*, significantly reduces metastasis and tumorigenesis, but the underlying mode of action has not been elucidated. In this study, we investigated the inhibitory effect of CKS on transforming growth factor (TGF)-β1-induced alterations characteristic of EMT in human lung carcinoma cells. We found that CKS-treated cells displayed inhibited TGF-β1-mediated E-cadherin down-regulation and Vimentin up-regulation and also retained epithelial morphology. Furthermore, TGF-β1-induced Snail expression was reduced by CKS. Pretreatment of cells with CKS blocked TGF-β1-induced Smad2/3 phosphorylation and Smad7 down-regulation. CKS inhibited TGF-β1-induced phosphorylation of Akt, ERK1/2, and GSK-3β (GSK-3β). Furthermore, TGF-β1-induced Snail expression was reduced by pharmacology inhibitors of Akt, ERK1/2, and GSK-3β. These results indicate that pretreatment with CKS inhibits the TGF-β1-induced EMT process and prevents TGF-β1-induced transdifferentiation via activation of Akt and ERK1/2 and inactivation of GSK-3β in A549 cells.

Platycodon D Regulates Hepatic Lipogenesis via an AMP-Activated Protein Kinase Dependent Signaling Pathway in Human HepG2 Cells.

H. Lee, Y. Hwang, J. Choi, Y. Kim, Y. Chung and H. Jeong. Pharmacy, Chungnam National University, Daejeon, Republic of Korea; Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; International University of Korea, Jinju, Republic of Korea.

Platycodon D, the saponins from the roots of *Platycodon grandiflorum* (CKS), has a variety of pharmacological properties, including anti-hyperlipidemic, antioxidant and hepatoprotective properties. This study was conducted to suggest the role of AMP-activated protein kinase (AMPK) pathway in the anti-obesity effect of platycodon D. We characterized the underlying mechanism platycodon D’s effects in HepG2 cells by Western blot and RT-PCR analysis. Platycodon D increased the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in HepG2 cells. Use of a specific inhibitor showed that platycodon D activated AMPK via SIRT1/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal regulated kinase 1/2 (ERK1/2). Furthermore, the CaMKII-ERK1/2 cascade targets the transcription factor, NF-E2-related factor-2 (Nrf2). Taken together, our results demonstrate that rutacarpine-induced expression of HO-1 is mediated by the Ca2+-CaMKII-Nrf2-HO-1 pathway and inhibits LPS-induced inflammation in RAW264.7 macrophages.

Rutacarpine Suppresses LPS-Induced Inflammation in Mouse Macrophages: A Possible Pathway through the Induction of Heme Oxygenase-1 Expression.

S. Jin, Y. Hwang, Y. Kim, J. Choi, Y. Kim, Y. Chung and H. Jeong. Pharmacy, Chungnam National University, Daejeon, Republic of Korea; International University of Korea, Jinju, Republic of Korea.

Rutacarpine, a quinazolinocarboline alkaloid compound, is a natural product isolated from Evidia rutacarpa and has various biological and pharmacological effects, including anti-inflammatory and anti-oxidative properties. In the present study, we investigated the effect of rutacarpine against lipopolysaccharide (LPS)-induced inflammation in RAW264.7 macrophages. Treatment with rutacarpine suppressed inducible nitric oxide synthase expression and nitric oxide (NO) production by downregulating NF-κB activity in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Rutacarpine acts by inducing the expression of heme oxygenase-1 (HO-1) in a dose- and time-dependent manner. The signaling pathway involved in rutacarpine-mediated HO-1 induction included Ca2+-calmodulin-dependent protein kinase II (CaMKII) and extracellular signal regulated kinase 1/2 (ERK1/2). Furthermore, the CaMKII-ERK1/2 cascade targets the transcription factor, NF-E2-related factor-2 (Nrf2). Taken together, our results demonstrate that rutacarpine-induced expression of HO-1 is mediated by the Ca2+-CaMKII-Nrf2-HO-1 pathway and inhibits LPS-induced inflammation in RAW264.7 macrophages.
These results suggest that mollugin treatment enhanced suppression of P-gp expression by inhibiting the NF-κB signaling pathway and attenuating CRE transcriptional activity through AMPK activation.

Liver Kinase B1 Is Required for Phyllin-induced AMPK Activation in Human HepG2 Hepatocytes.

H. Han, M. Do, H. Kim, T. Khanal, T. Tran, M. Na and H. Jeong, Pharmacy, Chungnam National University, Daejeon, Republic of Korea.

Phyllin, an active constituent found in certain functional foods, has anti-obesity activity in vivo. This study investigated the ability of phyllin to induce AMP-activated protein kinase (AMPK) in human HepG2 hepatocytes. Phyllin significantly activated the phosphorylation of AMPK at Thr172 in HepG2 cells under normal glucose condition. Additionally, the phosphorylation of AMPK at Thr172 and ACC at Ser79 was significantly suppressed in cells treated with high glucose, phyllin dose-dependently recovered the phosphorylation of AMPK at Thr172 and the downstream target acetyl-CoA carboxylase (ACC) phosphorylation at Ser79 in HepG2 cells pretreated by phyllin. Moreover, phyllin significantly stimulated the phosphorylation of liver kinase B1 (LKB1) at Ser428 in a time-de- pendent manner, with a time course matching that of AMPK phosphorylation at Thr172. In addition, the defect of phyllin-stimulated AMPK activation in HeLa cells deficient in LKB1 was rescued by siRNA LKB1-transfected HepG2 cells, suggesting that LKB1 is required for phyllin-induced AMPK activation. These results indicate that anti-obesity effects are mediated, at least in part, by the activation of LKB1/AMPK.

Prevention of Free Fatty Acid-induced Hepatic Steatosis by S-allyl Cysteine through AMPK Pathways.

H. Jeong1, Y. Hwang2, H. Kim1, J. Choi1 and Y. Chung1, Pharmacy, Chungnam National University, Daejeon, Republic of Korea; 1Korea International University, Jinju, Republic of Korea.

S-allylcysteine (SAC) is the most abundant organosulfur compound in aged garlic extract (AGE), which has been used to standardize commercial aged extracts. SAC has been reported to have antioxidant, anti-cancer, anti-hepatotoxic and neurotrophic properties. In this study, we provide evidence that SAC prevented fatty acid (FFA)-induced lipogenesis and lipotoxicity in hepatocytes. SAC significantly reduced FFA-induced generation of reactive oxygen species, caspase activation, and subsequent cell death. Also, SAC mitigated total cellular lipid and TG accumulation in steatotic HepG2 cells. SAC significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in HepG2 cells. Additionally, SAC down-regulated the levels of sterol regulatory element binding protein-1 (SREBP-1) in normal liver and liver kinase B1 (LKB1) in siRNA LKB1-transfected HepG2 cells, suggesting that LKB1 is required for phyllin-induced AMPK activation. This result suggests that SAC may improve the development of age-related diseases such as obesity and obesity-related diseases.

Safety Assessment of Botanical Extracts in Cosmetics.

J. Song and Y. Yang, L'Oréal R&D, Shanghai, China.

It's a worldwide trend that customers prefer to use personal care products (PCP) containing natural and organic ingredients from botanicals. However, natural does not equal safe. In fact, various preparations and complex compositions of plants have great potential to cause adverse effects such as irritation, sensitization and systemic toxicity. The current dilemma is that there is no official guideline to evaluate botanicals in PCP and the chemical assessment cannot be easily adapted to the safety assessment of botanicals. In line with the guideline issued by Scientific Committee on Consumer Safety in EU, we proposed a strategy to guide the safety evaluation of botanical extracts. The first and foremost is a good characterization of the botanicals which include species, geographic origin, growing and cultivation conditions, and analytical markers, chromatographic fingerprint, known toxins, etc. Other commonly checked points are UV absorptive capability, 26 major allergens, residual solvents, metal poisonings. If not handled correctly, such salts can cause serious harm to the skin/mucous irritation, photoxicity/photoallergy, and systemic toxicity. The current dilemma is that there is no official guideline to evaluate botanicals in PCP and the chemical assessment cannot be easily adapted to the safety assessment of botanicals. In line with the guideline issued by Scientific Committee on Consumer Safety in EU, we proposed a strategy to guide the safety evaluation of botanical extracts. The first and foremost is a good characterization of the botanicals which include species, geographic origin, growing and harvesting conditions, manufacturing process, profile of macro and micronutrients, analytical markers, chromatographic fingerprint, known toxins, etc. Other commonly checked points are UV absorptive capability, 26 major allergens, residual solvents, and additives. For botanical ingredients from food or herbal medicines with a safe history of use, the assessment should be carefully made by taking into consideration of all factors such as parts of plants used, genetic modifications, safety profiles for registration, and exposed population etc. The focus is to assure that botanicals intended to be used as a cosmetic ingredient is similar to its traditional counterpart used as food and / or herbal drugs in terms of composition, specifications, quality, and safety. After identifying the potential hazard, the exposure analysis will cover all relevant toxicological endpoints. Special attention should be paid to the type I allergy and local tolerance i.e., skin/mucous irritation, photoxicity/photoallergy, and...
Type IV sensitization. In risk assessment, besides in vitro, in vivo and clinical tests, the threshold of toxicological concern (TTC) is a popular and robust tool to support safety of the concerned or unknown partition in composition.

1797 Effects of Crocin and Safranal, Constituents of Saffron, in 22Rv1 Prostate Cancer Cells.
F. F. Albalagami and K. L. Willett, Department of Pharmacology and ETRP, University of Mississippi, University, MS.

Saffron extracts have induced apoptosis, cell cycle arrest, inhibited cellular proliferation, and tumor progression in various cancer cell lines. We are interested in studying the potential chemopreventive effects of saffron especially as it relates to prostate cancer. Recognized active constituents of saffron are crocin and safranal. Cytotoxicity of safranal was investigated using the androgen responsive 22Rv1 prostate cancer cell line. The cytotoxicity IC50 of safranal at 24 hr was 141 μM using the tetrazolium dye assay (XTT). The assay was incompatible with crocin. Using the Caspase-Glo® 3/7 assay system, it appears that apoptotic mechanisms were involved in safranal's cytotoxicity because after 6 hr of exposure, the EC50 of apoptosis was similar to the cytotoxicity IC50. Safranal's antioxidant activity as measured by a 2',7'-dichlorodihydrofluorescein diacetate assay indicated decreased reactive oxygen species formation. Ongoing studies are investigating the potential of safranal to also inhibit prostate cell invasion and migration in vitro. (Supported by Saudi Arabian Ministry of Higher Education and Salman bin Abdulaziz University)

1798 Kahweol Induces Apoptosis Trough Inhibition of STAT3 Phosphorylation in Human Lung Adenocarcinoma A549 Cells.
H. Kim1, J. Choi1, K. Tilak1, Y. Hwang1,2 and H. Jeong1. 1Pharmacy, Chungnam National University, Daegu, Republic of Korea, 2International University of Korea, Jinju, Republic of Korea.

Epidemiological studies have shown that unfiltered coffee consumption is associated with a low incidence of cancer. Kahweol, the coffee-specific diterpene, has been reported to have anti-carcinogenic properties. Animal studies have shown a chemopreventive effect of coffee. However, the precise underlying protective mechanisms are poorly understood. In this study, the apoptotic effect of kahweol in human lung adenocarcinoma A549 cells was investigated. In cell viability assays and cell proliferation assays, kahweol exhibited anti-proliferative and pro-apoptotic effects on A549 cells in a time- and dose-dependent manner. Kahweol considerably inhibited the expression of Bel-2 but increased that of Bax; it also stimulated the cleavage of caspase-3 and poly ADP-ribose polymerase. In addition, kahweol-induced apoptosis was confirmed by TUNEL assays. Furthermore, kahweol inhibited dose-dependent phosphorylation of signal transducer and activator of transcription 3 (STAT3). An overexpression in STAT3 led to resistance to kahweol-induced apoptosis, suggesting that STAT3 was a critical target of kahweol. These findings suggest that kahweol inhibited A549 cell growth and induced apoptosis via down-regulation of STAT3 signaling pathway. These data may contribute to the explanation of the reported antitumoral effects of kahweol, including the recent epidemiological meta-analysis showing that drinking coffee could decrease the risk of certain cancers.

1799 In Vitro Antioxidant Activities of Fractions of Clerodendrum visaleum Leaf Extract.

Many diseases are mediated by reactive oxygen species. Clerodendrum visaleum is a medicinal plant used indigenously in Nigeria for the treatment of some of such diseases. In this study, the antioxidant activities of the hexane, ethyl acetate and methanolic fractions of Clerodendrum visaleum leaf extract were evaluated in vitro using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), superoxide anion and hydrogen peroxide scavenging assays. The antioxidant components of the extract fractions were also determined. The results showed that the methanolic fraction had the highest concentrations of vitamin C, vitamin E, selenium, phenols and flavonoids. Moreover, the methanolic fraction of the extract had the highest free radical scavenging activities against DPPH, superoxide anion and hydrogen peroxide with EC50 values of 0.08, 0.45 and 0.60 mg/ml respectively. It also had the highest reducing power against ferric ion. The results of the study suggest that the methanolic fraction of Clerodendrum visaleum leaf extract may be a potent source of antioxidant compounds which may be useful for the prevention and treatment of reactive oxygen species-mediated diseases.

1800 Comparative Pharmacodynamic Effects of Ritzuximab-EU (MabThera®) and Ritzuximab-Pfizer in Cynomolgus Monkeys.
A. M. Ryan1, S. Sokolowskii, M. Collinge1, A. Shen1, J. Arrington2, T. Cummings1, S. Ploch3, S. Stephenson2, N. Tripathi3, S. Hurst1, G. Finch1 and M. Leach4. 1Pfizer WRD, Groton, CT; 2Covance, Madison, WI.

Background: Ritzuximab-Pfizer is in Phase 1/2 in RA patients as a potential biosimilar. Analytical and functional characterization has demonstrated in vitro similarity to the licensed rituximab products. Methods: The pharmacodynamic effects of ritzuximab-Pfizer and ritzuximab-EU were compared in sexually-mature cynomolgus monkeys in single-dose PK and repeat-dose toxicity studies; both had a 13-week postdose observation period to assess B cell repletion. Peripheral blood lymphocytes were evaluated by flow cytometry, and spleen and axillary and mesenteric lymph nodes (repeat-dose only) were examined microscopically by CD20+ immunohistochemistry. Results: B cell effects were similar in magnitude and time course between ritzuximab-Pfizer and ritzuximab-EU. Marked to complete depletion of peripheral blood B cells occurred on Day 4 (the first time point evaluated) in both studies. In the single-dose study, repletion of B cells began on Day 15 (2 mg/kg) and Day 29 (10 and 20 mg/kg) and continued through Day 92, with a subset of animals in each group near or above the pre-dose values at the end of the 13-week observation period. In the repeat-dose study, peripheral B cell depletion persisted through Day 30 of the dosing phase and was associated with lower splenic weights, decreased lymphoid follicle cellularity and decreased CD20+ cells in lymphoid tissues. After repeat-dose, partial repletion of peripheral blood B cells was noted in recovery animals by Day 92 of the recovery phase. Complete histopathological recovery occurred in 3 recovery animals (2 ritzuximab-Pfizer and 1 ritzuximab-EU). Lymphoid cellularity and CD20+ cells were increased in the remaining 9 recovery animals (relative to the dosing phase results), indicating partial recovery. Conclusion: The magnitude and time course of B cell depletion and repletion were similar between ritzuximab-Pfizer and ritzuximab-EU and were consistent with the expected pharmacology of anti-CD20 monoclonal antibodies and the reported innovator data.

1801 Brain Microhemorrhage Assessment of an Antiamyloid Beta Peptide (Ab) Monoclonal Antibody (mAb) Using a Transgenic Mouse Model of Alzheimer’s Disease (AD).
L. A. Buckley1, D. Hall1, J. Douville2, W. H. Jordan3, D. Koger1, W. H. Anderson1, D. G. Waters1 and R. B. DeMattos1. 1Eli Lilly & Co., Indianapolis, IN; 2Charles River Laboratories, Montreal, QC, Canada; 3Vet Path Services, Inc., Mason, OH.

Solanezumab (SLZ), a humanized mAb against Ab peptide, is being developed for the treatment of AD. SLZ recognizes a mid domain epitope of the Ab peptide with high affinity and selectivity to soluble monomer. The potential to cause cerebral amyloid angiopathy (CAA)-associated microhemorrhage (MH) was studied in an aged transgenic mouse (APPV717F) model of AD using a murine surrogate of SLZ, m266.2. Critical study design factors included the use of: 1) age-optimized mice (>21 months) known to have established cerebral amyloid angiodyplasia prior to treatment and thus potentially susceptible to CAA-MH; 2) sufficient numbers (≥25) of mice/group; 3) a dose projected to achieve a near-maximal pharmacologic response; 4) a positive control mAb against an N-terminal epitope of Ab peptide (3D6); 5) meticulous attention to brain collection and processing; 6) expanded brain sectioning and specialized microscopy; and 7) examinations by primary and peer-review pathologists experienced in neuropathologic assessments. Groups of mice received either vehicle control, 50 mg/kg m266.2, or 50 mg/kg 3D6 by weekly ip injection for 4 months (curtailed from the original 6-month duration due to age-related mortality). Plasma exposure to m266.2 and 3D6 was demonstrated at the end of the study. Multiple histologic brain sections stained with Perls’ Prussian Blue/DAB-enhanced Perls from each animal were evaluated to score siderephages resulting from hemorrhage, and multiple H&E stained slides were examined with both brightfield and epi-illuminated illumination for the presence of other changes in the brain. While the positive control 3D6 elicited the expected robust microhemorrhage response associated with vascular degeneration, the brains of mice given
m266.2 were not different from those of vehicle control mice. In conclusion, m266.2 did not induce CAA-MH or microscopic evidence of any inflammatory or degenerative changes in the brain.

1802 Safety Assessment of REGN1001 a Monoclonal Antibody Against Angiopoietin-Like 4 (AngPTL4) in Cynomolgus Monkey Toxicology Studies Under Normal and High-Fat Diet Feeding Regimens.

I. Trejo1, R. Soltys1, T. Dale1, T. O’Neill1, K. Mozyczko1 and A. Arulandam2

1Drug Safety, Regeneron Pharmaceuticals, Tarrytown, NY; 2General Toxicology, WIL Research, Ashland, OH.

REGN1001 is an antibody directed against Angiopoietin-like 4 (AngPTL4) and blocks its ability to inhibit lipoprotein lipase (LPL), an enzyme that hydrolyzes triglycerides (TG) and hence leads to a reduction in plasma TG levels. Evidence for the role of AngPTL4 as a regulator of TG metabolism has been obtained in AngPTL4 gene knockout studies in which profound decreases in TG levels were observed. Several studies have also indicated that AngPTL4 ablation in rodents either via AngPTL4 gene KO or Ab inhibition during high-fat diet (HFD) feeding regimens can lead to the prominent appearance of foamy macrophages and severe inflammatory changes in mesenteric lymph nodes (MLN). To better predict the safety profile of REGN1001 in hyperlipidemic patients (prone to ingest a high fat diet), a toxicology program evaluating REGN1001 intravenous dosing under normal diet and high-fat diet conditions was undertaken. In 12-week cynomolgus monkey toxicology studies, the first study utilized a normal (high-fat) feeding regimen, while the second study used a HFD regimen. REGN1001 was administered by IV bolus injection (15 or 50 mg/kg) every other week for 13 consecutive weeks (7 total dose administrations). Administration of REGN1001 by IV bolus injection resulted in adverse findings. Administration of REGN1001 by IV bolus injection resulted in the unscheduled euthanasia of the 15 mg/kg animal that had apparent and treatable anaphylactic reactions to the two previous MED5117 dose administrations. There were no similar findings for the other 15 mg/kg IV animals or for animals administered the higher 100 mg/kg IV dose level, and the data demonstrated decreased observed pharmacodynamic and toxicokinetic profiles from this animal as compared to the other 15 mg/kg IV animals receiving anti-drug antibodies. Since this was most likely related to the formation of anti-drug antibody that has been recognized by regulatory agencies as not predictive of immunogenicity in humans and there was a lack of any other findings which is consistent with the toxicology profiles reported for other anti-IL-6 antibodies (Martin et al., 2004 and Femata Pharmaceuticals IND Submission Press Release), this adverse event was ruled out of the NOAEL determination. Therefore, the NOAEL from the GLP study was 100 mg/kg for animals dosed IV and 50 mg/kg for animals dosed SC, the highest doses tested.

1804 Mavrilimumab (CAM-3001): A Novel Anti-GM-CSF Receptor Alpha Monoclonal Antibody for the Treatment of Rheumatoid Arthritis.

1Biosciences Safety Assessment, MedImmune, Gaithersburg, MD; 2Research and Development, MedImmune, Cambridge, MA, United Kingdom; 3Clinical Pharmacology and DMPK, MedImmune, Hayward, CA.

Rheumatoid arthritis is a progressive and disabling autoimmune disease characterized by inflammation of the joints, with subsequent long term structural damage, chronic pain, and limited daily activity. Despite the availability of a variety of effective therapies, a significant portion of patients fail to achieve optimal outcomes including clinical remission and ongoing low disease activity. MedImmune is currently pursuing development of mavrilimumab (CAM-3001), a human monoclonal antibody (mAb) targeting GM-CSF receptor alpha, as a novel treat ment for RA. GM-CSF plays a central role in the pathogenesis of rheumatoid arthritis (RA) through the activation, differentiation, and survival of macrophages and neutrophils. The nonclinical safety of mavrilimumab was evaluated in several studies in cynomolgus monkeys as the pharmacologically relevant species. Overall, the nonclinical safety results supported the continued clinical development of mavrilimumab. In clinical studies in RA patients, mavrilimumab has demonstrated good clinical activity with adequate safety to support further clinical development. A Phase 2b study of mavrilimumab in subjects with RA is in progress.

1805 Preclinical Safety and Pharmacodynamics of an Anti-GM-CSF Monoclonal Antibody in Cynomolgus Macaques.

Boehringer-Ingelheim, Ridgefield, CT.

Administration of anti-GM-CSF monoclonal antibodies (mAb) have been proposed as potential therapeutics for inflammatory diseases. In addition to its role in immunity and inflammation, GM-CSF is required for proper maintenance of surfactant catabolism by pulmonary alveolar macrophages (PAM). In humans, loss of GM-CSF signalling results in deregulated surfactant turnover and can manifest as pulmonary alveolar proteinosis (PAP). Therefore, specialized assessments were included in a toxicology study to assess the potential for an anti-GM-CSF mAb to affect surfactant catabolism. The mAb was given intravenously at 0.25 or 50 mg/kg once weekly for 4 weeks or subcutaneously at 0.25, 5 or 50 mg/kg for 13 weeks. In addition to standard toxicity endpoints, bronchoalveolar lavage fluid (BALF) was assessed for cell differentials, intracellular lipids and surfactant protein-D (SP-D) levels. Serum SP-D levels were also evaluated. The mAb was well tolerated with no clinical signs of toxicity. There were no adverse effects on clinical or anatomic pathology. Non-adverse effects in the lung included a dose related increase in the percentage of enlarged PAM, increased numbers of lipid containing PAM and increased BALF SP-D levels. These minor changes may be related to changes in surfactant catabolism but were not accompanied by clinical or histopathological findings indicative of PAP. Serum SP-D values were comparable across groups, consistent with absence of PAP as determined by histopathology. In ex vivo assays, GM-CSF induced CD11b+, p5-5γ and proliferation of TF-1 cells were inhibited in a dose dependent manner consistent with expected pharmacodynamics. The mAb did not induce cytokine release at 0.25 mg/kg, was significantly decreased by the formation of anti-drug antibodies which correlated with decreased activity in the ex vivo assays. In conclusion, anti-GM-CSF mAb was well tolerated by cynomolgus monkeys and produced expected pharmacological effects that were reversible upon treatment cessation.

1806 Nonclinical Safety Evaluation of Anti-PD-L1 (MDPL3280A) in Mice and Cynomolgus Monkeys.

Genentech, S. San Francisco, CA.

Programmed cell death 1 (PD-1) is a receptor expressed on T cells following activation and binding to its ligand, PD-L1, down-regulates the quality and magnitude of T-cell responses. Many neoplastic cells express PD-L1 and evade destruction by the immune system. MDPL3280A, an effectors (Fcγ-binding deficient) human IgG1 mAb that blocks PD-1/PD-L1 interactions, is in development as a potential therapy for solid tumors. The nonclinical safety program included an in vitro cytotoxicity assay with human PBMCs, a tissue cross reactivity study, an exploratory 15-day repeat-dose study in C57BL/6 and CD-1 mice, and an 8 week repeat-dose study with human PBMCs. MDPL3280A did not induce cytokine release from human PBMCs. MDPL3280A-specific staining was detected in the lymph node of monkey tissues and the placenta, lymph node, tonsil, and thymus of...
human tissues. In vivo, no adverse drug related changes in immunologic endpoints were observed in either species. Drug-related findings were consistent with the expected pharmacology following PD-1/PD-L1 pathway inhibition. In mice, this included reversible increases in splenic weights in both strains, attributed to an enhanced immune response to a heterologous mAb. Minimal sciatric neuropathy with inflammation was observed in C57BL/6 mice only, a strain expressing the MHC H-2b haplotype that in PD-1-deficient mice, develops spontaneous autoimmune peripheral neuropathy. In monkeys, arthritis/periarteritis in parenchymal and/or tubular organs was observed, which is a recognized spontaneous inflammatory condition in this species, and may reflect an MPDL3280A-related enhancement of a pre-existing condition. A high incidence of anti-therapeutic antibodies (50/56 (89%)), which had no consistent impact on exposure, and minimal SC injection site reactions were also attributed to MPDL3280A-enhanced immune responses. These findings are consistent with PD-1/PD-L1 inhibition and identity heightened immune responses and the potential to increase autoimmune liabilities in predisposed individuals as possible safety risks in patients.

1807 Investigation of the Potential Role of Immunogenicity in Abatacept-Related Lymphocytic Inflammation in Adult and Juvenile Rats.

L.Li1, J. Mysore1, D.A. DeVona1, M. Abbotta1, M. Bernardo1, S. Eble1, W.L. Frebermann1 and H.G. Happgery1. 1Drug Safety Evaluation, Bristol-Myers Squibb, New Brunswick, NJ; 2Drug Safety Evaluation, Bristol-Myers Squibb, Syracuse, NY.

Abatacept is a fusion protein of a human IgG1Fc and the extracellular domain of human CTLA-4 that inhibits T-cell activation. Species specific lymphocytic inflammation of the thyroid and pancreatic islets was observed in adult and juvenile rats treated with abatacept subcutaneously (SC) every 3 days for 3 months at pharmacologic doses of 65 and 20 mg/kg/day respectively. Studies in adult and juvenile rats were performed to assess a potential relationship of immunogenicity to lymphocytic inflammation observed in juvenile and adult rats. Abatacept was administered SC at 0 (control) or 0.03 mg/kg (a subpharmacologic dose) to adult rats (20/sex/group) on Days 1 and 29, or to juvenile rats (20/sex/group) on Days 1 (postnatal day 28), 15, 29, and 43. Anti-drug antibodies (ADA) were measured pretest, on Days 29, 43, 57, and 85. Additional criteria for evaluation included survival, toxicokinetics, clinical observations, body weights, food consumption, T cell-dependent antibody response (TDAR), peripheral blood T-regulatory cell phenotyping, selected organ weights, gross and microscopic pathology analyses. Scheduled necropsies were conducted 3 months following study initiation. Abatacept was clinically well tolerated in both adult and juvenile rats with no abatacept-related toxicologic effects. There were no effects on TDAR or the percentage of CD4+CD25+Fosp3+ lymphocytes (a T-regulatory cell population) in abatacept-treated rats consistent with a lack of pharmacologic activity. Robust and persistent ADA responses were detected in all abatacept-treated rats, with no evidence of lymphocytic inflammation of the thyroid or pancreatic islets. Thus, the lymphocytic inflammation previously observed in abatacept-treated adult and juvenile rats at pharmacologic doses was most plausibly due to pharmacologic immunosuppression and not a consequence of immunogenicity.

1808 Assessment of Bio comparability of NU100 and Betaferon in Cynomolgus Monkeys.

A.M. Brooks1, V. Tammar2, D. Holshan3, E. Shaw4, D. Zeng5, F.G. Burleson6 and H. Hu7. 1Toxicology, Covance Laboratories Inc., Madison, WI; 2Narcon Biotech Inc., Exton, PA; 3LoneStar PharmaTox LLC, Boerne, TX; 4Burleson Research Technologies, Morristive, NC.

Betaferon is a marketed recombinant human interferon beta-1b (IFN beta-1b) for treatment of relapsing-remitting multiple sclerosis (RRMS). NU100 is an improved recombinant human IFN beta-1b produced using proprietary manufacturing technology. NU100 is aggregate-free and HSA-free in its formulation. In a GLP monkey study for NU100 safety assessment, male and female cynomolgus monkeys were assigned to 2 groups (4 animals/sex/group), and received once every other day NU100 or Betaferon at a dose level of 0.06 mg/kg/dose for 15 days. Animals were monitored for safety; blood samples were collected to determine serum levels of IFN beta-1b, neopterin (a biomarker for IFN-beta1b pharmacodynamic profile), and anti drug antibodies (ADA). No NU-100- or Betaferon-related adverse safety signs occurred within these 15 days. IFN-beta1b levels peaked approximately 3 hours postdose; Cmax and AUICall for NU100 and Betaferon were 23.7 (CV 49.1%) and 14.3 (CV 48.0%) ng/mL and 225 (CV 51.6%) and 157 (CV 46.6%) h*ng/mL at steady state, respectively, and were not statistically significantly different. Neopterin levels peaked 24 hours postdose on Day 1; Emax and AUICall for NU100 and Betaferon were 5.4 (CV 41.4%) and 6.29 (CV 31.7%) nMol/L and 65.9 (CV 45.2%) and 75.7 (CV 39.5%) h*nMol/L, respectively; whereas Neopterin concentrations reached steady state on Day 15; Emax and AUICall for NU100 and Betaferon were 1.71 (CV 78.1%) and 1.03 (CV 107.2%) nMol/L and 21 (CV 77.3%) and 35.6 (CV 7.9%) h*nMol/L, respectively, and were not statistically significantly different. This reduced response on Day 15 to treatment was likely due to the production of anti-drug antibody (ADA), with 3 of 8 animals in the Betaferon group and 1 of 8 animals in the NU100 group positive for ADA. In conclusion, NU100 and Betaferon had comparable safety, toxicokinetic, and pharmacodynamic profiles in cynomolgus monkeys.

1809 Preclinical Development and Safety Assessment of the First Inhaled Nanobody ALX-0171.

S. Jacobs1, E. Depla1, S. Rossenu2, S. Priem1, E. Vanheule1, A. Schoolmeester1, K. Allossey1, S. De Boever1, L. Detalle1, Y. H. Chen2 and J. Baumeister1. 1Ablynx NV, Zwijnaarde, Belgium; 2MSD BV, Oss, Netherlands; 3Boehringer Ingelheim, Ridgefield, CT.

Nanobodies are therapeutic proteins based on the smallest functional fragments of naturally occuring heavy chain only antibodies. The trivalent Nanobody ALX-0171 targets the respiratory syncytial virus (RSV) with high specificity and potency. It has the potential to be effective in prevention and treatment of RSV infection, a cause of severe upper and lower airway inflammation in susceptible populations. The medical need is high in young children, with 0.3 million patients younger than 5 years hospitalised every year. ALX-0171 is formulated as a nebulizer solution for pulmonary inhalation as clinical route of administration. Using a vibrating mesh nebuliser, a droplet size ≤3.4 μm (MMAD) was achieved, while the drug’s stability was confirmed. The preclinical package consisted of 2-week repeated dose toxicity studies via in administration or inhalation in adult rats, a respiratory safety pharmacology study in rats via single inhaled dose and a cardiovascular safety pharmacology study in dogs (iv, single ascending dose). No drug- or immunogenicity-related safety findings were observed. A standard BCDOP assay demonstrated the non-corrosive nature of the compound. In addition, a cotton rat disease model was performed to assess safety, tolerability and efficacy of ALX-0171 (intratracheal delivered). A dose-dependent reduction of viral transcripts following viral re-challenge in lung tissue of RSV-infected cotton rats was demonstrated as efficacy marker. A significant improvement of infection-related events (body weight stagnation, organ weight, BALF inflammatory cell counts) was demonstrated without signs of immune-induced events upon ALX-0171 administration. Treatment-induced anti-drug antibodies were measured in BALF and plasma and results indicated a mild immunogenicity response. It can be concluded that ALX-0171 was well-tolerated in safety assessments in preclinical species. ALX-0171 successfully completed a phase I clinical trial.

1810 The Occurrence of Microscopic Vacuoles in Toxicology Studies with Marketed Pegylated Proteins: Is Associated with High Doses, High Clinical Multiples, and Accumulation.

L.S. Kaufman1, C. Conover2 and A. Buchbinder3. 1PDS, Mt Arlington, NJ; 2Enzon Pharmacueticals, Piscataway, NJ.

To obtain a more complete understanding of the clinical significance of microscopic vacuoles observed in toxicology studies with marketed pegylated proteins, nonclinical programs were reviewed from FOI data (publicly available BLA reviews) for Omontys, Krystexxa, Cimzia, Mercira, Macugen, Somavert, Pegasys, Neulasta, PegIntron, and Adagen. Cumulative toxicology doses for conjugate, PEG, and protein were calculated for each study and compared with cumulative recommended clinical doses over the same interval. None of the studies included PEG control groups. Microscopic pathology evaluations across programs were part of GLP toxicology studies and were performed on formalin/immersion-fixed tissues. There was no indication of whole-body perfusion techniques. Microscopic vacuoles were noted in toxicology studies with Omontys, Krystexxa, Cimzia, Macugen (IV but not intravitreal), Somavert, and Neulasta but not for Mercira, Macugen (intravenous), Pegasys, PegIntron or PEG12kD. Across programs, their appearance and reversibility were dose-related and associated with large cumulative PEG/conjugate doses, short inter-dose intervals, longer study durations, drug accumulation, and large clinical multiples. At high cumulative doses (up to 14,000-fold the recommended clinical dose based on mg/m2 and PEG doses of 2720 mg/m2), vacuoles were noted in the macrophage phagocyte system and, in some instances, choroid plexus, uterus, ovary, pituitary, and adrenal cortex. Nearly all of the high doses associated with vacuoles exceeded high-dose guidelines per ICH S6 Addendum. In conclusion, the appearance of microscopic vacuoles in toxicology studies with marketed pegylated proteins appears related to high cumulative doses.
and associated drug accumulation, which is not present at recommended clinical doses. This review does not address the potential for vacuole formation in pegylated proteins associated with toxicities in excess of those appropriate for marketed products.

1811 TAS-116, an Orally Highly Potent HSP90α/β Selective Inhibitor, Leads Minimized Ocular Toxicity in Both Albino and Pigmented Rats.

BACK GROUND: Heat Shock Protein 90 (HSP90) is a key chaperon which has a critical role for cancer cell growth and survival. Several HSP90 inhibitors have been developed clinically, however, visual symptoms have limited the ability to maximize drug exposure in patients. TAS-116 is an orally available HSP90α/β selective inhibitor showing high anti tumor activity in various human tumor xenograft models. To evaluate the effect of TAS-116 to the optic organ, we confirmed the safety profiles of TAS-116 in both albino and pigmented rats.

RESULTS: When TAS-116 administered orally for 14 days, no dose-related change was revealed in ophthalmological examination in albino rat. In histopathology, reference HSP90 inhibitors (AUY922 and 17-DMAG) caused degeneration and/or disarrangement of photoreceptor cells and increase in TUNEL positive apoptotic cells in retinal outer nuclear layer (ONL). On the other hand, TAS-116 demonstrated no histological changes or increase in TUNEL positive cells in ONL in albino rat. When all compound administered intravenously in albino rat, AUY922 and 17-DMAG showed greater exposure in retina compared to plasma, whereas TAS-116 showed less distribution in retina than in plasma. In addition, oral administration of TAS-116 demonstrated less retinal distribution and did not accumulate in retina after 2-week repeated dosing. In contrast, TAS-116 indicated a much higher distribution in subcutaneously implanted tumor over retina in rat model. Furthermore, TAS-116 had no melanin affinity because TAS-116 did not induce the retinal toxicity and also showed less distribution in retina in pigmented rat.

CONCLUSION: TAS-116 does not induce ocular toxicity in both albino and pigmented rat. This is probably due to less distribution in retinal tissue of TAS-116. These unique profiles of TAS-116 indicate that TAS-116 has a potential to be a best-in-class HSP90 inhibitor with minimized ocular toxicity.

1812 ETEC Vaccines: An 85-Day Intradermal Repeat Dose Toxicity Study of Three Candidates in Guinea Pigs.

C. S. Godlin1, M. Maciel2 and S. Savarino3. 1AVANZA Laboratories, Gaithersburg, MD; 2Nara Medical Research Center, Silver Spring, MD.

A vaccine against enterotoxigenic E. coli (ETEC) is being developed to protect travelers and young children that are at risk from this disease. The purpose of this study was to evaluate the potential toxicity and immunogenicity of three vaccine candidates, proteins 1, 2 and adjuvant, when administered either alone or in combination to guinea pigs by the intradermal route on Days 1, 22, 43 and 64 at a dose of 100 µg. Animals were dosed with saline, proteins 1, 2, and adjuvant alone, a combination of protein 1 and adjuvant, or a combination of protein 2 and adjuvant. Evaluations included mortality, physical examinations, body weights, body temperatures, dermal Draize scores/induration measurements, gross pathology, organ weights, and histopathology. On Day 3, punch biopsies were collected from the first injection site. Punch biopsies of the remaining vaccination sites, from all vaccination sites of the remaining animals, and from a naïve site distant from the sites of vaccination, were collected at necropsy. Administration of protein 1 alone, protein 2 alone, adjuvant alone, protein 1 with adjuvant, and protein 2 with adjuvant in guinea pig was well tolerated as all animals survived to termination with no adverse clinical signs. There were no test article-related effects upon the following parameters: mortality, physical examinations, body temperature, and body weights. Dermal erythema and induration were more significant when the vaccines were in combination with adjuvant than when administered alone or when adjuvant was administered alone. However, these observations resolved over time. On Days 3 and 63, but not at other intervals, total protein and/or albumin were increased in some treated groups suggesting immune stimulation correlating with inflammation at the injection site. Increased incidence and severity of cellular infiltrate, edema, and hemorrhage in the dermis and subcutis were noted in biopsy sites collected on Days 3 and 66. Following recovery, all findings had either resolved or would be expected to resolve.

1813 The Inhibin B Response to a Motulin Receptor Agonist in Male Rats.

M. K. Zieliewski1, J. D. Vidal1, D. J. Stanislans3, A. R. Apostoli1, P. Chowdhury2 and S. B. Laffan1. 1Safety Assessment - Reproductive Toxicology, GlaxoSmithKline, King of Prussia, PA; 2Safety Assessment - Pathology, GlaxoSmithKline, King of Prussia, PA; 3Safety Assessment - Toxicology, GlaxoSmithKline, Ware, United Kingdom.

Background: In a repeat oral dose toxicity study, 16/16 male rats given 100 mg/kg/day GS1322888 sustained testicular injury after 4 weeks of treatment; the findings were not reversible after 12 weeks off-dose. A subsequent study was conducted to further characterize testicular toxicity and to explore the possible relationship between onset of lesions and, changes in circulating hormone levels. Methods: Male Sprague-Dawley rats (11 weeks old at study start) were orally administered 30 or 100 mg/kg/day GS1322888 for 2 weeks with a 4 week off-dose period. Blood was collected via tail vein twice during the treatment period (Day 4 and 11) and three times during the off-dose period (Day 28, 36 and 42) for measurement of serum testosterone (T), dihydrotestosterone (DHT), and inhibin B (Inhb), luteinizing hormone (LH), and follicle stimulating hormone (FSH) concentrations. A histopathologic examination of testes was performed at the end of the treatment and off-dose periods. Results: At 100 mg/kg/day, microscopic findings of the testes (degeneration of the germinal epithelium) were evident for 9/10 male rats on Day 14 and 10/10 rats at the end of the 4-week recovery period. There was no testicular toxicity observed at 30 mg/kg/day. During all stages of evaluation, there was no apparent difference among control and treated animals in hormone concentrations. Conclusion: There was poor correlation between changes in serum levels of Inhb and tests histopathology. Based on these observations, the utility of Inhb as a hormonal marker for germ cell toxicity is limited.

1814 Preclinical Safety Evaluation of JNJ-35815208, a Selective Estrogen-Related Receptor Alpha Modulator.

Estrogen-related receptor-α (ERRα) is an orphan nuclear receptor that has emerged as a novel therapeutic target for the treatment of type II diabetes and cancer. Here we describe non-clinical safety evaluation in rats and dogs of a novel and selective ligand, JNJ-35815208, for ERRα as a potential anti-diabetic agent. Following single oral administration in rats, mortality was observed at ≥1000 mg/kg. Repeated dose for 14 days to rats at 8, 40, and 200 mg/kg/day was well tolerated at doses up to 40 mg/kg. At 200 mg/kg/day, microscopic findings were observed in the testes and epididymides, characterized by mild bilateral degeneration/atrophy of the seminiferous tubules, minimal bilateral degeneration of the germ cells, luminal cellular debris, and oligospermia in the epididymides. In the 4-week rat study at 1, 6, or 40 mg/kg/day, there were no toxicological findings. In dogs, following single-dose administration at 50 and 250 mg/kg, as well as during the 5-day repeat dose at 150 and 250 mg/kg/day, the primary finding was emesis not at all dose levels. In the four-week dog study at 2, 16 and 75.5/100 mg/kg/day, microscopic findings were noted in the female reproductive organs and the mammary glands at all doses. That resulted in reductions in the size of the ovaries, uterus, and vagina as well as atrophy of the mammary glands. These effects were associated with a persistent anestrous of the reproductive cycle. In male dogs, multifocal atrophy of the glandular epithelium of the prostate gland was observed at the mid- and high doses and small testes accompanied by mild degeneration of the germinal epithelium and vacuolated Sertoli cells at the high dose. Erythroid hypopcellularity in the bone marrow was noted in males at 16 mg/kg/day and in both sexes at 75.5/100 mg/kg/day, with corresponding decreases in RBC, hemoglobin, hematocrit and reticulocyte counts at the high dose. Overall, these data suggest ERRα may play a role in both male and female reproductive organs as well as in the bone marrow.

K. E. Howard1, X. H. Li1, C. M. Gonzales2 and J. A. Ragheb2. 1CDER/OTR, US FDA, Silver Spring, MD; 2CDER/OBP, US FDA, Bethesda, MD. Sponsor: L. Weaver.

Testing of biological drug products for safety and efficacy in animal models has been difficult to assess because common models such as rodents, canines and non-human primates do not necessarily share common biological receptors with humans. A new animal model, the humanized mouse, has recently emerged in widespread use for infectious disease pathogenesis and vaccine testing research. Humanized mice are made via ablation of the bone marrow followed by surgical
implantation of human liver and thymic tissue underneath the kidney capsule and CD34+ hematopoietic stem cell transplantation. Approximately 12-16 weeks following surgery, the mice have an engrafted functional human immune system, achieve 20-25% humanization in peripheral blood and are suitable for studies. This approach potentially offers the ability to test for efficacy and safety of drug products in an in vivo model of the human immune system. If proven reliable via testing of commercially available biologics, this animal model could be a powerful tool in drug testing.

In order to begin assessing the ability of this model to predict uniquely human immune responses, we tested two forms of interferon-β (IFN-β) currently marketed in the USA using clinically relevant dosing regimens and routes. Humanized mice were initially given IFN-β-1a subcutaneously (sc) at doses of 0.6 μg, 1.5 μg or 3.0 μg once weekly or IFN-β-1b at doses of 2.5 μg, 12.5 μg or 25 μg three times weekly for four weeks to determine if acute toxicity would result. A follow-up study using doses of 0.3 μg of IFN-β-1a or 5 μg of IFN-β-1b for eight weeks assessed serum drug levels, immunogenicity and immune responses. The results of these studies demonstrated that (1) standard drug doses used in IFN-β studies in transgenic IFN-β mice can be toxic to mice with a human immune system, as humanized mice can respond to the drug in a clinically relevant manner; (2) presence of the appropriate human receptors makes drug level assessment possible in humanized mice; and (3) humanized mice respond immunologically to IFN-β.

1816 Evaluation of Antisense Oligonucleotides in Human PBMCs and Association of Release of IL-6 In Vitro to Constitutional Symptoms.

H. S. Younis, T. Machemer, D. A. Norris and S. P. Henry, Preclinical Development, ISIS Pharmaceuticals, Carlsbad, CA.

Oligonucleotide based therapeutics produce low-grade non-specific proinflammatory responses that manifest as increased cytokine/chemokine production, splenomegaly and/or lymphohistiocytosis in multiple tissues in animal models of toxicity. In humans, antisense oligonucleotides are well tolerated and may produce constitutional effects such as flu-like symptoms and injection site erythema that are typically self-limiting. The objective of this research was to determine if in vitro cytokine production from human peripheral blood mononuclear cells (PBMC) may be used to determine the potential for antisense oligonucleotides (ASO) to produce constitutional symptoms in humans. Fresh PBMC (n=50 donors) were cultured with a selected list of ASOs (ISIS 104838, ISIS 113715, ISIS 325568 and ISIS 353512; 0-80μM) that have been evaluated in humans and produced a broad range of constitutional symptoms (none to moderate). By 24 hr of treatment, the culture supernatant was harvested for measurement of cytokine (IL-6 and IL-10) release. A sigmoidal Emax model was used to determine the Emax and term for differentiating ISIS 353512 from the ASOs generating lesser responses. For 353512 than the least responding ASO ISIS 104838, and provided the best term for differentiating ISIS 353512 from the ASOs generating lesser responses. The release of IL-10 was also greater for ISIS 353512 but was more difficult to term for differentiating ISIS 353512 from the ASOs generating lesser responses. The release of IL-10 was also greater for ISIS 353512 but was more difficult to term for differentiating ISIS 353512 from the ASOs generating lesser responses.

1817 Mechanistic Basis of the Species-Specific Complement Activation in Cynomolgus Monkeys with Oligonucleotide Treatment.

L. Shen1, A. Frazer-Abel1, P. C. Giclas2 and S. P. Henry1, Isis Pharmaceuticals, Inc., Carlsbad, CA; 1National Jewish Health, Denver, CO.

Antisense oligonucleotide (ASO)-mediated alternative pathway of complement (APC) activation is a common, class effect in macaque monkeys at high doses. Activation is due to the interaction between ASO and complement Factor H (CFH), the inhibitory protein of the APC. Transient reduction of circulating CFH protein is observed after each dosing in monkeys, and is correlated with peak ASO plasma concentration. While common across multiple ASO sequences in macaque monkeys, there is no evidence of APC activation in rodents, dogs, or humans. The mechanistic basis of the sensitivity for macaque monkeys to ASO-induced APC activation was studied using an in vitro model with serum from various species. Dose-dependent increase in C3a was found in cynomolgus monkey serum after incubation with ISIS 104838, replicating the phenomena seen in vivo. No evidence of complement activation was observed in human serum under the same conditions. Serum collected from the new world monkeys, such as marmoset and squirrel monkeys, also showed no ASO-induced APC activation. There is 88% amino acid sequence homology found between cynomolgus and human CFH proteins, and CFH gene single nucleotide polymorphisms (SNP) in human have been associated with macaque sensitivity. Change of the relative strength of the effect of cynomolgus and human CFH proteins in ASO-induced APC activation was evaluated by supplementing the purified CFH proteins in cynomolgus serum followed by ASO challenge. Dose-dependent inhibition in C3a formation was observed with CFH from both species, however, the IC50 for the human CFH protein was about 3-fold lower than the monkey protein, suggesting stronger fluid phase inhibition to its substrate. Collectively, the results suggest a species and possible strain-specific complement effect with ASO in cynomolgus monkeys that likely due to the difference in regulatory function of the CFH protein and the result of interaction with ASO.

1818 Perturbation of Autophagy by Basic Lipophilic Compounds: Correlation of LC3 and p62 Abundance Employing U2OS-GFP Cells.

Many psychotropic compounds possess weakly basic lipophilic properties, with lysosomal trapping being an important mechanism of their distribution. Weakly basic lipophilic compounds accumulate in acidic intracellular organelles (i.e. lysosomes, endosomes, and phagosomes) via pH partitioning which may result in cytotoxicity. Multiple mechanisms regulate autophagy, with the lysosome being the major component of the autophagic pathway. Recognizing the potential toxicity cause by modulation of autophagy is critical, and understanding possible factors contributing to its dysfunction is necessary. We hypothesized that psychotropic agents with lysosomal tropic properties have the potential to disrupt autophagy. We examined the link between lysosomal accumulation and autophagic dysfunction in osteosarcoma cells (U2OS), by examining the effects of eleven weakly basic lipophilic compounds known to accumulate in lysosomes. Their effects on autophagy were determined by using specific autophagy markers (Microtubule Associated Protein 1 Light Chain 3 (LC3), Sequestosome 1 (p62), and p70S6K). LC3 and p62 were employed to measure either the induction of autophagy, or the inhibition/perturbation of autophagolysosomal degradation. To gain greater insight regarding the pathway regulating autophagy, p70S6K (phosphorylation) a downstream marker of the Mammalian Target of Rapamycin (mTOR) activity was examined. All compound treatments resulted in at least a 3-fold increase in LC3 immunofluorescence and p62 abundance relative to controls. Treatment with compounds did not inhibit phosphorylation of p70S6K as observed via immunofluorescence staining. The data presented indicates lysosomalotropic compounds may contribute to the perturbation of autophagy. However, mTOR activity did not seem to play a part in altering the autophagic process.

1819 Effects of Tyrosine Kinase Inhibitors on Megakaryocyte Development.

H. Uppal1, D. Danilenko1, E. Harstad1, J. Tarrant1, E. Clarke2, P. Dhawan1, A. Kauz1, B. McCray1, D. Misra1 and J. Singh1, Safety Assessment, Genentech Inc., San Ramon, CA; 2 ReachBio LLC, Seattle, WA.

Background: Tyrosine Kinase 2 (Tyk2) is a member of the Janus Activated Kinase (Jak) family. Tyk2 is associated with signaling of pro-inflammatory cytokines, IL-12 and IL-23. Therefore, inhibition of Tyk2 may potentially treat inflammatory diseases such as inflammatory bowel disease (IBD), rheumatoid arthritis, and psoriasis. Tyk2 is also activated during thrombopoietin signal transduction, a pathway necessary for megakaryocyte development and platelet production. Studies were conducted in vitro and in vivo with potent Tyk2 inhibitors with varying levels of JAK-family and general kinase selectivity to understand potential effects of these Tyk2 inhibitors on platelet development.

Methods: Tyk2 inhibitors were evaluated in vitro in human, mouse and cynomolgus monkey megakaryocyte colony forming cell assays. General cytotoxicity was evaluated by measuring cellular ATP levels. Direct effects of Tyk2 inhibitors on platelet function (aggregation), energetics (oxygen consumption), and viability (ATP levels) were also evaluated in vitro. The effect of Tyk2 inhibitors on platelet number was evaluated in short term (5-10 day) mouse studies. Tyk2 and Jak mRNA expression was evaluated in human megakaryocytes by quantitative PCR to understand target expression.

Results: Tyk2 inhibitors caused a comparable reduction in the number of colony forming cells and the viability of megakaryocytes from human, mouse and non-human primates. There were no direct effects of Tyk2 inhibitors on the aggregation capacity, oxygen consumption, or ATP levels of human platelets in plasma. Tyk2 inhibitors caused platelet reduction in mice. Tyk2 and Jak 1, 2, and 3 were comparably expressed in human megakaryocytes.

Summary: The in vitro and in vivo findings demonstrate that platelet reductions caused by multiple Tyk2 inhibitors (with varying selectivity against other Jak family kinases) are likely due to effects on megakaryocyte development.
1820 Application of Canine Kidney Tissue Slices to Detect the Toxicity of Prototypical Nephrotoxic Agents.
Cellular and Molecular Exploratory Toxicology, AbbVie, Abbott Park, IL.

Precision-cut renal tissue slices retain the multicellular, structural, and functional features of their original organ and offer a more relevant approach to interrogate toxicity compared to traditional cell-based in vitro systems. Here, we sought to evaluate the utility of this system to detect toxicity induced by prototypical kidney tubular toxicants, including cadmium chloride (CdCl₂) and cisplatin. Kidney slices from male beagle dogs were cut into 300 μm slices, and cultured at 37°C in an O₂-rich atmosphere for 24 to 48 h. Initial experiments optimized the culture conditions to maintain viability to at least 48 h. The slices were immediately treated after isolation with multiple doses of CdCl₂, cisplatin, or vehicle. Multiple endpoints of toxicity were evaluated including H&E stained sections, intracellular ATP content, LDFH release, total RNA integrity, and a novel endpoint for this type of system, kidney injury molecule-1 (Kim-1) mRNA levels via in situ hybridization. There was a significant elevation of LDH leakage at all doses tested for both compounds. The data demonstrate that a renal slice in vitro model can be used to detect potent nephrotoxics and that Kim-1 should be further explored as a novel in vitro biomarker to monitor toxicity in renal slice systems.

1821 Investigation of Protein Kinase C Inhibitor-Induced Steroid Hormonal Perturbation in Rat.
Preclinical Safety, Novartis Pharma AG, Basel, Switzerland.
Steroid hormones are crucial endogenous mediators synthesized and secreted into the bloodstream by endocrine glands, such as the adrenal cortex and gonads. They mediate a wide variety of physiological functions. Altered steroid hormone status may affect the progression of various types of cancer. For instance, prepubertal ovarectomy in BUF/Mna rats accelerated the growth of spontaneous thymoma, which could be mitigated by intraperitoneal injection of estrogens. In azaserine-treated rats, the rate of spontaneous pancreatic tumors in males is increased, while orchidectomy reduced the incidence of such neoplasms compared to intact animals. In a 104-week oral carcinogenicity study in rat with a protein kinase C inhibitor, a treatment-related increased incidence of pancreatic acinar adenoma in males and thymoma in females were observed at dosages ≥ 100 mg/kg/day. Since changes in steroid hormones are considered to potentially affect the development of pancreatic and thymus neoplasia in rodents, a 2-week oral mechanistic follow-up study was conducted in rats to investigate this hypothesis. For this purpose, a mass spectrometry method previously developed in our lab for the quantification of steroid hormones in plasma, was further applied to analyze 17α steroids in adrenal, testicular and ovarian tissues. Aldosterone was increased in plasma and adrenals in treated males with a concomitant and pronounced decrease of androstenedione and testosterone in plasma, adrenals and testes. In female rats, progesterone, together with androstenedione and testosterone in plasma, adrenals and testes.

1822 Comparison of In Vivo Central Corneal Thickness (CCT) Measurements in Dogs, Rabbits, and Nonhuman Primates Using a Handheld Ultrasonic Pachymeter or Specular Microscope.
M. Vézina1, S. Wise1, K. Tenneson1 and M. Bussières2.
1Charles River, Montréal, QC, Canada; 2VoVo Services, St. Lazare, QC, Canada.
The cornea is responsible for 2/3 of light refraction in the eye and thus is a critical tissue for clear vision. Alterations in corneal thickness have a direct effect on visual acuity and can be caused by alterations in the function of the corneal endothelium, aqueous humor composition, drainage or formation rate, or in the glands producing them. There has been an increase in the number of topical ocular therapeutics as this method is deemed one of the simplest clinically. As the formulations are in direct contact with the cornea, it can be an intended or unintended target tissue. In non-clinical topical ocular studies, serial in vivo measurement of corneal thickness can provide a rapid empirical insight into the health of the cornea during study conduct and whether or not any changes in corneal thickness are reversible. There are several ways to obtain central corneal thickness measurements, two of which are ultrasound pachymetry (UP) that requires contact with the corneal surface and specular microscopy (SM) which is a non-contact procedure. The data presented represent background thickness measurements and precision between the two methods. In most cases, animals required sedation in order to reduce eye movements. CCT measurements by UP and SM were: dogs (n=10) 548.5±33 μm and 583.5±27 μm; rabbits (n=12) 378.2±27 μm and 394±16 μm; NHPs (n=10) 422±21 μm and 440±19 μm. Direct comparison showed a difference of 6% between the two methods for dogs, 4% for rabbits and 4% for NHP, with the SM values consistently higher. Precision as determined by 2 separate measurement occasions in dogs was 0.6% for SM and 0.1% for UP. In conclusion, both specular microscopy and ultrasound pachymetry provide reproducible, precise CCT data in dogs, rabbits and non-human primates allowing for repeat measures during the course of a study when corneal changes are of concern. Care should be taken for interpretation if data are acquired using both methods considering the 4-6% lower results using UP.

1823 In Vivo Evaluation of the Corneal Endothelial Cell Layer Using Specular Microscopy.
K. Tenneson and M. Vézina.
Ocular and Neuroscience, Charles River, Montréal, QC, Canada.
The corneal endothelium is a monolayer of specialized cells whose primary physiological function is to maintain the health and transparency of the corneal stroma. In preclinical ocular and non-ocular studies, pharmacological and/or toxicological effects of a test compound may produce changes in the structure and function of the corneal endothelium. Additionally, intraocular surgery (including induced disease models) or implanted devices can compromise the endothelium and cause corneal edema. Specular microscopy (SM) enables a rapid, minimally invasive, direct evaluation of the cornea, and can provide supplemental information on corneal endotheliopathies, alone or in combination with direct slit-lamp examination on preclinical toxicology studies. SM provides three primary endpoints: number of cells/unit area (density), shape of cells (pleomorphism) and size of cells (poly-megathism). When the endothelium is disrupted, there can be an overall shift in the number of cells, proportion of cell shapes (pleomorphism) and sizes (poly-megathism). In order to characterize the endothelial layer in species regularly used on ocular toxicology studies, dogs, rabbits and non-human primates (NHP) were subjected to SM. Overall, cell density was similar across species (rabbits: 2769 cells/mm²; dogs: 2635 cells/mm²; NHPs: 3058 cells/mm²). Normal endothelial cells have a hexagonal shape, and account for the majority of cells (rabbits: 75%; dogs: 65%; NHPs: 71%). Average cell sizes were 364 μm² for rabbit, 384 μm² for dog, and 328 μm² for NHP. In conclusion, SM is a sophisticated tool that can complement the standard endpoints performed on specialized ocular preclinical studies, and the data presented provides background data in rabbits, dogs and NHPs to facilitate the recognition of compound-related changes.

1824 Therapeutic Effect of MG132 on Diabetic Cardiomyopathy Is Associated with the Suppression of Proteasome Activities: Roles of Nrf2 and NF-κB.
W. Sun1, Y. Fu1 and L. Cai1.
1University of Louisville, Louisville, KY; 2Jilin University, Changchun, China.
MG132, a proteasome inhibitor, can up-regulate nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated anti-oxidation and down-regulate nuclear factor-(NFκB)-mediated inflammation. The present study was to define whether through above two mechanisms MG132 can provide a therapeutic effect on diabetes-induced cardiomyopathy. To this end, transgenic OVE26 type 1 diabetic mice were used. OVE26 mice develop hyperglycemia at 2–3 weeks after birth and exhibit albuminuria and cardiac dysfunction at 3 months of age. Therefore starting at 3 months of age OVE26 diabetic mice were treated intraperitoneally with MG132 at 10 μg/kg body-weight daily for 3 months. At 3 and 6 months of age, cardiac function was measured with M-mode echocardiography. At 6 months, cardiac tissues were subjected to pathological and biochemical examination. OVE26 diabetic mice, but not MG132-treated OVE26 diabetic mice, showed significant cardiac dysfunction, including increased left ventricular systolic diameter and wall thickness and a decreased left ventricular ejection fraction with an increase of heart weight/tibia length ratio. Hearts of OVE26 diabetic mice exhibited structural derangement and remodeling (fibrosis and hypertrophy). In OVE26 diabetic mice,
there was also increased cardiac oxidative damage and inflammation. All of these pathogenic changes were reversed by MG132 treatment, which is associated with a significant suppression of diabetic increase in proteasome activity. In addition, MG132 treatment also significantly up-regulated Nrf2 expression and transcription (shown by increased expression of Nrf2 downstream antioxidant genes) and down-regulated Ik-B expression and NF-kB nuclear accumulation. These results suggest that MG132 provided a therapeutic effect on diabetic cardiomyopathy in OVE26 diabetic mice possibly via the up-regulation of Nrf2-dependent anti-oxidative and the down-regulation of NF-kB-mediated inflammation.

1825 MG132 Prevents the Progression of Diabetes-Induced Pathological Damage to Aorta Is Associated With Its Up-Regulation of Nrf2 and Its Down-Stream Antioxidant Proteins.

X. Miao1, 2, G. Su2 and L. Cai1. 1University of Louisville, Louisville, KY; 2Jilin University, Changchun, China.

Endothelial damage and dysfunction are manifested in diabetic cardiovascular complications. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is one of the most important cellular defense mechanisms against oxidative stress by up-regulation of several antioxidants, phase II detoxifying enzymes, and other proteins that detoxify xenobiotics and neutralize reactive oxygen and/or nitrogen species. Deletion of Nrf2 gene significantly enhances the susceptibility of cardiomyocytes to high-level glucose-induced reactive oxygen species generation and cell death. The present study was to define whether induced Nrf2 by MG132 can provide a therapeutic effect on diabetes-induced aortic pathogenic changes. To this end, transgenic OVE26 type 1 diabetic mice and age-matched control mice were used. OVE26 mice develop hyperglycemia at 2 – 3 weeks after birth and exhibit renal and cardiac dysfunction at 3 months of age, suggesting the induction of diabetic complications. Therefore starting at 3 months of age, OVE26 diabetic mice were intraperitoneally treated with MG132 at 10 μg/kg body weight daily for 3 months. At the end of MG132 treatment, aortas from these mice were morphologically and immunohistochemically examined. Significant increases in the wall thickness and structural derangement of aorta were found in OVE26 diabetic mice, which was accompanied by significant increases in aortic oxidative and/or nitrosative damage (4-HNE as lipid peroxidation and 3-NT as protein nitrination), inflammation (TNF-α and PAl-1), and remodeling (CTGF and TGF-β1). These pathological changes were not observed in MG132-treated OVE26 diabetic mice, which was also associated with a significant increase of aortic Nrf2 expression and transcription function. These results suggest the therapeutic effect of MG132 on diabetes-induced aortic pathogenic damages and its association with Nrf2 expression and function.

1826 Characterization of miR-208a Responses in Isoproterenol-Induced Cardiac Injury in Sod2-/- and C57BL/6J Mice.

L. Liu, Pfizer, San Diego, CA.

The present investigation aimed to characterize miR-208a as a putative biomarker for early cardiac injury in isoproterenol (ISO)-induced acute myocardial damage in mice and to investigate potential strain-dependent effects in response to ISO administration. Plasma from age-matched male C57BL/6J and Sod2-/- mice treated with a single intraperitoneal (IP) administration of ISO was collected for measuring cardiac troponin I (cTnI) and miR-208a at 3, 6, and 24 hours post injection. Administration of ISO led to increases in both cTnI and miR-208a at all time points tested. However, the magnitude of increase and the temporal release profiles of these biomarkers were different between the two strains. In C57BL/6J mice, cTnI and miR-208a tracked with each other in both magnitude and time, the highest values were seen at 3 hours. By contrast, in Sod2-/- mice, the magnitude of miR-208a was much greater than that of cTnI with the highest values of both biomarkers observed at 6 hours. Similar to C57BL/6J mice, the temporal profile of miR-208a followed that of cTnI in Sod2-/- mice. Histopathologic examination of hearts treated with ISO revealed myocardial degeneration at ≥3 hours in C57BL/6J mice and ≥6 hours in Sod2-/- mice which correlated with the highest concentration of the biomarkers in each strain. The higher systemic exposure of ISO in C57BL/6J mice compared to that in Sod2-/- mice may have contributed to the observed earlier response in C57BL/6J mice compared to Sod2-/- mice.

1827 Polybrominated Diphenyl Ethers Exposure and Intrauterine Growth Restriction: A Case-Control Study in Chinese Newborns.

Y. Zhang1, Y. Zhao1, H. Ao1 and X. Meng2. 1Fudan University, Shanghai, China; 2Tongji University, Shanghai, China. Sponsor: Z. Liu.

BACKGROUND: Intrauterine growth restriction (IUGR) is associated with perinatal morbidity and mortality. It has multifactorial etiology. Along with malnutrition and psychosocial, environmental pollutants, including polybrominated diphenyl ethers (PBDEs), have also been considered to be involved in the etiology of this disorder.

OBJECTIVES: This case-control study was performed to assess maternal-fetal exposure to PBDEs and investigate whether in utero PBDEs exposure is associated with IUGR.

METHODS: A total of 29 newborn-mother pairs residing in Wenzhou were enrolled in this study during December 2010 and February 2011. Maternal blood and umbilical cord blood (UCB) samples were collected and analyzed for PBDEs by the method of Gas chromatography–mass spectrometry (GC-MS). Conditional logistic regression and Spearman correlation were used to analyze the association between PBDEs exposure and IUGR.

RESULTS: All PBDE congeners in serum were detected except for BDE 138, 183, and 190. BDE 209 was the most abundant congener followed by BDE 207, 208, and 66, with the detection frequencies of 50%, 83%, 74%, and 74%, respectively. The concentrations of BDE 66, BDE 209, BDE 183-209 and 19 PBDEs in UCB are significantly higher in newborns with IUGR than those in controls. BDE 183-209 and 19 PBDE levels in UCB were inversely associated with birth weight and Quetelet’s index (p=0.008, 0.020 respectively). After controlling for potential confounders, dose-response relationships were observed between IUGR and BDE 183-209 and 19 PBDE levels in UCB.

CONCLUSION: Only one UCB sample from the control group did not detect PBDEs which might indicated that newborns in China were ubiquitously exposed to PBDEs. Significantly higher PBDEs levels were detected in IUGR cases compared with those in controls. In utero PBDEs (especially high-brominated BDE congeners) exposures were associated with IUGR in a dose-dependent manner. Prenatal PBDEs exposure may be a risk factor for IUGR.

A. J. Schecter1, D. Cherry2, L. S. Hymanan, D. Cheng3, N. Imran4, M. Hommel5, K. Kannan4, L. Wang4, S. H. Yun3, N. Thie4, B. Specter4, J. Moyer6, 7 and L. S. Birnbaum1, 2, 9, 10. 1The University of Texas School of Public Health, Dallas, TX; 2The University of Texas, Tyler, TX; 3The University of Texas Southwestern Medical Center, Dallas, TX; 4New York Health Department, Albany, NY; 5South Dakota State University, Brookings, SD; 6NCS, Bethesda, MD; 7NICHD, Bethesda, MD; 8NIH, Bethesda, MD; 9NIEHS, Research Triangle Park, NC; 10NCHS, Bethesda, MD.

The NCS is a prospective health study of 100,000 children (birth to 21 years) and their mothers. We report on a nested, formative study involving measurement of lipid soluble persistent PBDE flame retardants. PBDEs have been associated with various health effects. This study involved 20 mother-child pairs; 20 samples each of maternal third trimester blood, maternal blood at birth, cord blood, and breast milk were tested individually for nine PBDE congeners. Total PBDE was the sum of nine PBDE congeners when quantifiable. Some PBDE congeners were detected in maternal blood samples and breast milk samples at all time points. In infant cord blood samples, only BDE 47, BDE 100, BDE 99 and BDE 153 were detected in ≥40% of samples. BDE 183 and BDE 209 levels were below detectable levels in all samples. Lipid normalized PBDE levels were higher in maternal birth serum and one month postpartum breast milk than in infant cord blood. Across all congeners, medians for maternal third trimester plasma were higher than those in controls. In utero PBDEs (especially high-brominated BDE congeners) exposures were associated with IUGR in a dose-dependent manner. Prenatal PBDEs exposure may be a risk factor for IUGR.
Quinolone antibacterial agents have been reported to induce chondrotoxicity in juvenile animals, and the mechanism has yet to be clarified. We have reported that gene expression of tumor necrosis factor receptor superfamily, member 12a (Tnfrsf12a, cell death-related gene), progranulin-endoperoxide synthase 2 (Pgds, inflammatory response-related gene), plasminogen activator, urokinase receptor (Plaur, stress response-related gene), and matrix metalloproteinase 3 (Mmp3, proteolysis-related gene) was involved in the induction of cartilage lesions of the distal femoral articular cartilage in juvenile rats treated orally with ofloxacin (OFLX). In the present study, the effect of body-weight loading onto the articular cartilage on the occurrence of the cartilage lesions was investigated in male juvenile Sprague-Dawley (SD) rats given OFLX orally once at 900 mg/kg. Just after dosing of OFLX, hindlimb unloading was performed for 0 h, 2 h, 4 h, and 8 h by a tail-suspension method. Animals were sacrificed at 8 h post-dose, and then the distal femoral articular cartilage was subjected to a histological examination and an investigation for gene expression of Tnfrsf12a, Pgds, Plaur, and Mmp3 by qRT-PCR analysis. As a result, cartilage lesions and up-regulations of these 4 genes that were seen in rats without the tail suspension were not observed in rats with the 8-h tail suspension, and a tendency to decrease in the incidence of the cartilage lesions and the gene expression was noted in a tail-suspension time dependent manner. Our results clearly indicate that body-weight loading onto the cartilage is necessary to induce cartilage lesions and gene expression of Tnfrsf12a, Pgds, Plaur, and Mmp3 in juvenile rats treated with OFLX.

Supported by NIH P30ES005022, R21HD058019 and NJ Dept. of Environmental Protection.
designs and test compounds (methylmercury, di-ethyltin dichloride (DOTE), di(2-ethylhexyl)thiobenzaldehyde (EHTBA) and the results demonstrate the relatively high sensitivity of immune parameters compared to developmental parameters. Specifically, functional immune parameters appeared affected at relatively low doses. An expanded T cell dependent antibody response (TDAR) parameter set and evaluation of LPS-stimulated NO and TNF-α production by adherent splenocytes were identified as sensitive functional immune parameters. For example, in a juvenile nilexposure study DOTC affected KLH-induced lymphocyte proliferation at BMD 0.29 mg/kg whereas body weight was affected at 57.7 mg/kg. In a generation study design, alcohol affected splenocyte proliferation at BMD 0.49 % whereas developmental delay was noted at 1.2 %. These results support the OECD TG 443 extended one-generation reproductive toxicity study (EGRITS) guideline, including its cohort for DIT assessment. It provides substantial insight in the immunotoxic potential of our research thus identified complementary immune parameters as potentially useful additions to the EGRITS guideline which can be easily added to the study protocol. Furthermore, our research demonstrated the relative sensitivity of the juvenile immune system (postnatal day 10-50) and the significance of the juvenile window in DIT testing. The comparisons of various scenarios have provided important lessons about parameter assessment and exposure protocols, which will feed into the definition of a preferred approach to regulatory developmental immunotoxicity testing for chemicals.

Objective

To evaluate the relationship between lung function and arsenic levels in children chronically exposed to arsenic.

Results

At present, 390 children have been included. The mean age is 9.0 years and 98% have lived in the community all their life. 77.6 % of the children were conceived in their community. From the studied population, 6.3% reported chronic cough for more than 2 years and 2.9% for 7-12 years. In addition, 12.1% have been treated for bronchiolitis. The mean urinary arsenic level was 155.4 ppb (range of 14.6-893.8). In all subjects spirometric values of FVC, FEV1 and FEV1/FVC ratio were lower with respect to reference values.

Conclusion

A high incidence of lung diseases and a reduction in the lung function were recorded in children chronically exposed to arsenic in drinking water.

1836 Blood and Urine Cadmium Concentrations and Micronucleus Frequency in Buccal Epithelium from Children in Three Populations in Yucatan, Mexico.

N. Perea-Herrera1, J. Perera-Rios1, A. Rodriguez-Uc1, J. Gordillo-Mena1, J. Uscabi-Ventura1, J. Alvarado-Mejía1, L. González-Navarette1, L. Fargher2, R. Moo-Pue1, L. Yáñez-Estrada2 and F. Ayroga-Cabrera1. 1Faculty of Medicine, Autonomous University of Yucatan, Mérida, Mexico; 2Human Ecology Department, CINVESTAV, Mérida, Mexico; 3Research Unit, Mexican Institute of Social Security, Mérida, Mexico; 4Faculty of Medicine, Autonomous University of San Luis Potosi, San Luis Potosi, Mexico; 5Faculty of Chemistry, National Autonomous University of Mexico, Mérida, Mexico. Sponsor: B. Quintanilla-Vega.

Buccal epithelium represents the first boundary against inhalation or ingestion of toxicants. Micronucleus (MN) tests of buccal epithelium have been effectively used in epidemiological studies in adult populations exposed to genotoxicants; yet, its use in juvenile populations has been limited. A transversal study was conducted in children from the cities: Merida, Progreso and Ticul in the Yucatan Peninsula to evaluate the MN frequency in exfoliated buccal epithelium and cadmium concentrations in blood and urine from children exposed to different scenarios. Ten children (6 and 8 years of both genders) were selected from each city (n=30). MN frequency was analyzed by microscopy after a shift staining and Cd concentrations by atomic absorption spectroscopy. MN frequency was similar in the three populations (p=0.7451), Merida 0.33 (0.13/1000 cells), Progreso 0.33 (0.1-1/1000 cells), and Ticul 0.66 (0.23/1000 cells). Cadmium levels in urine were higher (p=0.0435) in children from Merida (State Capital) compared to the other cities (1.30 vs 1.09 and 0.73 ug/l). However, urine Cd concentrations did not correlate with MN frequencies (p=0.505). Blood Cd levels were similar in the three populations (p=0.6021), and a significant and positive correlation between MN frequency and blood Cd levels was observed (rs =0.4853, p=0.0848). Our preliminary results emphasize the importance of conducting biomonitoring of metals and early detection of genotoxic effects in children. Supported by CONACyT-México, Grant # FOSEC-Salud 139738.

1837 Orellanine, a Bipyrindyl Mycotoxin, Induces Apoptosis in a Cell Culture Model of Parkinson’s Disease.

P Anantharam1, B. Taiwo1, J. Luo2, V. Anantharam2, A. Kanthasamy2, A. G. Kanthasamy3, E. Whitley4 and W. K. Rumbeza1. 1VDPAM, Iowa State University, Ames, IA; 2Biomedical Sciences, Iowa State University, Ames, IA; 3Pathology, Iowa State University, Ames, IA; 4Pathobiology, Iowa State University, Ames, IA.

Parkinson’s disease (PD) affects over one million people in the U.S. alone and more than 6 million people worldwide. Potential risk factors for PD include aging, genetic alterations, and environmental neurotoxicant exposures. Although incompletely understood, the etiology and pathological mechanism of PD is characterized by a profound degeneration of dopaminergic neurons in the substantia nigra pars compacta. The majority of PD patients do not know the specific trigger of their disease whereas exposures to environmental factors are believed to contribute to or influence the development and the course of the disease. We have identified in a novel environmental bipyrindyl mycotoxin similar to Paraquat (PQ) and MPTP. Like PQ and MPTP, orellanine (OR) is a bipyrindyl molecule and we hypothesized that OR will induce apoptosis in N27 cells. Here, we investigated the neurotoxic effects of OR (3.5,4,4’-tetrahydroxy-2,2’-bipyridine-1,1’-dioxide) on mesencephalic dopaminergic neuronal cell line (N27 cells), an in vitro model of PD. Using an MTT assay, OR induced a dose-dependent decrease in the viability of N27 cells with an EC50 of 44.9 ± 1.5 μM (six times lower than that of PQ or MPP+), suggesting that OR is more potent than PQ or MPP+ on N27 cells. To explore the
mechanisms of cell death, we investigated the effect of OR on mitochondrial-de
pendent apoptotic pathway in N27 cells. The results showed that OR induces mitochondrial cytochrome C release followed by sequential activation of cas-
pase-9 and caspase-3, and subsequently DNA fragmentation in a dose-
and time-dependent fashion, with peak activation occurring 12 h after OR exposure.
Co-treatment with caspase-3 specific inhibitor, Z-DEVD-FMK (50 mM) signifi-
cantly attenuated OR-induced caspase-3 and DNA fragmentation. Together, this study demonstrates that OR induces cytotoxicity in mesencephalic N27 dopamine-
producing cells via the caspase-3-dependent apoptotic pathway.

1838 Trichostatin A (TSA), a Histone Deacetylase Inhibitor, Mediates Dopaminergic Cell Death via an NF-κB Dependent Mechanism.

V. Lawana, N. Singh, G. Huh, P. Chandramani-Shivilangappa, H. Jin, V. Anantharam, A. G. Kanthasamy and A. Kanthasamy, Biomedical Science, Iowa State University, Ames, IA.

Trichostatin A (TSA) is a potent, reversible inhibitor of histone deacetylase (HDACi) that functions through hyperacetylation of core histones. A previous study from our lab has linked histone hyperacetylation to dopaminergic neurode-
generation. TSA has been shown to induce profound dopaminergic neuronal cell death, but the cellular mechanisms underlying HDACi-mediated apoptotic cell death remains unclear. Herein, we show that TSA treatment induced dose depend-
ent apoptotic cell death in the dopaminergic neuronal cell culture model (N27 cells). In order to better define the apoptotic cell death, we investigated the role of caspases including caspase-2, caspase-8, caspase-9, and caspase-3. The caspases (2, 8, 9, and 3) activation coincided with ROS generation and proteasomal dysfunction and was found to occur early and prior to cell death. Additionally, TSA induced apoptotic cell death was preceded by PKC delta activation, upregulation of p44/42 MAP kinase, nuclear translocation of p-65 and hyperacetylation of histone (H3).

Conversely, downregulation of IkBα and survivin levels was also observed as re-
vealed by Western blot and immunohistochemical analyses. Notably, pharmacolog-
ic inhibition of NF-κB and caspase via SN-50 and ZVAD, respectively, conferred resistance against TSA induced apoptotic cell death in dopaminergic neuronal cells. These results suggest that NF-κB-mediated and caspase dependent cell death sig-
alling events may be critically linked to TSA induced dopaminergic neuronal de-
generation. Further investigation of the mechanistic link between oxidative stress
and proteasomal dysfunction in TSA-induced dopaminergic neuronal cell death may enhance our understanding on the influence of histone modifications on the nigrostriatal dopaminergic degeneration (supported by NIH grants ES10586 and NS65167).

1839 Chemically-Induced Aging of PC12 Cells to Study In Vitro Neurodegeneration.

M. de Groot and E. H. Westerink, Neuropathology Research Group, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, Netherlands.

Neurodegenerative diseases, e.g. Parkinson’s disease, are multifactorial and the mechanisms underlying these disorders are often unknown. In vitro models can in-
crease insight into the cellular and molecular mechanisms by reducing multifactor-
ial diseases to a more controllable set of parameters. A well-known cell model in in
vitro neurotoxicology is the pheochromocytoma (PC12) cell line. PC12 cells have been used for decades to study the effects of environmental stressors on important processes of neuronal development, function and degeneration, including differ-
tiation and neurotogenesis, the synthesis, storage and release of neurotransmitters
and the regulation and function of different ion channels. However, the use of PC12 cells to investigate neurodegeneration in vitro is debated as this tumor-de-
rivéd cell line is rather resistant against environmental insults.

In this study we therefore induced different degrees of aging in PC12 cells by alter-
ing their oxidative status to investigate if this would increase the susceptibility to environmental stressors, such as pesticides. The characteristics of these aged PC12 subtypes and their sensitivity to an environmental stressor were investigated using different (functional) assays, i.e. measurements of cell viability, measurements of oxidative stress using the ROS-sensitive dye H2DCFDA, and single cell measure-
ments of [Ca2+]i, using the Ca2+-sensitive dye Fura-2. Our data demonstrate that the different aged PC12 models show a clearly different Ca2+-homeostasis as compared to naive PC12 cells. This altered homeostasis is ac-
companied by a change in ROS production over time and by an increased sensitiv-
ity to an environmental stressor as compared to naive PC12 cells. As such, these aged PC12 models with increased vulnerability can be used to gain mechanistic in-
sight in in vitro neurodegeneration studies.

Funding: ZonMW NL (85300003).

1840 Differential Alternate Splicing of L-Type Calcium Channel in Brain Regions: Implication in Parkinson’s Disease.

A. Verma and V. Ravindranath, Centre for Neuroscience, Indian Institute of Science, Bangalore, India. Sponsor: B. Moorthy.

Parkinson’s disease (PD) is a movement disorder characterized by resting tremors, bradykinesia and rigidity caused by death of dopaminergic neurons in substantia nigra pars compacta (SNpc)s of the brain. An intriguing question in the pathogene-
sis of PD is the selective degeneration of SNpc neurons and their terminals in stria-
tum, while the adjacent dopaminergic neurons in ventral tegmental area (VTA) are affected only in later stages of the disease. Among the several hypotheses that have been put forth to address cell death, mitochondrial dysfunction, oxidative stress and accumulation of misfolded proteins in the cytosol (Lewy body) have been stud-
ied extensively. More recently it has been shown that SNpc neurons exhibit L-type calcium channel, Cav1.3, mediated autonomous pace-making, which could poten-
tially result in increased cytosolic calcium resulting in neurotoxicity. While the VTA
neurons also exhibit pace-making, it is driven by sodium conductances thereby en-
suring that cytosolic calcium levels are not elevated. Thus, Cav1.3 channels could play a role in the selective susceptibility of SNpc neurons in PD. A short splice vari-
cant of Cav1.3, Cav1.3-42A has been shown to promote calcium influx into the cell in contrast to the long variant Cav1.3. Thus the presence of greater amounts of
Cav1.3-42A relative to Cav1.3 could lead to increased intracellular calcium. We mea-
sured the relative levels of Cav1.3 and the short splice variant Cav1.3-42A in brain regions and found that the expression of Cav1.3-42A was 4-fold higher in the ventral midbrain compared to striatum or cortex. Concomitantly, levels of Cav1.3 were significantly less in ventral midbrain. These results indicate that the presence of Cav1.3-42A in significantly higher concentration in ventral midbrain, could contribute not only to amplified pace-making but also result in increased cytosolic calcium levels in neurons thus contributing to the degeneration of these neurons.

1841 Development of a Cellular Model to Assess Catecholamine Transport and Toxicity.

K. Stout, A. J. Bernstein and G. W. Miller, Environmental Health, Emory University, Atlanta, GA.

Environmental exposure to neurotoxins can lead to catecholaminergic degenera-
tion and subsequent Parkinson’s disease (PD) development. Historically, dopamine
neurons have been the primary focus of neurotoxicological research in PD though the
importance of noradrenergic degeneration is becoming increasingly evident. Our laboratory recently developed a cellular model to assess dopaminergic trans-
port and toxicity. Here we demonstrate the development of a novel noradrenergic
model for assessing catecholamine transport and toxicity. Many neurotoxic
compounds act as inhibitors of the vesicular monoamine transporter 2 (VMAT2)
within monoaminergic neurons. The primary role of VMAT2 is to sequester monoamines into vesicles, protecting them from cytosolic metabolism, and ready-
ing them for release upon stimulation. Inhibition of vesicular packaging results in
increased metabolism of neurotransmitter. NE metabolites inhibit mitochondrial complex I, thereby reducing ATP synthesis and likely inducing toxicity. To investi-
gate noradrenergic transport and toxicity we are utilizing a monoamine-like fluo-
rescent substrate (Molecular Devices) to investigate VMAT2 function in HEK cells
stable transfected with the human norepinephrine transporter (NET) and
mCherry-tagged human VMAT2. These cells model physiological NE uptake within
NE neurons. NET localizes to the cell membrane and VMAT2 forms intra-
cellular vesicle-like structures. The fluorescent substrate we are utilizing mimics the
action of NE in these cells. It is transported into the cell via desipramine-sensitive
NET uptake (IC50 = 113.9 nM). Within the cell, the dye is sequestered into ves-
icles by VMAT2, evidenced by co-localization of fluorescence between the substrate
and mCherry. Tetrabenazine, a VMAT2 inhibitor, inhibits co-localization in a
dose-dependent manner (IC50 = 382.8 nM). Both co-localization and inhibition are
detectable by microscopy and analyzed with IDEV (Cellomics). This cellular model allows investigation of both normal and altered transporter function in re-
ponse to toxicans in a noradrenergic cellular model.

1842 Alpha-Synuclein Protein Aggregates Activate Microglia and Contribute to Neurotoxicity in the Nigral Dopaminergic System through a Fyn Kinase Dependent Mechanism.

N. Panicker1, K. Kanthasamy2, D. Harischandra1, H. Saminathan1, R. Gordon1, V. Anantharam1, A. G. Kanthasamy1 and A. Kanthasamy2.

1Biomedical Science, Iowa State University, Ames, IA; 2Biochemistry & Cell Biology, Rice University, Houston, TX.

Abnormal protein aggregation and chronic neuroinflammation are recognized as key pathophysiological hallmarks of many neurodegenerative diseases including
Parkinson’s disease (PD). Aggregates of the presynaptic protein α-synuclein are the
major component of Lewy bodies, the histological marker of PD. Aggregated α-synuclein is known to cause resident microglia to activate and subsequently produce neurotoxic factors and proinflammatory cytokines. Identification of the molecular signaling events perpetuating α-synuclein mediated microglial activation could unravel glial neuronal crosstalk mechanisms that lead to persistent gliosis and neurodegeneration in PD. In the present study, we examined the role that Fyn, a major non-receptor tyrosine kinase, plays in aggregated α-synuclein induced microglial activation. Immunocytochemical and Western blot analyses revealed that Fyn was expressed in primary murine microglia as well as in BV2 microglial cells. Stimulation of the cells with α-synuclein aggregates rapidly activated Fyn within 30 minutes of exposure. The time course activation of Fyn paralleled PKCδ induction. Interestingly, the α-synuclein induced phosphorylation was suppressed in primary microglia isolated from Fyn knockout (Fyn-/-) mice, implicating Fyn as the kinase that carries out this event. The α-synuclein induced activation of p44/p42 (Erk1/2) and p38 map kinases was diminished in both Fyn, as well as PKCδ knockout microglia. Notably, the Fyn knockout primary microglia showed attenuated release of cytokines TNFα, IL-10 and IL-12 in response to α-synuclein aggregate stimulation when compared to wild type microglia. Collectively, our results demonstrate a non-receptor tyrosine kinase mediated pro-inflammatory signaling pathway that may mediate neuroinflammation in PD (supported by NIH grants ES19276 and NS65167).

1843 Loss of NF-κB p50 Enhances LPS-Induced Systemic Inflammation and Early Microglial Activation.

Inflammation associated with chronically activated microglia has been implicated in the progressive degeneration of nigral dopaminergic (DA) neurons in Parkinson’s disease (PD), but the mechanisms are not well understood. NF-kB p50 is an important regulator of the pro-inflammatory response with both inhibitory and initiating roles in the production of cytokines. Importantly, reduced NF-κB p50 expression has been observed in the substantia nigra (SN) of patients suffering dementia with Lewy bodies, supporting a potential role for NF-kB p50 in PD-like neurodegeneration. To examine the consequences of loss of NF-κB p50 function in microglial activation in vivo, NF-κB p50+/- and NF-κB p50-/- mice were injected with 5mg/kg LPS IP and sacrificed after 3 hours. Expression of the pro-inflammatory genes TNFα and IL-1β were significantly higher while iNOS expression was lower and COX2 expression was unchanged in the midbrain of LPS treated NF-κB p50-/- mice, as compared to the wild type. Analysis of microglia morphology in the SN using unbiased stereology revealed significantly higher numbers of microglia with activated morphology in LPS treated NF-κB p50-/- mice versus NF-κB p50+/+ mice. In addition, LPS-treated NF-κB p50-/- mice had significantly elevated serum levels of TNFα when compared to LPS-treated NF-κB p50+/+ mice. In vitro knock-down studies demonstrated that TNFα and iNOS expression is significantly increased at 6 and 12h, but not 3h post-LPS treatment in NF-κB p50-/--/ mixed glia cultures, suggesting a possible role of NF-κB p50 in resolution of the glial pro-inflammatory response. These studies underscore that loss of NF-κB p50 function amplifies systemic inflammation, increases neuroinflammation, enhances microglial activation, and may impede glial resolution of the pro-inflammatory response.

1844 Fungal Volatile Organic Compound(s): Potential Environmental Agent(s) for the Pathogenesis of Parkinson’s Disease?

A. A. Inamdar1, M. M. Hossain2, J. Richardson2 and J. Bennett1. 1Plant Bio and Pathology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; 2EHOIS, Rutgers, The State University of New Jersey, Piscataway, NJ.

Parkinson’s disease (PD) is the most common movement disorder and possesses multifactorial etiology. Recently, environmental contaminants including mold exposure are implicated in PD-like movement disorders in epidemiological studies. Although the exact fungal component responsible to such movement disorder is under speculation, fungal volatile organic compounds (VOCs), a class of fungal VOCs has potential to induce Parkinson’s disease like symptoms. To determine the mechanism of toxicity of these VOCs, we focused on 1-octen-3-ol. Employing the available genetic and molecular tools in our Drosophila model, we demonstrate the modulatory effect of 1-octen-3-ol on dopamine regulatory pathway. We show that 1-octen-3-ol inhibits the vesicular monoamine transporter, VMAT thereby causing the induction of oxidation of dopamine and loss of dopaminergic neurons. Furthermore, we show that 1-octen-3-ol alters regulation of JNK and Akt signaling pathways in flies. In conclusion, our data present strong cues in support of Parkinson-mimetic activity of 1-octen-3-ol and provide insights into neurological problems specifically movement disorders associated with damp indoor environments.

1845 Mutations in pink-1 and pdr-1 Result in Reduced Dopaminergic Neurodegeneration after Chemical Ingestion in Caenorhabditis elegans.

C. P. Gonzalez, R. K. Bodichiarla and J. N. Meyer. Nichols School of the Environment, Duke University, Durham, NC.

Mitochondrial dysfunction has been linked to neurodegenerative diseases including Parkinson’s disease. Neurons are cells with a high energy demand, and as a result are hypothesized to be particularly vulnerable to disturbances to mitochondrial homeostasis. We investigated how knocking out two genes involved in mitochondrial dynamics, pink-1 and pdr-1, affected dopaminergic neuron viability after chemical ingestion in Caenorhabditis elegans. pink-1 and pdr-1 are the nematode homologs of the human genes PARKIN and PINK1 which when mutated cause familial Parkinson’s disease. We induced neurodegeneration with 6-hydroxydopamine (6-OHDA) and assessed damage 48 hours post-exposure using the BY250 (dat-1::GFP) strain in which the four cephalic dopaminergic neurons are visualized with GFP. We used the BY250 strain as wild-type for pink-1 and pdr-1. The strain BY250 was generously provided by Michael Aschner (Vanderbilt University) and the strains pink-1; dat-1::GFP and pdr-1; dat-1::GFP were kindly provided by Guy Caldwell (University of Alabama). Each neuron was scored from 0 to 2.5, with zero representing an intact dendrite and 2.5 representing the highest level of neurodegeneration observed, utilizing fluorescent microscopy. Our preliminary results indicate that after exposure to 15 mM 6-OHDA, the wild-type worm had a higher level of neurodegeneration than the pink-1 knockout (p<0.0001) and the pdr-1 knockout (p=0.0052). These counterintuitive results might be explained by the fact that loss of pink-1 promotes mitochondrial fusion, which in turn could protect from 6-OHDA damage through mitochondrial functional complementation. Because 6-OHDA generates reactive oxygen species within the cell, it may cause lipid peroxidation and mitochondrial DNA damage, possibilities that we are currently testing. Future studies will explore the effect of these mutations on mitochondrial homeostasis and neurodegeneration after exposure to 6-OHDA and other toxicants associated with Parkinson’s disease including rotenone and paragout.

1846 Identification of Novel Genes and Epigenetic Mechanisms in C. elegans Models of Idiopathic Parkinson’s Disease and Manganism.

1Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN; 2Chemistry, Purdue University, West Lafayette, IN; 3Chemistry, Indiana University, Bloomington, IN;

Background: Idiopathic Parkinson’s disease (PD) and manganism are oxidative stress-related disorders that result in abnormal dopamine (DA) signaling and cell death. Both neurological disorders involve basal ganglia and mitochondrial dysfunction, and suggest overlapping epidemiology, yet the origin of the pathogenesis and the molecular determinants common to both disorders are ill-defined. Recently we have shown that the PD-associated transcription factor SKN-1/Nrf2 is expressed in C. elegans DA neurons and inhibits PD-associated DA neurodegeneration. Aims/Objectives: In this study we asked what are the common genes, molecular pathways, and mechanism involved in DA neuron vulnerability to PD-associated toxicants. Methods: We utilized reverse genetics, biochemical assays, immunofluorescence, transgenic C. elegans, RT-PCR. Western analysis, behavioral and neuronal morphology analysis to characterize expression, localization and the role that SKN-1, IDN-1, and post-translational modifications play in 6-OHDA-, rotenone-, and manganese (Mn)-induced neuronal death. Results: In this study we demonstrate that IDN-1 mutants render DA neuron up to 15-fold more resistant to the neurotoxicants relative to WT. We show that IDN-1 is expressed in DA neurons, and IDN-1 overexpression results in a 2-fold increase DA neuron vulnerability. We also show that DA neuron vulnerability is affected by transcriptional and epigenetic mechanisms of the genes that regulate these pathways. Conclusions: Our findings present strong cues in support of the potential role that SKN-1, IDN-1, and post-translational modifications play in PD-associated toxicant-induced DA neuron vulnerability.
post-translational modifications of involving these and other proteins identified using RNAi affects DA neuron vulnerability. Conclusion: This study identifies novel genes and molecular pathways involved in DA neuron vulnerability in PD and manganese, and provides the first in vivo evidence that a common epigenetic mechanism likely plays a significant role in both disorders. Support: NIEHS ES014459 and ES003299 to RN, and EPA STAR Graduate Fellowship to NVD.

1847 Decreased Mitochondrial Biogenesis and Suppression of Mitochondrial Gene Expression Induced by Environmental Toxicants in Caenorhabditis elegans Model of Parkinsonism.
S. Zhou, Z. Wang and J. E. Klannig, Indiana University, Bloomington, IN.
Mitochondrial alterations have been documented in the brains of subjects with Parkinson’s disease (PD), a disorder characterized by the selective loss of dopamine (DA) neurons. Recent studies demonstrating that PD-associated proteins are either in the mitochondria or translocated into mitochondria in response to stress. Pesticides and heavy metals have been suggested to be risk factors for PD. While, environmental agents can modulate mitochondrial function, the mechanism of this alteration has not been defined in the context of the development and progression of PD. The complexity of the mammalian neurological system has made it difficult to dissect the molecular components involved in the pathogenesis of PD. In the present study we used C. elegans as the model of neuron degeneration and investigated the effect of Mn+2 and rotenone on mitochondrial biogenesis and gene regulation. Exposure to rotenone (2 or 4 μM) resulted in significant loss of dopamine (DA) neuron in C. elegans. We then determined if the rotenone-induced neuronal degeneration is accompanied by a change in mitochondria biogenesis. Analysis of mitochondrial genomic replication showed a dramatic decrease in mitochondrial DNA (mtDNA) copies in rotenone-treated C. elegans compared to control. This decreased mitochondrial biogenesis occurred prior to the development of loss of DA neurons, and was persistent. The inhibition of mtDNA replication was also found in C. elegans exposed to neuron toxicant Mn2+ at the concentration 50 or 100 mM. We further examined the mitochondrial gene expression and found significant lower level of mitochondrial complex IV subunits COI and COII in C. elegans exposed to rotenone. These results demonstrated that environmental chemicals cause persistent suppression of mitochondrial biogenesis and mitochondrial gene expression, and suggest a critical role of modifying mitochondrial biogenesis in toxicants-induced neuron degeneration in C. elegans model.

1848 A Genome-Wide RNAi-Based Screen for Enhancers and Suppressors of Manganese Toxicity in Caenorhabditis elegans.
P. Chen1,2, T. T. Nguyen1,3 and M. Aschner1,3, 1Pediatric Toxicology, Vanderbilt University, Nashville, TN; 2Neuroscience, Vanderbilt University, Nashville, TN; 3Pharmacology, Vanderbilt University, Nashville, TN.
Environmental or occupational exposure to manganese (Mn) causes a neuropathy resembling idiopathic Parkinson’s disease (PD). Exposure to excessive Mn levels has been linked to mitochondrial dysfunction, oxidative stress, protein aggregation and disruption of iron homeostasis. However, the mechanisms behind these impairments remain unknown, partially due to limited knowledge about genetic factors that regulate Mn homeostasis and increased oxidative stress damage. The mechanisms of damage is attributed to manganese’s capacity to produce toxic levels of free radicals and induce mitochondrial dysfunction. Other reports have demonstrated that manganese accumulates in mitochondria and represent the primary pool of manganese in cells. Controversy exists to the extent of manganese accumulation in mitochondria. Others report manganese accumulates with both the nuclear and mitochondrial fractions. Our lab is using the model C. virginica, as a test animal to study manganese neurotoxicity. We found manganese disrupts the dopamine system as well as mitochondrial respiration. To study if manganese accumulates within mitochondrial of gill cells of C. virginica we used differential centrifugation and atomic absorption spectrometry. Gills were homogenized and centrifuged to isolate nuclear, mitochondrial and gill mitochondrial fractions. Each fraction was analyzed for manganese. To determine if isolated mitochondrial accumulates manganese we prepared treated mitochondrial suspensions with up to 300 mM manganese. Results show a dose dependent accumulation of manganese in mitochondria of gill cells of C. virginica. At high manganese levels treatment, mitochondrial respiration and ATP production were inhibited. This study demonstrates that manganese disrupts the dopamine system and mitochondrial biogenesis. It is likely that manganese accumulates in mitochondria and represents the primary pool of manganese in cells.

1849 Loss of Pdr-1/Parkin Alters Manganese Homeostasis in C. elegans.
S. Chakraborty1,2 and M. Aschner, 1Neuroscience Graduate Program, Vanderbilt University, Nashville, TN; 2Center for Molecular Toxicology, Vanderbilt University, Nashville, TN.
Environmental overexposure to the essential trace element manganese (Mn) can result in an irreversible, toxic condition known as manganism. This disorder shares similar neuropathology with Parkinson’s disease (PD), exhibiting overt dopaminergic (DAergic) cell loss associated with the presentation of motor and cognitive deficits. However, the mechanisms behind the pathophysiology of both disorders remain unclear. Many PD genes have been identified to explain a subset of cases, including the parkin/PARK2 gene that encodes for an E3 ubiquitin ligase. Using Caenorhabditis elegus (C. elegans) as a model that contains the necessary DAergic machinery, we hypothesize that a loss-of-function mutation in pdr-1, the worm homolog of parkin, would increase vulnerability to Mn toxicity compared to wildtype (WT) worms by altering proper Mn homeostasis. Synchronous L1 worms from WT N2 and pdr-1(gk448) mutant strains were acutely exposed to MnCl2 for 30 minutes, followed by lethality scoring of approximately 40-50 worms 24 hours post-treatment. Here, we show that a loss of pdr-1 increases Mn-induced lethality compared to WT worms (p<0.0005), as seen with a leftward shift in the dose-response curve. Moreover, pdr-1 mutants show higher, dose-dependent Mn accumulation compared to WT worms (p<0.001), suggesting overall impaired Mn homeostasis in pdr-1 mutants. Interestingly, pdr-1 mutants show altered mRNA expression levels of key C. elegans Mn importers, including up-regulation of smf-1 and smf-3, and down-regulation of smf-2. However, pdr-1 mutants do not show any difference in mRNA levels of ferroportin (fpn-1) in worms at baseline, indicating a lack of regulation at the export level. Finally, upon exposure, pdr-1 mutants show altered total glutathione (GSH) levels compared to WT animals (p<0.05). Such changes indicate a role of pdr-1 in modulating Mn import through altered transporter expression, implicating a novel role of the PD-associated gene in metal homeostasis and increased oxidative stress.

1850 Manganese Accumulations in Gill Mitochondria of Crassostrea virginica.
A. Nuhar, B. Boisette, M. A. Carroll and E. J. Catapano, Biology, Medgar Evers College, Brooklyn, NY.
Manganese is a neurotoxin causing Manganism in people chronically exposed to elevated levels in their environment. Manganese targets dopamine neurons in basal ganglia. Oxidative stress has been implicated as a factor of manganese toxicity and dopamine dysfunction. Mitochondria play a role as cause and target of oxidative stress damage. The mechanisms of damage is attributed to manganese’s capacity to produce toxic levels of free radicals and induce mitochondrial dysfunction. Other reports have demonstrated that manganese accumulates in mitochondria and represents the primary pool of manganese in cells. Controversy exists to the extent of manganese accumulation in mitochondria. Others report manganese accumulates within nuclei and cytoplasm, but not mitochondria. Our lab is using the model C. virginica, as a test animal to study manganese neurotoxicity. We found manganese disrupts the dopamine system as well as mitochondrial respiration. To study if manganese accumulates within mitochondrial of gill cells of C. virginica we used differential centrifugation and atomic absorption spectrometry. Gills were homogenized and centrifuged to isolate nuclear, mitochondrial and post-mitochondrial fractions. Each fraction was analyzed for manganese. To determine if isolated mitochondrial accumulate manganese we prepared treated mitochondrial suspensions with up to 300 mM manganese. Results show a dose dependent accumulation of manganese in mitochondria of gill cells of C. virginica. At high manganese levels treatment, mitochondrial respiration and ATP production were inhibited. This study demonstrates that manganese disrupts the dopamine system and mitochondrial biogenesis. It is likely that manganese accumulates in mitochondria and represents the primary pool of manganese in cells.

1851 Manganese Treatments Decreases Immunoﬂuorescence Emissions of Postsynaptic Dopamine D2 Receptors.
Y. Chakavey, R. Opoku, M. A. Carroll and E. J. Catapano, Biology, Medgar Evers College, Brooklyn, NY.
Manganese a neurotoxin causing Manganism, a Parkinsons-like disease, disrupts dopamine neurotransmission. Gill lateral cell cilia of Crassostrea virginica are controlled by serotoninergic and dopaminergic regulations. Manganese causes cilio-inhibition, serotonin cilio-excitation. Our lab showed post-synaptic dopamine receptors in gill cells are D2 type and manganese blocks cilio-inhibitory effects of dopamine.

Lateral cilia of gill of Crassostrea virginica are controlled by a serotonin-dopaminergic innervation. Dopamine is an inhibitory transmitter at gill causing cilio-inhibition. Manganese is a neurotoxin causing Manganeseism in people exposed to high levels in the atmosphere. Clinical interventions for Manganeseism have not been successful. Recently, p-aminosalicylic acid (PAS) was reported to provide effective therapeutic drug treatments for Manganeseism. PAS is an anti-inflammatory drug effective in preventing neurotoxic actions of manganese in gill cells and cerebrovisceral ganglia, and has also been used to treat tuberculosis. It also has chelating properties. We hypothesized chelating agents could be effective in reversing neurotoxic effects of manganese when applied to gills after manganese treatment. We used gills of C. virginica to measure lateral cilia beating rates of preparations treated first with manganese followed by treatments with either PAS, calcium disodium EDTA or DMSA (meso-2,3-dimercaptopropanesuccinic acid). Beating of cilia were measured by stroboscopic microscopy. Dose responses of PAS, calcium disodium EDTA and DMSA (10^{-1} - 10^{-4} M) against beating were conducted after 100 μM of manganese was added to gill. All 3 drugs reversed the neurotoxic effects of manganese in a dose-dependent manner. DMSA was the most potent. The study demonstrates these chelators are effective in reversing acute neurotoxicity of manganese. This information should be of interest to those designing therapeutic drug treatments for Manganeseism.

K. LaFleur, M. Rottib, E. J. Catapane and M. A. Carroll. Biology, Medgar Evers College, Brooklyn, NY.

Lateral cilia of the gill of Crassostrea virginica are controlled by a serotonin-dopaminergic innervation. Dopamine acts as an excitory neurotransmitter within the gill, but an inhibitory neurotransmitter at gill, causing cilio-inhibition. The mechanism of action of manganese toxicity is not fully understood, but may be due to oxidative damage. We found several chelators, including p-aminosalicylic acid (PAS) prevented neurotoxic effects of manganese in C. virginica. The therapeutic actions of PAS are thought to be due to chelation, but PAS is also anti-inflammatory. We sought to determine if anti-inflammatory agents and/or antioxidants are effective in preventing neurotoxic actions of manganese in gill of C. virginica. Indomethacin, an anti-inflammatory agent, and ascorbic acid, an antioxidant with possible anti-inflammation abilities were tested. We examined acute and short term (3 - 5 days) treatment of indomethacin and ascorbic acid on manganese toxicity on dopaminergic innervation. Beating rates of lateral cilia in gill epithelial cells were measured by stroboscopic microscopy. Acute or short-term treatments of indomethacin or ascorbic acid (25 - 100 μM) had no effect on the cilio-inhibitory effects of dopamine (10^{-6} - 10^{-3} M). However, when acute or short-term manganese treated animals (25 - 100 μM) were pretreated with indomethacin or ascorbic acid (25 - 100 μM), both drugs effectively prevented the neurotoxic effects of manganese, with ascorbic acid being more effective than indomethacin. The study demonstrates antioxidants and anti-inflammatory agents may be potential therapeutic agents in the treatment of Manganeseism.

M. Ay, A. Kanthasamy, H. Jin, D. Kim, V. Anantharam and A. G. Kanthasamy. Iowa State University, Ames, IA.

Excessive manganese (Mn) exposure causes a movement disorder commonly referred to as manganeseism in humans. Mn mainly accumulates within mitochondria and adversely affects mitochondrial structure and function both in vivo and in vitro. Over the past decades, mitochondrial dependent biochemical processes such...
as oxidative stress, Ca2+ dysregulation and apoptotic signaling have been identified as possible mechanisms of Mn neurotoxicity. However, mitochondrial dynamics and the molecular mechanisms that govern the mitochondrial biogenesis during Mn neurotoxicity are yet to be determined. Since the transcriptional co-activator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1alpha) is the master regulator of mitochondrial biogenesis, herein, we examined the effect of Mn on PGC-1alpha dependent mitochondrial biogenesis in dopaminergic neuronal cells. The Mn9D dopaminergic neuronal cell model was exposed to 100-500 μM of manganese, and the mRNA expression levels of several mitochondrial biogenesis markers, including PGC-1alpha, mitochondrial transcription factor A (TFAM), and cytochrome B (CytB), were measured using qRT-PCR analysis. Interestingly, the results revealed a dose-dependent induction of PGC-1alpha, TFAM, and CytB mRNA levels following 24 h of manganese exposure, whereas short-time manganese exposure (3-6 h) did not result in any significant induction of PGC-1alpha mRNA. Since PKD1 serves as a key compensatory anti-apoptotic kinase, we measured PKD1 phosphorylation, and the kinase phosphorylation was significantly decreased by Mn with 500 μM exposure. A decreased level of Bcl-2 (a pro-survival protein) was also observed at 24 h. Importantly, overexpression of PGC-1alpha significantly protected the cells against Mn-induced neurotoxicity. Taken together, our data indicate that Mn exposure induces mitochondrial biogenesis through PGC-1alpha alpha transcription to counter metal induced neurotoxic stress (NIH grants ES19267, ES10586, and NS074443).

D. Harischandra, H. Jin, A. Kanthasamy, V. Anantharam and A. G. Kanthasamy. Biomedical Science Department, Iowa State University, Ames, IA.

Chronic manganese exposure is a well-known occupational and environmental hazard considered to be a potential risk factor for environmentally linked Parkinsonism. α-Synuclein (α-syn) is a major presynaptic protein in CNS, and aggregation of α-syn has been implicated in the pathophysiology of Parkinson's disease. Previously, we showed that α-syn protects dopaminergic neuronal cells against metal neurotoxicity during early exposure. In the present study, we further characterized the effects of long-term manganese exposure on α-syn metabolism. A 300μM manganese exposure to human α-syn stably expressing N27 dopaminergic cells for 24-48 hr induced a time-dependent increase in α-syn immunoreactive aggregates in the cells. Further analysis of the protein aggregation by inclusion body specific fluorescence probes revealed formation of aggresomes in a time-dependent manner. We were also able to detect enhanced accumulation of protein oligomers in manganese treated dopaminergic cells. Studies conducted with Mn9D cells stably expressing human α-syn showed that the α-syn is secreted out of the cells into extracellular media following manganese exposure, in a time-dependent manner. Further characterization of extracellular media by ultracentrifugation followed by electron microscopy revealed that manganese treatment induces exosome vesicle formation in α-syn cells. Interestingly, we also observed manganese increased the expression of prion in α-syn expressing cells as compared to vector control cells. Furthermore, manganese treatment increases GRP 78 and caspase 12 levels, suggesting that manganese induces ER stress in α-syn expressing cells. Collectively, these results demonstrate that prolonged manganese exposure promotes α-syn protein aggregation and secretion into extracellular milieu by forming exosomal vesicles, which may contribute to propagation of protein aggregation by a prion-like mechanism in dopaminergic neuronal cells. (NIH grants ES19267, ES10586, and NS065167).

1858 Trp73 Gene in Dopaminergic Neurons Is Highly Susceptible to Manganese Neurotoxicity.

D. Kim, H. Jin, V. Anantharam, R. Gordon, A. Kanthasamy and A. G. Kanthasamy. Biomedical Science Department, Iowa State University, Ames, IA.

Chronic exposure to elevated levels of manganese has been linked to a Parkinson’s disease like movement disorder, resulting from dysfunction of the extrapyramidal motor system within the basal ganglia. However, the exact cellular and molecular mechanisms of manganese-induced neurotoxicity remain elusive. Since oxidative stress and apoptosis are considered to be prime mechanisms of manganese neurotoxicity, we sought to identify genes that are susceptible to manganese-induced neurotoxic insult using the Qiang mouse apoptosis RT2 Profiler™ PCR array system. C57 black mice were treated with 10 mg/kg manganese via oral gavage for 30 days. The nigral tissue was collected and RT-PCR based gene expression was performed for 84 genes associated with apoptotic signaling. Interestingly, we found significant down-regulation of a tumor repressor gene, namely Trp73, in manganese treated nigral cells as compared to control. To further determine the molecular mechanism of manganese-induced Trp73 down-regulation, we treated N27 dopaminergic cells with 300 μM manganese and examined the gene expression. Consistent with our animal study, we found reduced expression of Trp73 at mRNA levels in N27 dopaminergic cells. We further determined the Trp73 protein levels during manganese treatment. Trp73 protein levels were decreased in manganese treated N27 cells as well as in manganese treated nigral lysate. Furthermore, manganese treatment in primary striatal culture down-regulated Trp73 protein level in a dose-dependent manner. After confirming Trp73 down-regulation during manganese toxicity in three different models, we have begun additional mechanistic studies in cell culture models of manganese neurotoxicity. Taken together, our results demonstrate Trp73 is a gene susceptible to manganese neurotoxicity, and further characterization of the role of Trp73 in cell survival/cell death will improve our understanding of the molecular underpinnings of manganese neurotoxicity (supported by NIH grants ES10586 and ES19267).

1859 Mechanism of Manganese-Induced Inhibition of Glutamate Transporter GLAST Function.

A. North1, A. Webb1, D. Son1, M. Aschner2 and E. Lee2. 1Physiology, Meharry Medical College, Nashville, TN; 2Pediatrics, Vanderbilt University Medical Center, Nashville, TN.

Manganese (Mn) is an essential trace element required for normal growth, development and cognitive functions; however, chronic manganese exposure to elevated levels of Mn induces a Parkinson’s disease-like symptoms referred to as manganism. It has been reported that manganism is associated with excitoxicity, resulting from the dysfunction of the astrocytic glutamate transporters (GLAST and GLT-1), which take up ~80% of synaptic glutamate. However, the mechanism by which Mn disrupts glutamate transporter function has yet to be elucidated. Our previous studies have shown that Mn suppressed transcriptional activity of astrocytic GLAST by decreasing its mRNA and protein levels. Accordingly, herein, we seek to understand the molecular mechanism of Mn-induced GLAST suppression at transcriptional levels, testing whether Mn induces a modulatory effect on astrocytic GLAST pro-motor activity. The experiments were conducted by assessing EAAT1 (human form of GLAST) luciferase activity in astrocytes transiently transfected with EAAT1 vectors. We hypothesized that Ying-Yang 1 (YY1) and NF-kB pathways play a critical role in repressing the GLAST gene expression, and that Mn modulates the activities of these transcriptional factors. The results revealed that Mn activates the YY1 promoter (p<0.05), and overexpression of YY1 decreases EAAT1 promoter activity. We have also found that CBP (CREB binding protein) acts as a co-regulator of YY1 on the EAAT1 promoter. NF-kB also regulates EAAT1 promoter activity. Overexpression of NF-kB p65 increases the EAAT1 promoter activity (10 folds, p<0.001), whereas mutation on NF-kB binding sites at -533 or -163 of EAAT1 promoter represses EAAT1 promoter activity (p=0.001) and reduces NF-kB effects on EAAT1 promoter activity (3 folds, p<0.001). Mn activites NF-kB reporter activity and produces TNF-α which decreases EAAT1 activity via NF-kB activation. Taken together, our results indicate that the YY1 and NF-kB pathways play critical roles in Mn-induced repression of EAAT1 promoter activity.

1860 Analysis of Brain Mn Distribution Influenced by Disease Stage in Mouse Models of Huntington’s Disease.

T. V. Bichell1, 2, M. Wegrzynowicz1, 2, M. S. Cardone1, M. Uboh1, M. Aschner1, 2, 3, and A. B. Bowman1, 2, 3. 1Department of Neurology, Vanderbilt University, Nashville, TN; 2Center for Molecular Toxicology, Vanderbilt University, Nashville, TN; 3Department of Pediatrics, Vanderbilt University, Nashville, TN.

Huntington’s disease (HD) is a genetic neurodegenerative disorder primarily affecting the striatum. There is considerable variability in age of onset in HD strongly influenced by environmental factors. We have previously reported a disease-toxicant interaction between HD and manganese (Mn) exposure, wherein the pathogenic HD mutation is associated with a striatal specific deficit in net Mn uptake. For example, there is decreased Mn accumulation in the striatum of FVB-YAC128 mice at 13 weeks of age after 7 day subcutaneous Mn exposure with 3 total injections at 50mg Mn chloride tetrahydrate/kg. To determine if increased exposure duration influenced this phenotype we measured striatal Mn after a 9 day exposure with a total of 5 injections. At this age (13 weeks), prior to the onset of neurodegenerative phenotypes, the higher exposure strengthened the difference in striatal Mn accumulation between wildtype and mutant mice. To determine if this Mn phenotype was progressive over the course of disease, we examined striatal Mn levels at 12 months of age. Unexpectedly, no difference in striatal Mn accumulation between wildtype and mutant mice was observed. There is considerable variability in age of onset in HD strongly influenced by environmental factors.
and HD mice was observed using the 7 day paradigm. This alteration in Mn accumulation may be related to disease processes, or to changes due to normal aging, or it may be that the Mn transport defect diminishes with disease progression. To examine this in more detail we will measure and image regional brain Mn accumulation using Inductively Coupled Plasma Mass Spectroscopy (ICPMS), laser ablation ICPMS and other novel methods in HD mouse models. In addition, we will examine primary cultured glia and neurons for cell-type differences in the HD-Mn phenotype. Our ultimate goal is to determine whether disease progression influences brain Mn deposition in HD, and if so, what role glia and neurons play in this process. Supported: NIH ES016931, T32 ES007028

1861 Verification of Manganese-Related Choroid Plexus Differentially Expressed Proteins In Vitro.

G. J. Li, Y. Dong, J. Liu, Y. Liu, H. Jing, C. Zhao and L. Ma, Institute for Toxicology, Beijing Centers for Disease Control and Prevention, Beijing Research Center for Preventive Medicine, Beijing, China.

The regulation of brain manganese (Mn) depends largely on the blood-brain barrier and blood-cerebrospinal fluid barrier (BCB). The latter is constituted by choroid plexus (CP) epithelial cells, which is specialized for cerebrospinal fluid (CSF) production, has been considered as a primary target in Mn-induced neurotoxicity. In our previous study, a total of 32 Mn-related differentially expressed proteins were identified by 2D-PAGE combined with Nano-LC-MS/MS in an in vivo Mn-toxicity rat model, of which 27 were up-regulated, 5 were down-regulated. This study aims to further verify the 7 selected proteins (PHB1, VDAC, β-actin, HSP70, STIP1, TTR, Vimentin) at transcriptional and translational level respectively in immunized choroidal Z310 cells in vitro under manganese chloride (MnCl2) exposure. The expression level of 7 proteins and their mRNA were detected by Western Blot and Real Time RT-PCR, following MnCl2 (0, 50, 100, 200μmol/L) exposure for 24h or 12h in Z310 cells. The results demonstrated that PHB1, β-actin and STIP1 were up-regulated and TTR was down-regulated at both transcriptional and translational levels as compared to controls, which are in accordance with results in in vivo study. Whereas VDAC, HSP70 and Vimentin were down-regulated at both transcriptional and translational levels as compared to controls, which are opposite to the results in in vivo study. Taking together, this study validated that Mn toxic effects on PHB1, β-actin, STIP1 and TTR in CP are accurate and reliable, which provide the valuable clue for elucidating the molecular mechanism of Mn toxicity on choroid plexus epithelial cells (partly supported by NSFC Grant in China #81273108, Capital Development Project 2011-1013-03, and Beijing Health Bureau Project 2011-713108. Corresponding author: Guojunli88@yahoo.com).

1862 Expression and Aggregation of a-Synuclein in the Blood-CSF Barrier: New Evidence for the Effects of Toxic Intracellular Manganese and Copper Levels.

C. A. Bates1, X. Fu1, D. Ysselstein1, J. Roche1, H. Gu1, Y. Du1 and W. Zheng1, 1Health Sciences, Purdue University, West Lafayette, IN; 1Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN; 1Neurology, Indiana University School of Medicine, Indianapolis, IN.

The blood-cerebrospinal fluid barrier (BCB) is responsible for maintaining the homeostasis of a variety of molecules in the brain and cerebrospinal fluid (CSF) including alpha-synuclein (α-Syn), a-Syn plays an integral role in the pathobiology of Parkinson’s disease. Little is known about the role of the BCB in the transport and regulation of α-Syn in the brain and CSF. Previous findings in this lab provided evidence that α-Syn was endogenously expressed in our immortalized Z310 choroidal epithelial cell model, and 100 μM MnCl2 exposure for 24 and 48 hours induced α-Syn aggregation in these cells. The current studies test the hypothesis that the increased α-Syn aggregation in Z310 cells may result from Mn interacting with α-Syn expression and/or its aggregation. qPCR was used to quantify α-Syn expression in Z310 cells after 100 μM MnCl2 for 24 hr led to a significant decrease in ATP7A and ATP7B fluorescent intensities, which was consistent with their significant mRNA and protein expression reductions in tissue and Z310 cells. The two-chamber Transwell transport studies showed a reduced Cu efflux from the CSF to the blood following Mn exposure or when ATP7A or ATP7B expression were knocked down by siRNA. Collectively, these data suggest that Mn exposure reduces Cu efflux by the BCB which appears to be due to the reduction of ATP7A and ATP7B. A decreased clearance of Cu by Mn exposure may result in the build-up of Cu in the brain. Opposite translocation of ATP7A vs. ATP7B is interesting, yet this may help interpret the decreased Cu efflux via the BCB remains uncertain. (Supported by NIH/RO1-Es080146)

1863 Reduced Copper (Cu) Efflux across the Blood-CSF Barrier (BCB) following Manganese Exposure: Effect on Cu Transporters ATP7A and ATP7B.

X. Fu, Y. Zhang, W. Jiang and W. Zheng, School of Health Sciences, Purdue University, West Lafayette, IN.

Increased Cu levels in blood, saliva and brain are found in Mn-exposed animals and humans. However, the underlying mechanism is unknown. ATP7A and ATP7B are Cu-ATPases that function to maintain intracellular Cu homeostasis by exporting excess Cu from the cytosol to extracellular space. This study was designed to test the hypothesis that Mn exposure disrupted the Cu transport across the BCB by interfering the intracellular trafficking of ATP7A and ATP7B. Rats received ip injections of 6 mg Mn/kg as MnCl2 or saline, 5 d/wk for 4 wk. Increased Cu and Mn levels in serum and CSF were observed following Mn exposure. An in situ ventriculo-cisternal perfusion by infusing [64Cu] and [14C]-sucrose into brain ventricle was conducted to determine Cu clearance by the BCB. Mn exposure significantly increased [64Cu] radioactivity by 2.6 fold in the CSF outflow, as compared to controls, suggesting a reduced Cu removal by the choroid plexus. Confocal images exhibited both Cu-ATPases distributed in perinuclear region in normal plexus tissues and Z310 cells. Incubation of plexus tissues with Mn or Cu caused translocation of ATP7A from the cytosol toward the apical membrane facing the CSF, whereas ATP7B relocated toward the basal membrane facing the blood. Exposure to Z310 cells to 100 μM MnCl2 for 24 hr led to a significant decrease in ATP7A and ATP7B fluorescence intensities, which was consistent with their significant mRNA and protein expression reductions in tissue and Z310 cells. The two-chamber Transwell transport studies showed a reduced Cu efflux from the CSF to the blood following Mn exposure or when ATP7A or ATP7B expression were knocked down by siRNA. Collectively, these data suggest that Mn exposure reduces Cu efflux by the BCB which appears to be due to the reduction of ATP7A and ATP7B. A decreased clearance of Cu by Mn exposure may result in the build-up of Cu in the brain. Opposite translocation of ATP7A vs. ATP7B is interesting, yet this may help interpret the decreased Cu efflux via the BCB remains uncertain. (Supported by NIH/RO1-Es080146)
1866 Neurochemical Alterations in the Nonhuman Primate Brain during Chronic Exposure to Manganese: A 1H MRS Study.

S. Dharmadhikari1, 2, L. J. McGoohan3, 4, R. Edeen4, 5, P. Barker4, 5, J. Schneider4, 5, U. Dwyer6, 7 and T. B. Guzdar2. 1School of Health Sciences, Purdue University, West Lafayette, IN; 2Department of Radiology, Indiana University School of Medicine, Indianapolis, IN; 3Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY; 4Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD; 5F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD; 6Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA.

Alterations in brain chemistry upon chronic manganese (Mn) exposure can be studied non-invasively using 1H Magnetic Resonance Spectroscopy (MRS). In this longitudinal Mn exposure study, 1H MRS was used for the detection of brain metabolite changes that are associated with chronic Mn exposure in non-human primates. A total of 7 adult male cynomolgus monkeys underwent MRS on a 3 T Philips Achieva MRI scanner before Mn exposure and after 8 months of Mn exposure (n=3, 1.66-2.5 mg Mn/kg per injection, 2x/wk). Short echo-time PRESS single voxel MRS data was obtained from frontal cortex (FC), parietal cortex (PC), thalamus, and putamen, and gamma-aminobutyric acid (GABA)-edited MRS data was obtained from FC and striatum using MEGA-PRESS. The quantification of metabolites including N-Acetyl-aspartate (NAA), Glutamate (Glu), Glutamine (Gln), nNOS (mono-Inflected), total creatine (Cr), choline (Cho) and GABA was done using LCModel. A significant decrease in NAA/Cr (p=0.035) and mI/Cr (p=0.013) and a significant increase in Glu+Gln (p=0.03) from baseline was measured in the PC. The thalamus showed a significant increase in tCr (p=0.041) and a significant decrease in mI/H2O (p=0.022). No significant changes were measured in any metabolites in the FC and in GABA levels in any region. The significant differences in major metabolites are quite robust despite the small number of animals and changes in NAA/Cr in the PC are in agreement with our previously published results (Guilarte et al., Toxicol Sci 94: 351-358, 2006). Supported by NIH RO1 ES010975.

1867 What Is the Mechanistic Evidence for Trichloroethylene As a Cause of Parkinson's Disease?

D. G. Dodge1 and B. D. Beck2. 1Gradent, Bend, OR; 2Gradent, Cambridge, MA.

Parkinson's Disease (PD) is a type of movement disorder characterized pathologically, in part, by the progressive and selective loss of dopaminergic neuron cell bodies within the substantia nigra pars compacta (SNpc) and associated deficiency of the neurotransmitter dopamine in the striatum. Mitochondrial dysfunction (i.e., Complex I inhibition), oxidative stress, and abnormal protein aggregation (with intracellular α-synuclein accumulation) have been strongly implicated in PD pathology. A number of recent papers have suggested a causal role for trichloroethylene (TCE) in PD, either directly or via its role in the endogenous formation of 1,2-trichloroethanol, 1,2,3,4-tetrahydro-β-caroline (i.e., the TgClo hypothesis). We assess, from a toxicological perspective, the evidence for TCE as a cause or substantial contributor to PD in humans. With regard to the TgClo hypothesis, in vitro studies in a number of different rodent models and in some in vivo models also cause changes in mitochondria and dopaminergic neurons but is not preferentially selective towards dopaminergic cells. In vivo studies in rats have shown that high doses of TgClo injected directly into the brain cause only modest decreases in dopamine neurons; intraperitoneal (i.p.) administration of TgClo was not selective towards dopaminergic neurons and oral exposure of TgClo caused modest decreases in changes that were not consistent in direction or with dose. Furthermore, there is no experimental or credible human evidence that TgClo is formed in vivo after exposure to TCE. In animal studies conducted to evaluate TCE directly as a potential cause of PD, relatively high i.p. or oral doses have resulted in findings that are both consistent and inconsistent with mechanistic and motor effects thought to be important in PD. Compared to other well-developed models of PD, the TCE model is poorly characterized. Overall, we conclude that TCE as a causal factor in PD has not been demonstrated and remains speculative.

1868 Neuroprotective Efficacy and Pharmacokinetics of Novel Para-Phenyl Substituted Diiodomethanes in a Model of Parkinson's Disease.

B. Truong1, J. A. Miller1, R. Hansen1, S. H. Safe2, D. Gustafson1 and R. B. Tallgren1. 1Center of Environmental Medicine, Environmental Radiological and Health Science, Colorado State University, Fort Collins, CO; 2Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX.

There are no approved therapeutics that block the chronic inflammatory component of neurodegenerative diseases such as Parkinson's. This is partly because of poor distribution to the central nervous system for compounds with demonstrated efficacy in vitro. This study examined selected para-phenyl substituted diiodomethane (C-DIM) compounds, which we previously demonstrated to be effective at decreasing glial-derived inflammation in vivo. We postulated that the pharmacokinetic properties of C-DIM compounds would positively correlate with neuroprotective efficacy in a progressive model of Parkinson's disease (PD) in vivo. Pharmacokinetics and metabolism of 1,1-bis(5-indolyl)-1-(p-methoxyphenyl) methane (C-DIM1), 1,1-bis(3-indolyl)-1-(p-hydroxyphenyl)methane (C-DIM5), 1,1-bis(3-indolyl)-1-(p-chlorophenyl)methane (C-DIM12) were determined in plasma and brain of C57Bl/6 mice. Intravenous (1 mg/kg) and oral (10 mg/kg) doses were given to determine the optimal route of administration and putative metabolites were measured in plasma, liver, and urine. Oral dosage of C-DIM compounds displayed greater AUC, Cmax, and Tmax levels than intravenous administration. C-DIM12 exhibited distinguished pharmacokinetics of the selected C-DIMs, with an oral bioavailability of 42% in comparison of C-DIM8 (6%). Following pharmacokinetic studies, efficacy of C-DIM5, C-DIM8, and C-DIM12 (50 mg/kg, oral gavage) was established using a progressive, neuroninflammatory PD model employing MPTP and 3,4-phenethylendiamine (MPD) for 14 days. By first eliciting a lesion in the region of the brain affected in PD (substantia nigra) and then treating with anti-inflammatory C-DIMs, we determined that C-DIM5 and C-DIM12 demonstrated the greatest efficacy in attenuating the progressive loss of dopamine neurons.

1869 Neurotoxicology Study of Lipopolysaccharide (LPS) Induced Mouse Model of Parkinson’s Disease.

Z. Nan1, W. Wang2 and W. Low1. 1Neuromayrgy, University of Minnesota, Minneapolis, MN; 2Global Regulatory, HBF Fuller, St. Paul, MN.

Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by gradual and progressive loss of dopaminergic (DA) neurons in substantia nigra pars compacta (SNpc). 95% of PD may be attributed to multi-varient etiology; among them, inflammation is getting more attention. Current understanding is that inflammation in the central nervous system can produce large amount of pro-inflammatory factors such as tumor necrosis factor α, interleukin-1β, interleukin-6, pro-teinases, and glial activation; the subsequent interaction among these factors and host cells leads to progressive death of dopaminergic neurons in SNpc, resulting in PD. Lipopolysaccharide (LPS) is an endotoxin derived from gram-negative bacteria and is widely used as an inflammation inducer. In this preliminary study, we wanted to know what dose level of LPS can effectively induce PD in C57Bl/6 mice by direct brain injection at the SNc site. Six groups of mice were injected with low dose LPS (200 microgram/Kg), high dose LPS (400microgram/Kg) and normal saline as control, respectively, into one side of the SNc site or the target it projects to (striatum of the same side). The surviving DA neurons in the SNc site were shown and counted by immunohistochemistry method using rabbit anti-tyroside.
Neuro-inflammation and Microglial Dysfunction.

M. Entesar1 and M. Javad3. 1Natural Sciences, LaGuardia Community College, Long Island City, NY; 2Biological Sciences and Geology, Queensborough Community College, Bayside, NY.

Neuro-inflammation and accumulation of Aβ-containing amyloid plaques are critical components in the pathogenesis of Alzheimer’s disease (AD). Microglia are the brain tissue macrophages that play critical roles in the inflammatory aspects of AD by releasing proinflammatory cytokines. Activated microglia are also able to migrate to the sites of Aβ deposition and elimination of Aβ by phagocytosis. Thus, the impairment of microglia migration and Aβ phagocytosis appear to be closely involved in the progression of AD. The underlying molecular mechanisms responsible for disease progression are still unclear. Previously we have shown that elevated levels of high-mobility group box 1 (HMGB1), a ubiquitous DNA binding protein that promotes inflammatory tissue injury impairs the perinatal microglia/macrophage functions. Therefore, we hypothesized that HMGB1 contributes to microglial dysfunction in neuro-inflammation. In this study we demonstrate that HMGB1 levels were significantly elevated in the extracellular space of cultured BV2 macroglia cells 24 hours after exposure to 1 μg/ml Lipopolysaccharide (LPS) compared to untreated control cells. Exposure of BV2 cells to recombinant HMGB1 not only induced impairment in migration and phagocytosis but also accompanied by the expression of Toll-like receptor 4 (TLR4) on these cells. These results suggest that activation of the LPS-induced HMGB1/TLR4 signaling pathway contributes to the microglia dysfunction. Thus, inhibiting of HMGB1 may provide a therapeutic target for enhancing of microglia’s ability to migrate and phagocytose in AD.

Translocator Protein 18 KDA (TSPO) in Sandhoff Disease: An Update on a Preclinical Biomarker of Neurodegeneration.

M. Lesch1, L. Chedi1, L.L. McGlothan1, H. Wang2, M. Pomper3 and T.R. Guillart4. 1EHS, Columbia University, NYC, NY; 2Radiology, Johns Hopkins University, Baltimore, MD.

Translocator protein 18 kDa (TSPO) is extensively used as a biomarker of brain tissue gene development and neuroinflammation (Chen & Guillart, Pharm Ther 118: 1-17, 2008). Sandhoff disease, which is clinically similar to Tay-Sachs disease, is a neurodegenerative condition in which a deficiency in the enzyme lysosomal β-hexosaminidase leads to accumulation of gangliosides and glycolipids in the brain, resulting in progressive and widespread neurodegeneration. We previously reported the longitudinal expression of TSPO in a mouse model of Sandhoff disease at the later stages of the disease (2 and 3 months). Now we report TSPO expression at early disease time points (1 and 1.5 months) in order to assess the temporal expression of TSPO and its relationship to behavioral and neuropathological endpoints. Using TSPO quantitative autoradiography with the TSPO specific ligands [125I]iodo-DPA-713 and [3H]-DPA-713, we show that TSPO levels are increased as early as 1 month after injection in brain regions characteristic of those observed with behavioral expression of disease. We also demonstrate that the temporal increase in TSPO levels is associated with ongoing neurodegenerative changes and activation of microglia and astrocytes using silver staining (marker of active degeneration) and immunohistochemistry of Mac-1 (microglia) and GFAP (astrocytes). Triple labeled immunofluorescent and confocal imaging confirmed that TSPO colocated with microglial markers as well as with the gp91phox subunit of NADPH oxidase at an age when brain tissue is undergoing neurodegeneration. These results further strengthen the evidence that TSPO can be used as an early and sensitive preclinical biomarker of brain injury and inflammation [Supported by NIEHS grant ES007062 to TRG].

Oxidative Damage and Age-Related Alterations in Kainic Acid-Induced Excitotoxicity.

R. C. Gupta1, S. Zaja-Milatovic2 and D. Milatovic1. 1Toxicology, Murray State University, Hopkinsville, KY; 2University of Virginia, Charlottesville, VA; 3Vanderbilt University Medical Center, Nashville, TN.

Recent research findings in brain have highlighted increased excitatory stimulation as a contributor to aging as well as neuronal damage that accompanies multiple neurodegenerative diseases. Findings from patients and animal models have widely supported the hypothesis that neural oxidative/nitrosative damage is a major effect contributing to neurodegeneration. Therefore, the present study investigated antioxidative and neuroprotective effects of the antioxidant vitamin E (α-tocopherol) and the NMDA receptor antagonist memantine in age-related excitotoxicity induced by kainic acid (KA). Mice exposed to KA (1 nmol/5 μl, icv) showed significant increases in cerebral oxidative biomarker F2-isoprostanes (F2-IsoPs, 158%) and nitrosative biomarker citrulline (249%) formation when determined at 30 min after exposure. At the same time, pyramidal neurons in the hippocampus of young and old mice showed significant reductions in dendritic length (60%) and spine density (40%) compared to controls (100%). Pretreatment with vitamin E (100 mg/kg, ip/day for 3 days) and memantine (5 mg/kg, ip), but not 1 mg/kg attenuated the KA-induced increases in cerebral F2-IsoPs and citrulline and decrease in
spine density of hippocampal pyramidal neurons in young mice. However, vitamin E (100 mg/kg, i.p/day for 3 days) and melaminette (5 mg/kg, ip) were not effective in suppressing KA-induced oxidative stress and a decrease in the dendritic length of hippocampal pyramidal neurons in aged mice. These data strongly suggest that different mechanisms are involved in cerebral neuroprotection of aged mice compared to young mice. Elucidation of these mechanistic changes has important clinical implications for therapeutic strategies in both normal aging and neurodegenerative disease.

1875 Rapid Immunoassay Development and Evaluation of ICAM-1 and E-Selectin As Potential Biomarkers of Vascular Injury in Rats.

M. J. Cameron1, H. W. Smith1, J. L. Weaver2, N. King3, N. Vansell1 and B. E. Emerson1. 1Immunology, MPI Research, Mattawan, MI; 2Investigative Toxicology, Eli Lilly and Company, Indianapolis, IN; 3Drug Safety Research and Development, Pfizer Inc, Groton, CT. 1876 Synthesis and Characterization of PEG-Ylated Meso-Porphyrins for Targeting the Epidermal Growth Factor Receptor in CRC.

This project introduces a novel macrocycle conjugated to polyethylene glycol linker, which we hypothesize will serve as the template for a selective molecule with high fluorescence yields that greatly enhances earlier detection of CRC by utilizing the EGF as a biomarker. Our targeted remedy is a porphyrin that is conjugated to a peptide with an affinity for the Epidermal Growth Factor Receptor (EGFR). Porphyrins are characteristically aromatically stable, contain trademark absorption bands in the visible and near-IR range, and have fluorescence quantum yields much above the current fluorophores. This makes the macrocycle optimal for confocal laser endomicroscopy (CLE) agent production. Consequently, we use a polyethylene glycol linker in order to increase water solubility, retain low toxicity, and to achieve high fluorescence quantum yields, as well as high conjugation yields. In this research, we were able to produce both precursors to the porphyrin-peptide conjugate, MesOPOR(mono)-PEG4 and MesOPOR(dii)-PEG8, which are useful in peptide conjugation that targets EGFR. These peptide ligands will increase selectivity and detect CRC via CLE.

1876 Synthesis and Characterization of PEG-Ylated Meso-Porphyrins for Targeting the Epidermal Growth Factor Receptor in CRC.

This project introduces a novel macrocycle conjugated to polyethylene glycol linker, which we hypothesize will serve as the template for a selective molecule with high fluorescence yields that greatly enhances earlier detection of CRC by utilizing the EGF as a biomarker. Our targeted remedy is a porphyrin that is conjugated to a peptide with an affinity for the Epidermal Growth Factor Receptor (EGFR). Porphyrins are characteristically aromatically stable, contain trademark absorption bands in the visible and near-IR range, and have fluorescence quantum yields much above the current fluorophores. This makes the macrocycle optimal for confocal laser endomicroscopy (CLE) agent production. Consequently, we use a polyethylene glycol linker in order to increase water solubility, retain low toxicity, and to achieve high fluorescence quantum yields, as well as high conjugation yields. In this research, we were able to produce both precursors to the porphyrin-peptide conjugate, MesOPOR(mono)-PEG4 and MesOPOR(dii)-PEG8, which are useful in peptide conjugation that targets EGFR. These peptide ligands will increase selectivity and detect CRC via CLE.

1877 Multiplex Analysis of Urinary Protein Biomarkers for the Detection of Vancomycin Induced Sub-Acute Nephrotoxicity.

W. Zheng1, T. C. Fuchs2, I. Yoon3, D. Droll1, X. Qiang1 and P. Hewitt1. 1R&D, EMD Millipore, St. Charles, MO; 2Non-Clinical Safety R&D, Merck Serono, Darmstadt, Germany.

In pharmaceutical and chemical industries the kidney is routinely assessed during preclinical safety evaluations. The importance of the kidney as a central detoxification organ leads to a high exposure of renal tissue to drugs, reactive metabolites or environmental compounds. Traditional markers for assessing renal toxicity, such as blood urea nitrogen (BUN) and serum creatinine, are insensitive. Although both are direct measurements of renal function, increases in serum concentrations of these biomarkers occur only after substantial renal injury. For improved detection of acute nephrotoxicity a panel of novel urinary kidney biomarkers has been approved by the FDA, EMA and PMDA. However, limited data regarding the performance of these acute markers after sub-acute or sub-chronic treatment are publicly available. To increase the applicability of these markers, it is important to evaluate the ability to detect these markers after 28 days or even longer. In this study, Wistar rats were treated with three doses of Vancomycin to induce renal damage and studied for 28 days. Urine was collected under cooled conditions on an 18-hour cycle on days 8, 15 and 29. Luminex® xMAP® based MILLIPLEX® Rat Kidney Toxicity Magnetic Bead Assays were used to measure 14 candidate protein biomarkers simultaneously from the urine samples. Vancomycin treatment resulted in a dose-dependent increase in urinary biomarkers, specific for the observed areas within the nephron, determined histopathologically. Several biomarkers were found promising in this study, which includes NGAL, Cystatin C, KIM-1, Osteopontin, Clustatin and Albumin. The simultaneous measurement of these markers with multiplex technology provided a robust and convenient method to study these biomarkers. Taken together, our data demonstrate the high accuracy and predictivity of some of these new markers to detect sub-acute treatment with one well described nephrotoxin, Vancomycin.

1878 Association of the Cumulative Body Burden of Estrogen-3,4-Quinone with Body Mass Index and Breast Cancer Risk Using Albumin Adducts As Biomarkers.

P. Lin1, D. Chen2, C. Lin2, W. Hsieh3, W. Yu4, C. Lin5, M. Go6 and C. Juan6. 1Environmental Engineering, National Chung Hsing University, Taichung, Taiwan; 2Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua, Taiwan; 3Department of Laboratory Medicine, Da-Chien General Hospital, Miaoli, Taiwan.

Both 17β-estradiol-2,3-quinone (E2-2,3-Q) and 17β-estradiol-3,4-quinone (E2-3,4-Q) are reactive metabolites of estrogen. Elevation of E2-3,4-Q to E2-2,3-Q ratio is thought to be an important indicator of estrogen-induced carcinogenesis. Our current study compared the cumulative body burden of these estrogen quinones in serum samples taken from Taiwanese women with breast cancer (n=152) vs healthy controls (n=140) by using albumin (Alb) adducts as biomarkers. Results clearly demonstrated the presence of esteryl adducts of E2-2,3-Q-4-S-Alb and E2-3,4-Q-2-S-Alb in all study population at levels ranging from 61.7-1330 and 66.6-1590 pmol/g, respectively. Correlation coefficient between E2-2,3-Q-4-S-Alb and E2-3,4-Q-2-S-Alb was 0.610 for controls and 0.767 for breast cancer patients (p<0.001). We also noticed that in subjects under age 50 with body mass index (BMI) less than 27, background levels of E2-3,4-Q-2-S-Alb was inversely proportional to BMI with about 25% increase in E2-3,4-Q-2-S-Alb per 5 kg/m2 decrease in BMI (p<0.001). In addition, we confirmed that mean levels of E2-3,4-Q-2-S-Alb in breast cancer patients were -5 fold greater than in those of controls (p<0.001). Overall, this evidence suggests that disparity in estrogen disposition and the subsequent elevation of cumulative body burden of E2-3,4-Q may play a role in the development of breast cancer. (This work was supported by the National Science Council, Taiwan, through Grants NSC99-2314-B-005-001-MY3)

1879 Biomarker-Based Evaluation of Diesel Exhaust Emissions from 2007-Compliant Engines in Rats and Mice Exposed for Defined Time Periods.

L. M. Hallberg1, J. L. Parks1, C. M. Norton2, C. Hernandez3, J. B. Ward4, B. F. Ameredes2 and T. K. Wickliffe5. 1University of Texas Medical Branch, Galveston, TX; 2Tulane University Health Sciences Center, New Orleans, LA. Sponsor: W. Gray.

In 2001 the USEPA adopted new air quality standards for diesel fuels and emissions; the health impact was not established. Diesel exhaust (DE) is associated with adverse health effects, including cardiovascular, lung cancer, and neurological
Investigation of Early Biomarkers of Doxorubicin (DOX)-Induced Cardiac Tissue Injury in B6C3F1 Mice.

V. Denis1, E. Herman1, C. Moland2, S. Lewis3, K. Davis4, N. George3, S. Kerr5 and L.C. Fucik2.* Division of Systems Biology, NCTR, US FDA, Jefferson, AR; 2Division of Applied Pharmacology Research, CDER, US FDA, Silver Spring, MD; 3Division of Scientific Coordination, NCTR, US FDA, Jefferson, AR; 4Toxicologic Pathology Associates, NCTR, US FDA, Jefferson, AR; 5Division of Bioinformatics and Biostatistics, NCTR, US FDA, Jefferson, AR; *Arkansas Heart Hospital, Little Rock, AR.

Cardiac troponin (cTn) are widely used as biomarkers for assessing cardiac injury in preclinical and clinical testing. Here we report a study that was designed to identify early biomarkers of cardiac injury in male B6C3F1 mice. Mice were treated weekly for 2, 3, 4, 6, and 8 weeks with (a) 3 mg/kg DOX given intravenously (i.v.) via tail vein, resulting in cumulative doses of 6, 9, 12, 18, and 24 mg/kg, respectively, (b) an equivalent volume of saline (SAL) given i.v. via tail vein, (c-d) 60 mg/kg dexrazoxane (DXZ), a cardioprotective drug, given intraperitoneal (i.p.) 30 min before i.v. injection of DOX or SAL, and (e) SAL given i.p. 30 min before i.v. injection of SAL. At necropsy, which was performed a week after the last dose, blood samples were collected for measurements of cTnT and hematological parameters. Also, hearts were collected for evaluations by light and electron microscopy, genomics, proteomics, and metabolomics. Preliminary results showed a release of cTnT in plasma in 8% of mice at 6 mg/kg, 17% of mice at 9 and 12 mg/kg, and 92% of mice at 18 and 24 mg/kg cumulative DOX doses, suggesting a dose-related increase in cardiac injury. Plasma cTnT levels were also elevated in 58%, 55% of mice treated with DXZ+DOX for 3, 6, and 8 weeks, respectively. Microscopic examination of hearts revealed the presence of cardiac lesions only in mice exposed to 24 mg/kg cumulative DOX dose, suggesting that DXZ provided cardioprotection against irreversible damage. The presence of some degree of cardiac damage in the heart of only mice exposed to the highest cumulative DOX dose yet some elevation in cTnT at lower cumulative DOX doses suggests that our ongoing evaluation of molecular changes may reveal more sensitive biomarkers of cardiac injury.

Investigation on Plasma Bile Acids As Biomarkers of Cholestasis Induced by Bsep Inhibition in Preclinical Animals.

M. Miyake1, T. Shimizu1, M. Kobayashi1, M. Yamazaki2, H. Satou1, T. Honda1, T. Tomari1 and N. Masutomi1.* Safety Research Laboratories, Research Division, Mitsubishi Tanabe Pharma Corporation, Chiba, Japan; 2Advanced Medical Research Laboratories, Research Division, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan. Sponsor: I. Sugimoto.

[Purpose] The bile salt export pump (BSEP) is a bile acid efflux transporter, the inhibition of which has been proposed to play a role in drug-induced cholestasis. However, there are no known biomarkers (BMs) to detect BSEP inhibition. We previously performed metabolomics analyses on rat plasma treated with cyclosporin A (a well-known BSEP inhibitor) and found that plasma bile acids (PBA) could be BMs for BSEP inhibition. To further evaluate the usefulness of PBA, we characterized the specificity and time-course changes of PBA in rats and dogs. [Methods and Results] PBA were measured by LC/MS in rats dosed rifampicin (a BSEP inhibitor), methoxyflurane (a hepatocellular toxicant), 2,3,5,6-tetramethyl-1,4-phénylenediamine (a muscular toxicant) and dexamethasone (a hepatic glycogenesis inducer). Increase of cholic acid and taurocholic acid, accompanied by decrease of glycocholic acid and chenodeoxycholic acid were specific to rifampicin treatment, confirming the reproducibility of the previous analyses. Next, single dosing studies were conducted in rats and dogs to investigate the time-course changes of PBA. In rats, PBA were increased maximally at 6-9 h after cyclosporin A dosing and tended to return to the normal level at 24 hrs after dosing, which corresponded to the toxicokinetics of cyclosporin A. On the other hand, PBA were detected only after feeding in untreated dogs, and rifampicin intensified the rise in PBA concentration induced by meal. [Conclusion] The results show that PBA can be specific BMs of BSEP inhibition in preclinical animals. Since PBA showed time-course changes associated with plasma drug concentrations and were also affected by meal in dogs, plasma sampling time point would be critical to evaluate changes in PBA induced by BSEP inhibition.

Kidney Injury Biomarkers Lipocalin-2, Clusterin and Albumin, and Not Kidney Injury Molecule 1, Are More Sensitive Than Traditional Markers of Gentamicin-Induced Kidney Injury in Beagles.

A panel of 8 novel urinary protein biomarkers were recently qualified by the FDA for the detection of acute kidney injury (AKI), significantly improving the sensitivity and specificity with which renal injury may be detected in rat. However, the translation of these biomarkers to dogs, one of the most common species used in preclinical drug development, remains unknown yet must be established prior to broad implementation in toxicity screens. Here we determined AKI biomarkers kidney injury molecule 1 (KIM-1), lipocalin-2 (NGAL), clusterin and albumin in urine from male beagles infused once daily for 10 days with the nephrotoxic antibiotic gentamicin. Histological examination of the kidneys following treatment revealed severe epithelial degeneration, necrosis and regeneration alongside tubular dilation in gentamicin-treated dogs only. In gentamicin-treated dogs, significantly elevated urinary protein levels of albumin, clusterin and NGAL were measurable as early as 3 days after start of treatment with peak levels >100-fold above background. Both the speed and magnitude of response detected with these new biomarkers were superior to traditional AKI biomarkers, blood urea nitrogen (BUN) and serum creatinine (sCr), which did not increase until day 8. Urinary KIM-1 levels peaked around 2-fold, an order of magnitude lower than published levels from a similar 10-day rat study. Further analysis of samples for KIM-1 mRNA and protein will tell whether the canine KIM-1 response is markedly different from that observed in rats. These data indicate that three of these novel biomarkers qualified in rat (NGAL, clusterin and albumin) translate to canine and represent a substantial improvement over traditional AKI biomarkers in preclinical drug development.
individually or in combinations, in 110/175 (63%) samples; from HIV positive (64%) and HIV negative (55%), with additional 4 analytes present only in HIV positive samples. AFM1 (10%; mean 0.5, range ≤LOQ-1.4 μg/L) and FB1 (3%; mean 0.6, range 0.5-15 μg/L) were detected in the HIV subpopulation whilst low levels (<LOQ) were found in one sample each from HIV negative group. One HIV positive individuals’ urine contained 6 metabolites. Levels of these metabolites were generally similar to those reported elsewhere in Africa. For the first time in Africa and elsewhere, this study has reported on 11 mycotoxin biomarkers/bio-measures quantified in human urine. Mycotoxin exposures in HIV individuals may require particular attention. The findings may constitute a major step towards mycotoxin exposure assessment and national mycotoxin regulations in Cameroon.

1884 Development of a New Oxidative Stress Biomarker Dityrosine ELISA.

K. Sakai, 1 M. Takeuchi 1, T. Ochi 1, R. Rathnam 2 and Y. Kato 1, 1Japan Institute for the Control of Aging, Fukui, Japan; 2Genoe Corporation, Baltimore, MD; 3School of Human Science and Environment, University of Hyogo, Himeji, Japan. Sponsor: K. Rao.

Accumulating evidence indicates that oxidative stress plays an important role in various diseases such as cancer, diabetes and hypertension. Recently it is also reported that oxidative stress is involved in toxicity of chemical substances such as arsenic, asbestos, diesel exhaust micro particles and antineoplastic drugs, and monitoring of oxidative stress inside human body may be informative for toxicological study. Oxidative stress may cause oxidative damages to biomolecules such as nucleic acids, lipids, proteins and enzymes, and oxidized products of such biomolecules have been used for the assessment of oxidative stress in the living bodies. Although protein oxidation is only one of the most important biomolecules, only limited number of reports about the oxidized proteins has been published. Tyrosine is one of the major targets of protein oxidation, and dityrosine is known to be formed by oxidative stress. In this presentation, development of a new dityrosine ELISA is reported. A competitive dityrosine ELISA is established using anti-dityrosine monoclonal antibody (clone 1C3) which was developed by Kato et.al. 50 μL of diluted samples or kit standards diluted with castrated dog serum or commercially available serum matrix, also, for intact serum diluted with its respective castrated serum (R2=0.9). This assay can detect >8 fold INH-B difference between intact and castrated canine serum samples. Other parameters like frozen storage, freeze/thaw and lot-to-lot stability are pending. We conclude that this canine INH-B assay can consistently quantify INH-B levels in canine serum under the modified procedures.

1885 Method Development of Serum Canine Inhibin B Enzyme-Linked Immunosorbent Assay (ELISA).

R. Kuk 1, D. Kumar 2 and S. B. Laffan 1, 1Reproductive Toxicology, Safety Assay, GlassSmithKline, King of Prussia, PA; 2Assay Development, Bristol-Myers Squibb, Syracuse, NY.

Inhibin B (INH-B) is a heterodimeric glycoprotein consisting of an alpha and a beta-B subunit linked by disulphide bridges. INH-B is produced by the testes as well as the ovaries, and is responsible for the selective negative feedback control of follicle stimulating hormone. In males, INH-B is synthesized by the sertoli cells in the testis, and can be used as a marker of sertoli cell function and spermatogenesis in adult males. Hence, it is being considered a biomarker for detecting testicular damage. INH-B has been quantified in humans, rats and non-human primates, but not in canines due to lack of availability of reagents. Here, we report the methods development of the canine INH-B ELISA from Cusabio Biotech Co. (Wuhan, China). Assay standard curve is ranged from 4 to 1000 pg/mL with serum requirement of 50 μL. Assay optimization included modification of the procedure to include sample mixing followed by prolonged primary antibody-antigen incubation time to ensure saturation. Two custom quality controls were prepared at levels that are on the sensitive part of the standard curve. Qualification criteria included ass-essment of the standard curve, quantification range, reproducibility (precision) and dilutional linearity (% recovery). Standard curve was made more robust by adding more points on the sensitive part of the curve. Lower limit of quantification was qualified to be statistically above the variance of the blank value. Reproducibility was good (%CV≤50%) among assays. Linearity was acceptable for kit standards diluted with castrated dog serum or commercially available serum matrix, also, for intact serum diluted with its respective castrated serum (R2=0.9). This assay can detect >8 fold INH-B difference between intact and castrated canine serum levels.

1886 Mitigation of Fumonisin Biomarkers by Green Tea Polyphenols.

K. Xue 1, L. Tang 1, Q. Cai 1, L. Xu 1, J. Su 1 and J. Wang 1, 1University of Georgia, Athens, GA; 2Texas Tech University, Lubbock, TX; 3Anhui Cancer Institute, Nanning, China.

Fumonisin B1 (FB1) is a carcinogen and a strong tumor promoter in animal models. Green tea polyphenols (GTP) are highly effective in inhibition of a variety of carcinogen-induced tumorigenic effects in many model systems. In this study we assessed mitigative effects of GTP on FB1-biomarkers in blood and urine samples collected from a randomized, double blinded, and placebo controlled intervention trial, which recruited a total of 124 people aged 20-55 who exposed FB1 via their corn-based diet. These participants were centered, randomly divided into 3 groups, and daily treated with either low-dose (GTP 500 mg, n=42), high-dose (1000 mg, n=41) or placebo (n=41) for 3 months. Urinary levels of free FB1 at baseline were comparable (median at 560.73, 574.56, and 559.09 pg/mg creatinine) for all three groups (p=0.162). Levels at urine samples collected at 1-month of the intervention was significantly decreased in the high-dose group (median: 364.94 pg/mg creatinine; p<0.01) as compared with level in the placebo group (median: 575.25 pg/mg creatinine). The inhibition rate is 18.95% in low-dose group and 33.62% in high-dose group. Levels of free FB1 at samples collected at 3-month of the intervention showed significant decrease in both low-dose (median: 319.45 pg/mg creatinine; p<0.01) and the high-dose (median: 215.83 pg/mg creatinine; p<0.01) groups as compared with the levels of the placebo group as well as the baseline levels. The inhibition rate is 40.18% in low-dose GTP group and 52.6% in high-dose GTP group. Levels of sphinganine (Sa), sphingosine (So), and their ratio in urine and serum samples were also evaluated in this study. These results demonstrate that supplement of GTP effectively mitigates urinary excretion of free FB1 via to be specified pathways in humans.

1887 Variation of Urinary Creatinine.

H. Na and M. Yang, Soomyung Women's University, Seoul, Republic of Korea.

Urinary creatinine has been commonly used for adjusting dilution status of urine species in biological monitoring. However, it can vary according to sex, age, race, BMI, meat intake, etc. The purposes of our study are to investigate the intra- and inter-individual variations of urinary creatinine in a sex, age and race matched subjects, and to study the impact of meat intake on the variations of urinary creatinine. We designed a diet-controlled study among the subjects who were Korean healthy females (N=9, age 20±4 yrs, BMI 19.7±2.4 kg/m2) and measured urinary creati-nine at 5 intervals during 24 hours with and without meat consumption. As results, diverse intra-and inter-variations of creatinine levels were shown in the subjects: When subjects did not take meat, the largest and smallest intra-variations in urin ary creatinine range were detected in the subject C and G, i.e. 0.34-2.97 (Δ2.63) g/L and 0.93-1.63 (Δ0.70) g/L, respectively. In addition, creatinine levels at 5-intervals were significantly different between the highest and lowest average levels of subjects, i.e. 2.13±0.73 g/L of the subject I and 0.86±0.52 g/L of the subject A (p=0.05), respectively. With intake of meat (charcoal-grilled Korean beef tenderloin), the trend of intra-variation of urinary creatinine in each subject was not different (p=1.00 by Fisher exact test). It suggests that meat intake had little influence on intra- and inter-variation of urinary creatinine. In conclusion, our data re-emphasize that urinary creatinine must be measured in each spot urine even among the subjects who have similar age, sex, race and BMI due to its intra- and inter-variation. In the near future, the causes of intra- and inter-individual variations of urin ary creatinine should be further studied.

1888 Cardiolipin As a Biomarker of Mitochondrial Dysfunction Associated with Parkinson's Disease.

Y. Tyurina 1, 2, D. Wimnic 1, 2, V. Kapralova 1, 2, V. Tyurin 1, 2 and V. Kagan 1, 2, 1Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA; 2Center for Free Radical and Antioxidant Health, Pittsburgh, PA.

A commonly used pesticide, rotenone, is a mitochondrial respiratory complex I inhibitor capable of selective oxidation of mitochondrial phospholipid, cardiolipin (CL). Given that rotenone exposure is associated with the development of
Parkinson disease (PD), we hypothesized that CL peroxidized molecular species accompanying mitochondrial dysfunction and lipid peroxidation (LPO) was assessed as a biomarker. In this study, we used circulating lymphocytes isolated from human blood and found that rotenone (50-250 μM, 12-18h) caused apoptosis (phosphatidylserine externalization, caspase 3/7 activation), reactive oxygen species production (superoxide, H₂O₂), mitochondrial dysfunction (inactivation of complex I, decrease of mitochondrial membrane potential, depletion of ATP) and activation of proapoptotic activity of mitochondria. Using an oxidative lipomics approach, we found that treatment of lymphocytes with rotenone resulted in accumulation of monolysosphingomyelin-CL (CL-1) with the known participation of cytokrome as a catalyst of CL peroxidation during apoptosis. Using the combination of lipidsomics and oxidative epitope-targeted enzymatic digestion of oxidized terlinolenoyl-CL we found that its oxygenated LA species were represented by hydroxy- and hydroxy-derivatives. Thus, we conclude that CL and its oxygenation products and metabolites may represent a new biomarker of rotenone-induced mitochondrial dysfunction associated with PD. Supported by NIOSH OH008282; NIH ES020693, U19 AI068021, HL70755.

1889 Evaluation of Insulin-Like Growth Factor Acid-Labile Subunit As a Novel Biomarker of Effect by the Mycoptoxin Deoxynivalenol.

B. Flannery,2, C. J. Amunie2 and J. Peetke,1,3 1Food Science and Human Nutrition, Michigan State University, East Lansing, MI; 2Center for Integrative Toxicology, Michigan State University, East Lansing, MI; 3Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI.

Deoxynivalenol (DON) is a trichothecene mycotoxin produced from Fusarium species frequently found in grain products due to its recurrent contamination and resistance to food processing treatments. In growing experimental animals, chronic low-level DON exposure has resulted in anorexia, weight suppression and growth hormone axis perturbations. As a result, children are thought to be especially sensitive to DON. Though a biomarker of exposure exists to measure DON exposure in humans, no biomarker of effect is currently available to predict the adverse negative weight effects of DON, thereby hindering complete risk assessment of this mycotoxin. Two studies were conducted to assess the potential of plasma insulin-like growth factor acid-labile subunit (IGFALS) to be used as an effect biomarker for DON. In the first study, a 9 wk dietary DON exposure was employed in mice to test the hypothesis that depression in plasma IGFALS occurs at toxicologically relevant doses prior to significant weight suppression. Results showed that the 1) NOAEL for depressed plasma IGFALS and weight was 2.5 ppm DON and 2) decreased plasma IGFALS was detectable before significant weight suppression was evident. In the second study, the specificity of reduced plasma IGFALS to DON, rather than DON-induced anorexia, was assessed using a dietary intervention in rhesus monkeys. Mice were fed ad-lib control diet, restricted control diet or identical amounts of restricted 15 ppm DON diet. Mice fed restricted DON diet exhibited significantly less plasma IGFALS than the restricted control indicating the specificity of plasma IGFALS reductions to DON. Thus, plasma IGFALS might be one suitable biomarker for predicting DON's adverse growth effects in animals and humans.

1890 Validation of a Meso Scale Discovery Immunoassay for KIM-1 Renal Biomarker in Cynomolgus Monkey (Macaca fascicularis) Urine.

The purpose of this study was to validate an immunoassay for detection of kidney Injury Molecule 1 (KIM-1) in the urine of cynomolgous monkeys (NHP). Monkeys were treated with escalating doses of a compound and induced tubular degeneration/regeneration as determined by histopathology. Urine was collected pre-dose, 16 days post dose and 21 days post dose and urine with low, medium and high levels of KIM-1 were used to validate the Meso Scale Discovery (MSD) Human KIM-1/TIMP-1 (single-plex) immunoassay kit as this kit cross reacts with NHP KIM-1. Additional urines from elder colony monkeys as well as normal younger NHPs were also used to establish a preliminary observed range (<0.01ng/mL). We determined intra-assay (7.7% CV) and inter-assay precision (24.5% CV), limit of blank (0.00031ng/mL), limits of quantitation (0.01ng/mL to 10ng/mL), dilutional linearity (not linear when diluted), recovery (84.8% - 122.8%), preliminary quality control range evaluation (0.43ng/Ml to 18.7%, 0.61ng/mL to 16.8%), freeze/thaw (F/T) stability out to 4 F/T cycles (95.5% - 112.5%), and sample storage stability out to 10 weeks. There was also a good bio-logic correlation with time and dose-dependent increases in KIM-1 for the toxicity study samples. All parameters measured showed acceptable immunoassay assay performance on this assay and the other results obtained, the validated method is robust and can be performed under good laboratory practice conditions to support nonclinical studies to assess for renal toxicity.

1891 Evaluation of a Three-Dimensional Oral Cell Model for the Assesment of Tobacco Products.

Oral disease is frequently associated with viral and environmental exposures as well as oral hygiene. The goals of this study were to evaluate the impact of smokeless tobacco extracts (STE) and cigarette total particulate matter (TPM) on cell survival, oxidative stress, inflammatory response and tissue integrity using three-dimensional cultures of human buccal (EpiOral™) cells. EpiOral™ cells were treated with extracts of IS2 (reference dry snuff), 2S3 (reference moist snuff) and a smokeless tobacco blend prepared in complete artificial saliva (CAS) as well as with TPM from Kentucky Reference 3R4F cigarette (DMSO-based) for time points through 24 hours. Toxicity was assessed with the lactate dehydrogenase (LDH) assay. Glutathione (GSH) measurement and histological analyses were used to assess oxidative stress and changes in tissue integrity, respectively. Gene expression analyses were also conducted via qRT/PCR and multiple cytokine testing.

Dose- and time-dependent release of LDH was observed for all test articles. The optimal exposure time appears to be 12 hours where 3R4F TPM elicited up to a 3-fold increase in LDH release; the 1S2 and 2S3 extracts yielded a 2-fold increase while no increase was observed for the smokeless tobacco blend. Tissue integrity was slightly disrupted by TPM exposure, while no impact was observed for the STEs. Oxidative stress as measured by GSH analysis was not apparent for any of the test articles; however, altered inflammatory response was observed by changes in IL-1α and G-CSF cytokine release and modulations in at least one of the following genes, IL-1α, TNFα or COX-2. The test articles also induced increases in cellular stress and senescent metabolism as determined by changes in HO-1, HSP-70, CYP1A1 and CYP1B1. Collectively, the data suggest that the EpiOral™ three-dimensional human cell culture model may be useful in evaluating tobacco extracts.

1892 Assessment of Cardiac Biomarkers in Cynomolgus Macaques.

A number of new cardiac biomarkers have recently been developed for use in rodents; however, there are no validated cardiac biomarkers suitable for use in nonhuman primates (NHP) studies. We have previously reported results of cardiac markers in African green monkeys (AGM) and Rhesus macaques (RM). In the current study we have extended these evaluations to Cynomolgus macaques (CM), the most widely used NHP species for toxicity studies. Two CM/sex were given a single subcutaneous (sc) injection of isoproterenol (IPT; 4 mg/kg); 1 CM/sex received sc saline. Cardiac effects of IPT were observed within 1 hr postdose and included hypotension, ventricular premature complexes, ventricular bigeminy, atrial premature complexes, with or without aberrant conduction and ST segment elevation. Blood samples were collected prestudy and at 1, 4, 24, 48 and 72 hr postdose, and evaluated with MSD MIP-1 muscle injury kits (rat: cTnI, cTnT, FABP3, Myl3, sTnI; human: TNI). IPT produced significant increases in the level of most cardiac biomarkers: cTnI, FABP3, Myl3, sTnI and human cTnI were increased over pre-dose levels by 4.2-, 2.5-, 25-, 28- and 23-fold, respectively, with peak times ranging from 4 to 48 hours. Similar results were seen in females, though rat cTnI was not increased in males, but a 4.9-fold increase was seen in females. At 72 hr postdose, there were still elevations in Myl3 and sTnI. IPT plasma levels at 1 hr postdose were higher in males (708 ng/mL) than in females (324 ng/mL) and fell to 324 and 102 ng/mL at 4 hr in males and females, respectively. Heart histopathology 3 days postdose revealed minimal to moderate cardiac myofiber degeneration, myofiber karyomegaly and leukocyte infiltration in all treated animals. These results indicate that the MSD rat and human muscle injury panel provides excellent sensitivity for assessing cardiac effects in CMs, and these data are consistent with the utility of these kits previously reported in RM and AGM. Work supported by NIAID Contract N01-AL-70043.
Toxicogenomic approaches have identified protein biomarkers of renal cell injury/repair as early predictors of renal toxicity prior to changes in renal histopathology. We used these novel biomarkers to determine if rats orally dosed with industrial chelates exhibited altered urinary biomarker levels that preceded histopathologic changes in kidney. The nephrotoxicant/renal carcinogen, nitrilotriacetic acid (NTA), is known to cause rat proximal tubule cell injury/repair (3–7 weeks) followed by renal tumors (2 years) after oral dosing. A new, readily biodegradable chelate, L-gluconic acid diacetic acid (GLDA), previously which showed no significant microscopic renal changes (90-day, oral), and EDTA, known non-carcinogen (oral bioassay) were also included in our study. Male Wistar rats were gavaged daily (oral, 28 days, 1000 mg/kg/day; n=10/group) with Na+ salts of these chelates. As expected, mean urinary levels of Na+ & Zn2+ were elevated in all chelate-treated groups. Two rats in NTA group were euthanized as moribund on Day 13. The surviving NTA group showed decreases in mean body weights, food and water consumption, and urine Mg2+, and increases in the mean levels of urine Ca2+, total protein, lactate dehydrogenase, kidney injury molecule-1 (Kim-1), Clusterin (CLU) and increased proximal tubule cell proliferation (BrdU). No such changes were seen with GLDA. Kim-1 and CLU are inducible kidney proteins and are approved by FDA as predictive, early and noninvasive urinary biomarkers of kidney cell injury/repair. At necropsy, bilateral kidney enlargement (mean relative kidney weights) was noted with NTA, but not GLDA. In conclusion, our study showed that NTA, but not GLDA or EDTA, caused significant early renal cell toxicity when evaluated with urinary protein biomarkers as early predictors of nephrotoxicity.

Ovariectomy (OVX) in rats is associated with weight gain and loss of bone mass. The increased body weight is in part attributed to increases in growth, consistent with OVX-induced hyperphagia. The objective of this study was to determine the effects of OVX on body composition in aged rats (over 6 months of age) with or without food restriction. PMI Nutrition International diet was used for all animals with animals assigned to the restricted diet groups receiving 21 g/day. Body composition was evaluated at baseline and at 4, 8, 12 and 19/20 weeks post surgery using DXA (Dual Energy X-ray Absorptiometry) and/or pQCT (Peripheral Quantitative Computed Tomography). DXA evaluation showed increases in whole body area and BMC for OVX rats on both restricted and unrestricted diet compared to their corresponding sham controls, with greater increases for animals fed ad libitum. Overall, BMD for OVX groups were comparable to baseline values whereas increases up to 2 and 6% were noted for sham controls respectively on the restricted and fed ad libitum. Significant increases were noted over the study period in muscle mass for rats on restricted diet, with trends for increases in fat mass. For ad libitum fed rats, although an increase in muscle mass was noted 4 weeks following surgery compared to sham controls, muscle mass gradually declined over the remaining study period with lower values 20 weeks post surgery. Fat mass increased for this group. When muscle mass and fat mass values were adjusted for body weight, no significant differences were noted between OVX and sham controls for animals on the restricted diet, indicating that the increased body weight is the result of proportional increases in muscle and fat mass, likely related to the effect of OVX on skeletal growth. For animals fed ad libitum, significant decreases in lean mass with significant increases in fat mass were noted when adjusted for body weight, compared to sham controls, indicating negative effects on soft tissue composition. Data from the restricted diet group suggest that calorie restriction prevents OVX-induced muscle loss and fat gain.
3, 3', 4, 4', 5-Pentachlorobiphenyl (PCB 126) Decreased the Ratios of Epoxide Metabolites to Their Corresponding Diols in Male Rodents.

X. Wu1, J. Yang2, C. Morisseau2, L. W. Robertson1, B. D. Hammock2 and H. Lehmler1, 1Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA; 2Department of Entomology, University of California Davis, Davis, CA.

Oxylipins are oxygenated metabolites of certain fatty acid species. Changes in the homeostasis of these regulatory lipid mediators are of interest as markers of exposure to certain toxicants, including the aryl hydrocarbon receptor agonist 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB 126). Here we test the hypothesis that chronic exposure to PCB 126 alters the levels of regulatory lipid mediators (oxylipins) in rats. Male Sprague-Dawley rats (5 weeks old) were treated biweekly with injections of PCB 126 in corn oil over a period of 3 months, representing cumulative PCB doses of 0, 0.06, 0.3, and 1.2 μg/kg body weight. PCB 126 treatment caused a dose-dependent reduction in growth and relative thymus weight, while relative liver weight was increased with PCB dose. PCB 126 levels in the liver increased in a dose-dependent manner, while PCB 126 levels in plasma were below the detection limit. The ratios of epoxide/diol metabolites displayed a dose-dependent decrease in plasma for oxylipins derived from arachidonic acid (ARA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and linoleic acid (LA), as determined by metabolomics profiling of oxylipins with liquid chromatography-tandem mass spectrometry. Similarly, the epoxide/diol ratios for ARA and DHA derived oxylipins decreased in a dose-dependent manner in the liver. The effects of PCB treatment on epoxide/diol ratios were associated with significantly increased activities of soluble epoxide hydrolase (sEH) and p450 in cytosol and peroxisomes in liver at the highest PCB 126 dose. Since increased sEH activity and decreased epoxide/diol metabolites ratios have been linked to cardiovascular disease and inflammation, our results suggest that changes in oxylipin plasma levels may be useful biomarkers of human exposure to PCB 126 and other dioxin-like compounds [supported by NIH grants E504699 and E5013661].

Identification of Neural Biomarkers of Altered Sexual Differentiation following Gestational Exposure.

G. W. Louis1, 2, D. R. Hallinger1 and T. E. Snook1, 1Endocrine Toxicology Branch, Toxicity Assessment Division, US EPA, Research Triangle Park, NC; 2ORISE Program, Department of Energy, Oak Ridge, TN.

Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) during early-life alters sexual maturation of the rat hypothalamic-pituitary-gonadal axis and subsequently, the timing of puberty and adult reproductive behavior. We set out to identify predictive neuronal biomarkers for use in evaluating the effect of EDCs on sexual differentiation in the male and female. We examined changes in gene expression in the rat hypothalamus [specifically, in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC)] after in utero exposure to the aromatase inhibitor, letrozole. Pregnant dams were gavaged with vehicle or letrozole (0.1mg/kg) on gestational days 20 and 21. The AVPV and ARC were microdissected from male and female offspring on several pre-, peri-, and post-pubertal postnatal days (PND) and were evaluated for changes in expression of a number of neuropeptides that have sex specific patterns of expression, including kisspeptin (Kp) and tachykinin-2 (Tac2). We identified an increase with age in the expression of Kp in the male AVPV of the letrozole-exposed genetic male was increased to the same level observed in the AVPV of the genetic female, but not the genetic male. Kp expression in the male ARC was not altered by letrozole. ARC Tac2 expression in the male was also not changed by letrozole. This work will provide optimal time points for these measures, but additional studies are needed to determine whether these, and other CNS biomarkers, are predictive of altered puberty and/or sexual behavior due to early-life EDC exposure. This abstract does not necessarily reflect EPA policy.
same hand and between washed and non-washed fingernails. It was found that a non-
significant correlation between BLL and washed vs. non-washed thumb fingernail lead (r=0.219, p=0.112) and between BLL and thumb nails lead (r=0.182, p=0.191). Comparing
fingernails from the same hand (thumb and forefinger), lead concentrations of non-
washed nails varied largely, even when transversal fragments from the same nail were
analyzed. Lead concentrations in non-washed forefingers nails were not found to be correlated with the washed thumb nails (r=0.169, p=0.185). On the other hand, for washed nails, thumb and forefinger nails were found to be correlated (r=0.39, p=0.003). In conclusion, the results showed that non-washed nails are not a reliable biomarker for lead exposure. However, although washing up the nails may diminish the lead external contamination, the correlation between fingers is still weak to consider fingernail as a biomarker to lead exposure. In addition, even the washed nails were not found to be significantly correlated to BLL.

1902 Detecting and Quantifying Endogenous and Exogenous Formaldehyde Adducted Hemoglobin Utilizing Selected Reaction Monitoring.

G. L. Andrews Kingon1, B. C. Moeller2 and I. A. Swenberger1, 2. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC.

Widely recognized as a highly toxic compound, formaldehyde (FA) is considered to be a known animal and human carcinogen. It is ubiquitously present through normal cellular metabolism as well as from environmental pollutants. This compound is highly reactive towards macromolecules, forming diverse protein adducts and DNA damage that can be employed as biomarkers of chemical exposures. In particular, hemoglobin and red blood cells (RBCs) exposed to FA have been shown in laboratory studies to form an imidazolidone-type structure on the N-terminal peptides of hemoglobin alpha and beta chains. This data and the long lifetime of hemoglobin in RBCs (63 days in rats and 120 days in humans) afford investigation of the formation of endogenous and exogenous FA-hemoglobin adducts and the accumulation and loss of adducts. Monitoring this biomarker may reveal if inhaled FA enters the systemic circulation and reaches distant sites. In order to differentiate the origin of FA (endogenous versus exogenous), 10 ppm [14C]-FA rat inhalation exposures of 6 hours/day for 1 or 5 days were performed and globin was isolated from the washed RBCs. Stable isotope labeled peptides were further purified and the alpha and beta chains of hemoglobin were synthesized and purified then reacted with FA to achieve the imidazolidone modification. These internal standards were then spiked into the globin samples prior to trypsinization and off-line fractionation. Utilizing protein cleavage isotope dilution mass spectrometry and selected reaction monitoring, methods were developed for quantification of the N-terminal valine FA-hemoglobin adduct peptides. In vitro reactions of RBCs and FA are ongoing to determine penetration of the chemical into the RBCs and biomarker stability following exposure. Additional globin samples from exposed and control rats and nonhuman primates have been collected and analyses are in progress.

1903 Assessment of the Relative Performance of Ten Urinary Biomarkers for Renal Safety across Twenty-Two Rat Toxicology Studies.

Novel kidney injury markers have been recently identified which may outperform or add value to the conventional kidney injury biomarkers blood urea nitrogen (BUN) and serum creatinine. To assess the relative performance of the growing list of these novel biomarkers, a comprehensive evaluation was conducted for 10 urinary biomarkers in 22 rat studies including both kidney toxicants and compounds with toxicities observed only in other organs. Furthermore, these kidney toxicity studies included proximal tubule toxicants as well as glomerular toxicants. The ten urinary biomarkers evaluated included Kim-1, Clusterin, Osteopontin, Osteocalcin, Albumin, Lipocarnin-2, GST-alpha, β2-Microglobulin, Cystatin C, and Retinol Binding Protein 4 using novel immuno-based assays developed on the Mesoscale platform. Receiver operator characteristic (ROC) curves were employed as the main criteria to compare the performance of this panel of biomarkers in individual study animals against the microscopic histomorphologic changes observed. Of the kidney toxicity studies analyzed, Kim-1, Clusterin, and Albumin showed the highest overall sensitivity for detecting tubular injury, while Albumin exceeded all other markers in detecting glomerular injury. The data presented here represents a comprehensive parallel analysis of the performance of leading renal biomarker candidates, and further demonstrates that this multiplexed approach enhances the ability to monitor drug-induced renal injuries as well as provide insight to linkages between individual biomarkers and specific histopathologic processes.

1904 Drug-Induced Kidney Injury Urinary Biomarker Response in Rats after Treatment with Nonnephrotoxicants.

Drug induced kidney injury (DIKI) biomarkers are important tools with which to monitor and diagnose acute and chronic kidney injury. Qualification of the biomarkers for use in nonclinical studies requires an understanding of the DIKI biomarker profile after treatment with nephrotoxicants and nonnephrotoxicants to fully understand the potential for false positives in future studies. Renally-acting pharmacotherapies were used in this study to investigate the renal biomarker profile of non-nephrotoxic drugs. Diuretic drugs were chosen to target specific nephron segments including furosemide (Loop of Henle), hydrochlorothiazide (distal tubule), spironolactone (collecting duct), and erythritol (pan-nephron). Male and female Han-Wistar rats (n=10) were treated orally for 14 days and biomarker excretion was measured on days 6, 10, 15, and 22 (except for erythritol where days 8, 10, and 15). Data were normalized to urine creatinine and then to control levels. There were no significant differences between controls and treated rats in excretion of any of the eight biomarkers assessed including: alpha-glutathione-s-transferase (αGST), mu-GST, renal papillary antigen-1 (RPA-1), clusterin, albumin, lipocarnin-2, osteopontin and kidney injury molecule-1 (KIM-1). Osteopontin excretion in female rats and clusterin excretion in male rats were the most variable with up to 19.1 and 9.9 fold differences from controls, respectively, despite mean values being roughly equivalent to vehicle controls. The results from this study indicate that diuretic treatment affecting different portions of the nephron does not result in increased biomarker signal. As such, the likelihood of obtaining false positive results due to physiological differences in animals in nonclinical safety screening studies is minimal.

1905 Urinary Biomarker Response to Hepsera-Induced Kidney Toxicity in Rats.

Y. Yang, S. Morgan, C. Thompson, D. Desmond, D. Zhao, R. Yeager and E. Blomme. Abbott Laboratories, Abbott Park, IL.

Hepsera (adefovir dipivoxil) is an acyclic nucleoside phosphonate analog approved for treatment of hepatitis B infection. It is associated with renal tubular toxicity in rats and monkey, and has dose-limiting nephrotoxicity in the clinic. The purpose of this study was to evaluate urinary biomarker response for Hepsera-induced kidney toxicity in rats. Male Sprague-Dawley rats were first administered Hepsera at 20, 40 and 60 mg/kg/day orally for 14 days. Minimal to mild tubular degeneration was observed at 20 mg/kg/day with increased severity at 40 and 60 mg/kg/day. There were no changes in BUN or serum creatinine. In contrast, urinary biomarkers (KIM1, albumin, NAGL, and osteopontin) were dose-dependently elevated. To further investigate the time-course of the biomarker changes, male and female rats were treated with 20 mg/kg/day Hepsera for 1, 2, 4 weeks with 4 weeks of recovery. Tubular degeneration was observed with males more affected than females. This was first observed on Day 8 (minimal) and increased in incidence and severity with longer duration of dosing. Renal histopathology was still present at the end of recovery in males. There were no changes in BUN, while serum creatinine was slightly increased in males on Days 16 and 29. In males urinary KIM1, beta2-microglobulin (B2M), albumin, and NGAL were increased (2.5-37 fold) on Days 16 and 29. NGAL and B2M levels were still elevated after 29 days of recovery in contrast to KIM1 and albumin levels. Similar changes were observed in females on Day 29, but not on Days 8, 16 or recovery Day 29. These results indicate that urinary biomarkers can be more sensitive for Hepsera-induced kidney toxicity than BUN and serum creatinine.

1906 Novel Noninvasive Biomarker of Irradiation-Induced Gastro-Intestinal Injury.

A. Banercic1, N. Sieracki2, A. Zakharov2, M. Bonini3 and A. Lyubimov1, 1Toxicology Research Laboratory, UIC, Chicago, IL; 2Pharmacology, UIC, Chicago, IL.

A non-invasive early marker of radiation induced gastro-intestinal (GI) injury continues to be in high demand. Hence, our aim was to develop a novel fecal biomarker of GI damage in mice models which can be further extrapolated for use in non-human primates as well as in humans. A Reactive Nitrogen Species (RNS)-detector compound NMAA-1 was established as a novel GI irritation/oxidative stress biomarker in an irradiated mouse model. NMAA-1 is a small molecule, which upon reaction with peroxynitrite (ONOO−) produces cleaved NMAA-1. The ability of NMAA-1 to detect ONOO− selectively and in a concentration-dependent manner in aqueous solution and in living cells is known. We explored this selectivity in the quantification of NMAA-1 and cleaved NMAA-1 in feces of mice with irradiation-induced GI damage. C57Bl/6 mice were irradiated at a high lethal dose of
13 Gy or at a LD50/10 of 8.1 Gy in two independent experiments using a Cs137 source. NMAA-1 was administered at 40-60 μM per mg oral gavage without any signs of toxicity. Fecal samples were collected from the irradiated and non-irradiated control mice at different time points (pre-dose, 4, 6 and 8 hr post dose) prior to irradiation and also on days 1, 5 and 7 post irradiation from all animals. NMAA-1 and cleaved NMAA-1 levels were measured in the feces using LC-MS/MS method. Up to a three-fold increase in the level of the marker was noted in the fecal samples collected between days 5 to 7 in mice irradiated at 13 Gy as compared to the control levels with C0.01 at about 6 hr post dose. In case of 8.1 Gy irradiation, two-fold or more increase in NMAA-1 and % cleaved NMAA-1 levels was seen in the feces until day 7. It was also observed that post irradiation the appearance of the fecal marker was moved to later time points probably due to decreased GI motility. NMAA-1 has proven to be very distinctive in its role as an indicative marker of GI damage due to radiation-induced toxicity. This promises to be an extremely important diagnostic tool for such condition and further optimization is ongoing.

1907 Exploring Challenges in Reconstructing Doses or Estimating Blood Concentrations from Urinary Biomarker Data Using a Pharmacokinetic Model for Perchlorate.

Many human biomarkers of current-use environmental chemicals are measured in urine. While urinary biomarkers are easier to collect than others (e.g., blood markers), reconstructing doses from urinary biomarkers is challenging. In many cases there exists a complicated relationship between dose and biomarker, for example, when a common biomarker for several chemicals exists and the concentration/relative proportion of the exposures from the environment are unknown. Even when there is a simple dose-biomarker relationship, many factors can impact the inter-pretability of urinary biomarker data, including urine volume, time between voids, and time between dose(s) and sample collection. In this study, a physiologically based pharmacokinetic (PBPK) model of perchlorate was used to examine how these various factors impact our ability to reconstruct doses from urinary biomarkers. The selection of perchlorate was based on its simple dose-biomarker relationship: 100% oral bioavailability and 100% excretion of the parent compound in urine. First, synthetic exposure profiles (varying daily intake doses, time of exposure, etc.) were generated and used as inputs to the PBPK model for simulating three biomarker sampling protocols: random spot voids, first voids, and 24 h cumulative samples. The strongest correlations were observed between the 24 h cumulative concentrations and average daily intake. Additional considerations for the impacts of changing urine volume, time between voids, and time between exposure and sample collection showed that random spot urine samples were highly sensitive to all three factors whereas 24 h cumulative samples were less sensitive.

[This abstract has been cleared by the EPA but solely expresses the view of the authors]

1908 Fecal and Blood Biomarkers for Gastrointestinal Injury and Subsequent Recovery.

A. Lyubimov1, Y. Chen2, J. Anwer2, A. Zakharov2 and A. Banerjee1.1 Toxicology Research Laboratory, UIC, Chicago, IL; 2Center for Biomedical Testing, Chicago, IL.

The search for reliable, non-invasive biomarkers of gastro-intestinal (GI) injury/recovery is ongoing but so far no biomarkers as reliable as histopathology have been identified in animal models. Our aim was to establish such biomarkers in non-human primates (NHPs). Previously we established ELISA and MSD methods for lactoferrin and calprotectin measurements in NHPs feces. These methods are currently being improved by multiplexing on one MSD platform. Two new markers including intestinal and liver fatty acid binding protein (I-FABP) and L-FABP were established as markers of intestinal epithelial integrity. These are released rapidly from GI enterocytes into the blood after cellular damage. I-FABP was assayed on a MSD platform using a specific antibody (LLOD=5.95 pg/mL), whereas L-FABP was analyzed using ELISA (LLOD=102 pg/mL). Our MSD method for I-FABP has about 10 times lower LLOQ (9.7 pg/mL) as compared to its ELISA method (94 pg/mL). Normal ranges in NHPs plasma were established and found to be above the LLOQ for both methods. These biomarkers proved to be helpful for assessment of drug therapeutic effect and potentially survival prognosis after irradiation GI damage. Additionally an LC-MS/MS method was established to estimate the systemic circuline levels as a marker of GI injury. Circuline is an amino acid released in circulation predominantly by the intestine enterocytes and is considered a marker of intestinal integrity. The LC-MS/MS method works in the dynamic range of 125-125000 ng/mL (~0.7-700 μM) of circuline concentration in plasma. The L-FABP and I-FABP changes correlated well with the circuline levels as well as histopathology findings based on the analysis of the samples obtained from a NHP irradiation study. Further optimization of the MSD, ELISA and LC-MS/MS methods are being undertaken to provide more sensitive assays from smaller sample volume (including dried blood spot measurements) for these fecal and/or circulating biomarkers of gastro-intestinal inflammation, injury, and recovery.

1909 Clearance Rates of Organophosphate Metabolites in an Occupationally-Exposed Cohort of Farmworkers.

W. C. Griffith1, Z. N. Guerrette2, B. Thompson3, G. D. Coronado4, D. B. Bar1, E. M. Vigoren1 and C. Phillips1. 1Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA; 2Fred Hutchinson Cancer Research Center, Seattle, WA; 3Rollins School of Public Health, Emory University, Atlanta, GA.

Our studies in the Yakima valley of Washington state follow a cohort of 99 farm workers (orchard workers) and 95 non-farmworkers to investigate potential exposures to organophosphate pesticides (OPs) by assaying urine samples for the di-alkyl non-specific metabolites of OPs. Urine samples were collected April-June 2005 on three dates spaced two days apart when OP pesticides were being applied and workers were in the orchards. The most commonly used OP in this time period was azinphos-methyl and one of its metabolites, DMTP, had the highest concentration in urine compared to other metabolites of OPs for both farm workers and non-farm workers. We used a Bayesian Markov chain Monte Carlo method to estimate the joint distribution of the metabolites and clearance rates in a mixed effects model. The farmworker levels of DMTP were 19 times non-farmworkers. The clearance half-life of DMTP had a geometric mean (95% confidence interval) of 3.6 (2.5,6.0) days across all of the farmworkers (fixed effects), whereas non-farm workers showed no clearance. The half-lives for individual farmworkers (random effects) varied between 1.5 days and no clearance. The shorter half-lives occurred in farmworkers who had higher first day concentrations of DMTP and farmwork ers with no clearance with those who had lower first day concentrations. These results are consistent with a continuing variable level of occupational exposure of the farm workers but some of the farmworkers having a higher exposure before our collection of urine. The pattern in the non-farmworkers is consistent with exposures to metabolites of OPs through diet and other routes of non-occupational exposure. Similar results were also found for DMP (Supported by grants P01 ES09061, P30 ES007033 from NIEHS and RD-834514, RD-831709, RD-832733 from US EPA. Contents are authors’ responsibility.)

1910 Assessment of MMP-3 and MMP-9 As Preclinical Biomarkers of Drug-Induced Vascular Injury.

Drug-induced vascular injury (DIVI) continues to be a major obstacle in drug development. Attempts to correlate this observation in preclinical toxicity studies with hemodynamic changes are not always successful. Additionally, no accessible and specific biomarkers of DIVI exist, making risk assessment and monitoring in humans a challenge during drug development and regulatory approval. It has been previously reported that circulating levels of matrix metalloproteinases (MMPs), specifically MMP-3 and MMP-9, were able to distinguish between patients with active antineutrophilic cytoplasmic antibody (ANCA)-associated vasculitis (AAV) and remission. In order to determine whether MMPs are involved in the arterial pathology associated with DIVI observed in animal toxicology studies, a fluorescent imaging probe, MMPSenseTM, was used to measure activity of MMPs along with a fluorescent blood pooling agent, AngioSenseTM, ex-vivo in the mesenteric arteries of rats following administration of fenoldopam. Increased fluorescence in the mesenteric arteries from both imaging probes correlated well with vascular injury, as determined histologically, and was in agreement with increases in both MMP-3 and -9 expression in the affected arteries using immunohistochemical staining. To assess whether changes to circulating levels of MMP-3 and -9 respond to incidence and severity of DIVI, we compared their levels in plasma from several models of DIVI in rat, dog and monkey. Circulating levels of MMP-3 appear to correlate well with DIVI and the response is conserved across our pre-clinical species. In summary, MMPs appear to have a role in the arterial pathology associated with DIVI seen in animal toxicology studies, which is reflected in circulating levels of MMP-3 in pre-clinical species, and provide a potential accessible biomarker to monitor for DIVI in animals and in the clinic.
Molecular, Cellular, and Histological Changes in Mice Living on Sand Contaminated with Coal Dust under Laboratory Conditions.

Coal mining is one of the most important economical activities in Colombia. However, few data have been gathered concerning the impact of these activities on human and ecosystem health. During coal mining and transport, different types of dust material are formed. The aim of this work was to evaluate the toxic effects associated with the exposure to total suspended particle matter fraction of coal dust (<38 μm), from a sample collected in the Loma mine, Cesar, Colombia. Washed and sterilized sand was contaminated with coal dust to obtain concentrations ranging from zero (control) to 4%. Six different mice per group were allowed to live in boxes with this bed for eight weeks with ab libitum water and food. At the end of the experiment, animals were euthanized and blood and tissues collected. Mice in contact with coal dust did not evidence significant weight or hepatosomatic changes compared to control. However, animals in the 4% coal dust group grew faster. Real Time PCR analysis revealed an increase in Cyp1A1 mRNA for animals living on sand with concentrations greater than 2% coal dust. Unexpectedly, for mice on polluted sand, SOD and MT1 hepatic mRNA were downregulated, and no changes were observed on Myc expression. The results of comet assay in peripheral blood cells, and the micronucleus test in blood smears revealed significant potential genotoxic damage at the greatest tested coal dust level. Histopathological analysis showed a dose-response relationship for the presence of hepatic necrosis, steatosis, vacuolization and nuclei enlargements in exposed animals. These results suggest that soil contaminated with coal dust induces several molecular, cellular and histopathological changes in mice. Accordingly, it is necessary to revise the current legislation on mining practices in Colombia in order to prevent health problems derived from these particles. Vice-Rectory for Research. UniCartagena. 2011-2012. Colciencias-UniCartagena, Colombia. Grant 110749326186 (2009).

Advancing Adoption of Novel Safety Biomarkers into Drug Development through Voluntary Submission of Data at US FDA, EMA, and PMDA.

E. G. Walker, M. Brumfield and E. H. Dennis, Critical Path Institute, Tucson, AZ.

Regulatory science, the science of developing new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of regulated medical products, has advanced over time due to a number of factors. However, many safety biomarkers used in nonclinical and clinical safety assessment in drug development have not changed in decades. Recently established channels for FDA, EMA, and PMDA to receive and evaluate scientific data supporting novel tools for use in drug development are now better defined in guidances, e.g. FDA’s Draft Guidance for Industry “Drug Development Tool Qualification” and EMA’s “Evaluation of novel methodologies for use in drug development.” The outcome of a qualification submission to one of these regulatory agencies is a formal opinion regarding the utility of a novel drug development tool (DDT) for a particular and well-circumscribed application in the drug development process, defined within a “context of use.” While recognizing that other mechanisms exist within the research community for driving scientific consensus on novel biomarkers, this study focuses on the formal regulatory qualification process. This study compares the procedure, volume and types of submissions, and proposes a framework for assessing success at FDA, EMA, and PMDA. Safety biomarkers comprise over half of the sixteen unique biomarkers qualified thus far, and are highlighted. Qualification of new safety biomarkers by regulatory agencies and subsequent adoption by drug developers is anticipated to speed therapeutic development for patients in need, build scientific consensus as to the usefulness and readiness of novel tools for understanding disease and therapeutic development, and decrease uncertainty between the regulators and sponsors regarding their appropriate application.

Evaluation of Iodide Deficiency in the Lactating Rat and Pup Using a Biologically-Based Dose Response (BBDR) Model.

J. W. Fisher1, S. Li1, K. Crofton1, R. Zoeller1, E. D. McLanahan1, A. Lumen1 and M. E. Gilbert2, 1FDA/NCTR, Jefferson, AR; 2Georgia Health Sciences University, Augusta, GA; 3EPA/ORD, Research Triangle Park, NC; 4University of Massachusetts, Amherst, MA.

A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (HPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the HPT axis. Model calibrations, carried out by adjusting key model parameters, were used as a technique to evaluate HPT axis adaptations to dietary iodide intake in euthyroid (4.1 -39 μg iodide/d) and iodide deficient (0.31 and 1.2 μg iodide/d) conditions. Iodide deficient conditions in both the dam and pup were described with increased blood flow to the thyroid gland, TSH-mediated increase in thyroidal uptake of iodide and binding of iodide in the thyroid gland (organification), and in general, reduced thyroid hormone production and metabolism. Alterations in thyroxine (T4) homeostasis were more apparent than for triiodothyronine (T3). Model predicted average daily area-under-the-serum-concentration-curve (AUC, nM*day) values for T4 at steady-state in the dam and pup decreased by 14-15% for the 1.2 μg iodide/d; iodide deficient diet and 42 to 52% for the 0.31 μg iodide/d iodide deficient diet. In rat pups that were iodide deficient during gestation and lactation, these decreases in serum T4 levels were associated with synaptic response suppression in the hippocampal region of the brain, while other measures of neurotoxicity were unaltered.

Growth Hormone and IGF-1 Measurements in Beagle Dogs by ELISA: Assay Implementation and Variations in Baseline Levels.

Scope:

Measurements of GH and IGF-1 in Beagle dogs are complicated by several technical and biological issues. In this poster, we present data from ELISA methods that were specially adapted and qualified at our facility for the quantification of GH & IGF-1 in canine serum. During assay implementation and routine use, several observations have been made with these hormone baseline levels and some biological & technical parameters.

Experimental Procedures & Results:

Beagle dog serum was obtained from males and females, originating from two different breeders; Marshall and Covance. Samples were tested from dogs housed at three different preclinical testing facilities: ITR Laboratories Canada Inc. (“ITR”) and two other undisclosed facilities (“Lab B” & “Lab C”). A commercial GH ELISA kit designed for rat/mouse GH and another commercial human IGF-1 kit were adapted for use with dog serum samples. Typical basal GH levels in Beagle dogs vary from < 6.25 to 40 ng/mL. No significant differences were observed in the GH basal level between different genders, breeding source or test facility. However, GH levels generally increased with higher body weight and age. GH varied between individuals of the same study. Typical basal IGF-1 levels in Beagle dogs varied greatly, from < 42 to 150 ng/mL (ex. from Marshall-bred dogs housed at ITR), while the normal range increase to 150-500 ng/mL with Covance-bred dogs housed at “Lab C”. Age and body weight only had minor impact on the IGF-1 basal levels, while a gender difference was only seen within the Covance-bred dogs housed at “Lab C”.

Conclusions:

The GH/IGF-1 data gathered internally from several preclinical studies with Beagle dogs of various origins have shown that basal IGF-1 levels can vary significantly depending on the dog breeding source and housing facility, in addition to age and body weight. It was also found that due to the natural cyclic activity of GH, multiple pre-dose samplings are useful, with the last pre-dose sample being ideally taken as close as possible to dosing with the test item.

An Animal Model of Marginal Iodine Deficiency during Development: The Thyroid Axis and Neurodevelopmental Outcome.

M. E. Gilbert1, J. M. Hedge1, L. Valentin-Blasini2, B. C. Blount2, K. Kannan3, J. Tietge4, R. Zoeller5, K. Crofton5, J. Jarrett6 and J. W. Fisher6, 1US EPA, Research Triangle Park, NC; 2CDC, Atlanta, GA; 3SUNY; Albany, NY; 4US EPA, Duluth, MN; 5University of Massachusetts, Amherst, MA; 6FDA, Jefferson, AR.

Thyroid hormones (TH) are essential for brain development and iodine is required for TH synthesis. Environmental chemicals that perturb the thyroid axis result in abnormal neurodevelopment and neurological function. Iodine deficiency is one of the most common nutritional deficiencies and is associated with low birth weight and neurodevelopmental impairments. THs are known to have specific functions in the developing brain. Alterations in TH production and metabolism can result in treatment-resistant, severe neurodevelopmental impairments. Recent evidence suggests that experimental models used to assess the effects of iodine deficiency on TH production, metabolism, and the central nervous system are not adequate to fully mimic the spectrum of human neuromotor impairments associated with iodine deficiency. Model predictions can be improved by adapting parameters to account for differences in HPT regulation and neurodevelopmental responses. In order to better predict the dosages that result in different neuromotor impairments, we have used a biologically-based dose response (BBDR) model to evaluate the effects of dietary iodine on the hypothalamic-pituitary thyroid (HPT) axis in the lactating rat and nursing pup. Model calibrations, carried out by adjusting key model parameters, were used as a technique to evaluate HPT axis adaptations to dietary iodide intake in euthyroid and iodide deficient (0.31 and 1.2 μg iodide/d) conditions. Iodide deficient conditions in both the dam and pup were described with increased blood flow to the thyroid gland, TSH-mediated increase in thyroidal uptake of iodide and binding of iodide in the thyroid gland (organification), and in general, reduced thyroid hormone production and metabolism. Alterations in thyroxine (T4) homeostasis were more apparent than for triiodothyronine (T3). Model predicted average daily area-under-the-serum-concentration-curve (AUC, nM*day) values for T4 at steady-state in the dam and pup decreased by 14-15% for the 1.2 μg iodide/d iodide deficient diet and 42 to 52% for the 0.31 μg iodide/d iodide deficient diet. In rat pups that were iodide deficient during gestation and lactation, these decreases in serum T4 levels were associated with synaptic response suppression in the hippocampal region of the brain, while other measures of neurotoxicity were unaltered.
Female Long Evans rats were maintained on these diets beginning 7 wk prior to breeding until the end of lactation. Dams were sacrificed on gestational days 16 and 20, or when pups were weaned on postnatal day (PN)21. Fetal tissue was harvested with sacrifice of the dams, pups were sacrificed on PN14 and PN21. Blood, thyroid gland, and brain were analyzed for iodine, TH, TH precursors and metabolites. Serum and thyroid gland iodine and TH were reduced in the two most deficient diets. T4 was reduced in the fetal brain but was not altered in the neonate. Cognitive function, assessed by acoustic startle, water maze learning and fear conditioning, was unchanged in adult offspring, but excitatory synaptic transmission was impaired in the dentate gyrus by the two most deficient diets. A 15% reduction in cortical T4 in the fetal brain was sufficient to induce permanent reductions in synaptic function in the adult. These findings have implications for regulation of TH-disrupting chemicals, and suggest that standard behavioral assays do not readily detect neurotoxicity induced by modest developmental TH disruption. (Does not reflect EPA or CDC policy).

Perfluorooctane sulfonate (PFOS) is considered such as an endocrine disruptor. This study was designed to evaluate the possible alterations induced by PFOS on the hypothalamic-pituitary-testicular axis activity. For this purpose, male Sprague-Dawley rats were orally treated for 28 days with PFOS, at the doses of 0.5, 1.0, 3.0 and 6.0 mg/kg/day. Control rats received 0.5% Tween-20 vehicle. Twenty four hours after the last dose of PFOS, rats were killed by decapitation and the hypothalamus was removed in order to determine both neuropeptide Y (NPY) and gonadotropin-releasing hormone (GnRH) concentration by specific enzyme-linked immunosorbent (ELISA) assays. Serum luteinizing hormone (LH), follicle stimulating hormone (FSH) and testosterone levels were measured by specific commercial kits. In addition, the relative gene expression of NPY and GnRH in hypothalamus of GnRH receptor in pituitary and of LH receptor and FSH receptor in testis was determined by quantitative real time PCR. Serum LH and testosterone levels and relative gene expression of GnRH and of FSH receptor were decreased in rats treated with PFOS. Serum FSH concentration and relative gene expression of LH receptor in testis were increased in these same animals. Hypothalamic expression of NPY and of GnRH was decreased with the doses of 1.0 and 3.0 mg/Kg/day, but GnRH levels were increased with the dose of 6.0mg/Kg/day. Relative gene expression of NPY was diminished with the dose of 0.5mg/Kg/day, but it was increased with the dose of 6.0mg/Kg/day. Finally, relative gene expression of GnRH receptor was not modified in pituitary by PFOS. The obtained results suggest that PFOS exposure can modify the hypothalamic-pituitary-testicular axis activity at several levels, and these alterations seem to be dependent of the administered dose. This work was supported by a grant from the Ministry of Education and Science, Spain (AGL2009-09061).

The aryl hydrocarbon receptor (AhR) is a ligand activated transcription factor historically known for its role in the adaptive metabolism of xenobiotics. However, generation of the AhR knockout mouse (AhR-KO) has provided evidence of physiological roles for the AhR. To study the physiological role of AhR in the liver, AhR conditional knockout (AhR-CKO) mice were utilized by crossing AhR fx/fx (control) mice with mice that express Cre recombinase under the control of the albumin promoter, resulting in loss of AhR expression specifically in the liver parenchyma. Our experiments indicate a novel sex dependent phenotype wherein, AhR-CKO females exhibited reduction in body weight, loss of adipose tissue and increased basal glucose levels (218 ± 19.73 mg/dl). Therefore, our goal is to characterize the AhR-CKO mouse phenotype and identify potential AhR-dependent mechanisms responsible for lipodystrophy and abnormal glucose homeostasis. AhR-CKO and control mice were subjected to glucose and insulin tolerance tests. Our data suggests decreased glucose tolerance and increased insulin sensitivity in AhR-CKO females compared to their controls. Plasma analyses also suggest alterations in leptin (control 3.227 ± 0.27 vs CKO 1.028 ± 0.129), FFA (control 0.363 ± 0.026 vs CKO 0.594 ± 0.02) and insulin levels (control 0.495 ± 0.008 vs CKO 0.253 ± 0.004). Immuno-Histochemical staining for insulin revealed reduced insulin content and smaller pancreatic islets in AhR-CKO mice. We also conducted histopathological analysis using Oil red O staining, which revealed decreased lipid content in AhR-CKO mice livers compared to controls. Our experiments strongly suggest that AhR activity in the liver communicates with extra-hepatic tissues and alters their function. AhR-CKO mice may offer an elegant model to study the link between endogenous AhR activity in the liver and clinically relevant metabolic disorders such as diabetes, lipodystrophy and obesity.
1920 Endocrine Modulatory Effects of Cadmium and Activation of MAPK Signaling.

1Department of Medicine, Uppsala, Sweden; 2Uppsala University, Uppsala, Sweden; 3Department of Obstetrics and Gynecology, Uppsala University, Uppsala, Sweden; 4Department of Environmental Science, Acute and Internal Medicine, Uppsala University, Uppsala, Sweden; 5Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland.

Research on endocrine modulatory effects of Cadmium (Cd) started over a decade ago, when this metalloid estrogen was found to interact with the estrogen signaling pathway. Since then, several independent in vitro as well as in vivo reports have emerged on this topic. Our objective has been to characterize the details of molecular mechanisms of action for the endocrine modulatory effects of Cd. We applied a combined in vivo and in vitro approach by using transgenic ERE-luc reporter mice model as well as hepG2, MCF-7 and ECC-1 cell lines. After 3-days s.c. exposure to CdCl2, we did not detect reporter gene activation in the dose range 5-500 μg/kg bw and 0.5-500 μg/kg bw in female and male mice respectively. Nevertheless, we observed significant thickening of the uterine epithelium in the absence of uterine weight increase in females, and detected activation of Raf, Erk1/2 MAPK in the liver of both genders in low dose groups. Further, in our in vitro settings, low doses of CdCl2 (1nM-100nM) also activated Raf, Erk1/2 MAPK and this effect disappeared with the inhibition of GPR30 and EGFR receptors. Our data shows that the molecular markers that are modulated by Cd differ depending on the exposure level, i.e. low doses relevant to human exposure via diet stimulate cytoplasmic kinases, while higher doses induce cellular stress responses. We conclude that CdCl2 affects cellular signaling pathways that can produce physiological effects reminiscent of bonafide estrogen stimulation. However, CdCl2 does not activate canonical estrogen signaling.

1921 Bisphenol A (BPA) Levels Were Associated with Increased Estrogen.

1Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden; 2Department of Women’s and Children’s Health, Section for Obstetrics and Gynecology, Uppsala University, Uppsala, Sweden; 3Analytical Chemistry/Department of Physical and Analytical Chemistry, Uppsala University, Uppsala, Sweden; 4ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT; 5Department of Medical Sciences, Acute and Internal Medicine, Uppsala University, Uppsala, Sweden.

BACKGROUND: The plastic associated compound bisphenol A (BPA) is a known estrogen-receptor agonist. Since background exposure to BPA could be detected in most individuals, we explored the relationships between BPA levels in serum and levels of endogenous sex hormones and their precursors in a population-based sample.

METHODS: 1,016 subjects all aged 70 years were investigated in the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. BPA was measured in serum at ALS Canada using an API 4000 liquid chromatograph/tandem mass spectrometry.

RESULTS: Increased levels of BPA were associated with increased estrogen-receptor agonist. Since background exposure to BPA could be detected in most individuals, we explored the relationships between BPA levels in serum and levels of endogenous sex hormones and their precursors in a population-based sample. BPA levels were also related to levels of the precursors pregnenolone and 17-OH pregnenolone (p<0.05) and estimated aromatase activity (p<0.05), indicating an increased formation of estrogens from androgen precursors. In women, only weaker relationship compared with E1 was found (p<0.05).

CONCLUSION: increased levels of BPA were associated with increased estrogen levels in elderly males, indicating endocrine disrupting activity in the elderly.

1922 A Comparison of RIA and LC-MS/MS Methods to Quantify Steroids in Rat Serum and Urine following Exposure to an Endocrine Disrupting Chemical.

B. W. Röffer1,2, S. C. Lains3 and W. M. Henderson3.

Commercially available radioimmunoassays (RIA) are frequently used in toxicological studies to evaluate effects of endocrine disrupting chemicals (EDCs) on steroidogenesis in rats. Currently there is no outright competing steroid concentrations in rats as measured by RIAs to those obtained using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). This study evaluates the concordance of serum and urine steroid concentrations as quantified by both RIA and LC-MS/MS following exposure to a known EDC, atrazine (ATR). Adult male rats were dosed with ATR (200 mg/kg/d) or methylcellulose (solvent control) by oral gavage for 5 days. Animals were decapitated 2 hours after the final dose. Serum was collected and separated into 2 aliquots for analysis. Serum was assayed by RIA for androstenedione (A), corticosterone (CORT), estradiol (E2), estrone (E1), progesterone (P4), and testosterone (T). Serum was extracted via solid phase extraction prior to LC-MS/MS analysis with positive electrospray ionization in multiple-reaction monitoring mode for A, CORT, P4, and T. E1 and E2 serum concentrations were quantified similarly by LC-MS/MS, following derivatization with dansyl chloride. To compare CORT values from urine, pregnant adult rats were dosed with either ATR (100 mg/kg/d) or methylcellulose by oral gavage for 5 days (i.e., gestational days 14-18). Urine samples were collected daily for 2 consecutive 6 hour intervals following dosing and assayed for CORT by RIA and LC-MS/MS as described above. Data analyses demonstrated a high degree of correlation between the two detection methods (R2 = 0.88 – 0.92). No statistically significant differences were observed between RIA and LC-MS/MS means for any of the steroids assayed. These findings indicate that steroids may be reliably measured in rat biological media using RIAs or LC-MS/MS in toxicological studies. This abstract does not reflect U.S. EPA policy.

1923 Exposure of Pregnant Fischer 344 Rats to Low Levels of Dietary Zeranol Induces Precocious Puberty and Decreased Mammary Tumor Latency in F1 and F2 Progeny.

C. Lewis1, J. T. Barrett1, M. A. Gallo2, H. Zarbl2,3,4,5.

1Environmental and Occupational Medicine, Robert Wood Johnson Medical School, UMDNJ, Piscataway, NJ; 2Environmental and Occupational Health Sciences Institute, Robert Wood Johnson Medical School, Piscataway, NJ.

Zeranol (Zer) is a synthetic derivative of zearalenone (Zea), a potent mycotoxin produced by several species Fusarium that contaminate grain. Zer has estrogenic activity comparable to that of DES and is ~1000 times more estrogenic than Bisphenol A. After its growth promoting effects on livestock were noted in the early 1970’s, Zer replaced diethylstilbestrol (DES) in implants to enhance meat production and quality. Accidental and occupational exposures were associated with precocious puberty and gynecomastia. Banned in Europe and Asia, Zer is introduced into livestock in the Americas, can be detected in the finished product, and is stable at cold temperature. Our recent studies in prepubertal rats indicate that Zer exposure in females is primarily via the consumption of corn and, urinary levels of unconjugated Zer were associated with differences in the onset of puberty, height and weight (Bandera et al., Science of the Total Environment 409(24):5221-5227, 2011). Our studies in rats indicated that exposure to non-toxic doses of Zer in utero (between prenatal day 7 to term) via the mother’s diet (0.1 μg/day in sal- flower oil), results in precocious puberty in females F1 progeny, defined by a three day decrease in age at vaginal opening. F1 male progeny showed feminization as assessed by a decreased ano-genital distance. F1 female treated with a single carcinogenic dose of N-Nitroso-N-methylurea (NMU) showed a decrease in latency and an increase in mammary tumors. Staining effects on puberty and carcinogenesis were also observed in the F2 progeny, but only if both the dam and the sire were exposed to Zer in utero. Together these studies suggest that in utero exposure to the Zer may produce transgenerational effects on sexual maturation and carcinogenesis. Supported by grants from The NJCCR and the NIEHS (ES005022).

1924 P-p-DDE Levels Are Associated with Reduced Testosterone Levels in Elderly Males.

1Department of Medicine, Uppsala, Sweden; 2Uppsala University, Uppsala, Sweden; 3ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT.

Background: The DDT metabolite p-p-DDE is a known androgen-receptor agonist. Since background exposure to p-p-DDE could still be detected in most individuals, we explored the relationships between p-p-DDE levels in serum and levels of endogenous sex hormones and their precursors in a population-based sample.

Methods: 1,016 subjects all aged 70 years were investigated in the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. p-p-DDE was measured in serum at ALS Canada using an API 4000 liquid chromatography/tandem mass spectrometry coupled to high resolution mass spectrometry (HRGC/HRMS), and sex hormones by high specificity liquid chromatography-tandem mass spectrometry.

Results: In men, p-p-DDE levels were related to estrogen (E1, p<0.00001) and estradiol (E2, p<0.02) levels. p-p-DDE levels were also related to levels of the precursors pregnenolone and 17-OH pregnenolone (p<0.05) and estimated aromatase activity (p<0.05), indicating an increased formation of estrogens from androgen precursors. In women, only weaker relationship compared with E1 was found (p<0.05).

CONCLUSION: increased levels of p-p-DDE were associated with increased estrogen levels in elderly males, indicating endocrine disrupting activity in the elderly.

SOT 2013 ANNUAL MEETING 409
Exposure to endogenous agents during susceptible stages of neurodevelopment may be associated with the onset of neurological disorders. The emerging contaminant bisphenol A (BPA) is a widely used ingredient in the production of plastics and resins utilized in food and beverage packaging. Our hypothesis is that developmental exposure to BPA induces neural and behavioral alterations and that these alterations will be associated with developmental immunotoxicity. C57BL/6 female mice were given 0, 25, 50, or 100 mg/kg of BPA in a corn oil vehicle by gavage, beginning at pairing with males and ending at weaning of pups. Littermates were assessed on a Barnes maze at postnatal day 21 (PND21), PND42, and PND60. Splenic lymphocytes, including B cells, natural killer cells (NK cells) and T cells (CD3, CD4, CD8, and CD25 subclasses), were immunofluorescently labeled to determine the immunophenotype of offspring from each treatment group. The Barnes maze is a reliable indicator of hippocampal-dependent learning and memory that has been used to link immune dysfunction with altered neurodevelopment. On the Barnes maze, the time to initially reach the escape hole did not significantly differ among treatment groups. A significant interaction between sex and dose was detected in offspring immunophenotype, indicating that immune cell subpopulations responded differently between sexes by dose. Liver weights increased in adult offspring by dose, though this trend was not statistically significant. Our data indicate that developmental exposure to BPA does not alter aspects of learning and memory as evaluated by the Barnes maze, but may induce differences in immunophenotype between sexes that may confound behavioral responses. Additional work is ongoing to evaluate changes to hippocampal neurons induced by developmental BPA exposure.

In conclusion, increased levels of p,p'-DDE levels were associated with both reduced testosterone and SHBG levels in elderly males, indicating endocrine disrupting activity by DDT in the elderly.

Furthermore, there are often knowledge gaps in the studies used to assess EDCs. To address these concerns, we performed a pre-/post-natal reproductive toxicity study of flutamide as part of a larger BASF and CEFIC funded project to measure the developmental toxicity of low single- and mixture-doses of anti-androgens. The tested doses were selected to mimic a low-effect level, the no observed adverse effect level (NOAEL) for endocrine effects, and the acceptable daily intake (ADI). While female offspring developed normally, the male offspring showed effects known for anti-androgens. No effects at all were noted at the lowest dose, the ADI. Significant decreases in ano-genital distance on PND 1 were noted in animals exposed to the top dose. An increase in nipples and/or areolas in male animals on PND 12 was noted at the top two doses. This effect was partially transient, as all had regressed by PND 21, except at the flutamide top dose. In both of these dose groups, male offspring which were reared to young adulthood displayed additional anti-androgen effects including, delayed sexual maturation and reduced male sex organ sizes and weights; however, offspring from the top dose group also had an increased incidence of developmental sexual defects including hypospadias, short penis, and cryptorchidism. Assessment of sexual steroid hormones and their precursors revealed no effects at any of the dose levels. Taken together, the weight of evidence of the clinical and pathological findings suggests a lack of a non-monotonic dose-response curve.

Endocrine disruption has become an important topic of public concern. Despite an increasing amount of attention, little is understood about if environmentally relevant doses of endocrine disrupting chemicals (EDCs) affect homeostasis.
Bisphenol AF (BPAF), a perfluorinated BPA homologue, is a cross linking agent in Bisphenol AF in 5K96 Verified Casein Feed.

Bisphenol AF (BPA), a perfluorinated BPA homologue, is a cross linking agent in Bisphenol AF in 5K96 Verified Casein Feed.

Bisphenol AF (BPA), a perfluorinated BPA homologue, is a cross linking agent in Bisphenol AF in 5K96 Verified Casein Feed.

Bisphenol AF (BPA), a perfluorinated BPA homologue, is a cross linking agent in Bisphenol AF in 5K96 Verified Casein Feed.

Bisphenol AF (BPA), a perfluorinated BPA homologue, is a cross linking agent in Bisphenol AF in 5K96 Verified Casein Feed.

Caffeine and its naturally occurring derivative caffeic acid phenethyl ester (CAPE) have antiproliferative and cytotoxic properties in a variety of cancer cell lines, but little is known about their effects on prostate cancer cells. We evaluated the effects of caffeic acid, CAPE, and 18 novel synthetic derivatives on cell proliferation, subcellular localization and expression of androgen receptor (AR) and secretion of prostate-specific antigen (PSA) in LNCaP human hormone-dependent prostate cancer cells. LNCaP cells cultured in steroid-free medium were exposed to 0.1 nM dihydrotestosterone (DHT) in combination with various concentrations of caffeic acid derivatives (0.3–100 μM) for 24–72 h during which cell proliferation was followed using an xCELLigence cell monitoring system (Roche). Cytosplastic and nuclear levels of AR were determined by immunoblotting and PSA secretion using a commercial ELISA. Cytotoxicity was measured by assessing mitochondrial function using a WST-1 assay. Seven synthetic derivatives of CAPE were strong, concentration-dependent inhibitors of androgen-stimulated LNCaP cell proliferation with up to 3-fold greater potencies (IC50=8-24 μM) than CAPE (IC50=28.9±4.5 μM); caffeic acid had no effect. Concomitant with inhibition of cell proliferation, DHT-stimulated PSA secretion was reduced by CAPE and the 7 derivatives. The most potent derivative MT-30 (IC50=7.9 ± 2.4 μM) inhibited DHT-stimulated cell proliferation and PSA secretion significantly at 0.3 μM. Exposure to 10 nM DHT increased cytoplasmic and nuclear AR levels and treatment with increasing concentrations of MT-30 and CAPE, interestingly, further increased these levels. In conclusion, a number of synthetic derivatives of caffeic acid are potent inhibitors of androgen-dependent prostate cancer cell growth, acting via an antiandrogenic mechanism that involves increased nuclear accumulation of (possibly inactive) AR.

Caffeine and its naturally occurring derivative caffeic acid phenethyl ester (CAPE) have antiproliferative and cytotoxic properties in a variety of cancer cell lines, but little is known about their effects on prostate cancer cells. We evaluated the effects of caffeic acid, CAPE, and 18 novel synthetic derivatives on cell proliferation, subcellular localization and expression of androgen receptor (AR) and secretion of prostate-specific antigen (PSA) in LNCaP human hormone-dependent prostate cancer cells. LNCaP cells cultured in steroid-free medium were exposed to 0.1 nM dihydrotestosterone (DHT) in combination with various concentrations of caffeic acid derivatives (0.3–100 μM) for 24–72 h during which cell proliferation was followed using an xCELLigence cell monitoring system (Roche). Cytosplastic and nuclear levels of AR were determined by immunoblotting and PSA secretion using a commercial ELISA. Cytotoxicity was measured by assessing mitochondrial function using a WST-1 assay. Seven synthetic derivatives of CAPE were strong, concentration-dependent inhibitors of androgen-stimulated LNCaP cell proliferation with up to 3-fold greater potencies (IC50=8-24 μM) than CAPE (IC50=28.9±4.5 μM); caffeic acid had no effect. Concomitant with inhibition of cell proliferation, DHT-stimulated PSA secretion was reduced by CAPE and the 7 derivatives. The most potent derivative MT-30 (IC50=7.9 ± 2.4 μM) inhibited DHT-stimulated cell proliferation and PSA secretion significantly at 0.3 μM. Exposure to 10 nM DHT increased cytoplasmic and nuclear AR levels and treatment with increasing concentrations of MT-30 and CAPE, interestingly, further increased these levels. In conclusion, a number of synthetic derivatives of caffeic acid are potent inhibitors of androgen-dependent prostate cancer cell growth, acting via an antiandrogenic mechanism that involves increased nuclear accumulation of (possibly inactive) AR.

Caffeine and its naturally occurring derivative caffeic acid phenethyl ester (CAPE) have antiproliferative and cytotoxic properties in a variety of cancer cell lines, but little is known about their effects on prostate cancer cells. We evaluated the effects of caffeic acid, CAPE, and 18 novel synthetic derivatives on cell proliferation, subcellular localization and expression of androgen receptor (AR) and secretion of prostate-specific antigen (PSA) in LNCaP human hormone-dependent prostate cancer cells. LNCaP cells cultured in steroid-free medium were exposed to 0.1 nM dihydrotestosterone (DHT) in combination with various concentrations of caffeic acid derivatives (0.3–100 μM) for 24–72 h during which cell proliferation was followed using an xCELLigence cell monitoring system (Roche). Cytosplastic and nuclear levels of AR were determined by immunoblotting and PSA secretion using a commercial ELISA. Cytotoxicity was measured by assessing mitochondrial function using a WST-1 assay. Seven synthetic derivatives of CAPE were strong, concentration-dependent inhibitors of androgen-stimulated LNCaP cell proliferation with up to 3-fold greater potencies (IC50=8-24 μM) than CAPE (IC50=28.9±4.5 μM); caffeic acid had no effect. Concomitant with inhibition of cell proliferation, DHT-stimulated PSA secretion was reduced by CAPE and the 7 derivatives. The most potent derivative MT-30 (IC50=7.9 ± 2.4 μM) inhibited DHT-stimulated cell proliferation and PSA secretion significantly at 0.3 μM. Exposure to 10 nM DHT increased cytoplasmic and nuclear AR levels and treatment with increasing concentrations of MT-30 and CAPE, interestingly, further increased these levels. In conclusion, a number of synthetic derivatives of caffeic acid are potent inhibitors of androgen-dependent prostate cancer cell growth, acting via an antiandrogenic mechanism that involves increased nuclear accumulation of (possibly inactive) AR.
into a phytoestrogen-free rodent diet, LabDiet 5K06 Verified Casein diet, developing the assay for analysis methods, and evaluating homogeneity and storage stability in the formulated diet. The analysis method involved the extraction of BPAF from feed using acetonitrile/acetic acid (99/1 v/v). The method covered a formulation range of ~200 to ~10,000 μg/g with dilution into the curve up to 15,000 μg/g. The method was linear, accurate, and precise with BPAF recoveries ≥ 99%. Homogeneity evaluation of 937.5 and 15,000 μg/g formulations showed recoveries ≥ 99% with RSD values ≤ 0.99%. Long-term BPAF stability for the 937.5 μg/g formulation showed the formulation was stable for 42 days (recovery ≥ 94.5%) when stored under refrigerated or freezer conditions. When the 937.5 μg/g formulation was stored under simulated dosing conditions, in the presence of rat urine and feces, the ACN/acetic acid extraction resulted in an 68% BPAF recovery after 7 days, indicating possible BPAF instability or extensive binding to feed under these conditions. To investigate this, several solvents with different polarity and pH were tested. ACN/acetic acid 99/1% extraction resulted in 79% BPAF recovery after 8 days storage in the presence of rat urine and feces. Adding an additional acid-digestion and extraction step, in which the formulation was digested with 8.3N HCl at ~75°C and extracted with ethyl ether/petroleum ether (1:1), BPAF recovery increased to 90% in Day 7 samples. This suggests that BPAF is stable but exhibits non-covalent binding to feed components.

1935 Silencing of Testisin through CpG Methylation from Exposure to Phthalates in Ntera-2 Cells.

J. Gomes, J. Kapongo, B. Nguyen and D. Krenci. University of Ottawa, Ottawa, ON, Canada.

Di (2-ethylhexyl) phthalate (DEHP) is one of the most highly produced and frequently studied phthalates. Its metabolite, monoester mono (2-ethylhexyl) phthalate (MEHP) is reported to be a testicular toxicant. Following toxicity pathway analyses we identified Testisin, GSTP1 and MGMT genes to study their expression in testicular germ cells (Ntera-2). Testisin present in normal tissue but absent in neoplastic tissue and regulates proteolytic reactions in testicular germ cells; GSTP1 inactivates carcinogens and is a member of glutathione-S-transferase; and Methylguanine DNA methyltransferase (MGMT) provides defense against neo-plasm. Testicular cells under laboratory conditions were exposed to MEHP in a dose- and time-dependent manner at concentrations of 1μM, 10μM, and 100μM at 24, 48, 72 and 96hr time points. The control was made by exposure of MEHP to 5’aza (demethylating agent) for hypermethylation. After exposure, those genes were analyzed by Quantitative Real Time PCR (qRT-PCR). The results revealed an overall down regulation for each gene as the concentration and/or time increased. The expression of Testisin, GSTP1 and MGMT was downregulated but not significantly in the last two cases. Following exposure to 5’-aza treatment and coexposure, there was a significant up-regulation and restoration of the expression of the Testisin gene. This suggests that MEHP may down-regulate Testisin gene expression by DNA methylation. These findings provide evidence that MEHP can alter the expression of Testisin, GSTP1 and MGMT, genes. Testisin which is associated with testicular germ cell tumors and its downregulation and subsequent restoration may be caused by DNA methylation following exposure to MEHP. The expression of GSTP1 which is a xenobiotic metabolizing enzyme gene and the DNA repair enzyme gene suggests that the toxicant is fairly active in these cells exposed to MEHP. The investigation of DNA methylation at the CpG islands of the promoter region of Testisin is described.

1936 An Examination of the Effects of Methyltriclosan on Early-Embryonic Development in the South African Clawed Frog (Xenopus laevis).

M. Cromie1, M. Wages2, B. Perafan1, E. Smith2 and J. Carr1. 1Biological Sciences, Texas Tech University, Lubbock, TX; 2The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX. Sponsor: W. Gao.

Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is a commonly used bactericide present in many personal care products such as detergents, liquid hand soaps, deodorants, cosmetics, lotions, mouthwash, and toothpaste, and it can be integrated into fabrics, plastics, carpets, and toys. Methyltriclosan is a derivative that is incorporated with fabrics, plastics, carpets, and toys. Methyltriclosan is a derivative that is formed from triclosan via biological methylation at an unknown interval during waste water treatment. Methyltriclosan is more abundant in the environment, more lipophilic than triclosan, and has a greater potential to accumulate in fatty tissues. The global decline of amphibian populations has raised awareness surrounding the possible effects of poor water quality on the health of habitats. Since metamorphosis and reproductive development in amphibians is highly regulated by thyroid hormones (TH), and the structure of triclosan is similar to that of TH, there is the possibility that triclosan and methyltriclosan may act on TH receptors to alter metamorphosis and reproductive development. Standard 96-hour Frog Embryo Teratogenic Assay-Xenopus protocols were followed using South African Clawed Frog (Xenopus laevis) embryos. After measuring the larvae the data revealed that early embryonic exposure to environmentally relevant concentrations of methyltriclosan resulted in statistically significant alterations in total body length, snout-to-vent length and crown width. Furthermore, molecular studies were performed to identify the effects of methyltriclosan exposure on the TH-responsive gene, TH/bZIP. The results of the quantitative real-time polymerase chain reaction did not support the induction of TH/bZIP gene expression after exposure to environmentally relevant concentrations of methyltriclosan. However, the expression of other TH-responsive genes may be altered upon exposure. Collectively, these data are the first to report on the responsiveness of vertebrate embryos to methyltriclosan exposure.

1937 No Evidence of Endocrine Disruption by Glyphosate in Male and Female Pubertal Assays.

J. Bailey1, J. Hauswirth2 and D. Stump3. 1Dow AgroSciences, LLC, Indianapolis, IN; 2Joint Glyphosate Task Force, Raleigh, NC; 3WIL Research Laboratories, LLC, Ablard, OH.

The Food Quality Protection Act and Safe Drinking Water Act amendments (1996) required the USEPA to develop the Endocrine Disruptor Screening Program (EDSP), which currently consists of 11 Tier 1 screening assays to evaluate the potential for a chemical to interact with the endocrine system. Glyphosate was included in the first list of 67 compounds subject to the EDSP, which were selected for screening based on their potential for exposure rather than suspected interference with the endocrine system. The potential for glyphosate (G) to induce endocrine disruption has now been evaluated in the male and female pubertal assays, the two most apical mammalian EDSP Tier 1 assays. The male pubertal assay evaluates potential effects on pubertal development and thyroid function in the juvenile female. Four groups of fifteen juvenile female rats were dosed with the following: 0, 100, 300 and 1000 mg/kg/d G once daily via oral gavage from postnatal day (PND) 22 to 42. There was no evidence of any direct test substance-related estrogenic or anti-estrogenic effects, nor was there any evidence of direct test substance-related effects on pituitary development or thyroid function in the juvenile female rat following oral administration of glyphosate at any dosage level tested. The male pubertal assay evaluates potential effects on pubertal development and thyroid function in the juvenile males. Four groups of fifteen juvenile male rats were dosed with the following: 0, 100, 300 and 1000 mg/kg/d G once daily via oral gavage from PND 23 to 53. There was no evidence of any direct test substance-related androgenic or anti-androgenic effects, nor was there any evidence of direct test substance-related effects on pubertal development or thyroid function in the juvenile male rat at any dosage level tested. Based on these results, glyphosate does not exhibit endocrine disruption in the male and female pubertal assays.

1938 Exposure to G-1, a Selective Agonist for G Protein-Coupled Estrogen Receptor 1 (GPER), Results in Elevated Levels of Vitellogenin in Adult Fathead Minnows (Pimephales promelas).

S. Jayasinghe1, K. Kroll1, N. Denslow2 and T. Sabo-Attwood3. 1Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL; 2Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL.

Several research groups have shown that G protein-coupled estrogen receptor-1 (GPER) mediates 17β-estradiol (E2) activation through non-genomic membrane initiated pathways. Estrogens play critical roles in a variety of biological processes, including reproduction and development in vertebrates. In fish, hepatic synthesis of vitellogenin (VTG), a precursor egg yolk protein that is vital to successful reproduction, is controlled by E2 via nuclear estrogen receptors (ESR). However, the involvement of GPER in vitellogenesis has not been investigated. As the GPER is not well characterized in fish the aims of our study are to: (1) assess the tissue-specific expression of GPER in adult fathead minnows (FHMM) and (2) determine the effect of GPER activation on VTG synthesis in FHMM males and females using a selective GPER agonist (G-1) and antagonist (G-15). Using qRTP-PCR we show that GPER mRNA is detectable in numerous organs, and is most highly expressed in the brain followed by gall bladder, trunk kidney, intestine, liver, heart, ovary and muscles. Aqueous exposure to G-1 (5, 30 and 100 μg/L) for 48 hours resulted in a dose-dependent increase of hepatic VTG expression compared to vehicle control in both
males and females. In efforts to block GPER-mediated induction of VTG expression, we co-exposed male fish to G-1 and the GPER antagonist G-15 (100 μM). Preliminary results were surprising as the combination of G-1/G-15 enhanced VTG expression compared to each agent singly. Overall, these data suggest that control of VTG synthesis by GPER is mediated by AhR and estrogen receptor (ER) receptors.

2-isopropylthioxantone (ITX) is a photo-initiator used in the printing process of many materials. ITX has been detected as contaminant in food such as milk and bread. 2-isopropylthioxantone (ITX) is a photo-initiator used in the printing process of many materials. ITX has been detected as contaminant in food such as milk and bread.

Conclusions: We demonstrated that exposure to either single or combination of agents significantly enhanced the expression of VTG. The combination of G-1 and GPER antagonist G-15 enhanced VTG expression to a greater extent than either agent alone. This suggests that ITX can interact with both AhR and ER pathways to enhance VTG expression.

PS 1939 Study on the Subchronic Oral Toxicity of the Circuit Board Powder in Rats.
N. Wu, Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, China.

Objective To investigate the subchronic oral toxicity of the circuit board powder in SD rats. Methods Male and female SD rats were randomly divided into four groups named A, B, C and D, and group had 16 rats. B and C group had 14 rats, A and D group retained 4 rats for a 45d recovery experiment after the 90d subchronic experiment. A group was given normal diet as control, B, C and D groups were given mixed feed which was made from adding the circuit board powder 10, 20, 50g per kg to the normal diet. All of the groups were ate and drank freely under natural light. After 90d feeding, each group calculated the major organ coefficient, measured the blood biochemical parameters, and determined the content of serum triiodothyronine (T3), thyroxine (T4) and testosterone (T) after 21, 45d, and 45d recovery. Results Compared with the control group, each dose group of the circuit board powder have no significant difference in body weight. There were significant differences between the high-dose group and control group of female rats in some blood biochemical parameters. The organ coefficient of liver in the medium- and high-dose groups of female rats was also significant increase. The content of serum T3, T4 and T in each dose group were significantly higher than that of the control group after 45d and 90d, each index had the most obviously increase in the low-dose group. There was no significant difference between the high-dose group and control group in serum T3, T4 and T after 45d recovery. Conclusion subchronic oral exposure to the circuit board powder can cause liver damage in rats, and elevated the content of serum T3, T4 and T.

PS 1940 Activation of the Hypothalamic-Pituitary-Adrenal (HPA) Axis following Extended Exposure to Atrazine (ATR).
S. C. Lawes1, 2, R. Cooper1 and B. W. Riffle1, 2. JETB, TAD, NHEERL, ORD, US EPA, Research Triangle Park, NC; 2ORISE, US Department of Energy, Oak Ridge, TN.

While it is known that adrenal steroids impact reproduction and a variety of other physiological and behavioral functions, disruption of the HPA-axis is not typically demonstrated in male rats. ATR is a chlorotriazine herbicide and the chlorotriazine family is known to be endocrine disruptors. The objective of this study was to investigate the effects of chronic exposure to ATR on the HPA-axis in male rats. Male and female SD rats were divided into four groups: A, B, C, and D. Group A was the control group and was given normal diet. Groups B, C, and D were given ATR at concentrations of 50, 200, and 500 mg/kg/day, respectively, for 90 days. Blood samples were collected at the end of the exposure period for measurement of serum corticosterone (B) and progesterone (P4) levels. Adrenal weights were unaffected by ATR at any time point. Serum CORT was elevated in the 200 mg/kg group dosed for 21 days. Urinary CORT (ratio of urinary CORT to creatinine) was significantly lower than controls (p < 0.05) only in the 200 mg/kg group. A similar profile was observed for serum P4 follow-21 (LOEL=200 mg/kg) days. 21 (LOEL=75 mg/kg) daily doses. A similar profile was observed for serum P4 follow-21 (LOEL=200 mg/kg) days. A similar profile was observed for serum P4 follow-21 (LOEL=200 mg/kg) days.

Conclusion: The results of this study suggest that chronic exposure to ATR can affect the HPA-axis in male rats. These findings highlight the importance of further investigation into the effects of endocrine disruptors on reproductive function. This abstract does not reflect U.S. EPA policy.
however, the strength of the concordance was considered weak in all cases. For the same 4 compounds, there were a large number of tumors which lacked concor-
dance between animal and epidemiological studies. Of the remaining compounds, insufficient data were available for an evaluation of tumor pathology (1-amino-2,4-
dibromoantraquinone and 2,4,6-trichlorophenol) or there was an absence of con-
cordance at the tissue level (benzyl chloride). In conclusion, this investigation of
concordance between animal and human tumors reported to be caused by specific
compounds shows that, even when chemically-induced tumors are identified to be
occurring in the same organ in both rodents and humans, there is no strong evi-
dence of concordance of these tumors at the level of the affected tissue.

1944 Benchmark Dose Models for Benzene Genotoxicity Using the Diversity Outbred Mouse.

K. L. Witt1, G. E. Kissling1, D. L. Morgan1, K. R. Shockley1, D. M. Garti2, G. A. Churchill3 and J. E. French4. 1DNTP, NIEHS, Research Triangle Park, NC; 2Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, ME.

The genetic basis for inter-individual variation in response to toxicant exposure is poorly understood. The Diversity Outbred (DO) mouse is a new model that can be used to explore population based response variation. DO mice were derived from a set of eight inbred founders and are maintained by random breeding as an het-
erozygous population containing over 38 million SNPs and 5 million indels (CNV). The genetic diversity and a fine recombination haplotype structure allow high mapping resolution. In experiments reported here, JDDO male mice were ex-
posed to benzene (0, 1, 10, 100 ppm; 75 mice/group) by inhalation, 6 hr/day, 5
days/wk for 28 days in two independent cohorts (300 mice each). Samples of pre-
and post-exposure peripheral blood (PB) or post-exposure for bone marrow (BM) were evaluated for frequency of micronucleated reticulocytes (MN-RET) using flow cytometry. MN-RET showed significant increasing trends in response to ben-
zeene exposure (p<0.0001) in both cohorts and were significantly higher than con-
trols in both the 10 ppm (p=0.013) and the 100 ppm (p < 0.0001) groups. Genotoxicity was highly variable within the 100 ppm groups. Linkage analysis identified quantitative trait loci (QTL) on chromosome 10 (Chr10) between megabase 26 and 35 (LOD=14.6). We identified benzene-resistant and susceptible Chr10 QTL for genotypes from the lowest and highest quartiles of the BM MN-RET response in the 100 ppm group. Animals in the 0, 1, and 10 ppm groups having these genotypes were placed into the resistant or susceptible groups for modeling. The benchmark concentration (BMC) and its 95% lower confidence limit (BMCL) were estimated from the best-fit model for the most resistant (BMCL = 5.9 ppm) and most susceptible (BMCL = 0.01 ppm) animals, a 590-fold difference between subpopulations. These data suggest that an uncertainty factor of 100 for interspecies and intraspecies variation may not be sufficient for calculation of a human benzene reference concentration based on benzene genotoxicity.

1945 Is There a Subset of Susceptible Individuals in Controlled Air Pollution Studies?

M. Seeley and J. E. Goodman, Gradudent, Cambridge, MA.

To establish primary National Ambient Air Quality Standards for criteria air pollu-
tants such as nitrogen dioxide (NO2), ozone (O3) and sulfur dioxide, US EPA eval-
uates results from epidemiological controlled human exposure, and animal studies. For the controlled human exposure studies, which focus on individuals with
asthma, there is concern that there may be a subset of susceptible individuals who
respond to lower concentrations than the average individual with asthma, but whose response is obscured by evaluating group-level data. To address this, we iden-
tified controlled human exposure studies with more than one exposure concentra-
tion, and identified three studies involving exposure to NO2 (including data for 38 subjects), and short-term values shows that data on asthmatics are frequently disregarded. The aim of the present study was to investigate the experimental support of a general difference in airway response between healthy and asthmatic individuals during short-term exposure. We performed a review of experimental data from 108 studies including both asthmatic and healthy subjects exposed to airborne chemicals during
identical experimental conditions. In total, experimental data for 19 chemicals and 9 mixtures were identified. Thresholds for airway response and the difference between asthmatic and healthy subjects were calculated in each study. The differ-
ence between subgroups was compared to the general assessment factors applied for susceptible populations in the derivation of guidance values. In addition, dose-re-
sponse relationships of four high volume chemicals were calculated for healthy and asthmatic individuals, separately, to identify threshold concentrations for effects on lung function. Our results show that asthmatic individuals generally are more sus-
ceptible than healthy individuals. An inter-individual assessment factor of three may not be sufficient for protection for all chemicals.

1946 Concordance of Transcriptional and Apical Benchmark Dose Levels for Conazole-Induced Liver Effects in Mice.

V. S. Bhat1, S. Hester1, S. Nesnow2 and D. A. Eastmond1. 1Environmental Toxicology, University of California Riverside, Riverside, CA; 2NHEERL, US EPA, Research Triangle Park, NC.

The ability to anchor chemical class-based gene expression changes to phenotypic
lesions and to describe these changes as a function of dose and time can inform
model of action and improve quantitative risk assessment. Previous research identi-
fied a 330-gene cluster commonly responsive to three hepatotumorigenic conazoles (cyproconazole, epoxiconazole and propiconazole). In the liver tumors (tri-
adimefon and myclobutanil), the present assessment encompasses four tumorigenic
and one non-tumorigenic conazole. Transcriptional benchmark dose levels (BMDLs) were estimated for a subset (~50 genes) of the gene cluster that had a >5-
fold change in signal intensity at the tumorigenic dose and demonstrated dose-re-
sponsive behavior. The modeled genes primarily encompassed pathways involved in
Phase I/II or lipid metabolism, oxidative stress, MAP kinase signaling, and/or apo-
ptosis (such as Cyp2b10, Lcn13, Aebc4, Akr1b7, Gadd45b). The median BMDL estimates from the gene subset were concordant (within a factor of 0.8 to 1.2) with the apical benchmark dose (BMDLs) for increased liver weight at 30 days for the four tumorigenic conazoles. The 30-day median BMDLs were estimated within one-half order of magnitude (generally more sensitive) of the chronic BMDLs for
liver tumors. Discordant 30-day BMDLs and BMDLs values were obtained for the non-tumorigenic conazole (myclobutanil). Potency differences seen in the dose-re-
sponsive transcription of some of these biomarker genes, particularly those involved
in Phase II metabolism and bile acid transport (such as Gstm3, Gst3, Aebc3, Akr1b7), mirrored each conazole’s tumorigenic potency. The 30-day BMDLs and BMDLs estimates corresponded to tumorigenic potency on a mg/kg-day basis with
cyproconazole > epoxiconazole > propiconazole > triadimefon > myclobutanil (non-tumorigenic). These initial results support the utility of measuring short-term
gene expression changes to inform quantitative risk assessments from long-term ex-
posures. This abstract does not reflect EPA policy.

1947 Assessment Factors for Susceptible Populations—Analysis of Airway Response during Short-Term Exposure to Volatile Chemicals.

M. Johansson, G. Johansson and M. Öberg, Institute of Environmental Medicine, Stockholm, Sweden.

Health-based guidance values for short-term exposure to airborne hazardous chem-
icals are developed to support the protection of the general population, including
susceptible subgroups such as asthmatics, in the case of sudden release of chem-
icals. The Acute Exposure Guideline Level (AEGL) program is one of the most well-
known set of short-term values. Our analysis of AEGL documents reveals that only
8% include data on asthmatics. A comparison of documents in nine additional sets of
short-term values shows that data on asthmatics are frequently disregarded. The
aim of the present study was to investigate the experimental support of a general
difference in airway response between healthy and asthmatic individuals during
short-term exposure. We performed a review of experimental data from 108 studies
including both asthmatic and healthy subjects exposed to airborne chemicals during
different experimental conditions. In total, experimental data for 19 chemicals and
9 mixtures were identified. Thresholds for airway response and the difference
between asthmatic and healthy subjects were calculated in each study. The differ-
ence between subgroups was compared to the general assessment factors applied
for susceptible populations in the derivation of guidance values. In addition, dose-re-
sponse relationships of four high volume chemicals were calculated for healthy
and asthmatic individuals, separately, to identify threshold concentrations for effects
on lung function. Our results show that asthmatic individuals generally are more sus-
ceptible than healthy individuals. An inter-individual assessment factor of three may
not be sufficient for protection for all chemicals.

A. Adam-Poupart1, G. Truchon1, M. Lévesque1, M. Busque2, P. Duguay2, R. Bourbonnais3 and J. Zayed4. 1Environmental and Occupational Health, Université de Montréal, Montréal, QC, Canada; 2Institut de recherche Robert-Sauvé en santé et sécurité du travail (IRSSST), Montréal, QC, Canada; 3ROH Consultant, Laval, QC, Canada.

Chemical and heat exposure are common hazards found in the workplace and
their coexposure may lead to increased health risk due to potential interactions:
some chemicals can affect the thermoregulatory mechanisms and reduce the
worker's capacity to adapt to heat, while heat exposure can modify physiological parameters such as heart rate and blood pressure. Thus, occupational conditions and personal characteristics play a significant role in determining an individual's heat stress susceptibility.

1949 Acute and Chronic Noncancer Inhalation Toxicity Factors for Acrylonitrile.

J. Lee, R. L. Granz and S. Shirley. Toxicology, TCEQ, Austin, TX.

Acrylonitrile (AN) is used extensively in the production of plastics, synthetic rubber, nitrile elastomers, resins, and acrylic fibers. The USEPA indicates that Texas contributes 11% of the nations reported ambient AN emissions annually. Inhalation of AN vapors can cause respiratory irritation, and at higher levels, neurological symptoms including dizziness, weakness, headache, and impaired judgment. To ensure that the general public in Texas is protected against potential inhalation effects from AN exposure, the Texas Commission on Environmental Quality (TCEQ) has developed acute and chronic reference values (ReVs). An acute ReV (1-hr exposure duration) of 1100 μg/m3 was derived based on no signs or symptoms observed in human volunteers exposed to AN for up to 8 hours. A chronic ReV of 2.2 μg/m3 was derived based on benchmark dose modeling for increased nasal lesions observed in female rats. The chronic ReV is comparable to the California EPA reference exposure level of 5 μg/m3. Effects Screening Levels (ESLs) were calculated from ReVs by applying a target hazard quotient of 0.3, to account for possible cumulative exposure. ESLs are used to evaluate modeled ground level concentrations due to emissions from facilities during air permit reviews. The corresponding acute and chronic ESLs were 350 and 0.7 μg/m3, respectively. Reproductive/developmental animal and epidemiological data were not used to derive ReVs since AN is not expected to be a developmental or reproductive toxicant in the absence of significant maternal toxicity. Furthermore, the overall carcinogenic weight-of-evidence shows that while AN is capable of causing tumors in rats and mice at high doses, AN does not appear to contribute to the development of cancerous tumors in humans. Thus, no inhalation unit risk factor was derived. The derived chronic ESL, however, is within the range of the concentrations at 1 x 10-5 cancer risk estimated by USEPA and thus, is expected to be protective against potential cancer risk.

1950 Hexavalent Chromium Carcinogenicity: Use of a Nonlinear-Threshold Assessment to Develop a Cancer-Based Chronic Inhalation Reference Value.

N. Erraguntula1, J. T. Haney1, R. L. Sielken2 and C. Valdez-Flores2. Toxicology Division, Texas Commission on Environmental Quality, Austin, TX; 2Sielken & Associates Consulting, Bryan, TX.

It is important to conduct up-to-date chemical assessments for known human lung carcinogens such as hexavalent chromium (CrVI). An updated carcinogenic assessment has been conducted for CrVI, which has been the subject of recent scientific debate. In addition to default linear low-dose extrapolation methods used to calculate an inhalation unit risk factor (URF), the study authors believe epidemiological data support use of an approach similar to the mode of action (MOA) to be sufficient to justify considering the results of a nonlinear-threshold carcinogenic assessment for comparison to URF-based de minimis excess risk (e.g., 1 in 100,000) air concentrations. The intent of the current study is not to perform an exhaustive weight of evidence evaluation of all data potentially relevant to the MOA (or MOAs), but rather to present available summary MOA information and statistical evidence interpreted as supporting a potential practical threshold for CrVI-induced carcinogenicity and the results of the consequent nonlinear-threshold inhalation carcinogenic assessment. Relevant epidemiological studies available in the scientific literature were reviewed and additional statistical dose-response analyses conducted to support the threshold. The results provide a practical threshold and points of departure (PODs). Occupational-to-environmental dosimetric adjustment of the "threshold" cumulative exposure POD selected (0.195 mg CrVI/m3-yr) resulted in a POD of 0.0071 mg CrVI/m3. Uncertainty factors (total UF of 30) were then applied to derive a cancer-based chronic inhalation reference value (ReV) of 0.24 μg CrVI/m3. The margin of exposure is >16,000-475,000 based on the ratio of the "threshold" cumulative exposure POD to cumulative exposures estimated based on annual average CrVI ambient air concentrations measured at various sites in Texas (5.9E-06 to 1.7E-04 μg CrVI/m3), which are >1,400-4,100 times lower than the calculated cancer-based chronic ReV.
A Simulation Study Investigating the Risk of Obtaining BMDs Which Are Higher Than the "True" BMD.

A central aspect of quantitative health risk assessment of chemicals is the derivation of the point of departure (POD). Historically, calculating NOAELs has been the most common way to obtain the POD. However, Benchmark Dose (BMD) analysis has been recommended as a more robust alternative, as it uses data from all dose groups in the study to derive the POD. An important step in the BMD approach is the identification of the BMDL, i.e. the lower limit of the confidence interval for the BMD. The aim of this study was to investigate how often the estimated BMDL corresponds to an effect greater than the critical effect, thereby underestimating the risk in the derivation of guidance values.

In this simulation study we assume a known sigmoidal dose-effect curve (and hence a known BMDL) and examine how often the BMDL is higher than the "true" BMD. Effects were generated by Monte Carlo simulations using 5 different dose placement scenarios. All scenarios used 4 dose groups (control, low, medium and high dose) and logarithmic dose spacing. Each scenario was simulated using 5, 10, 20 or 50 animals per group, assuming dose-effect curves typically seen in continuous data from experimental studies. The BMD and the BMDL values were calculated using a set of 5 nested exponential models implemented in available BMD-softwares (BMDs and PROAST).

The results suggest that the risk of obtaining a BMDL which is higher than the true BMD can be considerably larger than normally expected. In one scenario the BMDL was higher than the true BMD in 74% of the simulations. This occurs because the second model in the nested set of models lacks the ability to level off at higher doses. It is therefore suggested that the second model in the nested set (y=a*e^x) should be used with caution. It is also important to visually inspect the dose effect curve and the individual data points.

Characterizing the Impacts of Uncertainty and Scientific Judgment in Exposure Limit Development.

A. Maier1, B. Sussman1, B. Naumann2 and R. Roy1. Toxicology Excellence for Risk Assessment, Cincinnati, OH; 1SafeBridge Consultants, Inc., New York, NY; 2Merck & Co., Whitehouse Station, NJ; 3Corporate Toxicology, 3M, St. Paul, MN.

There is a misperception by some that exposure limits are precise estimates. In the eyes of risk managers, one discrete value is often considered to be "correct" and all others considered "incorrect." Exposure limits should be evaluated based on whether the value is derived in a manner "consistent with current principles" or "not consistent." An analysis of current risk assessment methods was conducted to identify the bases for variability in exposure limits for individual chemicals. The role of scientific judgments, risk policy perspectives, and evolving science methods were evaluated in the context of exposure limit setting methods. A systematic methods analysis shows that important drivers to be considered in evaluating acceptability of an exposure limit include: thoroughness of the review of available data, interpretation of results according to current scientific principles under the regulatory framework being used, and consideration of sufficient sources of variability and uncertainty. Sources of variability that may be encountered in risk assessments performed by different industrial hygienists or toxicology professionals using identical data sets include: selection of the point of departure, uncertainty factors used for data extrapolation, and use of adjustments for toxicokinetics, among others. These and related considerations form the basis of a "quality evaluation" process proposed for assessing the robustness of an exposure limit. Transparency in methods to assure robustness is a core principle embedded in risk assessment methods harmonization. Application of a systematic quality evaluation process provides for more informed use of exposure limits for risk management. A clear understanding of the basis for disparate values can provide useful information regarding the current level of uncertainty in the science and the level of confidence appropriate in using different exposure limits to characterize risk.

Chemical-Induced Methemoglobin Formation and Exploration on Its Biological Threshold.

Z. Yan1 and Q. Zhao2. 1ORISE, Cincinnati, OH; 2NCEA, US EPA, Cincinnati, OH.

Methemoglobin (metHb) is hemoglobin with the iron oxidized from Fe2+ to the Fe3+ state. An accumulation of metHb in the blood (methemoglobinemia) is often observed in response to exposure to many chemical agents, such as aniline and aniline derivative like dapsone, and is often used as the basis for the derivation of non-cancer risk values. Therefore, an understanding of the relative sensitivity of common laboratory animals compared to humans to these metHb-forming agents is important. In this research, we compared the relative sensitivities of dapsone, a metHb-forming agent in rats, mice, and humans based on the data from in vitro and in vivo studies. In vivo data indicate that humans are more sensitive to dapsone than rats, followed by mice. However, in vitro results are inconsistent in terms of metHb formation. The inconsistency can be explained by differences in liver metabolism among species. In vitro comparisons between the parent compound (dapsone) and its metabolite (hydroxylamine) also suggest that the metabolite is more potent than the parent compound to induce metHb. Due to a higher sensitivity in vivo, the rat might be a more suitable animal model than the mouse for predicting metHb-forming effects in humans. In addition to the relative sensitivities, we further examined the background levels of metHb to explore the potential for identifying the biologically significant threshold of metHb formation after exposure to metHb-forming agents. F344 rats were used as an example. We identified a 100% increase above the control mean as a benchmark response (BMR) based on the collected metHb background levels. A comparison of the identified BMR and one standard deviation from the control mean, as commonly used in benchmark dose modeling, suggests that the new BMR generates lower or comparable benchmark dose lower confidence limits (BMDLs). Therefore, a 100% increase above the control mean could be another way to establish a BMR for methemoglobinemia in F344 rats. The views expressed in this abstract are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.

Analysis of Possible Changes to the Levels of Concern for Polycyclic Aromatic Hydrocarbons in Seafood.

Anthropogenic contamination of coastal regions with oils from drilling operations, spills and tanker leaks has impacted coastal communities and seafood safety for decades, and will likely continue based on our oil-based economy. Federal and state agencies suspend commercial and recreational harvests in oil-affected regions based on testing for petrogenic toxics, including polycyclic aromatic hydrocarbons (PAHs). Criteria for re-opening affected fisheries are dependent on human health risk-based levels of concern (LOCs) developed by the US Food and Drug Administration (FDA) for specific petroleum-related contaminants in seafood, including seven carcinogenic PAHs. As with the Deepwater Horizon oil spill and other oil spill events, FDA cancer-based risk assessment for seafood consumption applies the US Environmental Protection Agency (EPA) cancer slope factor for benzo[a]pyrene (BaP), and relative potency factors (RPFs) for the remaining six PAHs relative to BaP. Use of LOCs in risk assessment is based on numerous assumptions. Here we examine how LOCs for PAHs change with modifications based on: (1) variable seafood consumption rates using data reflective of high-end seafood consumers in affected regions, (2) an expanded list of carcinogenic PAHs and changes in relative potency factors as described in the EPA draft document “Development of a Relative Potency Factor Approach for Polycyclic Aromatic Hydrocarbon Mixtures,” (3) the proposed change in the EPA cancer slope factor for BaP (the index carcinogenic PAH), and (4) exposure assumptions relevant to children, including incorporation of an age-dependent adjustment factor for PAH carcinogenicity. Analyses provide an indication of both direction and magnitude of changes in LOCs associated with each possible modification. This study suggests that LOCs for PAHs in seafood from the Gulf of Mexico may be more numerous and markedly lower than the suite currently applied relative to the Deepwater Horizon oil spill.

The Use of Genetically Modified Mice in Cancer Risk Assessment: Challenges and Limitations.

S. V. Vulimiri1, D. A. Eastmond2, J. E. French3 and B. Sonawane1. 1National Center for Environmental Assessment, US EPA, Washington DC; 2Cell Biology & Neuroscience, University of California Riverside, Riverside, CA; 3NIEHS, Research Triangle Park, NC.

The use of genetically modified (GM) mice to assess carcinogenicity is playing an increasingly important role in the safety evaluation of chemicals. While progress has been made in developing and evaluating models such as the Tg53+/-, the Tg.AC and the rat2 models, the suitability of these models as replacements for the conventional rodent cancer bioassay and for assessing human health risks remains uncertain. The objective of this research was to evaluate the prospective use of GM mice and the recently developed accelerated cancer bioassays in evaluating the potential health risks associated with exposure to carcinogenic agents. We compared the published results from the GM bioassays with those obtained using the National Toxicology Program’s conventional chronic mouse bioassay for their potential use in risk assessment. To date, the GM models have shown moderate success in distinguishing carcinogens from non-carcinogens. Analysis of information
from different studies indicates that the GM models are less efficient in detecting carcinogenic agents but more consistent in identifying non-carcinogenic agents. We identified several issues of concern related to the assay design of GM models (e.g., sample size, study duration, genetic stability, and reproducibility) as well as pathway-dependent effects, and different carcinogenic mechanisms operable in GM and non-GM animals. The use of the GM models for dose-response assessment is particularly problematic as these models are, at times, much more or less sensitive than the conventional cancer bioassays. Thus, the existing GM mouse models may be useful for hazard identification, but will be of limited use for dose-response assessment. Hence, caution should be exercised when using GM mouse models to assess the carcinogenic risks of chemicals.

Disclaimer: The views expressed in this abstract are those of the authors and do not necessarily reflect the views or policies of the USEPA or the NIEHS.

1958 Integrating Local Communities in the Health Risk Assessment Process following the Deepwater Horizon Oil Spill—A Focus on Vietnamese-Americans.

M. I. Wilson1, S. Frickel1, D. Nguyen1, J. Howard1, B. R. Simon1 and J. Wickliffe1,2, 1Pharmacology and Toxicology, Rutgers University, Piscataway, NJ; 2Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ.

Vietnamese-American populations in southeast Louisiana consist largely of commercial and subsistence fisherfolk and represent one of the highest seafood consuming groups in the Gulf South. We collected targeted survey data from a Vietnamese-American fishing community in Orleans Parish, Louisiana, to determine shrimp consumption rates, body weights, ages, and genders in order to conduct deterministic and probabilistic health risk assessments tailored to this unique population. Cancer risk estimates and levels of concern (LOCs) for several polyaromatic hydrocarbons were determined using GC/MS in SIM mode on a population. Cancer risk estimates and levels of concern (LOCs) for several polycyclic aromatic hydrocarbons were determined using GC/MS in SIM mode on a sample of white shrimp collected from the Gulf with shrimpers from this community. Our approach also developed health risk assessments using LOCs, oral slope factors, and risk levels used by the Food and Drug Administration and the Natural Resources Defense Council. Our results demonstrate the need to include key populations in the risk assessment process and measure risk model parameters in such populations rather than rely solely on generic exposure assumptions.

There is a growing trend of using botanical raw materials in personal care products, such as those used in traditional medicine or those from the many exotic plants which may be part of local folklore or food use. These materials present a challenge to both the Product Developer and Regulator alike, in assuring the development of safe cosmetic products, from the complex composition of the materials through to the lack of documented data on history of use and safety. This paper presents a strategy for the safety assessment of these botanicals used in cosmetics, based on various risk assessment concepts. A critical first step in the risk assessment is the characterisation of the botanical raw material, with key measurements being identified. A complete understanding of "what is known" about the material should then be developed from both literature sources as well as traditional knowledge. It may then be possible to determine whether a history of safe use (HOSU) can be established and if the material can be considered safe at that stage for particular cosmetic applications. If not then further risk assessment approaches (ie comparative approach, threshold of toxicological concern (TTC)) are proposed. Finally, in order to complete the risk assessment there may be a need to fill gaps in the hazard profile and/or potential consumer exposure scenarios, by conducting some further testing.

1960 Simulation of Acute Reference Dose (ARID) Setting for Pesticides in Japan.

M. Yoshida1, D. Suzuki1, K. Matsunomoto1, K. Inoue1, M. Takahashi1, T. Morita1, M. Shirata1 and A. Oso1, 1Department of Pathology, National Institute of Health Sciences, Tokyo, Japan; 2Research Center for Human and Environmental Sciences, Shizuoka University, Nagano, Japan; 3Division of Safety Information on Drugs, Food and Chemicals, National Institute of Health Sciences, Tokyo, Japan; 4Laboratory of Comparative Toxicology, School of Veterinary Medicine, Aoyama University, Kanagawa, Japan; 5Division of Risk Assessment, National Institute of Health Sciences, Tokyo, Japan.

We conducted simulations of Acute Reference Dose (ARID) setting, based on review documents of 208 pesticides published by Food Safety Commission (FSC) in Japan. These pesticides were evaluated in FSC during last 8 years. We applied the conceptual framework of Solecki, et al.(2005) to create and implement a conceptual framework adapted to current assessment needs in Japan. Through this process, we were able to set the ARIDs for over 90% of those 208 pesticides. The studies that provided the rationale for ARID setting were primarily reproductive and developmental toxicity studies, acute neurotoxicity studies, and pharmacology studies. It was not necessary to establish ARIDs for approximately 30% of the pesticides simulated in the present study. Some of the simulated ARIDs might be conservative, and some endpoints for ARID setting might not be proper,because the published data obtained in the present study were written for acceptable daily intake (ADI) setting. We were unable to set an ARID for 14 pesticides because of insufficient data on acute toxicities. This could be improved by more complete record-keeping (for example, the type of changes observed immediately after administration, and the duration of the observation period). Furthermore, we categorized the 208 pesticides by mechanism of action or chemical structure. In comparison of absolute ARIDs or relative ARIDs to ADI among the categories, considerable number of pesticides with similar mechanisms of action or similar chemical structure also showed similar ARIDs.

1961 Tumour and In-Life Data from CD-1 Mouse Dietary and Oral Gavage Tumorigenicity Studies, Completed over the Period of 1995 to 2011.

W. N. Hooks1 and I. Taylor1, 1Safety Assessment, Huntington Life Sciences, Huntington, United Kingdom; 2Pathology, Huntington Life Sciences, Huntington, United Kingdom. Sponsor: D. Mitchell.

A previous review (1) of Crl:CD-1 ® (ICR) BR mouse tumorigenicity studies indicated terminal (Week 104) mortality values of 53±10.2% for males and 57±7.7% for females, with no major differences between the dietary and oral gavage routes of administration. Expanding on this, the aim of this review was to establish if the in-life data and tumour profile had changed over time and if there were any differences between the routes of administration. Data was analysed from over 60 mouse studies terminated at or about 2 years and completed over the period of 1995 to 2011. Analysis of bodyweight gain and food consumption over the first year revealed lower values for oral gavage studies (both sexes) when compared with dietary studies. The analyses over time (Period 1, 1995-2001 against Period 2, 2002-2011), performed for oral gavage studies only, did not show any remarkable differences. The most prevalent tumours were hepatocellular adenoma/carcinoma and adrenal adenoma (males), bronchioloalveolar adenoma/carcinoma, Harderian gland adenoma and haemopoietic tumours (males and females), and uterine polyps (females). Generally, excluding the latter, these tumours were also the major pathological factors contributory to death (FCTD). Other major FCTD included urinary tract lesions (males) and ovarioid haemorrhagic cysts (females). The most prominent difference between dietary and oral gavage studies was a lower incidence of hepato-cellular tumours (males) in the latter. Analyses over time (for oral gavage studies only), indicated a lower incidence of hepatocellular tumours (males) and Harderian gland adenoma (both sexes) in Period 2. In conclusion, although there were some differences in the mortality patterns, in-life parameters, tumour profile and FCTD between the alternative oral routes and between the time periods, the CD-1 mouse has a well-defined tumour profile and continues to be suitable strain for use in tumorigenicity bioassays.

Developmental neurotoxicity (DNT) of bisphenol A (BPA) has been investigated in a large number of studies. However, there are discrepancies in the results reported between these studies. This investigation aims to identify and analyze factors that have contributed to these differences and to assess whether there are sex-differences in the sensitivity of certain endpoints or tests used in DNT-studies. Forty-four DNT studies of BPA were identified in the open literature. Details about study design and results from each study, as well as the criteria for DNT testing according to the standardized OECD test guideline (TG) 426, were collected in a data base. This enabled systematic and detailed comparisons between studies as well as to the TG criteria. Multivariate analyses of the compiled data were applied in order to investigate how different factors of the study design contribute to differences in outcomes between studies.

The results from this investigation indicate that the choice of behavioral endpoints and the behavioral test models used seem to have the largest impact on study outcome. In general, the most sensitive endpoints were the ones not required according to the standard OECD TG 426. Interestingly, non-standard endpoints seem to be especially important to detect effects in females.

One main conclusion from this investigation is that non-standardized studies seem to provide information that could be pivotal for the risk assessment of BPA, especially in the identification of effects in females. There is a need to develop tools that improve the usability of non-standardized studies in risk assessment of chemicals, particularly with regard to endocrine disrupting compounds, and that can facilitate the evaluation of data obtained from such studies.
Multiple studies have noted that many carcinogenic polycyclic aromatic hydrocarbons (PAHs) also demonstrate immunosuppressive effects. Here, we have tested the strength of this association by deriving both cancer and immunotoxic relative potency factors (RPFs) for multiple PAHs, using the well-studied carcinogenic and immunotoxic compound benzo(a)pyrene (BaP) as the index PAH. Our quantitative analysis demonstrated a correlation between the immunosuppressive and carcinogenic potential of PAHs. As evasion of immune destruction has been identified as an "emerging hallmark of cancer" (Hanahan and Weinberg, 2011 Cell 144: 646-674), we propose that this association between carcinogenic and immunosuppression activities of PAHs offers an opportunity to improve cancer risk assessment for PAH mixtures. While current assessments of cancer risks from PAH-containing fractions of environmental mixtures rely on a component-based RPF approach, we hypothesize that a more scientifically defensible whole mixtures approach would be advanced not only by a battery of inexpensive, short-term tests of different modes of carcinogenic action (e.g., genotoxic and non-genotoxic), but also a battery of tests for immunosuppressive activity. The addition of immunotoxicity tests may improve the ability to discern the similarity of an untested environmental mixture with reference mixtures that have cancer slope factors. Therefore, we performed a comprehensive review of the immunotoxic effects of BaP, and developed an integrated knowledge map illustrating immunosuppressive effects of BaP and, when known, tissue-specific mechanistic information. Our analysis revealed that research to date has not yet identified a transcriptional signature(s) for immune suppression to aid in the development of a specific battery of short-term in vitro test for immunotoxicity. Thus, future directed research to develop and validate a battery of tests for immunotoxicity is warranted and could find widespread use in assessing cancer risk from environmental PAH-containing mixtures.
deriving safe exposure levels for these materials. Each of these materials comes in a multitude of forms, varying in size, shape, structure, purity, and surface coating, which affect chemical properties, such as solubility, reactivity, and propensity for agglomerating. All 3 nanomaterials have multiple repeated exposure inhalation studies available, suitable for use in dose-response assessment, but only nAg has repeated dose oral studies, and none of the materials has a suitable dermal study. The lung was the critical target in the inhalation studies of all 3 materials, with pulmonary inflammation being the most sensitive endpoint. For nAg, the liver was also identified as a target by both inhalation and oral exposure (bile duct hyperplasia). Using these data, it is possible to derive safe exposure levels for long-term exposure to the specific forms of nAg, nTiO2, and CNT tested in these studies. It is, however, unclear to what extent these levels may apply to other forms of nAg, nTiO2, and CNT. Mechanistic data for all 3 nanomaterials show that the specific physical and chemical characteristics of the particles can influence toxicity in defined ways. However, the relationships are complex, and as yet, only partially understood, making the task of estimating safe levels of a particular nanomaterial challenging. Toxicity assessments for nanomaterials must take these additional uncertainties into account. (The views expressed in this abstract are those of the authors only and do not necessarily reflect the views or policies of the U.S. CPSC).

1971 Quality Assurance and Quality Control for an XCellence High-Throughput Risk Assessment Assay. M. Stampfl1, F. Ackah2, V. Charoensuk3, T. Pan4, C. Jin1, Y. A. Abassi1, X. Xu1, X. Wang1, B. Huang1, D. Kimmisburgh1, W. Zhang2 and S. Gabors2.

Taking advantage of impendence based non-invasive, real time cell analysis (RTCA) technology, and human cell lines with different organ origins, a High Throughput Risk Assessment (HTRA) assay is under development to meet 21st century toxicity testing requirement for hazard identification, chemical mode of action understanding, and eventually human health risk assessment. The HTRA assay is run on an fully automated system, composed of 4 xCELLence RTCA HTM stations running 384 well EPlates, liquid handler, and compound/cell culture hotels. Impedance signal derived from adherent cells in the EPlate 384 are continuously monitored for 100 hours for growth and response to testing chemicals. To assess and validate the usefulness of this new in vitro screening system for identifying general toxicity of environmental hazards, 14 chemicals with known in vivo LD50 values were tested with 11 different concentrations in duplicate or quadruplicate, and repeated in 2 separate experiments. The quality assurance program includes the generation of SOPs for experiments and data analysis. Specifically, experimental plate layout to reduce false responses is discussed. The quality control system includes variability and reproducibility analysis. Coefficient of variation, signal to noise ratio and Z factor were calculated to evaluate variability. The analysis excluded one cell line from the cell panel. Intra-plate reproducibility of impedance signals was within an acceptable range. Intra-plate reproducibility of toxicity data based on LC50 values from different wells and on different cell lines, was acceptable. Inter-laboratory validation is in progress. In summary, results from HTRA assay system showed good screening quality and reproducibility. Together with its higher throughput, rich real-time information, HTRA assay system could effectively provide biologically relevant cytotoxicity information for human health risk assessment.

1972 Advancing Human Health Risk Assessment: Charting a Course through Committee Recommendations. M. Dourson1, R. Becker2, L. T. Haber1, L. H. Potterenger1, T. Breitfeld3 and P. Fenner-Crisp1.1 Toxicology Excellence for Risk Assessment, Cincinnati, OH; 2American Chemistry Council, Washington DC; 3The Dow Chemical Company, Midland, MI; 4Texas Commission on Environmental Quality, Austin, TX.

Over the last dozen years, many national and international expert groups have weighed in on specific improvements to risk assessment. Many of their stated recommendations are mutually supportive, but others appear conflicting, at least in an initial assessment. This effort synthesizes these opinions, identifies areas of consensus and sources of differences, and recommends a biological-centric, practical course forward for risk assessment, which includes: (1) Use of mode of action (MOA) information and an understanding of the relevant biology as the key, central organizing principle for dose-response assessment; (2) Integration of MOA information into dose-response assessments using existing guidelines for noncancer and cancer assessments, and applying this knowledge with toxicokinetics to enable interpretation of human biomonitoring data in a risk context; (4) Using the tiered, iterative approach developed by the World Health Organization International Programme on Chemical Safety as a scientifically logical framework for risk assessment of combined exposures (chemical mixtures). While scientifically-based defaults will remain important and useful when data on MOA or other data to refine an assessment are absent or insufficient, assessments should always strive to achieve the ultimate goal—to use 21st century knowledge of biological processes, dose-response, and chemical interactions at the molecular, cellular, organ and organism levels to minimize the need for extrapolation and reliance on default approaches.

1973 Assessment on Health Risk and Risk Factors Related to Lead Exposure by Ingestion of Aquatic Animals from the Overflow Marsh. S. Chaiklieng1 and S. Kiatsayompu2.1 Environmental Health Science, Faculty of Public Health, Khon Kaen University, Muang, Thailand; 2Central Laboratory, Faculty of Public Health, Khon Kaen University, Muang, Thailand.

The previous study identified that aquatic animals in Loeng Puay marsh were lead polluted. The lead concentrations in River snails were exceeded the food standard. This survey research aimed to determine health risk on ingestion of lead-contaminated aquatic animals from Loeng Puay marsh and the adverse health effects. The interviews of 75 residents at Loeng Puay on the consumptions of the aquatic animals and adverse health effects related to lead toxicity were conducted. The lead concentrations in aquatic animals (n=100) i.e. Nile tilapia, Common silver barb, River snail and Golden apple snail were analyzed by using Atomic Absorption Spectrophotometry. Health risk assessment was performed according to the U.S.EPA guideline (2004). The correlated factors with the adverse health effects were identified by the univariate analysis. The highest lead concentration in all kind of aquatic animals was found in River snail and was used as represent concentration for health risk assessment on the acute effect. By considering the total intake rate of all aquatic animal consumption in the day, the maximum dose of lead exposure was 26.46 μg/kg/day which was higher than the provision tolerable weekly intake (PTWI-25 μg/kg). The adverse health effects related to lead toxicity were reported from 46.67% of residents. Most of symptoms were disorders of joints and skeleton, numbness, and acroanesthesia, respectively. The univariate analysis identified that the fishermen had the higher risk on lead exposure (justified by adverse health effect) when compared to other occupations (OR=11.12, p<0.001). The findings indicated the health risk from high dose ingestion of lead-contaminated aquatic animals. However, the potential health risk depends on amount of food ingestion and personal factors. There should be continuously environmental monitoring of the lead accumulation in this overflow marsh for the safety of food chain and the health surveillance program.

Concerns have been raised regarding the potential for consumer products, including cleaning products to cause or exacerbate asthma or asthma-like responses. Although many forms of asthma are inflammation-based, some low-molecular-weight chemicals have been shown to trigger immunoglobulin E (IgE) independent occupational asthma. Single exposures to high concentrations of chemical irritants are also known to elicit an asthma-like response: reactive airways dysfunction syndrome (RADS). RADS can occur within hours of the initial exposure and may continue, as non-specific bronchial hyper-responsiveness, for extended durations. Exposure to irritants may be a trigger for respiratory symptoms in individuals with pre-existing asthma. Current methods cannot adequately assess the potential for consumer product ingredients to trigger asthma or asthma-like responses; epidemiological studies can only measure possible effects associated with a multitude of chemicals and products, and no single animal model can reliably replicate the complexity of an asthma-like response in humans. In order to characterize asthma and respiratory related hazards associated with consumer products, a decision system is needed that incorporates existing guidance, frameworks, and models. To develop such a tool, we compiled and evaluated in vivo, in vitro, and in silico methods that may provide data, or insight, to predict potential asthma or asthma-like responses (e.g., respiratory sensitization) and noted strengths and weaknesses associated with each method. We collaborated with asthma research experts to refine our findings and approach. Despite the wealth of information on asthma, current guidelines, biosays, and computer models cannot definitively identify whether a particular ingredient, or chemical, causes or exacerbates asthma or asthma-like responses. However, possible predictors of allergy-induced asthma, such as respiratory sensitization, are useful to assess the likelihood that a particular chemical, ingredient, or product may be associated with asthma induction.
Polycyclic aromatic hydrocarbons (PAHs) are common soil contaminants at many industrial facilities, military bases, and other sites. For PAH mixtures, the U.S. Environmental Protection Agency (EPA) and other regulatory agencies use relative potency factors (RPFs) to assess the potential toxicity of individual PAHs. EPA currently provides RPF values for cancer risks for seven individual PAHs, but is considering RPFs for 25 individual PAHs, spanning values of potency relative to benzo[a]pyrene (BaP) from 0.009 to 60. As part of a larger study aiming at tying together research on soil PAH chemistry with in vivo measures of bioavailability across diverse soil types and contaminant sources for the purpose of improving remedial decisions for soil PAHs at U.S. Department of Defense (DOD) sites, we investigated the potential impacts of proposed changes in regulatory toxicology of PAHs on regulatory decision-making. Specifically, we investigated the degree to which changes in PAH RPFs could alter conclusions about health-based screening at DOD sites. Using EPA's Records of Decision database for Superfund sites, we identified 11 DOD sites with 22 exposure units in which PAHs were identified as chemicals of concern in surface or subsurface soil. Site data were evaluated for exceedances of health-based soil screening levels using current and proposed RPFs. Results indicate that the percentage of sites exceeding a screening level would increase; up to twice as many sites for some individual PAHs (e.g., chrysene). In addition, the magnitude of exceedance would increase for all sites. The results suggest that both the number of sites and the areal extent of individual sites requiring remediation could increase with the proposed changes in RPFs. Additional issues include lack of background data for PAHs newly added to the risk assessment paradigm and methods for assessing unidentified PAHs. This work was supported in part by a grant from the Strategic Environmental Research and Development Program.

1975 Assessment of the Impacts of Changes in Regulatory Toxicology of Polycyclic Aromatic Hydrocarbons on Site Assessments.

J. H. Salatas1, M. R. Garry1 and Y. W. Lowney2. 1Exponent, Bellevue, WA; 2Exponent, Boulder, CO.

Issues surrounding pipeline safety and the potential health and environmental impacts that can result from pipeline accidents and malfunctions have led to considerable debate lately across North America. A number of recent high-profile oil spills in areas that are populated highlight the need for risk assessment to be completed rapidly to inform risk-based decision making. An example of such an assessment was completed in response to a break at an underwater pipeline crossing in which a sweet crude oil was released in a watercourse, upstream of several residences, active livestock farming operations, recreational properties and a municipal drinking water intake. Within 24 hours, a clean-up and contaminant sampling strategy was developed and implemented, and continued over several weeks. Preliminary evaluation and interpretation of the contaminant data was completed to aid in community consultation, to identify the need for further monitoring, and to provide risk-based decision making strategies to local authorities managing drinking water and recreational use access. The conclusions of an initial risk assessment completed two weeks after the spill served to provide reassurance to regulators and the general public regarding the safety of drinking water for residents and livestock, resulting in the re-opening of some drinking water intakes in the impacted area. The assessment considered the nature and levels of the contaminants that were determined to be present in the water column and sediments, the results of toxicity studies for the various contaminants, and the opportunity for exposure of people and animals to the contaminants. Following the analysis of additional sampling results, a more comprehensive risk assessment was completed. The final results of the assessment revealed that the clean-up efforts had successfully mitigated risk to human health and the local ecosystem.

1976 Rapid Risk-Based Response to a Crude Oil Spill.

K. Phillips and D. B. Davies, Intrinsik Environmental Sciences Inc., Calgary, AB, Canada.

Recent in vitro studies have been conducted in both animal and human primary bladder cells to investigate the potential mode of action for bladder cancer following exposure to arsenic compounds. Results from 24 hour in vitro gene expression studies with human uroepithelial cells treated in culture with mixtures of inorganic arsenic and its pentavalent or trivalent metabolites provide evidence of a common suite of gene changes consistently identified for a number of key signaling pathways: oxidative stress, protein folding, growth regulation, metallothionein regulation, DNA damage sensing, thioredoxin regulation, and immune response. Lowest observed effect levels (LOELs) ranged from 0.6 – 6.0 μM total arsenic and no observed effect levels (NOELs) ranged from 0.18 – 1.8 μM total arsenic. Benchmark dose modeling of the responses indicated lower confidence limits (BMDLs) ranging from 0.09 – 0.58 μM total arsenic for the eight genes most commonly significantly expressed across individual samples for the trivalent arsenical mixture, and from 0.35 – 1.7 μM for total arsenic in the pentavalent arsenic mixture. These studies
In human health risk assessment (HHRA), lack of information on a chemical is typically accounted for by the use of uncertainty factors (UFs). Typically, UFs are applied to account for five major areas of uncertainty: interspecies variation, intraspecies variation, extrapolation from subchronic to chronic exposure duration, extrapolation from a LOAEL to a NOAEL, and an incomplete database. To reduce uncertainty inherent in HHRA, methods are needed to replace or better assign values to these UFs. In this preliminary analysis, we analyzed all chemicals from the USEPA's Toxicity Reference Database (ToxRefDB) with complete databases (i.e., general toxicity studies in two species, developmental toxicity studies in two species, and a multigeneration reproduction study) to assess whether a database UF of 3 or 10 is sufficient to account for missing data. A subtractive approach was employed in which the points of departure (PODs) based on reported LOAELs and NOAELs in the ToxRefDB were compared for the complete database and following removal of selected studies. Removal of developmental toxicity studies from the database increased the POD by 3-fold in 18/186 (9.7%) chemicals and by more than 10-fold in 4/186 (2.2%) chemicals. Removal of general toxicity studies from the database increased the POD by 3-fold in 18/186 (9.7%) chemicals and by more than 10-fold in 4/186 (2.2%) chemicals. This analysis will need to be supplemented with studies from a broader spectrum of chemical types. This analysis could provide a method to systematically and empirically select the UF in cases where chemical-specific information to inform selection of the UF is lacking. The views expressed in this abstract are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.

Ps 1980 Refining the Application of a Database Uncertainty Factor in Human Health Risk Assessment.

C. Fleming, Z. Yan, J. Lambert, and Q. Zhao. ORISE, Cincinnati, OH; US EPA, Cincinnati, OH.

Ps 1981 Short-Term Exposure to Perfluorooalkyl Acids Causes Increase of Hepatic Lipid and Triglyceride in Conjunction with Liver Hypertrophy.

Persistent presence of perfluorooalkyl (PFAAs) in the environment is due to extensive use of industrial and consumer products. These chemicals activate peroxisome proliferator-activated receptor-alpha (PPARα) in liver and alter lipid metabolism. The current study was designed to evaluate liver toxicity of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexanoic acid (PFHxS), and perfluorophosphonic acid (PFPA), with emphasis on hepatic hypertrophy and steatosis. Sylgard wild-type (WT) and PPARα-null (Null) adult male mice were dosed for 7 days with vehicle, PFOA, PFNA, PFHxS (10 mg/kg), and PFPA (20 mg/kg); and WY14643 (50 mg/kg) was a positive control. Mice were killed 24 h after the last treatment. Liver samples were collected for biochemical analysis of triglyceride (TG) and DNA content. Frozen 6 mm sections of liver were stained with Oil Red O for lipid and used for morphometric analysis. Liver weights were elevated in both WT and Null mice in all of the treatment groups, except in Null mice of the PFPA and WY groups. Morphometric analysis revealed an increase in cell size in WT and Null liver exposed to PFOA, PFNA, PFHxS or PFPA, except for the PFPA and WY groups in Null mice. This pattern of change is consistent with the reduced DNA content per mg liver. In the Oil Red O stained sections, WT liver showed increased lipid accumulation in all treatment groups; whereas in Null liver, this was seen only after PFNA and PFHxS treatment. Similarly, elevated TG level was found in PFPA-exposed WT but not in WY-exposed mice, and increased TG was seen in Null mice only after PFNA treatment. Null livers had more lipid and TG than WT livers, both in control and treated mice. These results indicate that PFAAs induce liver hypertrophy and steatosis in WT; and the involvement of PPARα is suggested by observations in Null mice. (This abstract does not necessarily reflect US EPA policy.)

Ps 1982 Structure-Activity Relationships for Perfluoroalkane-Induced Interference with Rat Liver Mitochondrial Respiration.

K. B. Wallace, G. E. Kiesling, R. Melnick, and C. R. Blustone. 1Biochemistry & Molecular Biology, University of Minnesota Medical School, Duluth, MN; 2Biotestistics Branch, NIEHS, Research Triangle Park, NC; 3National Toxicology Program, NIEHS, Research Triangle Park, NC; Ron Melnick Consulting, LLC, Chapel Hill, NC.

Perfluorinated alkanes (PFAAs) represent a broad class of commercial products designed primarily for the coatings industry. Unfortunately, residues have been detected in a variety of world-wide foods and potentially increase the risk of cancer and other diseases. The current study was designed to quantify the extent of interference with mitochondrial respiration and establish structure-activity evidence-based initial estimates of safety for PFAA congeners for which minimal in vitro toxicity testing currently exists. (This work was funded by NIEHS NTP contract 273200620005C.)

Ps 1983 Determination of Polychlorinated Biphenyls (PCBs) and Hydroxylated Metabolites (OH-PCBs) in Human Blood Serum from Two Populations in East Chicago, IN and Columbus Junction, IA.

W. Kuhl, R. Marek, J. DeWall, P. S. Thorne, and K. C. Hornbuckle. 1Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA; 2Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA; 3Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA. Sponsor: L. Robertson.

PCBs are persistent and bioaccumulating toxic pollutants which pose health risk to humans and organisms. Although commercial production of these compounds was reduced and then banned in the 1970s, they are still present in our environment and found in human blood serum. In this study, we determined PCBs and their metabolites in human blood serum in these two populations. Blood serum samples were collected as part of the Airborne Exposure to Semi-Volatile Organic Pollutants (AESOP) study from East Chicago, an industrialized area with known high PCBs exposure in the past, and Columbus Junction, a rural area with no recognized historical PCB contamination. Our methods, which emphasize rigorous quality assurance and control (QA/QC), enabled us to evaluate all 209 PCB congeners and a sub-set of OH-PCBs congeners. After a series of extraction and clean-up procedures, samples were analyzed using gas chromatography with tandem mass spectrometry (GC-MS/MS) for PCBs and gas chromatography with electron capture detection (ECD) for OH-PCBs. Our results show that the sum of PCB congeners ranged from non-detect to 658 ng/g lw. (median = 33.5 ng/g lw.) and the sum of the four major OH-PCB congeners ranged from non-detect to 1.2 ng/g lw. (median = 0.07 ng/g lw.). We conclude that PCBs and OH-PCBs are detected in human blood serum from populations living in East Chicago, IN and Columbus Junctions, IA.

Ps 1984 Associations among Polychlorinated Biphenyls (PCBs) and Chlorinated Pesticides and Serum Lipids in Residents of Anniston, Alabama.

M. Pavlov, Z. Aminov, R. Haase, D. O. Carpenter, and W. E. Turner. 1ATSDR/CDC, Atlanta, GA; 2School of Public Health, University at Albany, Rensselaer, NY; 3Institute for Health and the Environment, University at Albany, Rensselaer, NY; 4NCEH/CDC, Atlanta, GA. Sponsor: N. Karch.

Associations among total cholesterol, triglycerides, and high density lipoprotein cholesterol (HDL) and serum polychlorinated biphenyls (PCBs) and chlorinated pesticides concentrations were examined in a sample of residents of Anniston, Alabama, participants of the Anniston Community Health Survey (ACHS).
For this analysis, nine PCBs with different number of chlorines (in brackets) and toxicological characteristics were selected: PCBs 74 (4), PCB 99 (5), PCB 118 (5), 153 (6), 170 (7), 187 (7), 196-203 (8), 206 (9), and 209 (10) were included. Four chlorinated pesticides were also included in the analyses: B-HCCH, Oxychlordan, trans-Nonachlor, and p,p’-DDE. Study includes 765 subjects with PCBs and lipid measurements. We wanted to minimize the effect of altered lipid levels due to pregnancy or progression of disease(s) in the study. Persons on lipid lowering medications, with dyslipidemia, diabetes, and coronary heart disease were excluded from the statistical analyses. Multiple linear regression models adjusted for age, race, gender, and BMI were used to analyze the data. Other major CHD risk factors such as smoking, exercise, and family history of heart disease were also examined.

Only higher chlorinated PCBs 206 and 209 were related to total cholesterol. Seven out of 9 PCBs were related to triglycerides; PCBs 99, 118 were not associated with triglycerides; trans-Nonachlor was associated with triglycerides only. No association with PCBs or pesticides was found for HDL.

Interpretations of these results are limited. In particular, potential sequence of events relating lipid levels and PCB exposure is complex and uncertain and can only be elucidated with longitudinal study design.

Y. Audet-Delage1, R. Dallaire1, N. Oueller1,2, <i>de</i>Wavreilly1 and P. Ayotte1,2,
1 Axe en Santé des Populations et Environnementale, Centre de Recherche du CHUQ, Québec, QC, Canada; 2Laboratoire de Toxicologie, Institut National de Santé Publique du Québec, Québec, QC, Canada.

The Inuit population of Nunavik (Northern Quebec, Canada) is highly exposed to persistent organic pollutants (POPs) through their traditional diet which comprises fatty tissues from marine mammals. Some POPs—i.e. hydroxylated metabolites of polychlorinated biphenyls (PCB-PCBs), pentachlorophenol (PCP) and perfluoroctane sulfonate (PFOS)—are known to compete with thyroxin (T4) for binding sites on transthyrin (TTR), a T4 transport protein located in plasma and cerebrospinal fluid. Displacement of T4 from TTR could result in decreased T4 delivery to the developing fetus and in turn delayed growth and impaired neurodevelopment in infants. We set out to test the hypothesis that POPs or their metabolites decrease circulating concentrations of T4 bound to TTR (T4-TTR) in Inuit women of reproductive age. We measured T4-TTR concentrations in archived plasma samples obtained from 120 Inuit women (18-39 year old) by combining native polyacrylamide gel electrophoresis and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques. Total T4 concentration was measured by LC-MS/MS, while those of TTR and thyroxin binding globulin (TBG) were determined by gel densitometry and an ELISA assay, respectively. POPs levels had been previously determined in those samples. The mean T4-TTR concentration was 8.4 nmol/L (SD = 2.4) with values ranging from 2.9 to 14.4 nmol/L, representing on average 6% of total T4 circulating concentration. Plasma levels of HO-PCBs, PCP or PFOS were not correlated to T4-TTR concentrations. Linear regression analysis revealed a negative correlation of TTR, TBG and total T4 concentrations with significant predictors (p<0.001) of T4-TTR levels (adjusted R-square=0.26, p<0.001), but not POPs levels. Our results suggest that actual circulating levels of POPs in Inuit women of childbearing age are not high enough to affect TTR-mediated thyroid hormone transport.

1986 Effect of TCDD on Peripheral Hormones Regulating Feed Intake and Energy Balance in Rats.

R. Pohjanvirta1, S. Lensu2 and J. Lindén1,
1 Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland; 2Department of Biological Physics, University of Jyväskylä, Jyväskylä, Finland. Sponsor: M. Viluksela.

A lethal dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) brings about a drastic body weight loss dubbed the wasting syndrome in rats. The decline of body weight primarily results from severe hypophagia but at present next to nothing is known about the factors underlying the reduced feed intake. The most important peripheral signal in the body is ghrelin secreted into blood by stomach cells, whereas the principal satiety hormone is leptin produced by the white adipose tissue. Practically no data exist on the impact of TCDD on these hormones. In the present study, we exposed TCDD-sensitive Long-Evans (Turikall/AH; LE) and TCDD-resistant Han/Wistar (Kuopio 14/W) rats to 100 µg/kg TCDD ig. and euthanized the rats at days 1, 4 or 10. The dose selected is lethal to all LE rats but sublethal to H/W rats. A feed-restricted control (FRC) group of LE rats was included in the study to help distinguish between primary and secondary effects. In addition to leptin and ghrelin, also glucagon was determined in serum samples with the Bio-Plex Suspension Array System. By 10 days, body weight dropped by about 30% in TCDD-treated and FRC LE rats but only by some 5% in TCDD-treated H/W rats. Concurrently, serum leptin decreased to non-detectable levels in FRC. It diminished also in TCDD-treated LE- and H/W rats but less prominently. Serum ghrelin was elevated by TCDD in LE rats at all time-points, and in H/W rats on day 10; in FRC, the increase was lesser on day 4 and comparable on day 10. Glucagon levels were upregulated in TCDD-treated LE rats alone reaching nine-fold increase vs. control on day 10. These data reveal that the major peripheral signals of energy balance remain intact and change appropriately in lethally TCDD-treated LE rats. However, they do not lead to the normal behavioural response (i.e. feeding) to rectify the tilted energy status.

1987 Effects of Developmental PCB Exposure on Energy Metabolism in Adult and Aged Mice.

A. Brown, A. Ashworth, K. Smith and C. P. Curran,
Biological Sciences, Northern Kentucky University, Highland Heights, KY.

Polychlorinated biphenyls (PCBs) are known to cause learning, memory, and behavioral deficits in the developing human brain. Our previous work showed that algal differences at the Ahr and Cyp1a2 loci alter susceptibility to developmental PCB neurotoxicity. While exploring behavioral differences in aged animals, we discovered a significant divergence in weights dependent on sex, genotype and treatment. The experiments described here were designed to see if gestational and lactational PCB exposure could alter energy metabolism in adult and aged mice. We compared blood glucose, triglycerides and cholesterol in PCB-treated and corn oil-treated control mice with the following genotypes: AhrbCyp1a2(-/-), AhrbCyp1a2(+/-), AhrbCyp1a2(-/-) and AhrbCyp1a2(-/-). The knockout lines were both backcrossed onto a C57BL/6J background which was our wild type control. Pregnant dams were exposed to an environmentally relevant PCB mixture during gestation and lactation. One male and one female per litter were tested at 6 months and 13 months of age. There was a significant effect of genotype and a significant sex x treatment interaction for fasting blood glucose levels. For glucose tolerance testing, mice were fasted overnight, then injected with 2 mg/kg glucose and blood collected over two hours. There was a significant main effect of sex and genotype in glucose tolerance at 6 months. We observed a significant main effect of genotype and sex for plasma cholesterol and triglyceride concentrations at 13 months. There was a significant genotype x treatment interaction for triglycerides, but only a main effect of sex for cholesterol with male mice having significantly higher levels. We replicated our prior weight trends with PCB-treated male AhrbCyp1a2(-/-) mice weighing significantly less than their corn oil-treated controls. These mice also had significantly lower triglyceride levels compared with the corn oil-treated controls. Our results indicate that the metabolic effects of developmental PCB exposure are persistent, but vary depending on both sex and genotype.
PCBs, industrial chemicals and persistent environmental pollutants, are found in many rural and urban settings. Previous studies have shown that the treatment of rats with PCB126 causes a significant disruption of hepatic metal homeostasis that could potentially alter antioxidant defenses. The current study is focused on this metal disruption, in particular on Cu, Zn and Se. Two copper-containing proteins were investigated, tyrosinase (TYR) and cytochrome c oxidase (COX), along with metal chaperones ceruloplasmin (CP), seleneoprotein (Selp) and metallothionine (MT). These proteins cover a wide range of functions from intra- and extracellular metal trafficking (MT; Selp and CP), pigment production (TYR) and electron transport (COX). An animal study was conducted where 56 rats were fed one of three AIN diets containing levels of copper (2.6 & 10 ppm). After three weeks, animals were given a single IP injection of PCB126 (1 umol/kg or 5 umol/kg in corn oil) and euthanized two weeks later. The expression levels of these proteins were investigated by qRT-PCR, ELISA, and western blot. Metals analysis showed a decrease of Zn and Se, but an increase of Cu in the liver. Serum CP concentration and hepatic mRNA levels were increased with dietary copper and PCB treatment (although the latter not significantly). TYR was expressed in the liver both transcriptionally and translationally a new finding. COX was decreased with PCB126 exposure and had no statistical association with dietary copper. Selp was unchanged either by PCB126 or dietary copper, not reflecting the decrease of hepatic Se. MT was highly increased by PCB126 at the 1 umol/kg dose. The increase of metallothionine seen along with the higher binding affinity of Cu potentially explains the changes seen with Zn. Although metallothionine may contribute to the disruption of hepatic metal homeostasis, it fails to fully explain the Se and Cu changes. (P42 ES 013661)
1993 PBDE-100 Induces Mitochondrial and HepG2 Impairment.
L. C. Pereira1, A. O. Souza2, M. J. Tasso2 and D. J. Dorta2, 1FCFRP, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, Brazil; 2FFCLRP, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, Brazil.

INTRODUCTION: Polybrominated diphenyl ethers (PBDEs) have been used in diverse products and are ubiquitous contaminants in sediments, in biota and are also found in human tissues, raising concerns about its toxicity. Many studies have reported liver toxicity and induction of apoptosis by mitochondrial dysfunction. OBJECTIVE: The aim of this work was to investigate the mechanisms of toxicity using HepG2 cells and isolated rat liver mitochondria. METHODS: Briefly, the effects of BDE-100 (0.1-50 μmol/L) was assessed on the mitochondrial respiration; Mitochondrial Membrane Potential (Δψ); mitochondrial swelling; interaction with membrane using 1-anilino-8-naphthalene sulfonate (ANS) and 1,6-diphenyl-1,3,5-hexatriene (DPH); Ca2+ release and mitochondrial ATP levels with the luciferin-luciferase system using isolated rat liver mitochondria. Furthermore, cytotoxic effect was investigated by testing cell viability with (4,5 dimetilthiazol-2-il) -Tetrazolium or sulforhodamine B. RESULTS: In higher concentrations BDE-100 was able to induce mitochondrial alterations, and interact with the mitochondrial membrane, inhibiting the phospholipid; leading to dissipation of the Δψ, deregulation of calcium homeostasis and mitochondrial swelling add a reduction in mitochondrial ATP content. In addition, it was observed inhibition the proliferation and reduce cell number of HepG2, possibly through mitochondrial pathway.罗马尼亚: Mitochondria; HepG2; BDE-100 Supported by: FAPESP.

1994 Genomic Plasticity and Polychlorinated Biphenyls: Telomerase Reactivation and AhR Desensitization in Human Keratinocytes after Long-Term Exposure to PCB126.
S. Pk., L. W. Robertson and G. Ludwig, Human Toxicology, The University of Iowa, Iowa City, IA.

Polychlorinated biphenyls (PCBs) are environmental pollutants and dioxin-like PCB126 (3,3′,4,4′,5-pentachlorobiphenyl) is classified by IARC as a human carcinogen. Chromosome ends have ‘telomeres’ which shorten with age in somatic cells. Lengthening of telomeres and high telomerase activity, the telomere maintaining enzyme, are key steps in carcinogenesis. To examine if PCB126 carcinogenicity is mediated through this mechanism, we exposed immortalized human skin keratinocytes (HaCaT) for 90 days to 5 μM PCB126. Every sixth day cells were re-seeded and telomerase activity, telomere length, cMyc, hTERT and hTR (telomerase components), TRF1 and TRF2 (reduce telomerase access to telomeres) mRNA, CYP1A1 mRNA and activity, superoxide and H2O2 levels were determined. PCB126 caused an increase in CYP1A1 mRNA and activity, TRF1/2 mRNA, and superoxide and H2O2 and a reduction of telomerase activity (50%), hTERT and hTR mRNA (10%), telomere length (80%), and cell growth from Days 6 to 48. From Day 54 on, an increase in cell growth, cMyc, hTERT, and hTR mRNA levels (to 130%), reactivation of telomerase activity (to 100%), elongation of telomere length (to 90%), and a decrease in TRF1 and TRF2 mRNA were observed. In addition, from Day 78 PCB126 no longer activated the AhR response (CYP enzymes) and no mutation were found on the AhR ligand binding region. Microarray results confirmed an increase in expression of cell growth genes on Day 54 and desensitization of AhR-response on Day 78. This study shows for the first time a telomerase reactivation, telomere lengthening, and increased cell growth after telomeres were significantly shortened by PCB-exposure in human cells. Possible mechanisms include de novo cMyc amplification (telomerase) and/or selection of a small subpopulation of cells. Either way, this work adds a new toxicity pathway for PCBs and a plausible mechanism of carcinogenicity of PCBs and possibly related contaminants to be considered in their safety evaluation and risk assessment.

1995 Exposure to PCB 126 Triggers Antioxidant Defense through Cross-Talk of Caveolae and Nrf2 Signaling.
M. C. Petriello, B. Hening and S. Han, Toxicology, University of Kentucky, Lexington, KY.

Environmental toxicants such as polychlorinated biphenyls have been implicated in the promotion of multiple inflammatory diseases including cardiovascular disease, but information regarding mechanisms of toxicity and cross-talk between relevant signaling pathways is lacking. We have reported that coplanar PCBs promote endothelial cell activation through the lipid microdomain caveolae, and the loss of caveolin-1 (Cav-1) ameliorates these detrimental effects. We have also shown that PCB 126 can activate the antioxidant transcription factor Nrf2 resulting in upregulation of antioxidant genes and downregulation of inflammatory markers. Normally, Nrf2 is sequestered in the cytoplasm and degraded through inhibitory action of Keap1, but upon activation via toxicants such as PCBs, can enter the nucleus and activate the transcription of a battery of protective genes. Our previous data suggests downregulation of Cav-1 and upregulation of Nrf2 protects against PCB-induced cellular dysfunction, but here we show for the first time an example of cross-talk between these two cellular signaling pathways. To examine the cross-talk between Cav-1 and Nrf2 pathways in PCB-induced inflammation we silenced Cav-1 in vascular cells. Importantly, Cav-1 silenced cells treated with PCB126 resulted in increased levels of Nrf2-ARE binding determined by EMSA. Also, in cells treated with PCB 126, silencing of Cav-1 resulted in decreased protein levels of both inhibitory Keap1 and Fyn kinase, which both have been previously to be implicated in Nrf2 deactivation. We also show that Keap1 levels were significantly decreased in livers from Cav-1 KO mice when compared to control C57Bl6 mice. Finally, Cav-1 silencing allowed for a more effective antioxidant response, as observed by higher levels of the antioxidant genes glutathione s-transferase (GST) and NADPH dehydrogenase quinone 1 (NQO1) in cells exposed to PCB 126. Ultimately, these data introduce novel cross-talk between Cav-1 and Nrf2 and implicates the ablation of Cav-1 as a protective mechanism of PCB-induced cellular dysfunction and inflammation.

X. Cheng1,2 and C. D. Klaassen3, 1Pharmaceutical Sciences, St. John’s University, Queens, NY; 2Internal Medicine, KU Medical Center, Kansas City, KS.

Dioxins, such as 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), are environmental pollutants. The toxic effects of TCDD are well documented mainly through activating the aryl hydrocarbon receptor (AhR). However, the underlying mechanisms for TCDD’s adverse effects, such as the wasting syndrome, are not well understood. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptations to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the aryl hydrocarbon receptor (AhR) induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both a dose- and time-dependent manner. Moreover, TCDD increased Fgf21 mRNA levels in livers of wild-type mice, but not of AhR-null mice. Chromatin immunoprecipitation assays indicate that TCDD increased AhR protein binding to the Fgf21 promoter (-105/+1 base pair). Diethylhexylphthalate (DEHP) decreased Fgf21 mRNA expression and DEHP pretreatment attenuated TCDD-induced Fgf21 expression, which may explain a previous report that DEHP pretreatment decreases TCDD-induced toxicities. In mouse liver, TCDD increased the mRNA of fatty acid uptake protein CD36 but decreased mRNA of de novo fatty acid biosynthesis enzyme fatty acid synthase (FAS). In addition to these findings in liver, TCDD induced Fgf21 mRNA in mouse white adipose tissue. In conclusion, TCDD induces Fgf21 expression via activation of the AhR-signaling pathway. Pharmacological manipulation of Fgf21 expression by AhR activators may provide an effective strategy for treating obesity, diabetes, and the metabolic syndrome. (Supported by NIH grants DK-081461, ES-09649, ES-019487, and RR-021940.)

1997 Human Transcription Factor Activation by Polychlorinated Biphenyls and Organochlorine Pesticides.
B. Wahlang1, L. Al-Eryani1, K. Falkner2, H. Bellis-Jones3, H. Clair1, R. Prough4 and M. Cave1,2, 1Department of Medicine/GI, University of Louisville, Louisville, KY; 2Louisville VAMC, Louisville, KY; 3Biochemistry, University of Louisville, Louisville, KY.

Introduction: Polychlorinated Biphenyls (PCBs) are persistent environmental toxins, present in 100% of the US adult population and theoretically predicted to act as ligands for transcription factors involved in xenobiotic/endobiotic detoxification, obesity and steratoses. These human receptors include pregnane xenobiotic receptor (PXR), aryl hydrocarbon receptor (AhR), and possibly the liver-X-receptor (LXR). This study evaluates a PCB mixture, Aroclor 1260, and selected individual PCB congeners, as potential ligands for these receptors. Additionally, we also look at PXR activation by selected organochlorine pesticides. Methods: MTTR assay was performed to determine acute toxicity concentrations for Aroclor 1260. HepG2 cells were transfected with plasmids expressing human LXR or human PXR, and receptors responsive plasmids including tk-LXR-RE-luciferase, pG3-LXR-RE-luciferase or pG3-AhR-RE-luciferase. Transfected cells were treated with ligands for LXR (T0901391:100nM), PXR (Rifampicin:10μM) and AhR
to a reduction in overall cost, a lower carbon footprint and improved lab safety. Compared to other multiresidue methods for trace pesticide detection, the limits of detection (LOD) vary from 0.002-2.4 ppb and limits of quantification (LOQ) vary from 0.01-7.4 ppb. Depending on compound and matrix, the limits of detection (LOD) vary from 0.002-2.4 ppb and limits of quantification (LOQ) vary from 0.01-7.4 ppb.

The QuEChERS approach utilizes an acetonitrile extraction, partitioning facilitated by the addition of salts and a dispersive solid phase extraction cleanup. Identification and quantitation of the extracted compounds is by capillary gas chromatography interfaced to a tandem quadrupole mass spectrometer (GC-MS/MS). The QuEChERS extraction method has many advantages including less sample size required, faster throughput time of samples, and less solvent used per sample leading to a reduction in overall cost, a lower carbon footprint and improved lab safety.

1999 Development of Weighted Distributions of Relative Potency Estimates for Dioxin-Like Compounds.

L. C. Hao1, G. Hixon1, M. DeVito2, N. J. Walker2, L. Kuriakose3, L. S. Birnbaum4, M. Harris5 and D. Wicoff6, 1ToxStrategies, Austin, TX; 2NIHES, Research Triangle Park, NC; 3ToxStrategies, Houston, TX; 4NCI, Research Triangle Park, NC.

Potential human health risks associated with exposure to dioxin-like compounds (DLCs) are evaluated using toxic equivalency factors (TEFs). TEFs are single point estimates even though they are based on relative estimates of potency (REPs) that often span several orders of magnitude. One potential improvement to the TEF methodology would be to use the full distributions of REP values for each congener. WHO recognized the value of such an approach during their most recent review of the TEF methodology but expressed concern that all REP values are not of equivalent quality or relevance. As such, we previously established a consensus-based framework that weights REPs based on REP quality and relevance and to develop a numerical approach for quantitatively weighting each REP using machine learning. Since that time, we have applied the quantitative weighting framework to the REP database to develop a numerical weight for each REP using machine learning. The objective of this study was to determine if inhibition of NF-κB by PEITC or PDTC restores the reductive and proangiogenic properties of Cyp1b1-deficient vascular cells. Methods: Primary cultures of retinal endothelial (EC) and pericytes (PC) were prepared from Cyp1b1+/+ and Cyp1b1-/- mice. Cyp1b1-/- retinal vascular cells were incubated with either 1 μM PEITC or 10 nM PDTC for 24 h, until uninduced otherwise. NF-κB expression and activity were determined by Western blot analysis and luciferase reporter activity. Immunoaffinity staining was performed to visualize p65 localization. Oxidative stress was measured using dihydroethidium staining. The ability of Cyp1b1+/+ and Cyp1b1-/- vascular cells to undergo capillary morphogenesis in Matrigel was also determined after 8 h incubation with PDTC or PEITC. Rates of cell migration were compared using a wound assay. Results: PEITC and PDTC both inhibited NF-κB p65 expression and activity. NF-κB inhibition decreased p65 staining and nuclear localization in Cyp1b1-/- retinal vascular cells. Inhibition of NF-κB restored capillary morphogenesis and migration of retinal vascular cells. Oxidative stress in Cyp1b1-/- retinal vascular cells was relieved with incubation with PEITC and PDTC. Conclusion: Cyp1b1 expression/activity is essential for maintaining the normal proliferative, migratory, and reductive state of the vascular cells, and its alteration has significant impact on vascular development and angiogenesis.
2002 Cyp1b1-Deficiency Alters Structure and Function of Trabecular Meshwork via Increased Oxidative Stress.
Y. Zhu1, S. Wang1, C. M. Sorenson2, D. M. Peters1, 3, L. Teixeira1, R. R. Dubielzig1 and N. Sheibani1, 4. 1Departments of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI; 2Pediatrics, UW-Madison, Madison, WI; 3Pathology, UW-Madison, Madison, WI; 4Pharmacology, UW-Madison, Madison, WI; 5Comparative Ocular Pathology Laboratory of Wisconsin, UW-Madison, Madison, WI.

Cytochrome P450 1b1 (Cyp1b1) is a member of the cytochrome P450 super family of proteins with mono-oxygenase activity. Although mutations in Cyp1b1 gene have been reported in patients with congenital glaucoma, the role Cyp1b1 plays in the development and function of trabecular meshwork (TM) remains unknown. Here we determined the impact of Cyp1b1 deficiency on the development and function of TM tissue in C57Bl/6 mice. The intraocular pressures (IOPs) of Cyp1b1+/+ and Cyp1b1-/- mice were measured non-invasively with a commercially available tonometer. The integrity of TM tissues of 1-week to 8-month-old Cyp1b1+/+ and Cyp1b1-/- mice were assessed by electron microscopy (EM). Oxidative stress in the TM tissues was evaluated by immunostaining for 4-hydroxy-2-nonenal (HNE), N-Acetylcysteine (NAC; 1.5 mg/g body weight, once every three days for three weeks, IP) was administered in 3-day-old Cyp1b1-/- mice and the morphology of TM was assessed by EM. Our results showed a modest but significant increase in diurnal IOP of Cyp1b1-/- mice at 6-12 weeks of age. The 2-week-old Cyp1b1-/- mice presented ultra structural irregular collagen distribution in the TM tissue, which became more severe as mice aged. Increased HNE staining was observed in TM tissue of Cyp1b1-/- mice in vivo. Administration of NAC prevented the postnatal formation of lesions in Cyp1b1-/- TM. These results were consistent with our previous in vitro findings that TM cells prepared from Cyp1b1-/- mice exhibit increased oxidative stress and cellular defects, which are reversed when incubated with NAC. Thus, the metabolic activity of Cyp1b1 contributes to oxidative homeostasis and integrity of ultra-structure and function of TM.

2003 Macrophage Toxicity in Response to Particles Collected from Indium-Tin Oxide Production.
M. A. Badding1, N. R. Fix1, K. M. Dinnick1, K. J. Cummings2, V. Castranova1 and S. S. Leonardi1. 1Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV; 2Division of Respiratory Disease Studies, National Institute for Occupational Safety and Health, Morgantown, WV.

Occupational exposure to indium compounds has recently been associated with lung disease among workers in the indium-tin oxide (ITO) industry. Previous studies have suggested that autoantibodies and reactive oxygen species (ROS) may play a role in the development of pulmonary lesions following indium compound exposure. However, the molecular mechanisms behind indium compounds’ toxicity remain largely unknown. Thus, we aim to uncover how compounds encountered in the ITO production process affect cultured macrophages and, ultimately, contribute to the pathogenesis of indium lung disease. The indium compounds used in this study were collected from different process stages at an ITO production facility. Macrophage Toxicity in Response to Particles Collected from Indium-Tin Oxide Production. Darkfield microscopy has revealed that various indium compounds interact with the cells as early as 5 minutes post-exposure, suggesting that cellular reactions to the indium compounds may be very rapid. Using electron spin resonance (ESR) to measure ROS generation, we found that various collected indium compounds produced free radicals in the presence and absence of RAW 264.7 mouse macrophages within 5 minutes. We also hypothesize that this compound particle uptake by macrophages leads to subsequent cellular damage, which could be contributing to lung pathology. Therefore, various imaging techniques are being used to observe particle association with and uptake by macrophages over a time course. Current studies are underway to evaluate the effects of the collected indium compounds on intracellular ROS production, lipid peroxidation, DNA damage, and cell proliferation over the same time course. These findings will provide a foundation for the molecular basis behind an emerging occupational health issue and assist in the prevention indium lung disease.

2004 Role of Cytochrome P450 (CYP)1A Enzymes in Sex-Specific Differences in Hypoxic Lung Injury.
K. Lingappan, W. Jiang, L. Wang, X. Couroucli and B. Moorthy. Pediatrics, Baylor College of Medicine, Houston, TX.

Preterm male infants have a higher incidence of chronic lung disease (CLD) compared to females and hyperoxia contributes to its pathogenesis. Cytochrome P450(CYP) enzymes attenuate hypoxic lung injury and the role of CYP1A enzymes remain largely unknown. We tested the hypothesis that mice will display sex-specific differences in hypoxic lung injury and that this phenomenon will be altered in mice lacking the genes for CYP1A1 or 1A2. Male (M) and Female (F) (8-10 wk) wild type (WT) (C57BL/6J), Cyp1a1-null, and Cyp1a2-null mice were exposed to hyperoxia (FiO2=0.95). Lung injury was estimated by lung-weight/body-weight (LW/BW) ratios, histopathology and immunohistochemistry for quantitation of neutrophil infiltration. Levels of 8-isopGF2tx (lung) were determined by LC-MS/MS. Mice that were treated with isoK (5-alpha ketoaldehydes) showed a significant increase in LW/BW ratios, displayed greater perivascular and alveolar injury, neutrophil infiltrates and TUNEL+ cells than females. The suspension bead array assay revealed increased in mouse lung tissue homogenate levels of IL-6 (F=M) and VEGF (M>F). WT females showed higher hepatic and pulmonary CYP1A level and activity compared to males. Strikingly, the sex-based differences were lost in mice lacking Cyp1a1 or 1a2. The increased susceptibility of WT males to hyperoxic lung injury suggests modulation by sex-specific factors like reactive oxygen species, inflammatory cytokines, and factors that regulate apoptosis. Further studies to elucidate the mechanistic role of CYP1A in the sex specific modulation of hyperoxic lung injury could lead to the development of strategies to prevent or treat CLD in the premature infant.

2005 Towards Elucidating the Pathophysiological Role of Reactive γ-Ketoaldehydes Formed through the Isoprostane Pathway of Lipid Peroxidation.
T. T. Nguyen1, 2, P. Chen2, 3, M. Aschner1, 2, 3 and L. Roberts1, 4. 1Pharmacology, Vanderbilt University Medical Center, Nashville, TN; 2Pediatrics, Vanderbilt University Medical Center, Nashville, TN; 3Neuroscience, Vanderbilt University Medical Center, Nashville, TN; 4Medicine, Vanderbilt University Medical Center, Nashville, TN.

Numerous environmental toxins cause oxidative damage to lipids, proteins, and DNA. Lipid peroxidation leads to the formation of reactive aldehydes amongst which the γ-ketoaldehydes formed via the isoprostane pathway of lipid peroxidation, termed isoketals (IsoKs), are the most reactive and injurious. Selective scavengers of IsoKs have been developed which have shown remarkable protection against oxidative damage in animal models of oxidative stress. However, the precise molecular processes preserved due to scavenging IsoKs have not been defined. This can, however, be elucidated studying the highly tractable organism, Caenorhabditis elegans (C. elegans). Accordingly, to identify the pathophysiological roles of IsoKs in oxidative injury, C. elegans are exposed to oxidative insult in the absence and presence of salicylamine. A fluorescent C. elegans strain containing a GFP transcriptional reporter for the SKN-1 target gene gst-4 (Pgst-4::GFP) was utilized for detection of altered gene expression in order to determine processes protected by reactive γ-ketoaldehyde scavengers. Late-stage L4 worms were dosed with a submaximal dose of a SKN-1 activating xenobiotic, juglone, for one hour and plated for recovery for one hour. Current studies show a nearly 4-fold increase in fluorescent intensity after a submaximal (LD50) dose of juglone (P-value = 0.002). These results demonstrate that a brief exposure to the xenobiotic juglone is sufficient in activating SKN-1 in C. elegans, and can be used in oxidative and xenobiotic stress studies. (Supported by T32ES07029-18 (T.I.T.N.).)

2006 High-Content Imaging Assay to Detect Drug-Induced Reactive Oxygen Species Generation.
Y. Will, R. Swiss and S. Nadaaniva, Pfizer Inc, Groton, CT.

The disruption of cellular redox circuits can lead to an increase in reactive oxygen species (ROS) within cells, causing oxidative stress and eventually cell damage. Mirochondria are the main producers of ROS in the form of superoxide anion. Two of the electron transport chain complexes, Complex I and Complex III, are thought to be responsible for most of the ROS generated in mitochondria. Several drugs associated with oxidative stress have been shown to contribute to toxicity in the liver, heart, kidney and central nervous system. Thus, it is important to be able to screen new chemical entities that may cause an increase in ROS production in order to reduce compound attrition at the early drug discovery stage. Hence, we developed a 384-well format high content imaging assay that measures superoxide production. The effect of 60 compounds including thiazolidinediones, antipsychotics, antidepressants and anticancer agents was measured in this assay in transformed human liver epithelial cells (THLE) using the fluorescent dyes, DiHydroethidium (for superoxide levels) and Hoechot (for cell number). In a separate 384-well format high content imaging assay, we tested the effect of the compounds on the mitochondrial membrane potential (MMP) of the cells using the
fluorescence dye, TMRM. Quantitative image analysis showed that the compounds could be grouped into four categories: (a) those that caused superoxide formation and a loss in MMP at similar concentration ranges (for example, astemizole, sorafenib), (b) those that caused superoxide production but had no effect on MMP (dasatinib), (c) those that caused a loss in MMP but had no effect on superoxide formation (tamoxifen, sertraline), and (d) those that had no effect either on superoxide formation or on the MMP over 24 hours (pioglitazone, risperidone). Both high content imaging assays were robust and rapid and can be implemented within a screening paradigm to identify compounds that modulate oxidative stress and mitochondrial membrane potential.

2007 The Antioxidant Lipoic Acid Exacerbates Paraquat-Induced Cytotoxicity.

Z. Sunter1, 2, R. Pycko2 and J. Coccimiglio2. 1Northern Ontario School of Medicine, Thunder Bay, ON, Canada; 2Biology, Lakehead University, Thunder Bay, ON, Canada.

In several countries the use of herbicides has become important in the preservation of sustainable agriculture. A widely used herbicide for broadleaf weed control is paraquat (PQ) known to be toxic to humans and animals. The treatment against PQ poisoning remains supportive with no antidotes or specific treatments available. Recognizing that PQ induces its toxicity primarily via oxidative stress-mediated mechanisms, modulating the levels of cellular antioxidants seems to serve as a potential treatment strategy. We studied the in vitro effects of the thiol-containing antioxidant lipoic acid (LA) in a human lung adenocarcinoma epithelial cell line. Incubation of control A549 cells with PQ resulted in time- and concentration-dependent increases in intracellular PQ levels with concomitant decreases in cell viability and mitochondrial membrane permeability (MMP) and increases in intracellular calcium concentrations [Ca+2]. Challenge of cells with LA alone did not cause any changes in any of the biochemical parameters measured with the exception of the MMP being significantly decreased. Co-treatment of A549 cells with LA and PQ potentiated the PQ-induced cytotoxicity as evidenced by the further exacerbation of PQ-induced decreases in MMP and increases in DNA fragmentation and [Ca+2]. Chromatographic analysis (GC/MS/MS) showed that LA was primarily associated with cell membranes. These data suggest that LA does not offer any protective effects against PQ-induced toxicity. The mechanism(s) for its ability to modulate cell survival/death by modulating the cellular redox-regulated signal transduction in PQ-challenged cells is under investigation. This research project was supported by Natural Sciences and Engineering Research Council of Canada (NSERC).

2008 Lipid Droplets with Oxygenated Fatty Acids and Triglycerides in Dendritic Cells: Possible Role in Antigen Presentation in Cancer.

V. Tyurin1, 2, W. Cao1, J. Loomen1, V. Kagan1, 2 and D. Gabrilovich3. 1Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA; 2Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA; 3Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL.

Immuno-surveillance plays a critical role in control of tumor progression whereby dendritic cells (DC) are the most potent antigen presenting cells responsible for the development of immune responses. Our previous work has identified lipid droplets as potent regulators of DC’s immune functions. Notably, DCs isolated from tumor-bearing mice or treated with tumor explant supernatants (TES) accumulated lipid droplets containing considerable amounts of PUFAs (C18:2, C18:3, C20:4 and C22:6). Among those, the amounts of C18:2 were significantly higher compared with other PUFAs species. Since accumulation of lipid droplets in DCs in cancer was mediated via Mx1 receptor, which is primarily responsible for the uptake of oxidatively modified lipids, we performed analysis of oxidized lipids in DCs using LC-ESI-MS. To investigate possible role of oxidized fatty acid in antigen presentation we used a model system where DCs were from naïve mice were grown in the presence of C18:2. Treatment of DCs with C18:2 in combination with a hydrophobic free radical generator, an azo-initiator AMVN, - both with C18:2 alone - resulted in accumulation of oxygenated lipid droplets and caused significant decrease in antigen presentation. Oxygenated FFA containing one, two and three oxygen as well as oxygenated triacylglycerols, TAGs, including truncated TAGs with m/z 766 [M+NH4]+, containing acyl corresponding to 9-oxo-noanonic acid, were observed in DC grown in the presence of TES and DC treated with C18:2 and AMVN. Given that lipid droplets can directly co-localize with cellular compartments involved in antigen processing and formation of pHHC complexes, it is likely that accumulation of oxygenated FFAs and TAGs in DC may be responsible for the loss of their immune-regulatory functions in cancer. Supported by grant with CA165065, NIOSH OH008282, NIH U19 AI068021, HL70755.

2009 Mitochondrial Cardiolipin As a Substrate for Cytochrome C-Catalyzed Production of Oxygenated Lipid Mediators.

V. Kagan1, V. Tyurin2, S. Poloyac1, M. Epperly1, J. Greenberger1, H. Bayir1 and V. Tyurin2. 1Department of EOH, University of Pittsburgh, Pittsburgh, PA; 2Pharmaceutical Science, University of Pittsburgh, Pittsburgh, PA; 3Radiation Oncology, University of Pittsburgh, Pittsburgh, PA; 4Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA.

Lipid mediators – central to the normal homeostasis and responses to stress and disease - are generated through oxidation of polyunsaturated fatty acids (PUFA), such as linoleic acid (LA), arachidonic acid (AA) and docosahexaenoic acid. Their regulatory effects are believed to depend on a fine balance between PUFA esterification/reacylation of phospholipids and on their hydrolysis by phospholipases A (PLA). We suggested that mitochondrial cardiolipins (CLs) can be a source of bioactive lipid mediators generated with the catalytic participation of cytochrome c (cyt c). In this study we employed models of rat traumatic brain injury (TBI) and mouse total body irradiation (TIR). Using oxidative lipidomics approach and MS/MS analysis, we found that TBI resulted in oxidation of polyunsaturated molecular species of CL and accumulation of its hydrolysis products such as oxygenated LA, AA and monooxo-CL. Similar, a significant increase of oxidized CLs in small intestine of TIR mice (9.5 Gy) was accompanied by accumulation of CL hydrolysis products. To generate oxygenated CL in vitro we utilized brain CL with its highly diversified polyunsaturated molecular species, and cyt c. We found that incubation of brain CL with cyt c in the presence of H2O2 yields a rich assortment of oxidized oxygenated CL species, hydrolysis of which by PLA1 and A2 generated multiple oxygenated fatty acids similar to those that were formed in vivo in brain after TBI and small intestine after TIR. An oxidation-specific lipoprotein lipase A2, was able to utilize peroxized tetralinoleoy-CL to yield different oxidized species of linoleic acid and lyso-CLs. Thus, mitochondrial CL/cyt c represents a novel mechanisms involved in lipid mediators-generating pathways. Supported by NIH ES020693, ES0011068, U19 AI068021, HL70755; NIOSH OH008282, NS07651, NS061817.

2010 Development of a Mitochondria-Targeted Nano-Complex of Imidazole-Substituted Oleic Acid As a Radioimmitator.

A. Star1, 2, A. Kaptalo1, 2, A. Amoscano1, 3, V. Tyurin1, 2, W. Seo1, 3, M. Epperly1, 2, J. Greenberger1, 3 and V. Kagan1, 2. 1Department of Chemistry, University of Pittsburgh, Pittsburgh, PA; 2Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA; 3Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA; 4 Radiation Oncology, University of Pittsburgh, Pittsburgh, PA.

Increasing likelihood of intended or accidental exposure to ionizing radiation dictates the necessity to develop effective medical countermeasures of radiation injury as has been recognized as a high priority both in the US and worldwide. No effective medical radiation countermeasures of acute and delayed radiation injuries are currently known. Based on newly discovered mechanisms of radiation damage - oxidation of cardiolipin by cytochrome c in mitochondria as a required stage in radiation-induced apoptosis - we designed and synthesized mitochondria-targeted triphenylphosphonium-conjugated imidazole-substituted oleic (TPP-IOA) which prevented/mitigated cell death induced by irradiation and protected C57BL6 mice from total body irradiation. To improve therapeutic efficiency of TPP-IOA we chose to employ branched polyethylene glycol (PEG) functionalized single walled carbon nanotubes (SWCNT) and use it as a carrier to deliver mitochondria-targeted TPP-IOA to tissues. We found that loading of PEG-SWCNT with TPP-IOA caused a marked extension of the life-span of TPP-IOA in circulation. Moreover we showed that TPP-IOA-nano-complex was more effective as radioimmitator than free TPP-IOA. While the dose of TPP-IOA in TPP-IOA-nano complexes was two times lower compared with free TPP-IOA the mitigating effect of TPP-IOA-nano complexes was higher than that of TPP-IOA alone. Importantly, we were able to deliver TPP-IOA-nano-complex in radiation-sensitive tissue such as small intestine. These data warrant further studies aimed at the development of radioprotectors/radioimmitators with broad spectrum of applications in biomedicine and biodefense. Supported by NIOSH OH008282; NIH U19 AI068021, HL70755, ES019304.

2011 XBP1, SYNV1 and Nrff2: At the Crossroads of ER Stress and Oxidative Stress.

T. Wu and D. D. Zhang. College of Pharmacy, University of Arizona, Tucson, AZ.

Transcription Factor Nrff2 has long time been revealed as the master regulator of intracellular redox homeostasis. As an adaptive response to oxidative stress, Nrff2 activates transcription of a battery of genes encoding antioxidant protein, detoxification
enzymes and xenobiotic transporters by binding to the cis-antioxidant response element in the promoter region of these genes. Previous works by our lab and others demonstrated that Nrf2 is subject to poly-ubiquitin-mediated proteosomal degradation in a Keap1-dependent manner. Here we report that active form of XBP1, XBP1s suppresses Nrf2 and its downstream signal under ER stress condition, through activation transcription of synovial apoptosis inhibitor 1 (SVYN1). SVYN1, also known Hrd1, is an ER-associated degradation (ERAD) ubiquitin ligase. We have determined that SVYN1 directly interacts with the Neh4 and Neh5 domain within Nrf2. Overexpression of SVYN1 attenuates Nrf2 signaling, whereas knockdown of SVYN1 enhances expression of Nrf2 and its downstream genes. Furthermore, SVYN1 accelerates the clearance of Nrf2 protein through promoting ubiquitination of Nrf2. These findings demonstrate that XBP1 and SVYN1 are involved in regulating the Nrf2 pathway in a new Keap1-independent mechanism. Moreover, our data revealed a possible crosstalk between ER stress pathway and oxidative responses via UPR and Nrf2 signaling pathway in order to protect cells against environmental stress.

2012 Sulforaphane Stimulates Basal but Inhibits Glucose-Stimulated Insulin Secretion in Beta-Cells: Role of Reactive Oxygen Species and Induction of Endogenous Antioxidants.

J. Fu1, Q. Zhang1, C. G. Woods1, H. Zheng1, B. Yang2, M. E. Anderson1 and J. Li1.

1. Institute for Chemical Safety Sciences, The Hamner Institute for Health Sciences, Durham, NC; 2College of Basic Medical Science, China Medical University, Shenyang, China.

Excessive oxidative damage by reactive oxygen species (ROS) is a major contributor to pancreatic β-cells dysfunction. Interestingly, ROS are also involved as a second messenger in glucose-stimulated insulin secretion (GSIS) in β-cells. This paradox obscures the regulatory role of antioxidants in insulin secretion. In the present study, we used an integrated mathematical modeling and in vitro approach to understand the effects of antioxidant sulforaphane (SFN) on insulin secretion. Experiments with INS-1(832/13) cells and isolated mouse islets showed that 30-min SFN treatment stimulated basal insulin secretion in a concentration-dependent manner at low glucose conditions (3 mM). This acute stimulatory effect resulted from an initial SFN-elicted increase of ROS, and when suppressed with cell-permeable ROS scavenger N-acetyllysinee (NAC) or glutathione ethyl ester, SFN-stimulated insulin secretion was diminished. Due to the negative feedback and incoherent feedforward loops comprising the redox homeostatic control circuit, cells can adapt to prolonged SFN treatment and settle to a steady state exhibiting strong induction of antioxidants but only marginally increased ROS levels. This adapted state slightly increased basal insulin secretion in INS-1(832/13) cells. More importantly, the model predicted that the elevated antioxidant capacity at the adapted state attenuates glucostimulated ROS signal and GSIS. This effect was validated in INS-1(832/13) cells exposed to low, non-cytotoxic concentrations of SFN. Despite suppressing GSIS, prolonged exposure to SFN protected INS-1(832/13) cells from cytotoxicity induced by exogenous H2O2. Taken together, our studies demonstrated that SFN has divergent effects on basal and glucose-stimulated insulin secretion in β-cells. Although the adaptive induction of endogenous antioxidants by SFN enhances β-cell survival, it suppresses GSIS.

2013 Generation of Reactive Oxygen Species by Process Materials from Indium-Tin Oxide Production.

N. R. Fix1, K. M. Danninkel1, M. A. Badding1, A. B. Stefaniak2, K. J. Cummings2, V. Castranova3, P. C. Andersen, 1 and S. S. Leonard1.

1, 2Health Effects Laboratory Division, National Institute of Occupational Safety and Health (NIOSH)/CDC, Morgantown, WV; 3Division of Respiratory Disease Studies, National Institute of Occupational Safety and Health (NIOSH)/CDC, Morgantown, WV.

The transition metal indium has been used for decades for various applications including electronics, fusible alloys, and solar cells. Indium compounds usage has increased dramatically based on the rise in demand of touch screens and flat panel displays (LCD's). With this growth of industry, there is potential for increased incidence of lung disease among workers who produce, use, or reclaim indium-tin oxide (ITO). Inhalation exposure of indium samples can occur during various times of manufacturing. Materials from different process stages were collected from an ITO manufacturing facility. While the pathogenesis of indium lung disease is unknown, previous work has suggested a role for reactive oxygen species (ROS). Chemical characteristics of the process materials will aid in determination of reactivity differences between compounds. Electron spin resonance (ESR), a common tool used for measuring ROS, was used in both acellular and cellular exposures. Acellular samples were prepared by combining 10 mg/mL process material, phosphate buffered saline (PBS), 10mM hydrogen peroxide (H2O2), and 100mM DMPO (spin trap). RAW 264.7 mouse macrophage myelomonocytic cell line, were the same concentration of composite were used in the cellular samples conducted in ESR. Scavengers and chelators were used to define radical mechanisms. Results indicated that ventilation dust (VD), tin-oxide (SnOx), and unsintered ITO (UTO) cause a greater increase in ROS production than the other process material. H2O2 and O2 consumption measurements were used to determine the source of the ROS. ESR studies combined with investigation of ROS production will help to determine the mechanisms behind indium lung disease. Data from this study will be used to determine possible hazards in occupational exposure of indium process material while increasing the understanding of indium lung disease.

2014 Lower Expression of Nrf2 Promotes Proliferation, Migration and Invasion of Prostate Cancer Cells.

R. Khatri and A. K. hairyal. Pharmacology and Experimental Therapeutics, University of Maryland Baltimore, Baltimore, MD.

The nuclear factor Nrf2 is known to play a critical role in cellular protection against oxidative stress and cellular transformation. However, unabated nuclear accumulation of Nrf2 is also known to reduce apoptosis, promote cancer cell survival and drug resistance. Mutations in INrf2 and Nrf2 leading to nuclear accumulation of Nrf2 in many cancers including prostate and breast cancer are known. These also raise interesting questions regarding the role of Nrf2 in cancer metastasis and/or metastasis progression that remains elusive. In this study we have investigated the hypothesis that loss of Nrf2 is associated with metastasis/metastasis progression. We used less metastatic LNCaP and highly metastatic LNCaP derived C4-B2 prostate cancer cells line to test our hypothesis. The analysis revealed that highly metastatic C4-B2 cells expressed higher INrf2 and lower Nrf2 levels as compared to less metastatic LNCaP cells. We used control, INrf2 and Nrf2 shRNA to generate C4-B2 and LNCaP derived cells with altered levels of INrf2 and Nrf2 to determine the role of Nrf2 in metastasis and metastasis progression in Soft agar colony formation and X-CHELHence proliferation, migration and invasion assays. C4-B2-INrf2shRNA cells expressing inhibited levels of INrf2 and higher levels of Nrf2 showed fewer colonies in soft agar and proliferated faster but did not migrate as compared to C4-B2-Control shRNA cells. Similarly,INrf2-shRNA cells expressing inhibited levels of INrf2 in less metastatic LNCaP cells demonstrated significantly higher number of colonies in soft agar, proliferated faster and showed greater migration and invasion as compared to LNCaP-Control shRNA cells. These results together suggest that lower Nrf2 levels are associated with higher proliferation, migration and invasion or metastatic progression. Currently, we are investigating the mechanism of the role of Nrf2 in metastasis progression and plan in vivo experiments to test our hypothesis of the association of lower Nrf2 with metastasis progression in mice.

2015 Mechanisms of Oxidative Stress Promoted by 1, 4-Diamo-no-2-Butanone in Trypanosoma cruzi and Mammalian Cells.

E. J. Bechara1, 2, C. O. Soares1, W. Collin3 and M. M. Alves. 1Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, Brazil; 2Bioquímica, Universidade de São Paulo, São Paulo, Brazil.

The putrescine analog 1,4-diamo-2-butanone (DAB) is highly toxic to pathogenic microorganisms, including various fungi and Trypanosoma cruzi. Similar to other α-amino-carboxyl metabolites such as aminocetone and 5-amino-oleuvinic acid, DAB exhibits pro-oxidant properties. DAB reportedly undergoes metal-catalyzed oxidation in aerobic medium yielding H2O2, NH4+ ion, and 4-amino-2-oxobutanal, a highly toxic α-oxoaldehyde. Administered to mammalian cell cultures, DAB decreases the cell viability which was shown to be associated with changes in redox balance. Thus, treatment of KRO cells derived from human colon carcinoma or cultured LL-MK2 Rhesus epithelial cells with millimolar DAB caused significant decline in cell viability, which was inhibited by pre-addition of catalase, aminoguanidine (an α-oxoaldehyde trap), N-acetyl cysteine or reduced glutathione. Medium supplemented with catalase (2.5 mM) protects trypomastigotes against DAB toxicity, while incubation with catalase is hampered by DAB. Additionally, intracellular amastigotes are susceptible to DAB toxicity. Furthermore, pre-treatment with 100-500 μM buthionine sulfoximine (BSO) of LLC-MK2 potentiates DAB cytoxicity, whereas 5 mM N-acetyl-cysteine (NAC) protects cells from oxidative stress. Together, these data support the hypothesis that redox imbalance, not only the long reported DAB-promoted inhibition of polyanine metabolism, contributes to its cytoxicity in both T. cruzi and mammalian host cells.
Ozone (O₃) exposure in both humans and rodents leads to elevations in alveolar and peripheral inflammation, believed to promote endothelial dysfunction. Although pulmonary inflammation is a well-defined response to inhaled O₃, little is known regarding acute effects of O₃ exposure on the mechanisms responsible for impaired coronary vasodilation. We hypothesized that a single, whole-body O₃ exposure will induce pulmonary inflammation and the transference of pulmonary inflammatory elements will contribute to reactive oxygen species (ROS)-induced endothelial dysfunction. We tested this hypothesis by assessing pulmonary immune infiltrates from bronchial alveolar fluid lavage (BALF), circulating WBCs and coronary artery endothelial function 24 hrs following O₃ exposure (4h at 1ppm) or filtered air (FA). BALF total protein, cell number, macrophage/neutrophil counts and circulating WBC differentials were assessed. Furthermore, experiments assessing the effects of O₃ on the endothelial-dependent vasodilator, acetylcholine (ACh), in coronary arteries pre-constricted (~50%) with a thromboxane mimetic (U46619) in the presence or absence of luminal administration of the superoxide dismutase mimetic (PEG-SOD). Parallel experiments were performed where rodents were injected (i.p.) with inhibitory antibodies directed against lectin-like oxidized low density lipoprotein receptor-1 (LOX-1). Our results demonstrate significant increases in BALF total protein and cell number were evident in O₃ exposed rats, specifically neutrophils, compared to FA controls. Systemic increases in circulating neutrophils were also evident following O₃ exposure. Moreover, ACh-mediated vasodilation was restored in vessels loaded with PEG-SOD and partially restored in rodents pretreated with the LOX-1 inhibitor. Our data suggest that that O₃-induced pulmonary inflammation contributes to increased ROS-mediated endothelial dysfunction downstream of LOX-1.
protected against p-aminophenol (PAP, 150 μM, 3 hr), iodocacetamide (25 μM, 2 hr), and H₂O₂ (250 μM, 24 hr)-induced cytotoxicity as assessed by the MTS assay. Moreover, ATRA suppressed tumor necrosis factor-α (TNF-α, 30 ng/mL, 2 hr)-induced caspase-3 cleavage by 4-fold, indicative of a reduction in apoptosis. In contrast, pretreatment of cells with ATRA had no effect on cisplatin (25 μM, 24 hr)-induced caspase-3 cleavage. The data reveal that ATRA selectively protects against toxins that induce necrotic and death receptor-mediated (extrinsic) apoptotic cell death but not against mitochondrial-mediated (intrinsic) apoptotic cell death. Although the molecular mechanism(s) underlying the cytoprotective effects of ATRA remain unclear, the endoplasmic reticulum (ER) molecular chaperone Grp78 is a pivotal contributor to the cytoprotective/adaptive response to cell stress. Therefore, we subsequently used Grp78 non-inducible cells to explore the relationship between the ER stress response and ATRA signaling. LLC-PK₁ cells, in which the induction of grp78 expression was disrupted via stable expression of an F. T. Schirris¹, ³, J. J. Nabers¹, ³, J. D. Beyrath², ³, J. A. Smeitink², ³ and H. Dhar¹, ², ³ screened and characterized of aldehydes on the basis of protein carbonylation.

H. Dhar¹, ² and P. J. O’Brien³, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; ²Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.

Proteins are easily susceptible to Post Translational Modifications (PTM) where protein carbonylation is the most common type that plays a pivotal role in etiology and/or progression of lethal diseases like neurodegenerative diseases, cancers, aging, diabetes and sepsis. Since, ROS and secondary products of oxidative stress can induce the protein carbonylation and this type of protein oxidation is regarded as a well-known biomarker of oxidative stress with different susceptibility for different amino acids. In this study, we studied the protein carbonylation caused by different aliphatic (formaldehyde to decanal i.e. aldehydes from carbon 1 to carbon 10) and aromatic (benzaldehyde and its derivatives) aldehydes by applying BSA Protein carbonylation assay. Taking into account the ED 50 values of the aliphatic aldehydes, 2mM and 4mM concentrations of aldehydes were used. Among aliphatic aldehydes, only first two aldehydes (HCHO and CH₃CHO) showed the highest protein carbonylation in a dose dependent manner. On the other hand, aromatic aldehydes showed the following trend: 4-Chlorobenzaldehyde (max at 120 mins) > Cinnamaldehyde (max at 120 mins) > Benzaldehyde (max at 60 mins) > Tolualdehyde (max at 120 mins) > Toluoylaldehyde (max at 40 mins). GSf₁ was found effective against protein carbonylation. Protein carbonylation increased with increase in dose except in case of cinnamaldehyde and benzaldehyde where high dose decreased the carbonylation. So, our result suggests that aliphatic aldehydes can be characterized as less reactive towards protein carbonylation reaction than aromatic aldehydes. Among aromatic aldehydes, cinnamaldehyde and 4-chlorobenzaldehyde can be regarded as fast reacting aldehydes, m-tol and p-tol as slowly reacting with or without lag phase respectively, ortho substituted aldehydes as causing no protein carbonylation.
and the potentiation of these effects by 3MA. Treating the E47 cells with AA in-
duced p38 MAPK, 3MA enhanced the activation and rapamycin inhibited it. This
study shows that autophagy is protective against AA, BS0 and CCl4 induced
CYP2E1 dependent cytotoxicity. This protection may be due at least in part
through prevention of mitochondrial dysfunction to maintain cell survival.

2025 Absence of Upstream Consensus Regulatory Element
Sequences for Nr2f in Human Glutathione S-Transferase
Genes.

C. M. Schaupp1, T. K. Bammler2, R. P. Byer2, T. J. Kavanaugh1, 4 and
D. L. Eaton1, 2. 1Environmental and Occupational Health Sciences, University of
Washington, Seattle, WA; 2Center for Erogenetics & Environmental Health, University of
Washington, Seattle, WA.

Nuclear factor erythroid-derived 2-like 2 (NFE2L2, or NRF2) is involved in
antioxidant response to cellular stress. In response to oxidative or electrophilic stimuli,
NRF2 binds its target genes containing an antioxidant response element (ARE),
upregulating expression of detoxifying/antioxidant enzymes. Numerous studies have
demonstrated that some rodent liver GSTs are highly inducible via activation of
the Keap1/Nrf2/ARE antioxidant response pathway by prototypical Nrf2 activa-
tors such as BHA, sulforaphane and oltipraz. Thus, these chemicals may have ther-
apeutic value based on their putative ability to activate NRF2-mediated antioxidant
pathways. However, human studies in vitro and in vivo have not generally seen a
robust induction of GSTs following administration of Nrf2 activators, suggesting
that human liver GSTs are less responsive to ARE-mediated induction. To identify
the potential basis for a possible inter-species difference in GST inducibility, we
used the web-based oPOSSUM software to identify ARE sequences up to 10,000
base pairs upstream of the transcriptional start sites of antioxidant enzymes puta-
tively regulated by NRF2 in murine and human genomes. Only three out of 19
human GST genes (GSTM2, GSTO2, and GSTZ1) contained an ARE consensus
sequence within 10kb of the transcriptional start site, whereas ARE sequences were
present in 11 of 17 murine GSTs analyzed. Notably, none of the common, highly
expressed human alpha or mu class GSTs contained consensus NRF2 elements,
whereas 2 of 4 alpha class, and 5 of 7 mu class, mouse GSTs contained one or more
Nrf2 responsive elements. These data suggest that inter-species differences in GST
inducibility may result from differences in the presence and location of ARE consen-
sus sequences upstream of murine and human GST genes—a conclusion which
may have major implications in the clinical setting.

2026 Pharmacological Inhibition of Thioreredox Reductase I
Attenuates Hyperoxic Lung Injury by Augmenting
Glutathione Synthesis.

L. K. Rogers1, 3, R. D. Bratz1, T. E. Tippie1, 2 and M. Velsen1, 2. 1Center for
Perinatal Research, The Research Institute at Nationwide Children’s Hospital,
Columbus, OH; 2Anesthesiology and Intensive Care, Rheinische Friedrich-Wilhelms
University, Bonn, Germany; 3Pediatrics, The Ohio State University, Columbus, OH.

Inflammation and oxygen toxicity increase free radical production and contribute
to the development of acute respiratory distress syndrome (ARDS). We have previ-
ously shown increased glutathione (GSH) levels in lung epithelial cells in vitro and
attenuated adult murine hyperoxic lung injury in vivo following thioreredox reduc-
tase-1 (Trxr1) inhibition with auranofin and aurothioglucone (ATG), respectively.
The present studies tested the hypothesis that ATG treatment increases pulmonary
GSH levels, decreases lung injury, and improves survival. Adult male mice were
given a single IT dose of 0 or 0.375 mg/kg E. coli LPS. After 12 h, an injection of 0
or 25 mg/kg ATG or a combination of ATG and 800 mg/kg buthionine sulfox-
imine (BSO) were administered, i.p. Mice were then exposed to room air (RA) or
>99% hyperoxia (O2). After 3 d exposure, bronchoalveolar lavage (BAL) and lung
tissues were collected. BAL protein concentrations were significantly greater in
LPS/O2-exposed mice when compared to PBS/RA controls. In LPS/O2-exposed mice,
ATG treatment significantly decreased BAL protein concentrations, increased
lung GCLM expression, GSH levels, and GSH/GSSG ratios, and improved sur-

vival compared to PBS-treated LPS/O2-exposed mice. BSO treatment dramatically
decreased the survival of ATG-treated LPS/O2-exposed mice. In summary, ATG
enhances GSH levels, decreases lung injury, and improves survival in a GSH-de-
pendent manner in a murine model of ARDS. If enhancement of pulmonary GSH
levels can be accomplished via drug-mediated Trxr1 inhibition, which seems to be
without detrimental effects, this approach could constitute a novel strategy to im-
prove outcomes in patients with oxidant-mediated lung injury. This work was sup-
ported by the National Institutes of Health (RDB F31HL097619, TET
K08HL093365, and LKR R01AT006880).

2027 Aniline Up-Regulates Cyclins via Induction of Oxidative
Stress in Rat Spleen.

J. Wang, G. Wang, H. Ma and M. Khan, University of Texas Medical Branch,
Galveston, TX.

Aniline exposure is associated with toxicity to the spleen leading to splenomegaly,
fibrosis and a variety of sarcomas of the spleen. In earlier studies, we have shown that
aniline exposure leads to iron overload, oxidative and nitrosative stress and ac-
tivation of redox-sensitive transcription factors, which could regulate various genes
leading to a tumorigenic response in the spleen. However, molecular mechanisms
leading to aniline-induced cellular proliferation in the spleen remain largely un-
known. This study was undertaken to further assess the role of oxidative and ni-
trosative stress in the regulation of cell cycle proteins (cyclins) following aniline ex-
posure. Groups of male SD rats were treated with aniline (1 mmol/kg/day by
gavage), aniline plus N-acetylcysteine (NAC, an antioxidant, 300 mg/kg/day, i.p.),
aniline plus aminoguanidine (AG, an iNOS inhibitor, 200 mg/kg/day, i.p. or i)a-
line plus zinc protoporphyrin (ZP, a heme oxygenase inhibitor, 50 μmol/kg/day, i.p.)
for 7 days (controls received drinking water only), and mRNA expression of
cyclins A, B, D3 and E were measured in spleen. Aniline treatment resulted in sig-
ificant increases in the expression of cyclin A (7.9-fold), cyclin B (7.3-fold), cyclin
D3 (3.7-fold) and cyclin E (5.4-fold) as compared to the controls. Interestingly, all
of the three inhibitors significantly reduced the aniline-induced overexpression of
cyclins. Specifically, NAC reduced the expression of cyclins A, B, D3 and E by
61%, 48%, 38%, and 41%, AG reduced cyclins A, B, D3 and E by 60%, 63.0%,
51%, and 37%, whereas ZP reduced cyclins A, B, D3 and E by 30%, 61%, 62%,
and 44%, compared to aniline only treated rats, respectively. Our data suggest that
oxidative and nitrosative stress play a role in aniline-induced overexpression of cy-
clins which could be critical in cell proliferation, and may contribute to aniline-in-
duced tumorigenic response in the spleen. Supported by NIH ES06476.

2028 Understanding the Role of UCP2 in Fatty Acid Beta-
Oxidation and Drug-Induced Liver Injury.

J. E. Montanetz1, P. B. Smith2 and A. D. Patterson1, 2. 1Veterinary and Biomedical
Science, The Pennsylvania State University, University Park, PA; 2Center for
Molecular Toxicology and Carcinogenesis, The Pennsylvania State University,
University Park, PA.

UCP2, originally described as a mitochondrial uncoupling protein, has been re-
ported to serve many other functions including regulation of glucose and lipid me-
tabolism as well as regulation of ROS in cancerous cells. We recently reported that
under hepatotoxic conditions such as that induced by acetaminophen, UCP2 ex-
pression was found to protect against liver damage in a PAOPx-dependent fashion.
Interestingly, polymorphism in the coding sequence of the UCP2 gene have been
found to be associated with obese and/or diabetic individuals further implicating
UCP2 in the fatty acid beta-oxidation pathway. However, the precise mechanism
by which UCP2 exerts these salutary effects is unknown. In this study, the meta-
bolic functions of UCP2 and UCP2 (A55V) variant were compared using a gas
cromatography coupled with mass spectrometry-based metabolomics approach.
C57-7 cells were transfected with myc/flag-tagged UCP2 and UCP2 (A55V). After
confirming expression of the constructs via Western blotting (no difference
was observed between UCP2 and UCP2 (A55V)), the cells were extracted, metabo-
lites derivatized using methoxamine and MSTFA, and the samples ran on an
Agilent 5975C Series GC/MSD. Principal component analysis of the data show
distinct separation of the UCP2 transfected cells from the control and UCP2
(A55V) transfected cells. Among others, palmitic acid was found to be dramatically
decreased (~ 2.3 fold) in the UCP2-transfected cells compared to control and
UCP2 (A55V) transfected cells. Further, palmitic acid is thought to induce UCP2
expression through PAOPx activation. This study illustrates the utility of the metab-
olomics approach for elucidating and/or clarifying the metabolic function of
UCP2.

2029 Real-Time Monitoring of Xenobiotic-Induced Intracellular
Redox Changes Using Ozone As a Model Oxidant.

E. A. Gibbs-Flournoy1, S. O. Simmons2, P. A. Bromberg1 and J. M. Samet1.
1Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill,
NC; 2Department of Environmental Health, University of North Carolina at
Chapel Hill, Chapel Hill, NC; 3Epidemiology, University of North Carolina at
Chapel Hill, Chapel Hill, NC.

Oxidative injury is often cited as a key feature in the toxic action of many xenobi-
tics; however, unambiguous indices of xenobiotic-induced oxidative stress have
proven elusive. A new generation of sensors capable of reporting intracellular redox
status has shown much promise. However, their use in toxicological assessments involving strong electron donors that remain strong in 101 proteins (very high confidence limits) of which 38 were upregulated and 63 were downregulated. We observed a significant down regulation of ribosomal proteins, transcriptional factors and splicing factors. But at the same time, factors associated with protein stability were upregulated. Pre-apoptotic signals were counterbalanced by anti-apoptotic signals, and cell growth factors were increased. CONCLUSION: Our result showed that INH is acutely non-toxic to HL-60 cells, and is unlikely to possess direct toxicity to neutrophils or bone marrow precursors. INH treatment appeared to induce cellular energy conservation through downregulation of protein synthesis and enhanced protein stability. Further pathways will be elucidated once INH-induced protein radicals and covalent adducts are identified.

Supplemental oxygen administration is frequently encountered in the treatment of premature infants suffering from respiratory distress. However, hyperoxia contributes to the development of chronic lung disease [bronchopulmonary disease (BPD)] and retinopathy of prematurity (ROP). In this investigation, we tested the hypothesis that exposure of newborn rats to vitamin A and hyperoxia would attenuate retinopathy and abnormal neurovascularization compared to those exposed to hyperoxia alone. Newborn Fisher 344 rats were maintained in room air or exposed to hyperoxia (75% O2) for 7 days. Some animals were treated i.p. with vitamin A [2 mg/kg], once daily for the first 5 days of hyperoxic exposures. Animals were sacrificed at selected time points after termination of hyperoxia. Retinal vascular densities of flat mounted retinas were assessed. Protein expression of HIF-1α was determined by Western blotting. Oxidative DNA damage in retinal tissue was determined by 32P-postlabeling. Immediately after 7 days of exposure to hyperoxia alone, we observed constricted retinal vessels, compared to those given vitamin A + hyperoxia. Seven to thirty days after termination of hyperoxia alone, the animals displayed formation of abnormal retinal vessels and capillaries, compared to the vitamin A + hyperoxia group. At the 7 day time point, the HIF-1α protein expression in the hyperoxia + vitamin A group was much higher than the hyperoxia alone group. On the other hand, at later time points, the HIF-1α protein levels were higher in the hyperoxia group. Interestingly, oxidative DNA adducts were significantly decreased in the retinas of animals given vitamin A + hyperoxia. Our study supports the hypothesis that vitamin A protects retina from oxygen-induced abnormal neurovascularization, and this is the first report that shows oxidative DNA damage to contribute to experimental ROP.

2032 Attenuation of Experimental Retinopathy of Prematurity by Vitamin A in the Newborn Rat

X. Couroudi1, Y. Liang1, G. Zhou2, W. Jiang1 and B. Moorhead1, 1Pediatrics, Baylor College of Medicine, Houston, TX; 2Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX.

Nerve growth factor (NGF) is a member of structurally related proteins, named neurotrophins (NTs), that regulate neuronal survival, development, function, and plasticity. Moreover, NGF is an important activator of antioxidant mechanisms. These functions of NGF are mediated by the tropomyosin-related kinase receptor A (TrkA). There is evidence that NTs and their receptors are expressed also in visceral tissues. Physical exercise and stress increase levels of NGF in plasma. Using a murine model we have shown that systemic inhibition of GSH synthesis with L-buthionine-S-R-sulfoximine (BSO) increased brain GSH content and induced the transcription of ngfb in liver. Murine striatum cholinergic neurons express TrkA receptors thus we investigated if i.p. injection of BSO or of sodium ascorbate (AsA) modulate the transcription of ngfb and trka as well TrkA phosphorylation in mice striatum. Both agents induced the activation of the NGF/TrkA pathway which correlated with an increased transcription of xCT, LAT1, EAA1, amino acid transporter systems that provide L-cys / L-cys2 to central nervous system and of GCLm which participates in the de novo synthesis of GSH. The inhibition of TrkA phosphorylation by K252a or anti-NGF neutralizing antibody abrogated the BSO and iAs induced transcription of xCT, LAT1, EAA1 and GCLm suggesting the participation of this pathway in the in vivo antioxidant response at least in striatum. Furthermore, since anti-NGF neutralizing antibodies would not cross the blood-brain barrier, our results suggest that NGF functions as a systemic redox-sensor in both CNS and peripheral tissues and that the NGF/TrkA pathway plays a critical role in the antioxidant response in the striatum in our murine model. Supported by CONACYT 102287.
HMGB1 Mediates Hyperoxia-Induced Impairment of Pseudomonas aeruginosa Clearance and Inflammatory Lung Injury in Mice.

V. S. Patel1, R. Sita1, A. Gore1, B. Phan1, L. Sharma1, V. Sampat1, J. Li2, H. Yang3, S. Chavan3, H. Wang3, K. Tracey1 and L. Mantell1, 2, 3.

1, 2Pharmaceutical Sciences, Saint John’s University, Fresh Meadows, NY; 3Center for Inflammation and Immunology, The Feinstein Institute for Medical Research, North Shore-LIJ Health Science, Manhasset, NY; 3Center for Heart and Lung Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health Science, Manhasset, NY.

Mechanical ventilation with supraphysiological concentrations of oxygen (hyperoxia) is routinely used to treat patients with respiratory distress. However, a significant number of patients on ventilators have enhanced susceptibility to infections and develop ventilator-associated pneumonia (VAP). Pseudomonas aeruginosa (PA) are one of the most common bacteria found in these patients. Previously, we demonstrated that prolonged exposure to hyperoxia can compromise the ability of alveolar macrophages (AM), an essential part of the innate immunity, to phagocyte PA. The objective of this study was to investigate potential molecular mechanisms underlying hyperoxia-compromised innate immunity against bacterial infection in a mouse model of PA pneumonia. Here, we show that exposure to hyperoxia (99.95% O2) lead to a significant elevation in levels of airway HMGB1 and an increased mortality in C57Bl/6 mice infected with PA. Treatment of these mice with neutralizing anti-HMGB1 monoclonal antibody (mAb) resulted in a reduction in bacterial counts, injury, and number of neutrophils in the lung and an increase in leukocyte phagocytic activity compared to mice receiving control mAb. This improved phagocytic function was associated with reduced levels of airway HMGB1. The correlation between phagocytic activity and levels of extracellular HMGB1 was also observed in cultured macrophages. These results indicate a pathogenic role for HMGB1 in hyperoxia-induced impairment in host ability to clear bacteria and inflammatory lung injury. Thus, HMGB1 may provide a novel molecular target for improving hyperoxia-compromised innate immunity in patients with VAP.

2035 Exposure to Perfluorooctanoic Acid (PFOA) Causes Oxidative Stress in the Mouse Pancreas.

Q. Wu, A. A. Bond, L. M. Kamendulis and B. A. Noseworthy, Environmental Health, Indiana University School of Public Health, Bloomington, IN.

Perfluorooctanoic acid (PFOA), a perfluoralkyl compound used in the manufacture of many industrial and commercial products, does not readily decompose in the environment, and is biologically persistent in fish, animals and humans. Human exposure to PFOA occurs through both environmental and occupational exposures. Due to the long half-life of PFOA in humans (3.8 yrs), the potential exists for PFOA exposure to participate in chronic diseases. Chronic PFOA exposure in rodents induces pancreatic acinar cell tumors (PACTs), and human epidemiologic studies also suggest that PFOA exposure may have adverse effects on the pancreas. While multiple animal studies have examined PFOA-mediated liver toxicity, very little is known about the effects of PFOA on pancreatic function. To assess the role of PFOA on the pancreas, we treated C57Bl/6 mice with vehicle, or PFOA at doses of 0.5, 2.5 or 5.0 mg/kg BW/day for 28 days. In addition, mice were treated with cerulein, which induces mild pancreatitis and produces an oxidative stress in the pancreas. We found significant accumulation of PFOA in the serum, liver and pancreas of PFOA treated animals, which was associated with induction of oxidative stress, as measured by the lipid peroxidation product malondialdehyde and F2ß-isoprostanes, as well as the oxidatively modified DNA base, 8OHdG. The serum, liver and pancreatic ratio of reduced to oxidized glutathione decreased with increased PFOA dose, again indicating the stimulation of oxidative stress in the liver and pancreas. For both of these responses, the pancreas was more severely affected in comparison to the liver. As a further response to oxidative stress, induction of anti-oxidant genes was also evaluated. While mitochondrial superoxide dismutase mRNA levels were induced to comparable levels in both liver and pancreas, the pancreas failed to upregulate either glutathione peroxidase or catalase genes. These results suggest that the pancreas may be highly susceptible to oxidative damage elicited by exposure to perfluoralkyl compounds.

2036 Chronic Over-Expression of Receptor Tyrosine Kinase ErbB2 in the Heart Alters Redox-Sensitive Molecules in the Mitochondria.

E. Belmonte1, 2, S. Das5, V. Sivakumaran5, P. Sya Shah1, C. Steenbergen1 and K. Gabrielsson1, 2, 5Environmental Health Sciences-Molecular and Translational Toxicology, Johns Hopkins University, Baltimore, MD; 2, 5Molecular and Comparative Pathology, Johns Hopkins University, Baltimore, MD; 3, 5School of Medicine, Johns Hopkins University, Baltimore, MD.

Previous studies on cardiac-specific over-expression of epidermal growth factor receptor 2 (ErbB2) demonstrated that ErbB2 activates protective signaling pathways (pro-survival) and induces a hypertrophic phenotype that does not progress to heart failure. To explore this interesting phenomenon, we used the ErbB2 transgenic murine model to determine whether the observed phenotypes are due to redox-sensitive molecules in the mitochondria that alter mitochondrial function by regulating reactive oxygen species (ROS) formation. Microarray data that compare the transgenic mice to wild type mice suggest that ErbB2 alters various oxidative stress genes. We found that ErbB2 over-expression in the heart upregulates glutathione reductase (Gsr), glutathione peroxidase 1 (Gpx1), and peroxiredoxin 5 (Pdks5) proteins. We measured ROS production and found that the transgenic mitochondria produce less ROS than the wild type mitochondria. Total glutathione (GSH) levels and glutathione peroxidase activity are higher in the transgenic mice compared to the wild type group. We measured the mitochondrial Ca2+ retention capacity and found that the transgenic group has less Ca2+ uptake than the wild type group. The transgenic mitochondrial membrane potential (ΔΨ) was measured with the fluorescent dye tetramethylrhodamine ethyl ester (TMRE) and we found that the transgenic group has a higher baseline ΔΨ than the wild type group. Our data suggest that ErbB2 over-expression alters redox-sensitive genes that regulate ROS production through pro-survival and mitochondrial pathways to ultimately prevent heart failure.

2037 The Role of NO and the Glutathione Pathway in Menadione-Induced Oxidative Stress.

P. Venkatakishnan, B. Masters and L. J. Roman, Biochemistry, UTHSCSA, San Antonio, TX.

Skeletal muscle cells undergo frequent oxidative challenges due to rapid changes in energy demand, high metabolic activity, and high levels of heme-proteins. The induction of oxidative stress and resulting protective responses involves many pathways. Among them are the products of oxygen metabolism by flavoproteins, heme-proteins, Fe-S-center-containing proteins and other oxidation-reduction centers. Nitric oxide synthases (NOSs) reduce redox-cycling compounds such as menadione (MD), forming superoxide, which in the presence of nitric oxide (NO) reacts to form peroxynitrite, both of which cause oxidative injury. Therefore, we examined the mechanismic role of NO for cell survival during MD-induced oxidative stress under NO inhibition using a NO inhibitor, L-NAME. Dose viability studies performed with various amounts of MD + L-NAME for 24 hrs allowed us to choose 10 nM MD for further studies and also showed that NO inhibition did not significantly affect the cell viability at any concentration. Increased nNOS protein expression and increased 3-nitrotyrosine formation, a biomarker for peroxynitrite formation, was observed with MD and MD+L-NAME over the controls alone by both Western blotting and Immunocytochemistry, suggesting that the cells compensate for decreased bioavailable NO by increasing nNOS. We examined the major antioxidant involved in cellular protection mechanism at 24 hrs. Glutathione peroxidase1 protein levels was decreased with MD-L-NAME treatment which was reversed in the presence of NO donor deta-NONOate with MD+L-NAME. On the other hand, SOD1 and PRX6 levels remain unchanged. Interestingly, at 24 hrs, GSH assays and stable isotope labeling of amino acids in cell culture along with LC-MS analysis also reveal that proteins in glutathione homeostasis are modulated by NO under oxidative stress as a mechanism of cell survival. Current studies are aimed to dissect the relationship between NO and glutathione under oxidative stress.

2038 Synthesis and Crystal Structure of N-Acetyl-5-Chloro-3-Nitro-L-Tyrosine Ethyl Ester.

T. T. Mutahi1, B. J. Edagwa2, F. R. Fronczek2 and R. M. Uppu3, 1Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA; 2, 3Chemistry, Louisiana State University, Baton Rouge, LA.

3-Nitro-L-tyrosine and 3-chloro-L-tyrosine are widely regarded as markers of peroxynitrite (PN) and HOCl formation (respectively) in vitro. A question that follows naturally but never addressed in detail is what happens when PN and HOCl that are co-produced at the inflammatory sites react simultaneously with tyrosine
residues in proteins. The significance of these combined oxidations on the issue of biomarker validation was highlighted in the report by Whitehead and Halliwell [Biocem. Biophys. Res. Commun., 258,168–172,1999] wherein it was shown that the 3-nitro-L-tyrosine was lost to some unknown product(s) following oxidation with HOCI. Another important consequence could be that we need additional biomarkers and their validation. Herein, we report the synthesis and characterization of the oxidation product of HOCI reaction with N-acetyl-3-nitro-L-tyrosine ethyl ester (NANTEE), a model for protein-bound 3-nitro-L-tyrosine. When HOCI was a limiting reagent (HOCI < NANTEE), the major product at pH 7.2 was found to be N-acetyl-5-chloro-3-nitro-L-tyrosine ethyl ester (NACNTEE). Following purification (reversed phase HPLC) and characterization (H-NMR; 400 MHz, CD3OD: δ 1.23 (t, J = 7.1 Hz, 3H), 1.92 (s, 3H), 2.92 (dd, J = 14.1, 8.7 Hz, 1H), 3.12 (dd, J = 14.1, 5.8 Hz, 1H), 4.16 (q, J = 7.0 Hz, 2H), 4.63 (dd, J = 8.6, 5.8 Hz, 1H), 7.60 (d, J = 2.1 Hz, 1H), 7.86 (d, J = 2.1 Hz, 1H), 8.43 (s, 1H), single crystals of NACNTEE obtained in methanol were used for the determination of crystal structure using KappaCCD (charge-coupled device) diffractometer. It was found that the OH group forms an intramolecular —H...O hydrogen bond to the nitro group and the N—H group forms an intermolecular —N—H...O hydrogen bond to an amide O atom, linking the molecules into chains.

Skepticism Examining the Limits of Toxicology Evidence in the Courtroom.

1Pharmaceutical Sciences, Wayne State University, Detroit, MI; 2ExxonMobil Biomedical Sciences, Annandale, NJ; 3Sandra Day O’Connor College of Law, Arizona State University, Tempe, AZ; 4Neuro Solutions, The Woodlands, TX; 5New Mexico Court of Appeals, Albuquerque, NM.

The opposing orientation of toxicology experts and select evidence can skew the accuracy and value of testimony in court. Lawyers and judges are acquiring increasing skills to utilize technical and scientific assertions with skepticism. Scholarly scientific approaches are required to establish whether techniques and methods asserted to be scientifically sound are valid and support justice. An introduction briefly covers topics helpful to understanding what happens to experts in litigation. This includes the law's theory of expert evidence, rules of evidence and procedure relating to expert testimony, alternative admissibility rules (Frye v. Datthus trilogy). The NRC report and Canadian parallels, a law-science syllogism, the adversary process in theory and practice, ethical principles, clashes of ethics, data (especially quantitatively), disclosure of evidence helpful to the other side, and for whom the litigation expert works. The toxicology expert must address relevant science in a fair, representative manner and communicate effectively. The use of Bradford-Hill Criteria (1964) has been promoted to address general causation in toxic tests. While comprehensive, it poses challenges including jargon and communication. Recently, a five question approach was introduced to address specific causation. Explanations and examples of causation will be reviewed. Finally, the 2009 National Academies report recommends that forensic sciences look to academic scientific models for reliable practice and technique validation to support court testimony. Lawyers and courts have become more skeptical of unsupported opinions and increasingly aware of how to combat them. Academic toxicology can offer much to advance the legitimacy of admitted evidence, including in the area of forensics. A discussion will include foibles and solutions.

Harnessing Electronic Standards and Informatics to Transform the Use of Regulatory Toxicological Data.

L. P. Myers1, L. Burns Naas2, T. Kepp1, A. Nante1 and T. Smyrnis3.
1Center for Drug Evaluation and Research, US FDA, Silver Spring, MD; 2Geode Sciences, Inc., Foster City, CA; 3Hoffmann-La Roche Ltd., Basel, Switzerland; 4MPI Research, Inc., Mattawan, MI.

One of the major efforts in nonclinical regulatory informatics has centered on the development and testing of the electronic data submission standard, also called SEND (Standard for Exchange of Nonclinical Data). This standard was developed by the Clinical Data Interchange Standards Consortium’s (CDISC) SEND Team for nonclinical data collected from animal toxicology studies and allows for the electronic submission of tabulated toxicology data in an electronic format. The initial pilot project began in 2003 and was followed by a second pilot in 2007 focused on CDER-regulated projects. The production of the SEND 3.0 Implementation Guide in 2011 was a major step forward for the electronic submission and exchange of standardized data and enabled data warehousing efforts that support scientific review and regulatory science initiatives. However, it is recognized that data standards are simply enables to support the broader goals of better exploring and exploiting diverse data sets and metadata in order to answer important scientific review and regulatory science questions. The range of needs and challenges in the regulatory pharmacology and toxicology field can be daunting but many of the challenges are shared among key stakeholders (e.g., the US FDA, sponsors, and CROs). These challenges, which range from warehousing to analysis to QA/GLP ramifications, are laying the foundation for a compliant exchange of data and opportunities for collaboration through public/private partnerships. This session will discuss the current computational science initiatives at the US FDA and in industry, existing partnerships, challenges and successes, as well as the transformative effect on the CRO model.
During academic training, postdoctoral and graduate students generally are not provided with opportunities for interacting with toxicologists who are involved in risk assessment and regulatory affairs. The educational training mainly focuses on basic sciences or solving mechanistic problems and thus lacks the practical aspects of risk assessment and regulatory preparation. This concern was discussed at the Education Summit in October 2011, which was organized by the Education Committee of the SOT. Dr. John Doull’s comment that “toxicology is what we do, but risk assessment is why we do it,” shows the importance for trainees to become aware of both. Unfortunately, when it is time for the trainee to make the decision on what will be the next step in their careers, they are well prepared on what we do, but fall short on why we do it. The objectives of this session are to provide postdoctoral and graduate students with basic understanding of approaches in risk assessment and regulatory affairs in some of the sectors and to educate them about necessary preparatory steps in this field. In this 80-minute Education-Career Development Session, trainees will become more familiar with the routine job of toxicologists outside of the academic setting. Further, there will be a panel discussion on steps that can be taken during graduate school and postdoctoral training to improve the preparatory steps for a career in risk assessment and regulatory fields. Thus, the participants are expected to gain a basic knowledge of risk assessment and regulatory preparation in the life of a toxicologist and how to pursue this field.

2044 Surgical Alternatives for Multiple CSF Sampling in Conscious Cynomolgus Monkeys: A Novel Approach.

Intrathecal infusion via the lumbar route represents an accepted while specialized procedure in the life of a toxicologist and how to pursue this field.

2045 Hydration with Saline Decreases Toxicity of Calcitriol-Injected Mice in Preclinical Studies.

Purpose: To study the effectiveness of saline injection in reducing the toxicity profile of calcitriol when coadministered in mice.

Design: Meta-analysis of published mice studies with calcitriol.

Methods: A comprehensive PubMed and ISI web of knowledge search was performed to identify all published case control articles of calcitriol injection in mice, and relevant articles were selected. Using mortality as an end point to study the toxic effects of calcitriol, the relative risk of mortality in mice given saline injections was evaluated for different calcitriol dosages, as well as mouse and tumor types.

Results: Co-administration with 0.25 ml of normal saline solution injected intraperitoneally was associated with a lower mortality rate than calcitriol given alone. The calculated relative risk of mortality was 0.1419 (95% CI 0.0093-2.2133, z-statistic 1.393, p-value = 0.1636) when saline is administered with calcitriol compared to calcitriol alone.

Conclusions: Hydration with saline is a common practice in patients receiving calcitriol, which appears to be pertinent in experimental mice studies receiving calcitriol. It is important to note that results of preclinical studies form the basis for decisions in drug use in patient trials. Decreasing mortality in animal experiments will prove to be a meaningful contribution to the field of research. To avoid some mortality due to toxicity, a common practice for investigators was administering less saline (large doses or multiple hippocampus injections) to reduce mortality induced in mice. Combination of high morbidity in mice and administration of suboptimal dose in certain situations may impede evaluation of the potential therapeutic effects of calcitriol. The same problem is likely to exist with other drugs as well (e.g., chemotherapeutic agents). This preliminary data indicates that supplemental hydration should be kept in mind in evaluating drug toxicology.

2046 Identification of Behaviorally Active Doses of Morphine and Evaluation of Its Analgesic Effects in the Rhesus Monkey.

T. Wolinsky1, C. Cruz2, I. Hubert3, G. Froger1,2, M. Lemaire and D. Virley1,2.

1Porsolt SAS, Le Genest-Saint-Isle, France; 2Porsolt Inc. USA, San Antonio, TX.

Pain affects millions of people worldwide and is commonly treated with opioid analgesics, despite considerable safety/risk management concerns. The purpose of this study was two-fold: First, to establish a therapeutic index for morphine by determining the behaviorally active range in an operant responding procedure and second, to work within this dose range to evaluate the analgesic effects of morphine in the rhesus monkey (Macaca mulatta) in a thermal pain tail withdrawal procedure.

For the operant responding procedure, 2 monkeys were trained to lever-press for food on a fixed-ratio (FR30) schedule. The sessions lasted 120 minutes (8 cycles of 15 minutes) during which the rate of responding was recorded. Acute doses of morphine sulfate (0.3 – 3 mg/kg s.c.) were administered at the beginning of the session. For the tail withdrawal procedure, 4 monkeys were seated in restraint chairs and the lower section of the shaved tail was immersed into water at 40, 50, and 55 C. Sessions began with a control tail withdrawal latency determination at each temperature followed by an acute dose of morphine sulfate (0.3 – 3 mg/kg s.c.). Temperatures were presented to the animals in a randomized order at 15, 30, 60, 90 and 120 minutes post-dose.

Morphine markedly decreased the rate of operant responding at 1 mg/kg and eliminated lever-pressing at 3 mg/kg. Analogic effects of morphine in the tail-withdrawal assay were observed at all doses tested: The onset and duration of action were dose-dependent. The minimum effective dose was found to be 0.3 mg/kg, while 3 mg/kg produced the maximal effect in all 4 animals tested.

These results suggest that acute morphine has a narrow therapeutic index in the rhesus monkey. The selected dose range (0.3 – 3 mg/kg) therefore provide appropriate efficacy and safety measures for assessing novel opioid and non-opioid based analgesics with high translational validity and relevance.

2047 Pharmacodynamic Glycemia Effects from Rapid and Long-Acting Insulins Administered at Mealtime to Alloxan-Induced Diabetic Miniature Yucatan Swine.

L. D. Brown1,2, T. J. Madsen1, E. C. Blair1, B. C. Hanks1,2, K. P. Horlen1, J. Hiemstra1, A. Stricker-Krongrad1, J. Liu1 and G. B. Bouchard1,2.

1Sinclair Research Center, LLC, Columbia, MO; 2Sinclair BioResources LLC, Aurora, MO.

Pharmacodynamic effects from various insulins with known properties in humans were studied in the Yucatan miniature swine for comparative purposes. Yucatan miniature swine (Sus scrofa, at least 3 months, 20-60 kg) were made diabetic with intravenous alloxan and regulated on insulin. Animals were considered diabetic if they became hyperglycemic (≥150 mg/dL) within 2-5 days following induction. All procedures were on overnight fasted animals (no feed or insulin for 18 hrs). Our diabetic miniswine average baseline bG of 429 ± 150 mg/dL (N=26) within 2-5 days following induction. All diabetic miniswine average baseline bG of 429 ± 845.5 mg/dL (N=148 measurements) while non-diabetics average 58.7 ± 8.2 mg/dL (N=238 measurements). For this study, well-known prototypical marketed insulins (Apidra™, Humalog™, Lantus™, 0.25 or 0.45 Unit/kg s.c.) were administered at each time, then blood glucose profiles recorded using handheld glucometer devices (One Touch UltraMax®, Lifescan) over the next 8 hrs (rapid-acting) or 24 hrs (long-acting). Venous blood samples were collected from vascular access ports for bG readings. Blood glucose profile data in the diabetic Yucatan generally compared well to published human glucodynamic data for glycemia effects following insulin. These data suggest the Yucatan diabetic model has similar pharmacodynamic responses to the human presentation of exogenous insulins for onset and peak effects but not duration for the rapid-acting insulins. The long-acting insulin (Lantus™) peaked in swine
Improving the safety of drug candidates that enter clinical development requires assays that are more predictive of human outcomes. The BioMAP® platform uses human primary cells to model complex aspects of disease and tissue biology and can be applied to better understand biological mechanisms that underlie drug adverse effects. Here we present the analysis of several anti-inflammatory kinase inhibitors, including inhibitors of p38 MAPK, Jak kinase (tofacitinib) and Syk kinase (fostamatinib) tested in a panel of 12 BioMAP® systems covering a broad range of human biology. Specific effects of these compounds in BioMAP® assays modeling aspects of wound healing and vascular biology appear to correlate with certain side effects of these drugs in patients, including skin rash (p38 MAPK), gastrointestinal perforations (Jak), and hypertension (syk). These in vitro effects may be useful in screening lead candidates prior to testing in animals or humans.

2049 Evaluation of PBPK Models for Medical Decision Making upon Acute Chemical Exposure: Dichloromethane (DCM) As an Example.

R. Z. Boerleider1,2, C. C. Hunaault3, J. C. van Eijkeren3, I. de Vries4, J. G. Bessem5,6 and J. Meulenbelt1,2, 1National Poisons Information Center, University Medical Center Utrecht, Utrecht, Netherlands; 2IRAS, Utrecht University, Utrecht, Netherlands; 3RIVM, National Institute for Public Health, Bilthoven, Netherlands.

Rationale: Assessing the risks of exposure to hazardous chemicals in emergency situations and decision-making on individual medical treatment is not straightforward. We therefore evaluated the use of physiologically based pharmacokinetic (PBPK) models in this context, taking DCM as an example. DCM is toxic by inhalation and can cause mild to serious health effects.

Methods: In a clinical trial approved by the Hospital Medical Ethical Board, six healthy volunteers were individually exposed to DCM for 1 hour. The volunteers had to apply a paint stripper to a surface without air mask, in a closed room. Eighteen blood samples were drawn (t = 1h to 4h post-dose). Whole blood DCM concentrations and percentages of carboxyhemoglobin (% HbCO) were measured using GC. The DCM air concentration in the room was continuously measured using GC. The DCM external dose (area under the exposure-time curves) ranged between 175 and 390 ppm*h (equal to 608 - 1354 mg*h/m3). DCM blood concentrations reached maximum levels at the end of the exposure (t = 1h) and ranged between 0.25 and 5.1 mg/L. Increase in % HbCO was delayed (maxima reached between 2 and 6 h) and ranged between 0.4 and 2.3 %. The predicted DCM blood concentrations ranged between 1.55 and 4.20 mg/L at t = 1 h and the predicted % HbCO ranged between 3.1 and 4.1 % at t = 1.5 h. The general form of the concentration-time profiles was well predicted, especially in the elimination phase of DCM from blood.

Conclusion: The model was found to fit experimental DCM blood concentrations reasonably well but should be refined for % HbCO. Such a PBPK model might be helpful in case many individuals are acutely exposed to DCM and for whom HbCO monitoring is not available.

2050 Specificity Protein (Sp) 1 Transcription Factor Modulates Long Noncoding RNA Expression in Liver Cancer Cells.

S. Gandhi1,2 and S. H. Sale3, 1College of Medicine, Texas A&M College of Medicine Health Sciences Center, Houston, TX; 2Institute of Biosciences and Technology, Texas A&M College of Medicine Health Sciences Center, Houston, TX; 3Department of Veterinary Physiology and Pharmacology, Texas A&M College of Medicine Health Sciences Center, Houston, TX.

Hepatocellular carcinoma is one of the most prevalent forms of cancer worldwide and it exhibits highly invasive and metastatic properties. Recent studies have shown that of the small proportion of the genome that is transcribed only about 1.4% encodes for protein-coding genes. Of the remaining vast majority of transcripts that do not encode protein, long noncoding RNAs (lncRNAs) have recently gained attention because of their pivotal role in disease. lncRNAs are a class of transcripts longer than 200 nucleotides and have been characterized as having both tumor suppression and oncogenic functions in many types of cancers. Although their mechanisms of action remain largely unknown, many lncRNAs are regulated by transcription factors in a tissue-specific manner. Specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4 are overexpressed in many tumors, and regulate expression of genes required for cancer cell and tumor growth, survival, angiogenesis, and inflammation. Syne-1 and Syne-2 are the targets of many conventional and alternative chemotherapeutic drugs, and therefore further study of their functions is of great interest. In this study, we examined the role of Sp transcription factors in regulating lncRNAs in liver cancer cells. Using HepG2 and HuH-7 cells as models, we investigated the effects of Sp downregulation on the expression of several lncRNAs as well as cell growth and survival. Downregulation of Sp transcription factors by RNA interference or by drugs that target these proteins identified a set of lncRNAs in liver cancer cells that are modulated by Sp transcription factors. Further studies are underway to examine the specific functions of these lncRNAs in liver cancer growth and metastasis as well as their utility as diagnostic biomarkers.

J. J. Ateno, P. Tawari-Eebi, M. Charles-Davies and A. Arowojolu. Chemical Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria.

Environmental cadmium (Cd) is rising globally particularly in the developing countries. Reports have indicated that the deleterious effects of Cd may occur at lower levels than hitherto thought. The effects of Cd on female reproduction particularly in pregnancy has received only measured attention and these reports did not delineate the adverse consequences at what exposure levels may be critical. One hundred and sixty subjects (125 pregnant; 35 non-pregnant), were studied. Pregnant subjects were classified into three trimesters: 1st (35%), 2nd (35%) & 3rd (55%). Cadmium, Cu, Zn, Fe, Se, Serum proteins were determined in all subjects. Third trimester subjects were followed until delivery. Cadmium levels were similar in the 1st & 2nd trimesters but significantly increased in the 3rd trimester compared to controls and 1st & 2nd trimesters. Zine level was significantly decreased in the 3rd trimester compared with the 1st & 2nd trimesters. Importantly, Cd was inversely related to Zn. Thirty-two (58%) subjects delivered normal weight babies, 19 (35%) delivered babies with low birth weight (LBW), and 4 (7%) had babies with low birth weight (LBW). Four (7%) delivered babies with high birth weight. Women with LBW babies had significantly higher Cd and lower Zn levels as well as low BMI. Cadmium, Zn, Se all correlated inversely with neonatal birth weight (NBW). These data suggest that the third trimester with the lowest Zn level also had the highest Cd level (Cd is a metabolic antagonist of Zn). It appears the critical phase that Cd may elicit its toxic effect in pregnancy is the 3rd trimester and low Zn level may be the driving factor. The third trimester is therefore the phase to target in risk assessment, communication and management.

2052 Ethanol Is a Significant Cofactor in HAART-Induced Hepatotoxicity.

H. Dondel1, S. Gharg2, J. Zhang3, I. Kirpich3, S. Ishii-Barve2, C. McClain1 and S. Barve1. 1Department of Medicine/GI, University of Louisville, Louisville, KY; 2Louisville VAMC, Louisville, KY.

Highly Active Antiretroviral Therapy (HAART) has led to a significant increase in the life expectancy of HIV patients; however, there are significant side effects including lipodystrophy and hepatotoxicity. Alcohol abuse is highly prevalent in HIV infected individuals and hence may be a significant negative cofactor in HAART-induced hepatotoxicity.

The present study examines the mechanisms underlying HAART and alcohol induced hepatotoxicity. The effects of HAART drugs (azidothymidine, and Indinavir sulphate) in combination with alcohol were examined both in vitro (H4IIEC3- a rat hepatoma cell line) and in vivo. Individual treatments of H4IIEC3 cells with alcohol and AZT showed a certain level of hepatotoxicity which was significantly increased in the 3rd trimester compared to controls and 1st & 2nd trimesters. These data indicate that the third trimester with the lowest Zn level also had the highest Cd level (Cd is a metabolic antagonist of Zn). It appears the critical phase that Cd may elicit its toxic effect in pregnancy is the 3rd trimester and low Zn level may be the driving factor. The third trimester is therefore the phase to target in risk assessment, communication and management.

2054 Toxicity Mechanisms of Anti-Inflammatory Kinase Inhibitors.

where no peak (same action throughout day) is normally reported in humans. These differences could be due to either the duration of the fasting, the relative high doses of insulin or the use of a small number of animals in this study.

2050 Specificity Protein (Sp) 1 Transcription Factor Modulates Long Noncoding RNA Expression in Liver Cancer Cells.

S. Gandhi1,2 and S. H. Sale3, 1College of Medicine, Texas A&M College of Medicine Health Sciences Center, Houston, TX; 2Institute of Biosciences and Technology, Texas A&M College of Medicine Health Sciences Center, Houston, TX; 3Department of Veterinary Physiology and Pharmacology, Texas A&M College of Medicine Health Sciences Center, Houston, TX.

Hepatocellular carcinoma is one of the most prevalent forms of cancer worldwide and it exhibits highly invasive and metastatic properties. Recent studies have shown that of the small proportion of the genome that is transcribed only about 1.4% encodes for protein-coding genes. Of the remaining vast majority of transcripts that do not encode protein, long noncoding RNAs (lncRNAs) have recently gained attention because of their pivotal role in disease. lncRNAs are a class of transcripts longer than 200 nucleotides and have been characterized as having both tumor suppression and oncogenic functions in many types of cancers. Although their mechanisms of action remain largely unknown, many lncRNAs are regulated by transcription factors in a tissue-specific manner. Specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4 are overexpressed in many tumors, and regulate expression of genes required for cancer cell and tumor growth, survival, angiogenesis, and inflammation. Syne-1 and Syne-2 are the targets of many conventional and alternative chemotherapeutic drugs, and therefore further study of their functions is of great interest. In this study, we examined the role of Sp transcription factors in regulating lncRNAs in liver cancer cells. Using HepG2 and HuH-7 cells as models, we investigated the effects of Sp downregulation on the expression of several lncRNAs as well as cell growth and survival. Downregulation of Sp transcription factors by RNA interference or by drugs that target these proteins identified a set of lncRNAs in liver cancer cells that are modulated by Sp transcription factors. Further studies are underway to examine the specific functions of these lncRNAs in liver cancer growth and metastasis as well as their utility as diagnostic biomarkers.

SOT 2013 Annual Meeting
Overall, our data demonstrate that alcohol exacerbates HAART hepatotoxicity, and is a significant cofactor in the development of hepatic steatosis and liver injury.

2053 Acute Exposure to Acrolein, a Ubiquitous Environmental Pollutant, and Anti-HIV HAART Medication Leads to Hepatotoxicity.

S. Ghare1, H. Dondel1, S. Joshi-Barve1, C. McClain1, 2 and S. Barve1,
1Department of Medicine/GI, University of Louisville, Louisville, KY; 2Louisville VA Medical Center, Louisville, KY.

Highly Active Antiretroviral Therapy (HAART) is the current treatment for HIV infection. Although HAART leads to a significant increase in the life expectancy of patients with HIV; the prolonged use of HAART causes hepatotoxicity. This has become a significant clinical problem which leads to discontinuation of therapy in turn causing HIV virus reactivation and the development of AIDS. Additionally, environmental pollutants are known to significantly impact general health as well as therapeutic outcome; however their contribution to HAART therapy-induced liver toxicity is unknown. Acrolein is a common environmental, food and water pollutant and a major component of cigarette smoke. It is also produced endogenously via lipid peroxidation and cellular metabolism. The present study examines the potential impact of acute acrolein exposure on the hepatotoxic effects associated with HIV medication. A well characterized human hepatoma cell line (HeP2/G2) model system was used to investigate the combined cytotoxic effects of acrolein along with HAART drug, azidothymidine (AZT). HeP2/G2 cells were treated with various concentrations of acrolein and HAART drugs either individually or in combination. Our results showed that acute exposure to either acrolein or HAART drugs had minimal to no effect on hepatocyte survival. However acrolein exposure enhanced the AZT induced apoptotic death in HeP2/G2 cells. Acrolein also sensitized hepatocytes to AZT induced mitochondrial dysfunction, as shown by mitochondrial membrane depolarization and ATP depletion. Notably, acrolein and AZT responsive epigenetic modifications at the FasL promoter were observed, leading to a membrane depolarization and ATP depletion. Notably, acrolein and AZT response studies showed that MPTS is superior to TS. The combination of MPTS + TS showed a significantly superior sulfur donor than TS. Similarly, the preliminary in vivo efficacy studies, determined on a therapeutic mice model and expressed as Antidotal Potency Ratios (APR), the ratio of CN LD50 with and without the test antidote(s), showed that MPTS is superior to TS. The combination of MPTS + TS showed a synergistic effect (APR= 3.6).

2054 Solubility Enhancement Studies for a Potential Cyanide Antidote.

M. Negrito, K. Kovacs, M. Ancha, M. Jane, S. Lee, S. Angalakurthi, S. Rasheed and I. Petrikovics, Chemistry, Sam Houston State University, Huntsville, TX.

Present studies focused on the solubility enhancement for the sulfur donor methyl propyl trisulfide (MPTS) to develop an intramuscular formulation for treating cyanide (CN) intoxication. Various FDA approved co-solvents (ethanol, polyethyleneglycols (PEG 200, PEG 300, PEG 400) and propylene glycol (PG)), and surfactants (Cremophor EL, Cremophor RH40, poloxamer 80, sodium cholate and sodium deoxycholate) and their combinations were applied to enhance the solubility of the lipophilic MPTS. For solubility determination GC-MS methods were developed. The maximum solubility of MPTS was found at 90% ethanol of over 170 mg/ml. The maximum solubility of over 40 mg/ml was achieved with 20 % Cremophor EL. The combination of the surfactant 20% Cremophor EL and the co-solvent 75% ethanol lead to a synergistic solubilizing effect with the solubility reaching over 400 mg/ml of MPTS.

The in vitro efficacy studies for the MPTS vs. thiosulfate (TS), determined by measuring the thiocyanate formation spectrophotometrically, showed that MPTS is a significantly superior sulfur donor than TS. Similarly, the preliminary in vivo efficacy studies, determined on a therapeutic mice model and expressed as Antidotal Potency Ratios (APR), the ratio of CN LD50 with and without the test antidote(s), showed that MPTS is superior to TS. The combination of MPTS + TS showed a synergistic effect (APR= 3.6).

2055 Chemical Hazards Emergency Medical Management (CHEMM): Chemical Specific Acute Patient Care Guidelines for Prehospital and Emergency Department/Hospital Management.

P.J. Hakken1, D. Siegel1, A. Maijer1, F. Chang1, A. Wullenweber1, J. Strawson2, A. Willis1, P. Nance1, O. Kroner1 and R. Sandhu1,
1National Library of Medicine (NLM)/National Institutes of Health (NIH), Bethesda, MD; 2National Institute of Health (NIH)/National Institute of Child Health and Human Development, Bethesda, MD; 3Toxicology Excellence for Risk Assessment, Cincinnati, OH.

Chemical Hazards Emergency Medical Management (CHEMM) is an online and downloadable interactive tool. It is designed to enable first responders, first receivers, other healthcare providers, and planners to plan for, respond to, recover from, and mitigate the effects of mass-casualty incidents involving chemicals. Content has been developed via NLM staff, CHEMM contractors, and Federal government and non-Federal government subject matter experts (SMEs). CHEMM includes chemical-specific, acute patient care guidelines for pre-hospital and emergency department/hospital management for exposures to selected groups of chemicals. The information is divided into sections for response in the Hot Zone, Decontamination Zone, and Support Zone/Treatment Area, and each chemical page includes chemical specific information on substance identification, rescuer protection, triage, pediatric/geriatric/obstetric vulnerabilities, clinical symptoms, antidotes, and more. The first version of CHEMM was released in mid-2011, with recent efforts including the addition of over 50 new chemicals with the types of information noted above.

2056 Manganese Accumulation in the Brain of Asymptomatic Welders and Its Functional Consequences.

E. Lee1, M. R. Flynn3, G. Du1, M. Lewis1 and X. Huang1, 1Neurology, Pennsylvania State University, Hershey, PA; 2Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC.

Manganese, a neurotoxin that is concentrated in welding fumes, may play a role in neurodegenerative processes such as Parkinsonism. In the present study, we examined possible brain biomarkers of manganese exposure in asymptomatic welders using state-of-the-art MRI techniques and correlated imaging findings with functional measures (neuropsychological tests). Sixteen welders and 16 age- and education-matched controls comprised the current sample. For welders, increased welding hours were associated with higher T1 relaxation rates in amygdala, caudate nucleus, hippocampus, putamen, and orbitofrontal white matter in addition to traditionally reported globus pallidus, reflecting increased accumulation of manganese. The higher hours in welding were also associated with greater T1-weighted intensity values in caudate nucleus and hippocampus for welders. Subgroup analysis of welders who were highly exposed to welding compared to controls with no lifetime exposure to welding indicated that welders had higher T1 relaxation rates in globus pallidus and putamen consistent with current literature. Correlation analyses of MRI results and neuropsychological tests revealed that performance on set shifting tasks (stroop and visual-verbal tests) were negatively correlated with T1-weighted intensity values in orbitofrontal white and grey matter for all subjects. In addition, elective function (the D-KEFS tower test) also was correlated negatively with T1-weighted intensity values in amygdala, caudate nucleus, hippocampus, putamen, and globus pallidus. Moreover, welders with high welding exposure showed decreased working memory performance and associated increased T1-weighted intensity values.

These results suggest that brain regions other than the globus pallidus, e.g., the caudate nucleus and/or hippocampus, also may reflect sensitively manganese exposure. In addition, there may be some cognitive decline associated with manganese deposition in brain.

2057 Ethanol-Induced Reductions of Antimicrobial Peptide LL-37 in THP-1 Cells and Brain Fluid of Ethanol Fed Mice.

M. McCaskell1, H. Hottor, M. Sapkota and T. Wyatt, Department of Environmental, Agricultural, Occupational Health, University of Nebraska Medical Center, Omaha, NE.

The most common infections plaguing the pulmonary system outside of common viral infections such as Rhinovirus and Influenza are Haemophilus influenzae, Klebsiella pneumonia, Burkholderia repaca, Bordetella pertussis, and Mycobacterium tuberculosis. Respiratory infection incidence has been directly correlated to circulating levels of vitamin D. Vitamin D is required for antimicrobial peptide LL-37 production and function in the lung. As a result, antimicrobial LL-37 production is correlated with respiratory function and health. C57Bl6 mice
were exposed to ethyl-alcohol via the Meadows-Cook model for 6 weeks. Mice were also fed Dialyl Dioxide (DADS) at 1xμg/mg of feed, and 4000IU of cholecalciferol in their daily diet. THP-1 human acute monocytic cell line were pre-treated with 80mM alcohol for 24 hours, and treated with 1μM of DADS, and 100μM of 1,25 dihydroxy vitamin D for 6, 12, 24 hours. Eighty mM alcohol exposed THP-1 cells displayed a 53% reduction in the cellular supernatant of LL-37. The 6 hour exposure of DADS attenuated the alcohol induced reduction of cellular supernatant LL-37. The 6 hour treatment of 1,25 dihydroxyvitamin D also attenuated the reduction LL-37 in the supernatant of THP-1 cells. In the BALF of the 6 week alcohol fed mice, 1,25 dihydroxyvitamin D was reduced by 70%. In the in-vivo model DADS exposure completely abrogated the alcohol induced reduction of BALF LL-37. This data displays the propensity of alcohol to affect the ability of THP-1’s (pre-monocyte cell model) to produce an antimicrobial peptide LL-37. This may be related to the disturbances in 1,25 dihydroxy vitamin D in the pulmonary epithelium as reflected by reductions of BALF of alcohol fed mice. The ability of DADS and vitamin D to attenuate this alcohol induced reduction of LL-37 in the THP-1 cells, and BALF of chronically alcohol fed mice may assist with novel treatment options for human chronic alcohol related respiratory infection severity and rates.

2058 Utility of Intranasal Fentanyl Powder Formulation: Pharmacokinetics-Pharmacodynamics Relationship in Rhesus Monkeys.

Shin Nippon Biomedical Laboratories (SNBL), Ltd., Kagoshima, Japan.

The recent survey conducted by the American Pain Foundation revealed that breakthrough pain posed the greatest challenge to the quality of life (QOL) of cancer patients. The fentanyl buccal tablet, a self-administration formulation, is used at present to relieve breakthrough pain rapidly. However, a new formulation that possesses much quicker pain relief is required to improve the QOL. SNBL has developed an intranasal fentanyl powder formulation (TRF) with the applied “iTeQ System”, an intranasal drug delivery system technology. The purpose of this study was to investigate the utility of TRF by comparing the absorption properties and time of onset of action after administration of TRF with those of the commercial buccal tablet.

Methods Six male rhesus monkeys with body weights 5.4-8.0 kg were used. The plasma fentanyl levels were analyzed by LC/MS/MS. The tail withdrawal latency (TWL) procedure using 5°C water was conducted to evaluate antinociception of fentanyl following administration (8 μg/kg) of fentanyl in 3 forms: TRF (intranasal), intravenously injectable formulation, and buccal tablet. **Results** Tmax and Cmax after administration of TRF were 12.8 min and 2.6 ng/mL, respectively, and were much quicker and higher than the corresponding values for the buccal tablets (50.8 min and 1.1 ng/mL), TRF prolonged the TWL. The effect continued for 25 min from just after nasal administration, similar to that of the intravenously injectable formulation. The effect of the buccal tablet on TWL was noted only at 45 min after buccal administration, suggesting a slow onset of action. **Conclusion** TRF showed a quicker nociceptive effect due to a more rapid nasal absorption of fentanyl in comparison with the buccal tablet. These results indicated that TRF would be a useful formulation for rapidly relieving breakthrough pain in cancer patients with self-administration.

2059 Better Prediction of Immunogenicity of Biopharmaceuticals: Is It Possible?

A major drawback of biologicals is the possible induction of immunogenicity upon clinical use, that may result in a safety issue and/or a reduction of drug efficacy. Anti-drug antibodies (ADA) are determined as a measure of immunogenicity. Current preclinical models have proven lack of predictivity for clinical immunogenicity. Therefore, there is a need for better methods to predict which drugs are likely to induce ADA in clinical studies.

Methods Based on historical data of immunogenicity, information on structurally, therapeutically and/or ‘mode-of-action’ similar compounds can be obtained to establish the translational aspects these models. We selected interferon alfa, beta and TNF-inhibitors as model compounds (13 in total) for which the public domain (FDA reviews, BLA, NDA, EMEA, pubmed) were scavenged for immunogenicity related information. The Information consisted of physical chemical properties, formation aspects (including stability data), preclinical animal toxicity data, clinical data (study specifics and ADA occurrences and effect).

Results Anti-drug antibodies (ADA) are determined as a measure of immunogenicity. A major drawback of biologicals is the possible induction of immunogenicity upon clinical use, that may result in a safety issue and/or a reduction of drug efficacy. Anti-drug antibodies (ADA) are determined as a measure of immunogenicity. The Information consisted of physical chemical properties, formation aspects (including stability data), preclinical animal toxicity data, clinical data (study specifics and ADA occurrences and effect).

Due to the lack of information on in vitro immunogenicity in literature, we decided to generate these data for 13 selected compounds. We performed chemotactic assays on human monocytes and established T cell proliferation and DC maturation as response markers. A logistic regression model has been developed relating physical chemical, animal and in vitro information to immunogenicity, where immunogenicity has been defined as two dimensional: the prevalence in the general population and the potency of the substance (dose-response sensitivity). In a statistical analysis of the model, together with expert information, important predictive factors for immunogenicity were successfully identified.

In conclusion, retrospective analysis of various characteristics and preclinical data from on-market biological can provide us with insight in the mechanism of immunogenicity.

2060 Improved Efficacy of Delivery of Antigen Using a Novel Injection Device in the Rabbit.

N. Hebert, S. Gariety, I. Brochu, A. Caron-Lamèche, M. Brouillé and C. Hebert.

Needle-free injector devices show a novel, improved and safer alternative to more classical intramuscular injection immunization protocols. Two routes of administration [intramuscular (IM) versus intradermal (ID) injection; with a gene-gun type needle-free injector device] were compared in rabbits and the immunogenicity response, together with any potential toxicity were evaluated following immunization with a plasmid coding for the Hepatitis B surface protein (HBsAg) when administered up to three times (Days 1 and 29 [and Day 43; intradermal only]).

Overall, there were no differences between routes of administration when body temperature, body weight, food consumption, selected coagulation and clinical chemistry parameters, and C-Reactive proteins were compared over a period of 43 days. At necropsy, there were no organ weight changes or any adverse macroscopic observations. Based on the magnitude of antibody response and the number of animals mounting a response, a more robust immune response was observed in animals immunized with the injector delivery method (ID). Only 17% of animals receiving the IM injection showed detectable levels of anti-HBsAg antibodies, compared to 50% of animals receiving the ID injection. Furthermore, anti-HBsAg levels in animals administered ID were generally higher than the IM responder. In conclusion, these results suggest that a needle-free injector device shows a safer alternative to intramuscular injection with an increased efficacy when using in immunization regimens.

2061 Development of a Protocol to Determine the T Cell Dependent Antibody Response (TDAR) to KLH in the Mouse—A Comparison between the CD-1 and C57BL/6N Strains.

S. Kirk, A. Lucock and K. Troth.
Covance Laboratories Ltd., Harrogate, United Kingdom.

Pre-clinical safety assessment of biopharmaceuticals may require testing in a specific strain of mouse, when this is the only species where the test material is pharmacologically active. This can present challenges when evaluating immunotoxicity due to known differences in immune responses that exist between different strains. In this study we developed a robust TDAR protocol in the CD-1 mouse then attempted to transfer a similar protocol for use in the C57BL/6N strain.

Initially CD-1 mice were immunised twice intravenously, 1 week apart, at KLH dose levels of 0.3 or 80 mg/kg/injection. Cyclosporin was also tested at 20 and 100 mg/kg/day in order to establish a positive control. KLH and cyclosporin dose levels of 80 mg/kg and 100 mg/kg respectively, were not tolerated resulting in several premature decedents. A strong IgM and IgG response was observed at the 0.3 mg/kg dose level. Cyclosporin administration at 20 mg/kg/day was sufficient to suppress this response in females only. Cyclosporin administration was tested at 60 mg/kg/day, which proved adequate to suppress the immune response to KLH in both sexes. This protocol was tested in C57BL/6N mice, but failed to produce a robust antibody response. Based on a protocol provided by another lab, C57BL/6N mice were challenged subcutaneously with KLH at 0.1 mg/kg in alum on Day 1 then challenged with KLH only at 0.05mg/kg on Day 7. Control group mice were tested in parallel, without the use of alum. A strong IgM and IgG anti-KLH response was noted in both sexes, most notably in females. In the control group, only the females produced a robust anti-KLH response.

In conclusion, we have established a robust immunisation protocol to measure the TDAR response in CD-1 mice and a suitable positive control to suppress the response. An immunisation protocol in the C57BL/6N mouse was also established.
however the use of an adjuvant was required to produce a strong anti-KLH response. Further work to establish a suitable dose level of cyclosporin in C57BL/6N mice is still required.

2062 Use of the T Cell-Dependent Antibody Response to Evaluate Immunostimulation.

M. S. Piche1, J. Shenton1, C. Dumont1, R. Bourgeois1, I. Brochu1, A. J. Grenier1, E. Marquette1, L. Durette1, M. Pozier1, L. de Haan1 and L. Lebaureur1. 1Immunology, Charles River, Montréal, QC, Canada; 2MedImmune, Cambridge, United Kingdom.

Purpose: The T-cell-dependent antibody response (TDAR) has traditionally been used to evaluate immunosuppression. The purpose of this study was to evaluate whether the TDAR following immunization with the T-dependent antigen (TTA) KLH, has utility for evaluating pharmacologically-mediated immunostimulation in cynomolgus monkeys. Recent advances in the development of immunostimulatory therapeutics, primarily T-cell stimulating biology with cross-reactivity limited to the cynomolgus monkey, have presented a need for pharmacodynamic assays capable of measuring increased T-cell activation in monkeys.

Methods: Instead of immunizing the monkeys with 10 mg of KLH, an immunization dose used for evaluating immunosuppression, monkey were immunized twice (1 month apart) with either 0.1 mg or 1.0 mg of KLH in the presence or absence of adjuvants as model immunostimulants. The subsequent antibody response to KLH was measured in the serum following both immunizations, while the cellular response was measured by ELISPOT following the second immunization after ex vivo challenge of peripheral blood cells with KLH.

Results: Immunostimulation by the adjuvant, defined as an increased magnitude of the TDAR, was more clearly demonstrated in monkeys dosed with 0.1 mg of KLH as compared to monkeys dosed with 1 mg of KLH. In addition, a strong KLH-induced IFN-γ response and a mild IL-5 response were elicited following KLH immunization in the presence of the model immunostimulants; however, the cytokine responses were not consistently observed across all animals.

Conclusion: Although further validation using known immunostimulatory therapeutics (as opposed to adjuvants) is required, it is clear that monitoring enhanced antibody responses and possible ex vivo cytokine responses following low dose immunization with KLH may present an opportunity to evaluate pharmacologically-mediated immunostimulation in cynomolgus monkeys.

2064 Assesment of Hepatitis B Surface Antigen and Tetanus Toxoid-Specific T Cell-Dependent Antibody Responses in Cynomolgus Monkeys.

Assessment of T-cell-dependent antibody responses (TDAR) is implemented in nonclinical safety testing to evaluate test article effect on immune function. Robust ELISA-based assays to analyze hepatitis B surface antigen (HBsAg)- and tetanus toxoid (TT)-specific antibodies in serum from cynomolgus monkeys immunized with HBsAg and TT were developed. Assay optimization included evaluation of vaccine doses (Engerix B [HBsAg] at 10 and 20 μg, human pediatric and adult doses; TT Adsorbed at 5 floculation units) and dosing regimen, post-immunization blood collection times, capture reagents and concentrations thereof, initial test serum dilutions, detection antibody dilutions, and incubation times. HBsAg- and TT-specific IgG and IgM endpoint titers (EPT) were analyzed pretest and weekly up to 6 weeks post-immunization to evaluate antibody response kinetics to these antigens. In brief, HBsAg or TT (0.2 or 0.03 μg/well, respectively) is adsorbed overnight to a 96-well microtiter plate following by incubation with an initial test serum dilution of 1:5 or 1:50 and titrated 3x to final dilutions of 1:295245 or 1:2952450 for HBsAg or TT-specific antibody analyses, respectively. Bound HBsAg or TT specific-antibodies are detected using a 1:500 or 1:1000 dilution of alkaline-phosphatase-conjugated goat anti-human Ig (total, IgM or IgG). After substrate addition and colorimetric analysis, an EPT is calculated. Following primary immunization, peak HBsAg IgM- and IgG-specific responses were observed 22 and 28 to 35 days post immunization, respectively. HBsAg-specific IgG EPT did not generally increase from primary peak response after a second challenge. Since the study monkeys were immunized with TT prior to purchase, a TT IgM-specific response was not detected. TT-specific IgG responses peaked 15 days post on-study immunization.

2065 Development of a Delayed Type Hypersensitivity (DTH) Model in Cynomolgus Monkeys.

G. Bannishi1,2, H. Babbe1, A. Carraro2, L. A. Coney3, L. Hall1, J. Zhou1, J. Ma1, M. Perpetua1, J. Dougherty2, A. Beavis2 and M. Scully2. 1Biologics and Biomarker Analysis, Huntingdon Life Sciences, East Millstone, NJ; 2Janssen R&D, LLC, Raritan, NJ; 3Janssen R&D, LLC, La Jolla, CA; 4Group Strategic Marketing, Huntingdon Life Sciences, Huntingdon, United Kingdom; 5Safety Assessment, Huntingdon Life Sciences, East Millstone, NJ; Sponsor: A. Auleta.

We have developed an improved delayed type hypersensitivity (DTH) model to assess the cellular immune response. Animals were sensitized with three antigens, keyhole limpet hemocyanin (KLH), Candida Albicans (CA), and Tetanus Toxoid (TT) emulsified in incomplete Freund’s adjuvant (IFA). These antigens were administered subcutaneously on 3 to 5 occasions over 1 to 2 weeks, followed by a resting period of 1 month. Antigenic challenge was administered intra-dermally with reduced amounts of antigen and in the absence of IFA adjuvant, and at multiple sites with individual antigens or a combined cocktail. Specific IgG responses to each of the antigens were detected. Slight erythema and induration were observed at some sites and some animals, most prominent at 48 hours and with KLH or cocktail. Histological evaluations detected a more intense cellular response with KLH and the combination than TT or CA at both 48 and 72 hours post challenge. Mononuclear cell infiltration (CD3 labeled lymphocytes and CD68 labeled macrophages) was observed in biopsies from CA (3 of 4 animals), TT (3 of 4 animals), KLH (all animals) and the cocktail (all animals), with maximal responses occurring at the 48 and 72 hour time points. Flow cytometry was performed on samples from blood, bone marrow, spleen, and lymph nodes to assess regular and activated immune cell subsets, including evaluation of naïve T lymphocytes (CD95+CD28-) and central memory T lymphocytes (CD95+CD28+) throughout the course of the study. In summary, these findings are consistent with infiltration of cytotoxic T lymphocytes into the challenge site, which is a hallmark of a classical DTH response.
Phagocytosis constitutes an essential arm of host defense against bacterial and fungal infections. The process can be subdivided into phagocyte chemotaxis to sites of inflammation, binding to foreign agents, ingestion of opsonized bacteria, and intracellular killing by oxygen-dependent and oxygen-independent mechanisms. We have assessed several of these functions in whole blood from cynomolgus macaques using commercially available kits designed for human use. Tests included intra-assay precision, inter-assay precision, processed stability, sample stability, and inter-assay variability. The percent coefficient of variation was lower for granulocytes than monocytes, typically 1% versus 10% or less in the ingestion assay. Respiratory burst following stimulation with phorbol 12-myristate 13-acetate (PMA), opsonized bacteria, or the chemotactic peptide N-formyl-Met-Leu-Phe (fMLP) was within ranges established for human whole blood. The PMA stimulant was high and consistently > 95% above unstimulated negative control values, the fMLP was low (< 3%), and opsonized bacteria induced a high percentage of stimulated granulocytes (>95%) but lesser stimulated monocytes (<60%). The highest CV values occurred in tests of oxidizing monocytes for inter-assay (19%), processed stability (19%), and sample stability (15%), but were otherwise typically below 5%. Overall these results determine the ability to use these assays for analysis of phagocytic function in cynomolgus macaque under GLP conditions.
and 27 spots upregulated with 50 and 100 M μ.

Effects, CA and DNCB led to significant changes in protein expression. We found 9 M SDS hardly had any eff-

While treatment with 250 and 400 M μ.

We used bone marrow-derived dendritic cells (BMDC) from CD34$^+$ progenitor cells from wild-type or Nrf2$^-/-$ mice. Cells were treated for 8 h with different con-

Contact sensitizers are low molecular weight compounds, which can prompt den-

Environmental Research (UFZ), Leipzig, Germany. 3Department of Proteomics and Metabolomics, Helmholtz Centre for

Nrf2 is a transcription factor that is activated by cellular stress from various sources, including oxidative stress and electrophiles. In response to cell stress, Nrf2 upregu-

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that is acti-

We aimed to further elucidate the underlying molecular mechanisms of skin sensitization and to identify putative biomarkers. We used bone marrow-derived dendritic cells (BMDC) from CD34$^+$ progenitor cells from wild-type or Nrf2$^-/-$ mice. Cells were treated for 8 h with different con-

Consecutive days with vehicle or one of 3 concentrations of eugenol (EUG), cin-

442 SOT 2013 Annual Meeting

The murine local lymph node assay (LLNA) is widely used to identify chemicals that may cause allergic contact dermatitis. Exposure to a dermal sensitizer results in

The murine local lymph node assay (LLNA) is widely used to identify chemicals that may cause allergic contact dermatitis. Exposure to a dermal sensitizer results in

Nrf2-dependent such as glutathione S-transferases, glutamate cysteine ligase, or

Nrf2 is a transcription factor that is activated by cellular stress from various sources, including oxidative stress and electrophiles. In response to cell stress, Nrf2 upregu-

Nrf2 is a transcription factor that is activated by cellular stress from various sources, including oxidative stress and electrophiles. In response to cell stress, Nrf2 upregu-

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that is acti-

We also identified other proteins involved in oxidative stress, signal trans-

We used bone marrow-derived dendritic cells (BMDC) from CD34$^+$ progenitor cells from wild-type or Nrf2$^-/-$ mice. Cells were treated for 8 h with different con-

Collectively, the current studies suggest that tBHQ inhibits early production of IFNγ and IL-2 and that this effect is at least partially Nrf2-independent. These studies also suggest that Nrf2 pro-

Common names: 1Cellular and Molecular Biology, Michigan State University, East Lansing, MI; Pharmacology and Toxicology, Michigan State University, East Lansing, MI.

We also identified other proteins involved in oxidative stress, signal trans-

Murine Llna.

Ex Vivo

Development of an Ex Vivo BrdU-Labeling Procedure for the Murine Llna.

D. M. Lehmann1, C. Copeland1, E. H. Boykin1, S. J. Quell1, L. Copeland1 and W. C. Williams2. 1NHEERL, US EPA, Research Triangle Park, NC; 2Independent, Research Triangle Park, NC.

The murine local lymph node assay (LLNA) is widely used to identify chemicals that may cause allergic contact dermatitis. Exposure to a dermal sensitizer results in

We also identified other proteins involved in oxidative stress, signal trans-

Collectively, the current studies suggest that tBHQ inhibits early production of IFNγ and IL-2 and that this effect is at least partially Nrf2-independent. These studies also suggest that Nrf2 pro-

Common names: 1Cellular and Molecular Biology, Michigan State University, East Lansing, MI; Pharmacology and Toxicology, Michigan State University, East Lansing, MI.

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that is acti-

We also identified other proteins involved in oxidative stress, signal trans-

Collectively, the current studies suggest that tBHQ inhibits early production of IFNγ and IL-2 and that this effect is at least partially Nrf2-independent. These studies also suggest that Nrf2 pro-

Common names: 1Cellular and Molecular Biology, Michigan State University, East Lansing, MI; Pharmacology and Toxicology, Michigan State University, East Lansing, MI.

We also identified other proteins involved in oxidative stress, signal trans-

Collectively, the current studies suggest that tBHQ inhibits early production of IFNγ and IL-2 and that this effect is at least partially Nrf2-independent. These studies also suggest that Nrf2 pro-

Common names: 1Cellular and Molecular Biology, Michigan State University, East Lansing, MI; Pharmacology and Toxicology, Michigan State University, East Lansing, MI.

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that is acti-

We also identified other proteins involved in oxidative stress, signal trans-

Collectively, the current studies suggest that tBHQ inhibits early production of IFNγ and IL-2 and that this effect is at least partially Nrf2-independent. These studies also suggest that Nrf2 pro-

Common names: 1Cellular and Molecular Biology, Michigan State University, East Lansing, MI; Pharmacology and Toxicology, Michigan State University, East Lansing, MI.
vative and detoxification genes. In addition, Nrf2 has been shown to have anti-inflammation properties and to modulate the activity of numerous immune cell types, including T cells. The purpose of the present studies was to characterize the role of Nrf2 during T cell activation in primary blood mononuclear cells isolated from human whole blood. The induction of several genes associated with early T cell activation, including IL-2, IFN-γ, CD25 and CD69, was investigated in PBMCs treated with tBHQ prior to T cell activation. Treatment with tBHQ inhibited production of the early cytokines IL-2 and IFN-γ, in a dose-dependent manner. Compared to the cytokines, induction of the cell surface markers CD25 and CD69 was less sensitive to tBHQ, with expression inhibited only at the highest concentration of tBHQ. The effects of tBHQ on protein expression of IL-2, IFN-γ, CD25, and CD69 correlated with the mRNA expression of these genes. Consistent with Nrf2 activation, tBHQ treatment also induced the Nrf2 target genes NQO1, Nqo1, and Gclc. Collectively, these studies demonstrate that tBHQ inhibits early cytokine production by anti-CD3/anti-CD28 activated PBMCs while only modestly decreasing CD25 and CD69 induction. Overall, these data suggest that Nrf2 may differentially modulate the early events of T cell activation in primary human T cells. (This work is supported by NIH grant ES018885).

2076 Diethylstilbestrol (DES)-Regulated microRNA-30a May Induce Autophagy by Regulating Beclin1 in Thymic Cells of Neonatal Mice.

N. P. Singh, U. P. Singh, I. K. Abbas, P. Nagarkatti and M. Nagarkatti. Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC.

Prenatal exposure to DES is known to cause changes in immune functions thereby increasing susceptibility to autoimmune diseases in humans. Experimental studies have also indicated that prenatal exposure to DES affects thymic T cells. Our laboratory has been investigating DES-regulated miR profile in fetal thymocytes following prenatal exposure. Of the 608 miRs examined by performing high-throughput miR arrays with thymocytes on gestational day 18 (GD18) of C57BL/6 mice exposed to DES, we observed more than 60 miRs that were up- or down-regulated (>1.5-fold) when compared to vehicle treated group. Upon further analyses, we observed significant downregulation (>2.0 fold) of miR-30a in fetal thymocytes post DES exposure. miR-30a has been shown to regulate Beclin1 (BECN1) expression affecting autophagic activity. In the current study, therefore, we examined whether miR-30a that was down regulated in fetal thymocytes post DES exposure plays a role in autophagy vis a vis immune dysfunction in neonatal mice. Recent studies have suggested that autophagy in the thymic epithelium is dispensable for negative selection of autoreactive T cells. Upon analysis of miR-30a by Real-Time PCR, we observed significant (more than 2-fold) downregulated expression of miR-30a in fetal thymocytes but upregulated expression of BECN1. We further characterized miR-30a for its binding affinity with BECN1 3'UTR region. Our studies demonstrated significant blocking of BECN1 expression in the presence of miR-30a and the effect of miR-30a was reversed in the presence of DES. Together, these data demonstrate that prior exposure to DES can cause alterations in thymocytes differentiation through dysregulation in miR-30a leading to altered BECN1 expression that in turn may influence the mechanisms of autophagy in fetal thymocytes. (Supported in part by NIH grants P01AT003961, R01AT006888, R01ES019313, R01MH094755, P20RR026848 and VA Merit Award BX001357).

2077 Δ9-Tetrahydrocannabinol (THC) Rescues Mice from Staphylococcal Enterotoxin B (SEB)-Induced Acute Lung Injury (ALI) and Subsequent Mortality by the Induction of Regulatory T Cells and the Down-Regulation of microRNA-182.

R. Rao, P. Nagarkatti and M. Nagarkatti. University of South Carolina, Columbia, SC.

Acute Lung Injury (ALI) is characterized by infiltration of lymphocytes in the lung, edema, Acute Respiratory Distress Syndrome (ARDS), and death. In this study, Staphylococcal Enterotoxin B (SEB) was used to induce ALI in mice. SEB is a superantigen that activates T cells expressing Vβ8, which leads to activation of ~20% of T-cells and massive release of pro-inflammatory cytokines leading to the induction of ALI/ARDS. We tested the hypothesis that Δ9-Tetrahydrocannabinol (THC), a cannabinoid known for its anti-inflammatory properties can rescue mice from SEB induced mortality. Intranasal followed by intraperitoneal administration of THC resulted in death of mice, while THC treatment rescued them from mortality. THC exposure induced vascular leak in the lung, which was reduced by THC treatment. THC administration resulted in the infiltration of lymphocytes (CD3+, Vβ8+, NK, NKT, MDSC and macrophages) in the lung and THC treatment led to the decrease in the absolute cell numbers. Interestingly, THC treatment caused an induction of CD4+Foxp3+ T-cells in the lung, indicating a role for regulatory T-cells in the amelioration of SEB induced inflammation. Additionally, SEB exposure led to the induction of miR-182 that caused a downregulation in Foxo1 expression leading to clonal expansion of T-cells. THC treatment however, decreased miR-182 expression indicating that THC might mediate its effects in part through the regulation of miR-182. Cytokine analysis showed that while SEB exposure led to the increase of IL-2 and MCP-1 in the serum and IFN-γ and IL-6 in the Bronchoalveolar lavage fluid (BALF), THC treatment resulted in a decrease in these cytokines. Together, our data demonstrates that THC can rescue mice from SEB induced ALI and death. (Supported in part by NIH grants P01AT003961, R01AT006888, R01ES019313, R01MH094755, P20RR026848 and VA Merit Award BX001357).

2078 Identification of microRNA That Affect Multiple Pathways of TCDD-Induced T Cell Dysregulation.

P. Mehrotra, P. Nagarkatti and M. Nagarkatti. Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC.

3, 5, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant, is well known for inducing severe toxicity including immunosuppression. We examined the mechanisms by which TCDD affects the T cell response to Staphylococcal enterotoxin B (SEB). SEB, a superantigen, activates ~20% of T cells via Vβ8 T cell receptor, causes a robust release of pro-inflammatory cytokines. We injected C57BL/6 mice with SEB in footpads and treated i.p with vehicle or TCDD. Our studies showed that TCDD treatment of SEB-activated lymphocyte led to a decrease in Vβ8+ T cells in compare to vehicle and causes an increased induction of apoptosis in SEB-activated T cells. TCDD led to induction of Foxp3+ T regulatory cells (Tregs) and suppression of pro-inflammatory cytokines, IFN-γ, TNF-α and IL-6 while increasing the expression of the anti-inflammatory cytokine, IL-10. Showing the role of microRNA (miR) in TCDD-induced immune dysregulation, we performed high throughput miR analysis. Following TCDD administration, 36 miRs were up-regulated while 50 were down-regulated. In silico analysis demonstrated that several pathways were affected including induction of apoptosis, cytochrome P450 expression and Treg differentiation. We validated the role of selected miR following vehicle or TCDD treatment of SEB-activated LN cells. miR-31, complementary to the 3'-UTR of the target gene Foxp3, was down regulated in the TCDD treated group which is validated by RT-PCR. miR-31 directed against the target gene CYP1A1, was down-regulated in the TCDD treated group which suggests that TCDD acts as an AhR ligand causing increased CYP1A1 expression as well as Tregs induction. miR-21 targets the pro-apoptotic targets, Fas and Fasl was down-regulated, which results in TCDD-mediated toxicity. Our studies demonstrated that TCDD affects miR expression that acts through several mechanisms to cause immune dysregulation. (Supported by NIH grants P01AT003961, P20RR026848, R01AT006888, R01ES019313, R01MH094755 and VA Merit Award BX001357).

2079 Quantitative Phosphoproteomic Analysis of the Dynamic Signaling Network Mediating Proinflammatory Response in the Spleen of Mice under Deoxynivalenol-Induced Ribotoxic Stress.

X. Pan1, 2, D. Whitten1, C. Wilkerson1, 2, J. Pestka1, 2, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI; 2Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI; 3Center for Integrative Toxicology, Michigan State University, East Lansing, MI; 4Proteomics Core Facility, Michigan State University, East Lansing, MI; 2Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI.

The trichothecene mycotoxin deoxynivalenol (DON) is a widely-studied model ribotoxic stress that targets the innate immune system and has public health significance due to its common contamination of human and animal food. Induction of proinflammatory genes in the spleen by DON is known to involve activation of transcription factors mediated by rapid phosphorylation of mitogen-activated protein kinases (MAPKs). To further understand how phosphorylation of proteins leads to the onset of proinflammatory response, stable isotope dimethyl labeling-based proteomics was applied to quantitatively profile the immediate (0-30 min) phosphoproteome changes in the spleen of mice orally exposed to a toxicologically relevant dose of DON. A total of 90 phosphoproteins indicative of novel phosphorylation events were significantly modulated by DON. In addition to critical branches and
scaffolds of MAPK signaling being affected, DON exposure altered phosphorylation of proteins that mediate PI3K/AKT, B cell receptor and T cell receptor-linked pathways and DNA methylation. Gene ontology analysis indicated that DON exposure affected biological processes such as cytoskeleton organization, regulation of apoptosis and immune system development, which could modulate cell adhesion and lymphocyte function, setting the stage for the proinflammatory response. Fuzzy c-means clustering analysis further cell lysates from DON evoked several distinct temporal profiles of the regulated phosphoryepitopes. These results should shed light on mechanisms of the immunotoxicity of ribotoxins and could ultimately lead to novel strategies for countering the adverse actions of such agents.

2080 Targeted Proteomic Analysis of Phospho-Lyn in Hg Intoxicated B Cells.

J. A. Caruso1, P. M. Steemer1, M. J. McCabe2 and A. L. Rosenzweig3. 1Institute of Environmental Health Sciences, Wayne State University, Detroit, MI; 2Environmental Medicine, University of Rochester, Rochester, NY; 3Immunology and Microbiology, Wayne State University, Detroit, MI.

Network and key node analysis of proteins undergoing Hg(2+)-induced phosphorylation and dephosphorylation in Hg intoxicated mouse WEHI 231 B cells identified Lyn as the top scoring node. Lyn is a Src family protein tyrosine kinase known to be intimately involved in the B Cell Receptor (BCR) signaling pathway. Under normal signaling conditions the tyrosine kinase activity of (mouse) Lyn is controlled by phosphorylation, primarily of two well known canonical regulatory tyrosine sites, Y397 and Y508. While Lyn has multiple tyrosines, threonines and serines, which have not so far been determined to play a major role under normal signaling conditions, but are potentially important targets for phosphorylation following Hg(2+) exposure. In order to determine how Hg(2+) intoxication modulates the phosphorylation of additional residues in Lyn, a targeted MS assay was developed. Initial mass spectrometric surveys of purified Lyn identified seven phosphorylated amino acid residues (6 tyrosines and 1 serine). A targeted quantitative assay was then developed from these results using the multiple reaction monitoring (MRM) strategy. WEHI 231 cells were treated with Hg, peroxanate, or anti-mu antibody (to stimulate the BCR), and cell stimulation confirmed by anti-phosphotyrosine western blot. While some of the data from these same samples were then separated by 1D SDS-PAGE and the regions containing Lyn were selected for analysis. In gel digestion produced tryptic peptides that were analyzed on a TSQ Vantage MS system using a Lyn-specific MRM method that targeted 11 peptides and 6 phosphopeptides. Data indicate that several Lyn sites are subject to Hg(2+)-induced phosphorylation. However Y117 and Y194 were especially susceptible, suggesting that their phosphorylations may be important mediators of Hg immunotoxicity. Supported by NIEHS. R21ES019228

2081 Penicillium Mycotoxins Alter the Expression of Genes Coding Enzymes That Regulate Epigenetic Programming in Bovine Macrophages.

S. Oh1, R. Clift2, C. G. Balch3, B. S. Sharma4, H. J. Boermans5, S. Haladi2 and N. A. Karrow4. 1Animal & Poultry Science, University of Guelph, Guelph, ON, Canada; 2Biomedical Sciences, University of Guelph, Guelph, ON, Canada; 3Alltech Inc., Guelph, ON, Canada.

Penicillium mycotoxins (PM) are natural immunomodulatory contaminants that accumulate in grains, crops, fruits, and fermented products, especially during post harvest periods, due to improper storage and harvesting methods. In this study, the expression of genes coding key enzyme involved in epigenetic regulation was assessed using a bovine macrophage cell line (BoMac). BoMac were activated with bacterial lipopolysaccharide (LPS) and exposed for 6 hr to the following PM: citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA), penicillic acid (PA), or a combination of one of the above with OTA at the concentration that inhibits BOMAC cell proliferation by 25% (IC52). Messenger RNA was isolated and real-time PCR analysis was performed to assess mycotoxin-induced changes in the expression of DNA methyltransferases (DNMTs), histone demethylases (JMJD3 and UTX), histone acetylases (CBP/p300), histone deacetylases (HDACs), and histone ubiquitin ligase (BMI1). LPS-induced expression of DNMT3a was augmented by OTA+PA, while DNMT3b expression was reduced by PA, OTA+PA and CIT+OTA. JMJD3 expression was induced by PA but down-regulated by OTA+PA. CBP/p300 expression was reduced by all individual mycotoxins as well as OTA+MPA and OTA+PA, and MII1 expression was reduced by MPA, OTA+MPA and OTA+PA. The expression of HDAC1 was reduced by CIT+OTA and OTA+PA, while HDAC2 expression was induced by CIT+OTA and OTA+PAT. Lastly, HDAC3 expression was reduced by MPA, PA, CIT+OTA, OTA+PAT, OTA+MPA and OTA+PA. These findings propose a potential novel regulatory mechanism by which PM can modulate bovine macrophage gene expression and function.

2082 Genipin-Induces Cyclooxygenase-2 Expression through Upregulating NF-κB, C/EBP and AP-1 Signaling Pathways in Murine Macrophages.

Genipin, the aglycone of geniposide, exhibits anti-inflammatory and anti-angiogenic activities. Cyclooxygenase-2 (COX-2) acts as a link between inflammation and carcinogenesis through its involvement in tumor promotion. In the present study, we examined the effect of genipin on COX-2 gene expression and analyzed the molecular mechanisms of its activity in murine RAW 264.7 macrophages. Furthermore, genipin dose-dependently increased the levels of COX-2 protein and mRNA. These results demonstrate that genipin induced COX-2 expression via NF-κB and AP-1 activation. Moreover, genipin increased the luciferase reporter gene activity in cells transfected with a COX-2 promoter. Transient transfections utilizing COX-2 promoter deletion constructs and COX-2 promoter constructs, in which specific enhancer elements were mutagenized, revealed that the NF-κB, C/EBP and AP-1 were predominant contributors to the effects of genipin. Together, these results suggest that genipin induces the expression of COX-2 in RAW 264.7 macrophages, and the induction is related with activation of NF-κB and AP-1 signaling pathway. Taken together, these findings suggest that genipin is related biological activities and induced inflammation.

2083 The Role of Transcription Factor FoxO1 in Asbestos-Induced Apoptosis of MT-2 Cells.

H. Matsuzaki1, S. Lee1, M. Madera2, N. Kumagai-Takei1, Y. Nishimura1 and T. Otsuki1. 1Department of Hygiene, Kawasaki Medical School, Kurashiki, Japan; 2Laboratory of Functional Glycochemistry, Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.

Asbestos is known to cause mesothelioma and lung cancer. We previously reported that asbestos affects not only mesothelial and lung epithelial cells, but also anti-tumor immune system. Regulatory T cells, Treg, produce inhibitory cytokines to suppress anti-tumor immune system. MT-2 cells were cultured with asbestos for 8 months and employed as Treg model exposed to asbestos. MT-2 cells exposed to asbestos showed higher viability after treatment with high concentration of asbestos than original MT-2 cells, and was designated as MT-2Rst. Total RNA were prepared from MT-2Rst and original MT-2 cells, respectively, and mRNA expressed in these cells were analyzed by using a micro array containing 41,000 human genes. FoxO1, forkhead transcription factor, was found to decrease in MT-2Rst cells. We generate FoxO1 knock-down MT-2 cells with shRNA. FoxO1 shRNA reduced population of apoptotic cells after treatment with asbestos, whereas did not alter basal apoptotic ratio. These results suggest that FoxO1 play a role in regulation of asbestos-induced apoptosis, and down-regulation of FoxO1 in MT-2Rst is involved in its resistance to asbestos.

2084 BCL-6 and SHP-1: Putative Regulators of TCDD-Mediated Impaired Human B Cell Activation.

A. Phlasnis1, R. B. Crawford2,3, R. S. Thomas4 and N. E. Kaminski1,3. 1Genetics, Michigan State University, East Lansing, MI; 2Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI; 3Center for Integrative Toxicology, Michigan State University, East Lansing, MI; 4Hammer Institute for Health Sciences, Research Triangle Park, NC.

The environmental contaminant 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is known to cause suppression of humoral immune responses. Evidence from epidemiological studies performed in dioxin-contaminated areas suggest associations between exposure to dioxin-like compounds and increased incidence of non-Hodgkin’s lymphoma (NHL) in human subjects. We have observed that TCDD-treatment of CD40L and cytokine-activated human peripheral blood B cells leads to suppression of B cell activation. Hence, in order to elucidate the molecular mechanisms underlying impaired B cell activation by TCDD, we focused on two candidate genes – SHP-1, a protein tyrosine phosphatase that inhibits signaling in
activated B cells and BCL-6, a transcriptional repressor of B cell activation and differentiation also mutated in NHL. SHP-1 was identified through a genomic analysis of AHR binding in TCDD-treated mouse B cells. To evaluate the potential involvement of SHP-1 in this process, time-course measurements were performed and SHP-1 mRNA and protein levels were induced at day 3 in presence of TCDD. In several donors, we also observed a TCDD concentration-dependent increase in protein levels of SHP-1. With respect to BCL-6, we observed decreased downregulation of protein levels compared to control cells. When BCL-6 and SHP-1 levels were measured simultaneously in human B cells, an increase in the double positive (SHP-1 hi BCL-6 hi) population was seen in the presence of TCDD. This increase in SHP-1 and BCL-6 levels was observed in several TCDD-sensitive human donors and the changes were concentration-dependent. Collectively, these results suggest that the regulators, BCL-6 and SHP-1 may be involved in the TCDD-mediated suppression of human primary B cell activation. (Supported in part by NIH R01 ES002520 and P42 ES004911)

Paradox of Epithelial Early Growth Response 1 in Epithelial Inflammatory Signaling under Ribosomal Insults.

K. Do, H. Choi, J. Kim, S. Park, C. Oh and Y. Moon, Lab of Macousal Exposure and Biomodulation, Department Microbiology and Immunology, Pusan National University School of Medicine and Medical Research Institute, Vangsan, Republic of Korea.

Regulation of gut epithelial NF-κB expression and activity are crucial for preventing overstimulation of pro-inflammatory response following exposure to commensal bacteria. To determine whether the EGR-1 modulates epithelial NF-κB signaling, we investigated the effects of epithelial EGR-1 on responses to bacterial NF-κB-activating lipopolysaccharide (LPS) in intestinal epithelial cells under ribosomal stress. Although nuclear translocation of NF-κB was observed in the cells exposed to LPS, chemokine expression was slightly affected. In contrast, simultaneous exposure to LPS and ribosomal insults decreased epithelial NF-κB activities, but chemokine expression was super-induced. Similar to our previous study, ribosomal insults-induced EGR-1 mediated induction of pro-inflammatory chemokines in the intestinal epithelial cells. Mechanistically, mucosal ribosomal insult-triggered EGR-1 mediated PPARY induction, which blocked NF-κB activation by LPS. Taken together, EGR-1 regulates pro-inflammatory NF-κB activation by LPS via EGR-1-induced PPARY although EGR-1 is a positive mediator of chemokine induction by mucosal ribosomal insult in gut epithelial cells (This study was supported by the National Joint Agricultural Research Project of RDA (project number PJ008405032012) RDA, Republic of Korea).

TCDD-Induced Modulation of Ig Expression in a Human B Lymphocyte Cell Line.

B. Johnson, L. Liu and C. E. Sulsnic, Pharmacology & Toxicology, Wright State University, Dayton, OH.

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent environmental toxin known to inhibit immunoglobulin (Ig) gene expression in various animal studies. We have identified the mouse 3' IgH regulatory region (3′IgHRR) as a sensitive transcriptional target of TCDD that may mediate inhibition of Ig expression. Interestingly, the hs1.2 enhancer of the human 3′IgHRR is polymorphic and has been associated with a number of autoimmune diseases. In contrast to the inhibitory effects of TCDD on the mouse hs1.2, the human hs1.2 is activated by TCDD. Whether this species difference in hs1.2 modulation translates to the 3′IgHRR and Ig expression is unknown. The sensitivity of the antibody response to TCDD-induced suppression in animal models suggests that human B-cells could be a sensitive target of TCDD; however, very few studies have evaluated the effect of TCDD on human B-cell function and Ig expression and none have evaluated the human 3′ IgHRR. The objective of this study was to characterize the CL-01 human B lymphocyte cell line as a potential human cellular model to determine the relationship between the AhR, 3′IgHRR, Ig expression and class switch recombination. Our results support expression of a functional AhR in the CL-01 cells. TCDD treatment also induced transcriptional activity of luciferase reporters regulated by each allele of the polymorphic human hs1.2 enhancer. Additionally, the CL-01 cells can be activated to express Ig by ligands for the Toll-like receptor 9 (TLR9) and this activation appears to be sensitive to TCDD-induced modulation. Future studies will evaluate the role of the hs1.2 polymorphism in 3′IgHRR activation, Ig expression and CSR and in the effects of TCDD on these processes. Since TCDD represents a large class of chemicals found in the environment, diet, and pharmaceuticals, understanding chemical-induced modulation of the human 3′IgHRR and hs1.2 enhancer may provide a clue to the etiology of autoimmune diseases associated with the hs1.2 polymorphism. (Supported by NIEHS R01ES014676)

Comparison of the Effects of Deoxynivalenol and Tributyltin Oxide to That of Model Compounds Inducing Endoplasmic Reticulum Stress, Ribotoxic Stress and T Cell Activation.

P. C. Schmeits¹, M. R. Katika¹, A. A. Peijnenburg¹, H. van Loveren² and P. Hendriksen¹. ¹Toxicology and Effect Monitoring, RIKILT Institute of Food Safety, Wageningen, Netherlands;²Laboratory for Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, Netherlands.

Two common immunotoxins, the mycotoxin deoxynivalenol (DON) and the organotin compound tributyltin oxide (TBTO), were previously studied for their effects on the human Jurkat transcriptome. DON induces ribotoxic stress and both DON and TBTO induces ER stress, oxidative stress, calcium mediated signaling, NFAT and NFkB pathways, T cell activation and apoptosis. The present study aimed to confirm this finding by comparing the effects of DON and TBTO on mRNA expression in Jurkat cells to that of positive controls inducing ribotoxic stress (anisomycin), ER stress (thapsigargin) and T cell activation (PHA and ionomycin).

Jurkat cells were exposed for 6 hours to subcytotoxic concentrations of DON, TBTO, anisomycin, thapsigargin, ionomycin and PHA. RNA was isolated and hybridised on Affymetrix U133 Plus 2.0 Arrays. Effects on mRNA expression were analysed on the level of individual genes or on the level of pathways. The gene expression profiles of anisomycin and DON were almost identical confirming that DON and anisomycin both induce ribotoxic stress and act via the same mechanism. Anisomycin and DON upregulated the processes of ribosomal function, RNA biosynthesis, T cell activation and apoptosis. Genes were similarly affected by thapsigargin and TBTO confirming that both compounds induce ER stress. Both TBTO and thapsigargin upregulated genes involved in RNA biosynthesis, ER stress, T cell activation and oxidative stress, and downregulated ribosomal function. Another group of genes were upregulated by TBTO and not affected by the other compounds and are involved in DNA packaging and nucleosome assembly. As expected, ionomycin induced genes involved in T cell activation. In contrast, PHA did not affect any pathway. In conclusion we showed that DON induces ribotoxic stress and TBTO induces an endoplasmic reticulum stress response.

Bidirectional Impact of Atrazine-Induced Elevations in Progesterone (P4) on the LH Surge in the Ovariectomized (OVX), Estradiol (E2)-Primed Rat.

J. M. Goldman¹, L. K. Davis¹, A. S. Murr¹ and R. L. Cooper¹. ¹Endocrine Toxicology Branch, Toxicology Assessment Division, NHEERL, ORD, US EPA, Research Triangle Park, NC;²Impact Pharmaceutical Services, Research Triangle Park, NC.

Multiple daily exposures to the herbicide atrazine (ATRZ) have been reported to suppress the luteinizing hormone surge (LHS) in female rats. Exposure has also been found to elevate P4 concentrations, and an increase in P4 is known to have a different directional effect on LH depending on its temporal association to the surge. Consequently, the present study focused on the effects of ATRZ dose and exposure duration on the LHS in OVX, E2-primed Long-Evans rats. ATRZ was administered by gavage (3000h), and serial tail blood samples were taken at 1400, 1600, 1800 & 2000h following 1, 2 & 4 days of exposure. An initial study with 0 & 100 mg/kg (previously demonstrated to suppress the LHS after multiple treatments) significantly enhanced the afternoon LH surge peak & area under the curve (AUC) in response to a 1-day exposure, an effect consistent with kisspeptin genetic expression in the brain anteroventral periventricular region. In contrast, 4 daily treatments caused a significant suppression in both measures, whereas no effects were present following 2 days of dosing. After a 1-day treatment, prompt & marked elevations in serum P4 concentrations, attributable to adrenal secretion, were present at both 30 minutes & 1 hour, but by the 4th day a marked decline was present at 1 hour. A dose-response assessment was subsequently conducted with 0, 10, 30 & 100 mg/kg ATRZ for 1 & 4 days. At 1 day, 100 mg/kg caused similar elevations in circulating P4, the LH peak & AUC, whereas 4 daily exposures resulted in a shift to a reduced AUC. No effects on the surge were observed with 10 or 30 mg/kg at 1 or 4 days. This influence on the LHS indicates that the effectiveness of ATRZ in inducing P4-associated bidirectional shifts in LH depends on both the dosage administered and importantly on the temporal association of exposure to the appearance of the surge. (This abstract does not represent EPA policy.)

Chloroethylazine: An Ovotoxic Metabolite of Cyclophosphamide?

I. A. Madden and A. F. Keating, Iowa State University, Ames, IA.

Phosphoramidate mustard (PM) has been implicated as the ultimate ovotoxic metabolite of the chemotherapeutic agent cyclophosphamide, however, studies suggest that in extra-ovarian tissues PM can spontaneously metabolize to a volatile
cytotoxic compound, chloroethylaziridine (CEZ). To our knowledge, CEZ toxicity has not been characterized directly in the ovary. Postnatal day 4 (PND4) Fisher 344 (F344) rat ovaries were cultured in media containing vehicle control (1% DMSO; CT) in the absence or presence of PM (60 μM) or CEZ. CEZ-treated ovaries were those that were present in the same incubator as PM-treated (60 μM) ovaries, thus receiving exposure to the volatile metabolite. Additionally, the requirement of ovarian tissue for GC formation was evaluated by adding PM (60 nM) to wells that did not contain an ovary to determine any ovo-toxic impact on ovaries that were in control media in the same incubator. Following 6 days of culture, follicle types were classified and counted in all treatments. Relative to control, PM and CEZ caused primordial follicle loss (P < 0.05), with PM being more ovo-toxic (P < 0.05) than CEZ (CT = 426.7 ± 28.88; PM = 86.33 ± 9.9; CEZ = 260 ± 30.0). Small primary follicle depletion only occurred following PM exposure (P > 0.05), not CEZ, relative to CT (CT = 103.3 ± 16.95; PM = 3.67 ± 1.45; CEZ = 83.87 ± 7.8). In the absence of ovarian tissue, CEZ spontaneously arose from PM, and depleted (P < 0.05) both primordial (CT = 377.5 ± 53.2; CEZ = 82.79 ± 29.93) and small primary follicles (CT = 85.0 ± 21.91; CEZ = 24.5 ± 6.6), relative to control. Thus, ovarian tissue is not a requirement for CEZ generation from PM. This study suggests that CEZ is a novel ovo-toxicant that warrants further characterization in the ovary to understand its contributions to the detrimental effects of chemotherapery on female fertility. The volatility and toxicity of CEZ is particularly concerning for chemotherapy patients and their families as well as the medical professionals caring for these patients (Supported by ES016818).
later time points. Therefore, BPA exposure targets Scx and thus, inhibits the conversion of cholesterol to preproenolone, resulting in the decreased sex steroid hormone levels of BPA-exposed antral follicles. Supported by National Institute of Health R01 ES019178 and P20 ES 018163

2094 Di(2-Ethylhexyl) Phthalate Alters the Expression of Phospotidinolipin 3-Kinase Signaling Proteins Involved in Early Ovarian Foliculogenese In Vivo.

P. R. Hannon and J. A. Flaws. Department of Comparative Biosciences, University of Illinois, Urbana, IL.

Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer in consumer, building, and medical products containing polyvinyl chloride. Widespread production and use in everyday items represent a public health concern as humans are exposed to DEHP via ingestion, inhalation, and dermal contact. Large doses of DEHP harm ovarian function; however, the effects of DEHP on the ovary at environmentally relevant doses are unknown. Our group has shown that 30 day exposure to relatively low doses of DEHP accelerates recruitment of primordial follicles to the primary stage of development. Immature follicles at this stage rely on intrinsic ovarian factors and proper regulation of the phosphotidinolipin 3-kinase (PI3K) signaling pathway for primordial follicle survival, quiescence, and activation of foliculogene-
sis. Since DEHP accelerates primordial follicle activation, we tested the hypothesis that 30 day treatment with DEHP alters the expression of intrinsic ovarian factors, specifically those involved in the PI3K signaling pathway. To test this hypothesis, CD-1 mice (post-natal day 30) were orally dosed with tocopherol stripped corn oil (vehicle control) or DEHP (20 mg/kg/day, 200 mg/kg/day, and 2000 mg/kg/day) daily for 30 days. Whole ovaries and ovarian tissue with antral follicles removed were subjected to gene expression analysis by qPCR (n=4/group). In the whole ovary, DEHP increased the mRNA expression of Kit at the 20 mg/kg dose, and decreased the mRNA expression of Pten and FoxL2 at the 20 mg/kg dose and Kit, Pten, Rps6, and Tci1 at the 200 mg/kg dose (e.g. Tci1 vehicle: 1.05±0.19; 200 mg/kg: 0.5±0.02; p≤0.05). In ovarian tissue with antral follicles removed, DEHP decreased the mRNA expression of Mmr1 at the 200 mg/kg and 20 mg/kg doses. These data suggest that DEHP alters the expression factors involved in early foliculogen-
cerosis, specifically in PI3K signaling. Furthermore, the dysregulation of PI3K signaling could lead to adverse acceleration of early foliculogenesis. Supported by R01 ES019178.

2095 Humoral Immunity in Infant Cynomolgus Monkeys: Control Background Data.

S. Oneda1, N. Lalaveya1, R. Watson1, N. Makori1, P. Franklin1, T. Beck1, K. Fukuzaki2 and K. Nagata3. 'SNBL USA, Ltd., Everett, WA; ’Shin Nippon Biomedical Laboratories, Ltd., Tokyo, Japan.

Background: Developmental immunotoxicity (DIT) evaluations are performed to determine if the test article has an immunotoxic effect on the developing immune system. T-cell dependent antibody response (TDAR) to keyhole limpet hemocy-
ain (KLH) is one of the methods to assess DIT in the nonhuman primate. Differences in KLH-specific IgM and IgG responses within animal age and animal origin were evaluated in infant cynomolgus monkeys (Macaca fascicularis, hereafter Cynos). Methods: KLH was administered by intramuscular injection to infants Cynos twice. The initial KLH injection (1st dose) occurred postnatal days (PND) 90, 120, 180, or 270. The second KLH injection (boost, 2nd dose) occurred 2 to 3 months after the 1st dose (PND180, 180, 240, and 330, respectively). The origins of the Cynos were Indonesian (Island, IL) and Cambodian (Mainland, ML). Serum samples were obtained prior to each KLH injection and once weekly for 4 weeks following each KLH injections. KLH-specific serum IgM and IgG levels were measured using ELISA methods. Results: IgM elevated rapidly after the 1st and 2nd doses. The highest IgM in IL (69.2 and 73.6 μg/mL after the 1st and 2nd doses, respectively) was 24-27% lower than ML (95.2 and 96.4 μg/mL). IgM elevated gradually after the 1st dose but rapid-
l after the 2nd dose. The highest IgG after the 1st dose in IL (34.5 μg/mL) was 24% lower than ML (45.2 μg/mL). After the 2nd dose, the highest IgG in IL (1339.7 μg/mL) was 39% higher than ML (941.7 μg/mL). The profiles (patterns) of IgM and IgG were similar between IL and ML. IgM was clearly low on PND90/180 group when compared with PND120/180 while IgG was compara-
tive. There were no remarkable differences in IgM and IgG between PND120/180 and PND180/240 groups. Both IgM and IgG were highest in PND270/D330 group at most time points. Conclusion: There were no remarkable differences in TDAR results between ani-
mal origins. It is recommended that TDAR assessment be conducted in 4 months or older infants.

2096 Bisphenol A Treatment of Cultured Mouse Ovarian Antral Follicles May Affect the Aryl Hydrocarbon Receptor Signaling Pathway.

Bisphenol A (BPA) is a commonly used plasticizer in the manufacture of polycarbonate plastics. Previous studies indicate that BPA exposure has toxic effects on the female reproductive system. For example, BPA (50-100 μg/mL) inhibits growth and steroidogenesis in cultured adult mouse antral follicles. Nevertheless, not much is known about the underlying mechanism. The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that regulates cellular processes in the ovary including transcriptional activation of cytochrome P450, family 1, subfamily B, polyepitide 1 (Cyp1b1). Interestingly, previous studies have shown that in-utero BPA treatment alters expression levels of AHR signaling pathway related genes in mouse embryonic ovaries. Hence, our current study was designed to examine whether the toxic effects of BPA observed in adult mouse antral follicles are medi-
ated by the AHR signaling pathway. We hypothesized that BPA treatment of cul-
tured adult mouse antral follicles alters expression levels of Ahrr, aryl hydrocarbon receptor nuclear translocator (Ahrnt), aryl hydrocarbon receptor repressor (Ahrr), and Cyp1b1. To test this hypothesis, we mechanically isolated antral follicles from mouse ovaries (C37BL/6) and cultured them in vehicle control or BPA (0.001-50 μg/mL) for 24 and 96 hours. At the end of the cultures, follicles were further processed for gene expression analyses. Our results indicate that at 24 hours, BPA 50 μg/mL treatment significantly decreased Ahrr and Cyp1b1 expression levels compared to the control group (p≤0.05). At 96 hours, BPA treatment (0.001-10 μg/mL) did not alter expression levels of any of the examined genes compared to the control group. These data suggest that relatively low doses of BPA do not affect the expression levels of selected AHR related genes. A high dose of BPA (50 μg/mL) may affect the expression of selected genes in the AHR signaling pathway as early as 24 hours. Supported by: NIH ES019178 (JAF), NIH K99ES021467 (ZRC), the Environmental Toxicology Scholar Program (WW, AZK).

2097 Oral Two-Generation Reproduction Toxicity Study with Synthetic Amorphous Silica, NM200 in Wistar Rats.

Safety assessments must complement the technological progress in engineering of new nanomaterials. Although the current test guidelines on developmental and reproductive toxicity are generally able to determine hazards, their specific application to nanomaterials needs to be evaluated. The results of a two-generation reproduction toxicity study (OECD 416) with NM200 are presented here.

Male and female Wistar Han rats (28 per group) were treated by oral gavage with NM-200 (supplied by Joint Research Centre, Italy) at dose levels of 0, 100, 300 and 1000 mg/kg body weight/day for two consecutive generations (premating 10 weeks, mating 2 weeks, gestation and lactation 3 weeks each). The nanostructured material was tested as delivered and aggregates were not artificially broken down. The nanomaterial particle size distribution was characterized. Body weight and food consumption were measured regularly. Reproductive (including estrus cycle evaluation and sperm analysis) and developmental (including sexual maturation) parameters were measured and at sacrifice (reproductive) organs and tissues were sampled for histopathological analysis.

Oral administration of synthetic amorphous silica, NM-200 up to 1000 mg/kg bw/day had no adverse effects on the reproductive performance of rats or on the growth and development of the offspring into adulthood for two consecutive generations. The systemic distribution of the silica particles will be studied in various target or-
gans of F1-generation animals, both by chemical analysis and by electron mi-
croscopy. Measurement of uptake and organ burdens could be valuable additions to OECD standard test guidelines when applied to the hazard assessment of nanoma-
terials. This study was sponsored by CEFIC (LRI-N3 project) and monitored by Monika Maier, Evonik Industries AG, Hanau, Germany on behalf of asass a CEFIC Sector group.
Pixuvri was better tolerated than DOX in newborn and young animals, all reaching adulthood, suggesting Pixuvri as a possible alternative to DOX for pediatric use.

In conclusion, Pixuvri was better tolerated than DOX in newborn and young animals at 4- and 8-week of recovery. The cardiotoxicity of DOX, assessed at the end of treatment sacrifice. Notably, a significant reduction in bodyweight gain and a lower (3 mg/kg/day) DOX induced a marked reduction in heart weight was observed at the end of treatment sacrifice. Notably, for early and late onset.

DOX at 3 mg/kg/day was given as a comparator. Animals were sacrificed at the end of treatment and after 4- or 8-week of observation (DOX terminated after 4-week). Pixuvri up to 27 mg/kg/day was better tolerated than DOX at a dosage nine times higher (3 mg/kg/day) DOX induced a marked reduction in bodyweight gain and a cumulative mortality higher than 50% in pups, survivors being however sacrificed post-term due to severe decay of their health conditions. Bone marrow toxicity was comparable between Pixuvri at low dose and DOX, whereas more pronounced effects were observed with Pixuvri 27 mg/kg/day, but recoverable after 4 or 8 weeks off-dose. Pixuvri was measurable in plasma up to 2 and occasionally to 6 h after administration. After repeated treatments Cmax and AUC increased proportionally with the dose and no accumulation was seen. No significant gender difference was observed. Toxicity to thymus and reproductive organs was observed with both test items while no nephro- or hepatotoxicity was detected. Cardiotoxicity was negligible up to 27 mg/kg/day of Pixuvri in females, and quoted as minimal in high dose males at 4- and 8-week of recovery. The cardiotoxicity of DOX, assessed at the end of treatment and 4-week after, was lower than that of Pixuvri, although a significant reduction in heart weight was observed at the end of treatment sacrifice. Notably, for DOX it was not possible to assess the onset and severity of cardiotoxicity at the last timepoint of 8-week, that is definitely the most indicative of late cardiotoxicity. In conclusion, Pixuvri was better tolerated than DOX in newborn and young animals, all reaching adulthood, suggesting Pixuvri as a possible alternative to DOX for pediatric use.

It is of concern that exposure to air pollutants (AP) negatively affects reproductive function. Recently, we observed that AP is associated with increased rates of implantation failures (IF) in mice. The uterus requires a subtle collaboration of a variety of factors including: cytokines (LIF), adhesion and antiadhesion (MUC-1) molecules and hormonal induced morphological changes (e.g. decidualization, epithelial changes) to become receptive. The aim of this study was to investigate if increased IF due to chronic exposure to PM2.5 could be related to changes in uterine receptivity. To test this, female mice (n=10/group) were continuously exposed (45 days) to either filtered air (AP) or 2 different daily exposure doses of concentrated ambient particles (600 and 1200 µg/m3) of PM2.5. Estrous cyclicity was evaluated 2 weeks before mating and at 4.5 dpc females were euthanized and the following outcomes were evaluated: ovarian and uterine weight, number of corpora lutea, uterine histopathology and LIF and MUC-1 expression by qPCR and immunohistochemistry. We observed that the effects are dose dependent, being more pronounced in the higher dose. Results have shown that estrous cyclicity is affected by a reduction in the duration of the cycle accompanied by an extended diestrus. Ovarian weights are increased but there was no significant change in the number of CL. The histopathological evaluation of the uterus indicated a decrease in the volume and thickness of the endometrium. In both exposed groups, increased diameter and thickness of the glandular and luminal epithelium were seen. No significant alteration was observed in the expression of MUC-1 but there was significant suppression of LIF during the implantation window. In conclusion, exposure to PM2.5 could have significant negative effects on endometrial receptivity by affecting the fine regulation of proliferation and differentiation (decidualization) of uterine cells mediated by LIF expression.

Selection of suitable criteria for assessing sexual maturity in the female long-tailed macaque (Macaca fascicularis) has yielded conflicting results. The present retrospective work investigates whether the presence of two consecutive menstrual bleedings hallmarks complete sexual maturation. Daily vaginal swabs were collected from 1175 Asian and 660 Mauritian origin animals and the records were used to assess the ovarian cycle pattern and seasonality. Animals were housed socially. The swabs were rated from no to heavy menstruation. Menstrual cycle length was categorized (C1, C2, and C3) depending on the cycle length difference between consecutive cycles to distinguish normal cycling females from females with prolonged cycle length. Data from 12446 cycles, comprising 1-38 cycles/animal were correlated with animal age and body weight. Mean cycle duration was 32.4 days. No seasonal differences were detected. The bleeding length for Mauritian animals (median 2.9 days) was significantly longer than for the Asian animals (median 2.6 days) and the bleeding severity differed also significantly (Mauritian animals: median 3.0; Asian animals: median 2.5). Among the 1835 females under study, 784 had single prolonged cycles and were in the category C2 or C3 whereby the Asian animals had three times more prolonged cycles. At arrival at our facility the average Mauritian origin animals were significantly heavier (3.75 ± 0.62 kg) than the Asian females (n=3.25 ± 0.58 kg) although the Asian animals were significantly older (4.74 ± 1.18 years) compared to Mauritian animals (4.01 ± 0.58 years). This investigation indicates that the onset of sexual maturity is different depending on female cynomolgus monkey origin. However, cycle lengths of the majority of cynomolgus monkeys appeared rather consistent and the cycle category was predictable. This information has been taken into consideration in the planning phase of studies under the ICH guideline S6(R1) (ICH, 2011) in which the use of sexually mature animals have become part of toxicity studies.

Exposure to urban particulate air pollution is linked to cardiovascular diseases including atherosclerosis. In this study we investigated whether temporary (P) and post-natal (P) exposure to PM2.5 is associated with aortic plaque formation in susceptible individual. LDLr+/− mice were exposed during pregnancy to either filtered or polluted air (daily exposure dose-600 µg/m3) of PM2.5) using a Harvard Particle Concentrator. After weaning, male pups were subdivided and 4 groups were formed according to the exposure period (G or PN). No hypercholesterolemic diet was given to the animals. After 20 weeks of exposure, we assessed non-invasively the size of atherosclerotic plaque (AP) in the aortic arch by ultrasound biomicroscopy. Then, aortic roots were collected and the expression of genes involved in plaque formation and progression was assessed by qPCR (VCAM, ICAM, PCAM, IL-1β, IL-6, IL-10, IFNγ, MCP-1, CD36, MPP-1, MPP-9, TIMP-1 and TIMP-2). Birth weight was reduced in animals exposed to PM2.5 during G period (less 11%). Groups exposed to PM2.5 presented greater AP areas and there was an interaction effect (p<0.001) between G and P exposures and the size the plaque (r=−0.43, p=0.01). Expression of IL-1β and IL-6 (proatherogenic cytokines) were higher in exposed groups and IL-10 expression (antiatherogenic cytokines) was reduced. Expression of adhesion molecules and genes involved in plaque destabilization were reduced (VCAM, MPP2, TIMP1 and 2). In most of the cases differences in gene expression were associated with G exposure to PM2.5 but there were also interaction effects with P exposure. For other genes no differences were observed. Results demonstrate how environmental pollution can negatively influence intrauterine environment, impair fetal development and along with postnatal chronic exposure predispose susceptible individuals to atherosclerotic plaque formation later in life. Imbalance between pro- and anti-inflammatory cytokines might account for the progression of atherosclerosis due to PM2.5 exposure.
Preterm birth is associated with significant infant morbidity and mortality. Although the etiology of preterm birth is not fully determined, critical roles of oxidative stress and inflammation are implicated. Polybrominated diphenyl ethers (PBDEs) are widely used flame retardant compounds. Brominated diphenyl ether (BDE)-47 is one of the most prevalent PBDE congeners found in human breast milk, serum and placenta. Despite the presence of PBDEs in human placenta, the effects of PBDEs on pregnancy are poorly understood. The present study investigated BDE-47-induced oxidative stress and the role of oxidative stress on human extracellular trophoblast cell line, HTR-8/SVneo. HTR-8/SVneo cells were exposed to 5, 10, 15 and 20 μM BDE-47 for 4 h and reactive oxygen species (ROS) generation was measured using the dichlorofluorescein (DCF) assay. Inhibition of ROS formation was measured after pre-treatment for 1 h with deferoxamine (DFO), an iron-chelating antioxidant. To determine oxidative stress-mediated activation of inflammatory pathways by BDE-47, HTR-8/SVneo cells were pretreated with 1 mM DFO for 1 h prior to BDE-47 treatment for 24 h, or co-treated with 100 μM (±)-tocopherol for 24 h. Cytokine release was analyzed by enzyme-linked immunosorbent assay. Treatment of HTR-8/SVneo cells with 15 and 20 μM BDE-47 increased DCF fluorescence compared with solvent controls, indicating increased ROS formation. When cells were pretreated with DFO, BDE-47-stimulated DCF fluorescence was decreased. Pre- or co-treatment with DFO and (±)-tocopherol prevented BDE-47-induced interleukin-6 release. These data indicate that BDE-47-induced cytokine release in HTR-8/SVneo cells depended on ROS formation. Because inflammation occurring at gestational tissues during pregnancy has been associated with preterm birth, further research is needed to ascertain potential relevance of these findings to pregnancy and preterm labor.

One-Generation Reproduction Study of Isobornyl Acetate in Rats, with an Evaluation through Sexual Maturity in the F1 Generation.

Isobornyl acetate, a widely used fragrance ingredient, was administered to male and female rats (25 rats/sex/dose) at dosages of 0, 30, 100, and 300 mg/kg/day. Administration via gavage of the test material or the vehicle, corn oil, began before the cohabitation period (83 days for males; 14 days for females), through cohabitation (maximum 14 days), until the day before sacrifice (males) or day 7 of presumed gestation (females that do not deliver) or day 22 of lactation. F1 generation rats selected for continued evaluation were sacrificed on day 60 (+/- 3) postpartum. There were no treatment-related deaths at any dosage level tested. Excess salivation was observed in P generation male rats at 300 mg/kg/d and P generation females at 100 and 300 mg/kg/d. Mean body weights, body weight gains and feed consumption values were comparable among the dosage groups. There were 23, 22, 22, and 22 pregnant rats in the four dosage groups; all pregnant rats delivered litters. All natural delivery and litter observations were comparable. There were no treatment-related clinical signs, gross lesions or changes in body weight, body weight gains, feed consumption, or organ weights in the male and female F1 generation rats at any dosage level tested. Sexual maturation was unaffected in the F1 generation. Based on the results of this study, the no-observable-adverse-effect-level (NOAEL) for toxicity of isobornyl acetate is 300 mg/kg/day. The reproductive NOAEL in the P generation rats and the NOAEL for viability and growth of the F1 generation offspring is greater than or equal to 300 mg/kg/day. This dose is 2000 times greater than the conservatively calculated exposure (assuming 100% dermal absorption) to isobornyl acetate from fragrance use.
2109 In Vivo Exposure to Di-n-Butyl Phthalate (DBP) Decreases the Expression of Cell Proiferation Transcripts in Cultured Mouse Ovarian Antral Follicles.

Di-n-butyl phthalate (DBP) is commonly found in consumer products such as plastics, cosmetics, insecticides and oral medications. We have shown previously that DBP (1000 μg/mL) treatment in vitro alters ovarian follicular function and morphology. Here, we evaluated the effects of DBP (1000 μg/mL) treatment in vivo on mouse ovarian follicles to better understand the in vivo toxicity of DBP.

Mice were exposed to DBP for 14 weeks via drinking water and follicles were harvested at 7 days and 14 days post-treatment. Follicle development was assessed using real-time polymerase chain reaction (PCR) and immunohistochemistry. DBP treatment in vivo significantly decreased the expression of several key cell proliferation factors, including cyclin D1, PCNA, and Ki-67, which are involved in the mitotic process and cell division.

These findings suggest that DBP exposure in vivo may have long-term effects on ovarian follicular development and function, potentially impacting reproductive outcomes. Further studies are needed to investigate the mechanisms by which DBP affects ovarian follicles and to determine the clinical relevance of these findings.

2110 Evaluating Benzo[a]pyrene Effects on Steroidogenesis and Reproduction.

F. T. Booc1, C. Thornton1, X. Fang1, A. Lister2, D. MacLatchy2 and K. L. Willett1,1Pharmacology, University of Mississippi, University, MS; 2Biology, Wilfrid Laurier University, Waterloo, ON, Canada.

Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) that has been implicated in modulating aromatase enzyme function. This effect has potential to interrupt normal reproductive function by causing imbalances in homeostatic estrogen and androgen levels. The aim of this study was to use a fish model, Fundulus heteroclitus, in order to assess whether BaP caused a significant change in steroid concentrations that could negatively alter additional reproductive biomarkers.

Adult fish were exposed to waterborne BaP concentrations of (0, 1 or 10 μg/L) for 28 days. Males and females were combined for the second half of the exposure (days 14-28) in order to quantitate egg production and fertilization rates. BaP exposure did significantly reduce male gonadal somatic index (GSI) and egg fertilization at 10 μg/L. Testosterone concentrations in males were significantly reduced at the high BaP dose averaging only 355 pg/mL plasma versus 2510 pg/mL in the controls. Also, estradiol concentrations in the females were significantly reduced at 1 and 10 μg/L BaP averaging 4070 and 3350 pg/mL plasma respectively compared to 7540 pg/mL plasma in the controls. Sperm concentrations, egg production, male liver somatic index (LSI), and female GSI and LSI were not altered. BaP exposure at these environmentally relevant concentrations caused negative alterations to both molecular and phenotypic biomarkers associated with reproduction. Our next goal is to assess if these partial effects will cause permanent changes in subsequent generations of progeny. (Supported by NIEHS R03 ES018962)

2111 Comparison of Estrogen Mixture In Vivo vs In Vitro.

Numerous sources contribute to widespread contamination of drinking water sources with both natural and synthetic estrogens, which is a concern for potential ecological and human health effects. In vitro screening assays are valuable tools for identifying mechanisms of toxicity but in vivo results cannot be directly extrapolated to in vivo exposures since most in vitro assays do not account for metabolism,
distribution and excretion or other systemic toxicities. In this study, we highlight some of the limitations associated with using in vitro estrogen transcriptional activation assays for predicting in vivo action of xenoestrogens. In particular, we compared the ability to predict the uterine growth response (uterotrophic assay, UA) to estrogenicity for additional estrogens in vitro and in vivo. These data indicate the limitations associated with making in vivo predictions based on in vitro data for compounds that are metabolically inactivated in vivo in the liver, gut or other tissues or activated by the liver in vivo. Ongoing efforts related to this study include characterizing individual dose response curves and mixture estrogenicity for additional estrogens in vitro and in vivo. These data will be used to make predictions from the in vitro assay to the in vivo response to exposure to the compounds. This information is critical for valid interpretation of in vitro screening assay results. Disclaimer: Abstract does not necessarily reflect U.S.EPA policy.

2112 Bisphenol A May Affect the Fertilizing Ability of Mouse Oocytes via Mechanisms Involving Events from Sperm Penetration into the Oocyte to Formation of 1-Cell Zygote.

B. Ramos-Robles1, M. Sánchez-Gutiérrez2, S. Vargas-Martín1, D. Acuña-Hernández, R. Piña-Guzmán1 and L. Hernández-Ochoa1. 1Department of Toxicology, Cinvestav-IPN, Mexico City, Mexico; 2Instituto de Ciencias de la Salud, UAEH, Pachuca, Mexico; 1Department of Bioprocesos, UPIBI-IPN, Mexico City, Mexico.

The cumulus cells surrounding the oocyte expand before ovulation to allow oocyte maturation, and to facilitate sperm cell to penetrate the oocyte. It has been demonstrated that bisphenol A (BPA), a plasticizer that leaches from plastics into food and water, alters the expansion of cumulus cells. Since we have shown that BPA decreases the ability of oocytes, surrounded by cumulus cells, to be fertilized by sperm cells, this study examined whether BPA affects the fertilizing ability of oocytes through effects on cumulus cells, oocyte penetrability by sperm cells or zygote development to 8-cell stage. Female C57BL/6J mice (n = 6-8 per group) were exposed orally to BPA (50 µg/kg/d), diethylstilbestrol (10 µg/kg/d, positive control) or corn oil during 3 estrous cycles every 24 h. Following treatments, mice on estrus received estrous cumulus-enclosed oocytes from 1-cell zygote stage. Mice were treated with the vehicle control or with bisphenol A (BPA) before mixing oocytes and sperm. Oocytes were cultured in the presence of bisphenol A (BPA) + Methoxychlor in the UA conforms to dose additive (DA) estrogenicity, whereas the degree of estrogenicity of this mixture is underestimated by the TA assay. In contrast, the TA assay responded to a binary mixture of benzylbutyl phthalate (BBP) + BPAF in a DA manner, whereas, the UA displayed no estrogenic response to this mixture. These data illustrate the limitations associated with making in vivo predictions based on in vitro assay data for compounds that are metabolically inactivated in vivo in the liver, gut or other tissues or activated by the liver in vivo. Ongoing efforts related to this study include characterizing individual dose response curves and mixture estrogenicity for additional estrogens in vitro and in vivo. These data will be used to make predictions from the in vitro assay to the in vivo response to exposure to the compounds. This information is critical for valid interpretation of in vitro screening assay results. Disclaimer: Abstract does not necessarily reflect U.S.EPA policy.

2113 Amphoteric Fluorotelomer-Based Surfactants: 28-Day Subchronic and One-Generation Reproduction Toxicity in Rats.

L. O’Connor1, T. L. Serey2 and R. C. Buck1. 1Haswell, DuPont, Newark, DE; 2Chemicals & Fluoroproducts, DuPont, Wilmington, DE.

An amphoteric fluorotelomer-based surfactant in glycol solvent mixture and water was evaluated in a 28-day oral gavage study (OECD 407) with a 28-day recovery subset and a one-generation reproduction study subset (OECD 422). Groups of 20 GrfCD(SD) rats were dosed with vehicle (deionized water) containing 0, 10, 50, or 200 mg/kg/day test substance. Dams were allowed to deliver and rear their offspring until postnatal day (PND) 4. Litter examinations were determined at birth and on PND 4-21. The reproductive organs and vaginal smears were performed on selected rats and selected organs were weighed and/or retained for histopathological examination. There were no test substance-related deaths or clinical observations, no effects on body weight or nutritional parameters, no effects on neurobehavioural endpoints, clinical pathology, reproductive performance, or on offspring at any dose. Test substance-related changes occurred at ≥ 50 mg/kg/day in the kidneys of male rats and at ≥ 100 mg/kg/day in the kidneys of male and female rats. Increased hyaline droplets consistent with alpha2u-globulin were noted at ≥ 50 mg/kg/day in the cortical tubules of males after 28 days of administration, and were also observed in the P1 males after 45 days of test substance administration. Increased peritubular hydrophobic droplets at ≥ 200 mg of test substance per kg/day in males. Low incidences of nasal olfactory epithelium degeneration/atrophy were present in the 28-day and/or P1 rats at 200 mg/kg/day in males, and at ≥ 50 mg/kg/day in females. Olfactory lesions were reversible; the human relevance of this effect is unknown. No test substance-related changes were present in the nose of the 200 mg/kg/day recovery groups. Under these study conditions, the systemic toxicity NOAEL was 10 mg/kg/day based on histopathologic effects observed in the noses and kidneys of male rats at 200 mg/kg/day and in the noses of female rats at ≥ 50 mg/kg/day. The NOAEL for reproductive toxicity and effects on offspring was 200 mg/kg/day, the highest dose tested.

2114 Effects of Zearalenone with or without Proprietary Binders on Vaginal Morphology of Prepubertal Gilts.

D. Bradley, T. J. Evans, D. Ledoux and G. Rottinghaus. University of Missouri, Columbia, MO.

The xenoestrogenic mycotoxin, zearalenone (ZEA), can cause hyperestrogenism in prepubertal gilts, resulting in changes in the size, structure, and, potentially, function of the female reproductive tract. Objectives of the present study were to: 1) evaluate ZEA-induced changes in the vaginal epithelium using morphologic parameters and 2) determine whether proprietary binders can ameliorate the xenoestrogenic effects of ZEA. Thirty prepubertal gilts were assigned to five treatment groups. The gilts were housed individually and fed either a control diet, the same control diet with an added 1.5 mg of ZEA per kg of feed, or the ZEA-contaminated diet with Binder A, B, or C added. Animals were humanely sacrificed on Day 21 and portions of the reproductive tracts were removed and fixed in formalin. Image analysis software was used to measure total vaginal lumen circumference, as well as the total length of vaginal epithelium exhibiting hyperplasia and/or squamous metaplasia. The mean vaginal luminal circumference of the cross sections was greater in ZEA-treated groups than the controls, with or without binder. Likewise, the mean percentage of hyperplastic vaginal epithelium was also higher in the ZEA-treated groups, regardless of the presence of binder. There was a tendency for two of the binders to have ameliorative effects on the percentage of vaginal epithelium undergoing ZEA-induced squamous metaplasia. It is clear that treatment with ZEA affected the morphometric parameters evaluated. While none of the binders appeared to antagonize or reverse the estrogenic effects of ZEA, those effects of ZEA and its metabolites involving ER-β estrogen receptors, such as squamous metaplasia, were reduced by two of the binders. The results of this experiment demonstrated how morphometric parameters can be used to assess the effects of xenoestrogens, such as ZEA, and the potentially receptor-dependent ameliorative effects of proprietary binders.

2115 Effect of Bisphenol A (BPA) and Ethinyl Estradiol (EE2) in the Gene Expression of Estrogen Receptors (ER) and ER-Related Receptors in the Rat Prostate and Mammary Gland.

Tissue and temporal expression of receptors involved in estrogen signaling and their modulation by hormonally active agents are hypothesized to influence the long term effects of such agents; however, these expressions are poorly defined. NCTR Sprague-Dawley rats were dosed from gestation day 6 until parturition by oral gavage and their pups were directly dosed by the same route from postnatal (PND) 1 to 90. Dose groups included naïve and vehicle controls, BPA (2.5 mg·300 mg/kg body weight [bw]/day), and EE2 (0.5 and 5.0 µg/kg bw/day). The expression level of genes coding for nuclear ERs (Esr1 and 2), ER-related receptors (Era, b, and g), and G-protein-coupled ER (Gper) was analyzed in the whole prostate and female mammary gland at PND 4 and 90. Quantitative real-time RT-PCR was used and data was expressed as % Gapdh expression level. The most highly expressed receptor in PND 4 prostate was Esr4 and its expression was also high in adult prostate (3 and 30% Gapdh, respectively). The expression of Esr2, which encodes ERβ, was only 0.1% Gapdh in PND 4 prostate, but increased to 40% Gapdh at PND 90. The expression of the other receptor genes was 1% Gapdh or less and was not affected by age (Esr1 > Era > Gper > Esrβ). Neither BPA nor EE2 affected the expression of the receptor genes analyzed in the prostate under our conditions. In the mammary gland, the most variably expressed gene was Esr4 (0.6% Gapdh), while the least expressed gene was Esr2 (0.05% Gapdh), and both PND 4 and 90. At PND 4, Era was slightly (<2x) induced by the low EE2 dose, relative to vehicle control. In the PND 90 mammary gland, both EE2 doses induced αx the expression of Era2, while the expression of Era4 was induced ~3x by the low, but not high, EE2 dose. BPA did not alter the expression of the genes analyzed in the mammary gland. Our data suggest that the expression of these receptors is tissue-specific and that BPA and EE2 differentially modulate their expression. IAG FDA 224-12-0003/NIH ES12013.
2116 A Combined Repeated Dose and Reproductive/Developmental Toxicity Screening Study of Perfluoroundecanoic Acid in Rats.

A. Ono1, M. Ikeya2, T. Suzuki3, T. Ono4, T. Kawamura1, M. Takahashi1, M. Matsumoto1, H. Kato1, M. Hirata-Koizumi1 and A. Hirao4. 1Division of Risk Assessment, National Institute of Health Sciences, Tokyo, Japan; 2Boso Research Center Inc., Tokyo, Japan; 3Tokyo Metropolitan Institute of Public Health, Tokyo, Japan; 4Tokyo Heisei University, Chiba, Japan.

Perfluoroalkyl carboxylic acids are one of environmental contaminants which have received attention because of their possible effects on wildlife and human health in recent years. In order to obtain the initial risk information on the toxicity of perfluoroundecanoic acid (PFUnA (C11)), we conducted the repeated dose and reproductive/developmental toxicity screening test. PFUnA was administered by gavage to rats at 0 (vehicle: corn oil), 0.1, 0.3 or 1.0 mg/kg/day. Males were dosed for 42 days beginning 14 days before mating and females were dosed from 14 days before mating to day 4 of lactation. During the dosing period, body weight gain was inhibited in both sexes at 1.0 mg/kg/day. In this group, there was a decrease in fibrinogen in both sexes and shortening of activated partial thromboplastin time in males. Blood biochemical examination revealed an increase in BUN and decrease in total protein in both sexes and increases in ALP and ALT and decrease in albumin in females at 1.0 mg/kg/day and above. Focal necrosis and diffuse vacuolation of hepatocytes were also found in the 1.0 mg/kg/day group. Regarding the reproductive/developmental toxicity, the body weight of pups at birth was lowered and body weight gain for 4 days after birth was inhibited at 1.0 mg/kg/day while no dose-related changes were observed at 0.3 mg/kg/day and above. In histo-pathologically, centrilobular hypertrophy of hepatocytes was observed in both sexes at 0.3 mg/kg/day and above. Focal necrosis and diffuse vacuolation of hepatocytes were also found in the 1.0 mg/kg/day group. Regarding the reproductive/developmental toxicity, the body weight of pups at birth was lowered and body weight gain for 4 days after birth was inhibited at 1.0 mg/kg/day while no dose-related changes were observed in the other reproductive/developmental parameters. Based on these findings, the NOAELs for the repeated dose and reproductive/developmental toxicity are considered to be 0.1 mg/kg/day and 0.3 mg/kg/day, respectively.

2117 The Detrimental Effect of Bisphenol A on Mouse Two-Cell Zygote May Depend on the Dose.

T. Moore-Ambriz1, D. A. Acuña-Hernández1, B. Ramos-Robles1, S. Vargas-Marín1, M. Sánchez-Gutiérrez1 and L. Hernández-Ochoa1. 1Department of Toxicology, Centro-IPN, Mexico City, Mexico; 2Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico.

Early development of the zygote begins with the first cleavage that forms diploid cells and it depends on the contribution of paternal gametes. Bisphenol A (BPA) is an environmental compound that may leach from plastics into food or water. Some studies have shown that BPA alters embryonic development but they mostly focus on effects at later stages of development. This study evaluated the effect of an in vivo exposure to different doses of BPA on the formation of two-cell zygotes. Female mice C57BL/6 (30 days old) (n = 6-16 per group) were orally exposed to BPA (0.05, 0.5 and 50 mg/kg/d) or corn oil (isosfophorized-stripped, negative control) for 3 estrous cycles every 24 h. Following treatments, mice on estrus received equine chorionic gonadotropin hormone (5 IU) ip, 48 h later mice received hormone human chorionic gonadotropin (hCG; 5 IU) and 16 h post-hCG mice were bred with a fertility proven male mouse to collect two-cell zygotes. Zygotes were stained with Hoechst 33342 and classified for abnormalities such as cell lying and cytoplasmatic prolongations. Mice treated with all doses of BPA had lower percent of fertilized oocytes compared to control, but zygote abnormalities were observed from the dose of 0.5 mg/kg/d BPA. Specifically, two-cell zygotes from mice exposed to 0.5 mg/kg/d BPA had higher percent of cell lying or cytoplasmatic prolongations compared to control, and two-cell zygotes from mice exposed to 50 mg/kg/d BPA had higher cytoplasmatic prolongations compared to control. Our data suggest that BPA alters the formation of 2-cell zygote causing abnormalities depending on the dose.

2118 Body Burden and Preliminary Effects in Rats following Low-Dose Drinking Water Exposure to a VOC Mixture during Pregnancy and Adolescence.

A. L. Filgo1, 2, D. M. Chambers2, E. M. Quist1, 4, B. C. Blount2 and S. E. Fenton1. 1NTP Laboratory, DNTD, NIEHS, NIH, DEHS, Research Triangle Park, NC; 2NC Institute for Environmental Mitigation, Centers for Disease Control and Prevention, Atlanta, GA; 3Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC; 4Comparative Biomedical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC.

Volatile organic compounds (VOCs) such as benzene, trichloroethylene, trans-1,2-dichloroethylene, tetrachloroethylene, and vinyl chloride are common industrial solvents used in a number of cleaning agents and solvents. Ingestion or inhalation are the most common routes of reported environmental or occupational exposures to VOCs. In the US, spikes in birth defects, infant mortality, reproductive cancers and leukemia have occurred in areas where high levels of VOCs were detected in drinking water supplies. Here, time-pregnant Harlan Sprague Dawley rats and their offspring were given access to water containing mixtures of these 5 VOCs at concentrations 5, 10 and 50 times those detected in contaminated US drinking water (Sonnenfeld et al., 2001). Dams and pups were exposed from gestation day (GD) 10 until sacrifice. Blood was collected under hermetic conditions to determine VOC body burden in both dams (GD13, 15, 20 and postnatal day (PND)15, 21) and pups (PND15, 21, 28, 48). In exposed dams, low levels of VOCs were detected in the blood during pregnancy and increased during lactation. Dose dependent changes in the way each compound was also evident. Blood levels did not plateau, and differences in VOC body burden were attributed to the varying amounts of water consumed. Pup VOC levels also varied with changing body weight, milk and water consumption. At necropsy, pup body, liver and spleen weights were recorded and various tissues were collected for further analysis. VOC-exposure had no effect on selected organ weights or body/organ weight ratios. Morphological changes in the mammary gland were detected and were most prominent in male mammary tissue.

2119 The Inhibin B (InhB) Response to the Testicular Toxictants Mono-2-Ethylhexyl Phthalate (MEHP), 1, 3 Dinitrobenzene (DNB) or Carbendazim (CBZ) following Short-Term Repeat Dosing in the Male Rat.

W. Brésilin1, A. Paulman2, D. Sun-Lin1, K. M. Goldstein1 and A. Derr2. 1Eli Lilly and Company, Indianapolis, IN; 2Covance Laboratories Inc., Greenfield, IN.

The objectives of this study were to evaluate the utility of plasma InhB as a biomarker of testicular injury in adult rats using the known Sertoli cell toxicants, MEHP, DNB or CBZ. The studies were run under conditions of short-term repeat dosing similar to that which would be used in early stage drug development to screen and prioritize drug candidates. The short-term high-dose exposure paradigm also allowed for assessment of changes in InhB as an early indicator of testicular injury. Following oral gavage administration of the compounds for 2 or 7 days, the rats were evaluated for clinical signs, body weight, food consumption, organ weights, plasma hormone levels, and gross and microscopic pathologic of selected organs. For DNB and CBZ, necropsy was characterized by minimal exfoliation of germ cells as demonstrated by increased cellular debris in the epididymis (MEHP) to more severe and dose/duration responsive Sertoli cell vacuolation, germ cell degeneration, and multinucleated giant cells of germ cell origin (DNB and CBZ). The slight to moderate Sertoli and germinal cell injuries did not correlate with significant changes in plasma InhB levels following 2 or 7 days of exposure. However, moderate to severe injury to germinal epithelium following up to 7 days of exposure, but not after a 2 day exposure, correlated with decreased in plasma InhB levels and less consistently with increases in plasma follicle stimulating hormone (FSH). In conclusion, under the conditions of these studies, changes in InhB were not an effective early onset marker of testicular toxicity or an effective marker for slight to moderate levels of acute injury and only reflected more severe disruption of spermatogenesis. Changes in plasma InhB and FSH were poorly correlated except in some instances of moderate to marked testicular toxicity.

2120 Poor Correlation between Rat Testis Histology and Serum Inhibin B after Treatment with Two Drug Candidates.

W. J. Reagon1, R. E. Chapin1, J. A. Abey2, R. A. Goldstein1, M. G. Dokmanovich1, K. Johnson3 and E. J. Geely1. 1Drug Safety ReD, Pfizer, Groton, CT; 2Arbor Analytics, Ann Arbor, MI.

Serum InhB was measured in two studies of known-testis-toxic drug candidates. Study 1 was for a Hepatitis C candidate, and utilized a 10 week dosing period, followed by mating and necropsy of half of each group, and then a 12 week recovery period for the remaining 15 rats/group. At the end-of-dosing post-mating necropsy, 6 of 15 high-dose males had testis lesions (germ cell loss, degeneration); Inhibin B was significantly reduced in all animals in that group. The mid-dose group had no testis lesions but significantly reduced mean serum Inhibin B. After the 12 week recovery, 9/15 high-dose males showed damage in testes, and no mid-dose animals had testis lesions. Mean serum Inhibin B in all treated groups at recovery was not different from controls. Inhibin B appeared to both over-report and under-report testis damage in Study 1. Study 2 was an acute pathogenesis study for an antibacterial compound, using control and two dose levels and multiple time-points (days 5, 8, 15, 22, and then untreated until day 71). At each timepoint, blood was sampled from all remaining rats and 5/group were killed for histologic evaluation. The low-dose group developed minimal to moderate lesions, while
serum Inhibin B was never changed. The high-dose animals progressed quickly (from mildly normal to being broadly and moderately affected and moderately affected to cell absence, disorganization); serum Inhibin B levels were reduced at days 8 and 15 only. In this study, Inhibin B appeared less sensitive than histology, except with marked testis damage, when Inhibin B was routinely low. Serum Inhibin B both over-reported damage (being reduced in the absence of lesions) and under-reported testis damage (being normal in the presence of testis lesions) in these two studies. We conclude that across both of these studies, there was a poor correlation between changes in serum levels of Inhibin B and testis histopathology.

2121 Assessment of Inhibin B As a Biomarker of Testicular Injury following Administration of Carbendazim, Cetrorelix, or 1, 2-Dibromo-3-Chloropropane in Wistar Han Rats

Although histopathology is considered the gold standard for assessing testicular toxicity in the nonclinical setting, identification of non-invasive biomarkers for testicular injury are necessary to improve safety monitoring capabilities for clinical trials. Inhibin B has been investigated as a potential noninvasive biomarker for testicular toxicity. The present study investigates the correlation of Inhibin B serum levels in Wistar Han rats with the onset and reversibility of testicular histopathology from classical testicular toxicants, carbendazim (CBZ), cetrorelix acetate (CTX), and 1,2-dibromo-3-chloropropane (DBCP). The dosing paradigm was selected with Interim (Day 8), Drug (Day 29), and non-dosing Recovery (Day 58) Phases. Monitoring of serum Inhibin B was not effective at predicting the onset of CBZ- or CTX-mediated testicular pathology in rats. Inhibin B level was reduced by DBCP administration at the end of the Drug Phase only, acting as a leading indicator of the onset of testicular toxicity, prior to the onset of germ cell depletion. However, since Inhibin B decreased at the end of the Dosing Phase and the onset of testicular pathology occurred without any additional dosing in the Recovery Phase, it is unclear if monitoring Inhibin B would provide sufficient advanced warning of the onset of testicular pathology. Furthermore, FSH was decreased and the ratio of Inhibin B/FSH was increased with DBCP administration in the Interim Phase, but not in the Drug or Recovery Phases. Although the Inhibin B/FSH ratio was a leading indicator of testicular pathololgy, the effective window for monitoring may be narrow. Conclusion: Inhibin B has limited predictive capacity as a leading testicular biomarker in rats.

2122 The Inhibin B Response in Male Rats Treated with a GnRH Agonist and an Endothelin Receptor Antagonist

The tests shows a moderate frequency as a preclinical toxicity target organ. This is primarily detected by histopathology and there is a need to identify circulating biomarkers to enable longitudinal monitoring and facilitate safe progression of compounds into the clinic. Inhibin B is primarily synthesized by the Sertoli cells and regulates pituitary FSH release through a negative feedback loop. This study was part of a HESI-sponsored initiative to evaluate Inhibin B as a marker of spermatogenic dysfunction in the rat. Inhibin B was measured in male Han Wistar rats (10 weeks old) administered vehicle or an endothelin receptor antagonist (ET-An) orally for 28 days or a GnRH agonist (GnRH-A) as a subcutaneous implant on Day 1. Ten animals/group/time point were killed on Days 4, 8, 15 and 29 (controls on Days 15 and 29), for testes weights and histopathology. In-life blood samples were taken on Days 4, 8, 15 and 29 to measure inhibin B, FSH and LH, and at necropsy for the same hormones plus testosterone. Plasma inhibin B showed a wide concentration range in control animals (group means 76.4 to 184.2 pg/mL; individual animals 17.8 to 381 pg/mL). GnRH-A caused decreased testes weights plus degenerative testicular pathology from Day 4 with partial recovery by Day 29. Statistically significant reductions in inhibin B were observed at all time points and appeared to track the development and partial recovery of the pathology (generally <50 pg/mL on Days 4 to 15; group mean 92 pg/mL on Day 29). ET-An produced an increase in testes weights and a non degenerative lesion of minimal tubular dilatation. There was a trend for lower inhibin B values (30 to 50%) at all time points, including on Day 4 when tubular dilatation was not yet evident. Overall, we conclude that following GnRH-A administration, inhibin B showed a good correlation with testicular pathology for GnRH-A, and following ET-An administration appeared to give a signal that might reflect changes in tubular function in the absence of degenerative pathology.

2123 Inhibin B As a Marker of Sertoli Cell Damage and Spermatogenic Disturbance in the Rat

T. Pfaff1, G. F. Weinbauer1, J. Rhodes1 and M. Burgmann1, 1Covance Laboratories GmbH, Muenster, Germany; 2Carus GmbH & Co. KG, Wuppertal, Germany; 3Covance Ltd., Harrogate, United Kingdom; 4Department for Anatomy, Giessen, Germany.

This study was designed to determine the effects of Compound A on the fertility and early embryonic development in the male rat over a 15-19 weeks treatment and a 19 weeks treatment free period in control and 30, 60 and 180 mg/kg dose groups (n=22/group). Compound A is a dose-dependent manner induced various degrees of spermatogenic alterations compatible with Sertoli cells being the primary target, e.g. inter- and intracellular Sertoli cell vacuolation and altered cellular morphology followed by germ cell degeneration and marked reduction of epididymal sperm numbers. Blood-testis barrier remained intact (electron microscopy and hyperosmotic fixation test) until germ cells disappeared. Mating behaviour and weights of androgen-dependent prostate and seminal vesicles remained unaffected. Inhibin B levels correlated only with moderate to severe spermatogenic alterations. Ten animals with inhibin B levels below detection limit were encountered and five of these animals were fertile in week 19 but following another 15 weeks without treatment, animals were rendered infertile and inhibin B levels remained undetectable. In the rat, inhibin B only reflects major spermatogenic alterations and markedly reduced inhibin B levels might indicate irreversibility of these alterations and even infertility.

2124 The Inhibin B Response to Testicular Toxicants Ethylene Glycol Monomethyl Ether or Dibromoacetic Acid in Male Rats.

B. Enright1, B. Tornes1, H. Loenec2 and K. Whitney1, 1Abbott Laboratories, Abbott Park, IL; 2Abbott GmbH & Co. KG, Ludwigshafen, Germany. Sponsor: R. Nagler.

This study was conducted as part of an ILSI-HESI consortium effort to assess the utility of circulating inhibin B as an early biomarker of testicular toxicity in rats. Two known testicular toxicants were selected for use in this study: ethylene glycol monomethyl ether (EGME) and dibromoacetic acid (DBAA). EGME (200 mg/kg/day), DBAA (250 mg/kg/day) or vehicle control (0.2% hydroxypropyl methylcellulose) were administered orally to male rats for 3, 6, or 14 consecutive days. On study days 4, 7, and 15, serum was collected for evaluation of inhibin B levels from all surviving animals and subcutaneous was necropsied from each of the control, EGME, and DBAA groups. Administration of EGME resulted in spermatoocyte degeneration in late stage tubules and spermatoocyte depletion to stage III on day 4, progressing to loss of spermatoctyes and round spermatids to stage VI by day 7 and continued germ cell loss and degeneration of elongating spermatids by day 15. Inhibin B levels among EGME-treated animals progressively decreased relative to their respective controls at all time points. Administration of DBAA was associated with spermatid retention at all three time points and abnormal residual bodies at days 7 and 15. Inhibin B levels among DBAA-treated animals decreased progressively relative to their respective controls on days 7 and 15. The results of this study indicated that serum inhibin B levels in rats provided a signal of testicular toxicity for each of these known testicular toxicants administered at high levels; however, histopathology provided the earliest evidence of toxic effects.

2125 The Inhibin B Response to the Testicular Toxin, 1, 3 Dinitrobenzene in Rats and the Analytical Evaluation of Inhibin B ELISA Kit.

N. Bogdan1, M. Sone1, M. Singer1, L. Hall1, S. Bryant1 and P. Vinken2, 1Drug Safety Sciences, Julius Research and Development, LLC, Parsippany, NJ; 2Drug Safety Sciences, Jensen Research and Development, LLC, Berne, Belgium.

Background: This work is part of an ILSI-HESI consortium effort to evaluate the analytical performance of a second generation ELISA kit and also to assess the utility of circulating inhibin B (InhB) as an early biomarker of testicular toxicity in rats. Methods: A commercially available InhB ELISA was used to assess for dilution linearity, frozen stability and serum/plasma comparison. Reference ranges were generated for male Sprague Dawley rats. To evaluate the biological utility of InhB, 1, 3-dinitrobenzene (DNB), a Sertoli cell toxicant, was orally administered to male rats for 2 or 5 consecutive days at 2 or 6 mg/kg/day. On Days 1 and 2, serum was collected at necropsy and on Day 4, serum was collected at necropsy for all rats from all rats treated for 2 days, and on Days 1, 3 and 5 from all rats treated for 5 days. At the end of treatment, testes were weighed and examined histologically. Results: There
was no difference between serum or plasma InhB values and they were stable out to 12 weeks when stored at -20°C and -80°C. Dilution linearity was acceptable up to 32-fold. An age-related decline of InhB levels was seen between 6 and 9 weeks of age after which levels were stable up to 20 weeks. DNB caused a time-dependent increase in incidence and severity of testicular findings characterized by degeneration of the germinal epithelium, loss of pachytene spermatocytes and vacuolization of the germ cells. Inhibin B secretion could not be identified over a 24 hour time period. Overall, the InhB assay performed well under our conditions; however it is important to be aware of the biological variability and low control values observed by some other laboratories. In our study, a change in serum InhB levels was detected only in association with moderate/severe testicular toxicity, and is therefore considered of limited value as an early biomarker for Sertoli cell toxicity.

2126 The Inhibin B (InhB) Response to the Testicular Toxicants Hexachlorophene, Ethane Dimethane Sulfonate (EDS), Dibutylphthalate (DBP), Nitrofurazone, Di-Ethionine, 17-Alph Ethylnlestradiol, 2, 5-Hexanediene, or Carbendazim (CBZ) following Short-Term Dosing in the Male Rat.

L. P. Salduni1, Z. Erdos1, M. Goodkin1, K. Menzel1, K. Turner3 and W. F. Glash4 1Merck Pharmaceuticals, West Point, PA; 2Merck Pharmaceuticals, Kenilworth, NJ; 3Research Triangle Institute, Research Triangle Park, NC.

Background: Inhibin B is a hetero-dimeric glycoprotein that down regulates follicle stimulating hormone and is produced predominately by the Sertoli cells. The potential correlation between changes in plasma InhB and Sertoli cell toxicity was evaluated in male rats administered various testicular toxicants in 8 separate studies. Inhibin B fluctuations over 24 hours were also measured. Methods: For the testicular toxicity studies, five to eight Sprague-Dawley, Wistar, or Wistar-Han rats ranging from 8 to 13 weeks of age were administered 1 of 8 testicular toxicants for 1 to 29 days (depending on the compound). The 8 testicular toxicants were DL-Ethionine, dibutyl phthalate, nitrofurazone, 2,5-hexanediene, 17-alpha ethynylestradiol, ethane dimethane sulfonate, hexachlorophene, and carbendazim. For the 24-hour time period, plasma was collected by an automatic blood sampler. Results: Histomorphologic testicular findings were seminiferous tubule degeneration (STD), apoptosis, pachytene spermatocytes, and interstitial cell degeneration. Across the testicular toxicants tested there were varying degrees of correlation between decreases in Inhibin B and STD and aspermatogenesis. In an ROC exclusion model analysis, where treated samples without histopathology were excluded, performed on all studies except EDS (Leydig cell toxicant), Inhibin B showed a sensitivity of 72% at 90% specificity, demonstrating the potential value of InhB as a biomarker of testicular toxicity. Conclusion: Decreases in InhB showed a good correlation with Sertoli cell toxicity. As anticipated, there was no correlation between decreases in Inhibin B and Leydig cell toxicity (interstitial cell degeneration). A pattern of Inhibin B secretion could not be identified over a 24 hour time period.

2127 Simvastatin and Dipentyl Phthalate Lower Testosterone Production and Exhibit Dose Additive Effects on the Fetal Testis via Distinct Mechanistic Pathways.

B. Beverley1, C. Lambright1, J. R. Furr1, H. Sampson1, B. McIntyre3, P. M. Foster1, G. S. Travlos2, V. S. Wilson1 and L. E. Gray1 1US EPA, ORD, NHEERL, TAD, Research Triangle Park, NC; 2NIH, NIEHS, NTP, Research Triangle Park, NC.

Sex differentiation of the mammalian reproductive tract is a highly regulated process that is driven, in part, by fetal testosterone (T) production. In utero exposure to phthalate esters (PE) during sex differentiation can result in reproductive tract malformations in rats. PE alter the expression of genes associated with steroid synthesis/transport and cholesterol biosynthesis. Simvastatin (SMV) is a cholesterol-lowering drug that interferes with cholesterol biosynthesis. As cholesterol is a precursor for steroid biosynthesis, we proposed that like PE, maternal exposure to SMV during the critical period of sex differentiation would lower fetal T production and alter gene expression. Timed pregnant Sprague Dawley rats were dosed orally with 62.5 mg/kg/d SMV, 50 mg/kg/d dipentyl phthalate (DPeP), a PE, or a mixture of both. SMV and DPeP reduced fetal T production to 38.6 and 42.3% of the control values, respectively, but the SMV/DPeP mixture reduced T production to 20.9% of control. These studies suggest that although SMV and DPeP affect two different pathways, they exhibit dose additive effects within the fetal testis. Abstract does not reflect the views of the EPA. Support provided by USEPA/NTP IA#: RW-75-92285501.

2128 Postnatal Effects of Dipentyl Phthalate on Male Rat Reproductive Development.

J. R. Furr and L. E. Gray, NHEERL, Toxicity Assessment Division, Reproductive Toxicology Branch, United States EPA, Research Triangle Park, NC.

We conducted several in utero, ex vivo and in vitro studies to characterize the relative potencies of a series of phthalates on fetal rat testis testosterone production and gene expression. Dipentyl phthalate (DPeP) was the most potent of the active chemicals in its effect on fetal testis endocrine function. Although these studies have pointed to the overall potency of DPeP, little literature exists defining its dose-response curve in vivo. The objective of this study was to determine if the potency of DPeP on fetal testis endocrine function was predictive of the ability of the chemical to induce reproductive tract malformations in male rats. Young timed-pregnant Sprague-Dawley rats 0, 11, 33, 100 or 300 mg DPeP/kg/d, from GD 8-18 and examined the postnatal development of the male offspring. Male offspring of treated dams displayed decreased AGD, increased nipple retention, incomplete preputial separation, decreased sperm production, hypospadias, undescended testes, malformations of the testes, ventral prostate, and seminal vesicles, reduced body weight (300 mg/kg/day) and reduced postnatal survival. Phalathrene syndrome (PS) malformations were seen in about 9%, 44% and 100% of the F1 male offspring at 33, 100 and 300 mg/kg/d, dosage levels that reduced fetal T production by 35%, 77% and 99% respectively. Also of note were skin malformations in highest treatment group in the form of malformations and incomplete yorganic osification. These results indicate the DPeP is about 3.5 fold more potent in inducing the PS in F1 male rats than is DEHP and demonstrate that the relative potencies for disrupting fetal testis endocrine function can be used to predict some of the postnatal reproductive effects of this class of endocrine disruptors. Disclaimer: This abstract doesn't necessarily reflect USEPA policy. Supported in part by NTP/NIEHS IA#: RW-75-92285501.

2129 Changes of Expression Levels of Oxidative Stress-Related Genes in Mouse Epididymides by Neonatal Exposure to Low-Dose Decabromodiphenyl Ether.

M. Nakamoto1, H. Miyaso1, M. Komiyama2, Y. Matsuos1 and C. Momi1 1Department of Biobehavioral Medicine, Graduate School of Medicine, Chiba University, Chiba-shi, Japan; 2Center for Preventive Medical Science, Chiba University, Chiba-shi, Japan.

Decabromodiphenyl ether (decaBDE), one of polybrominated diphenyl ethers (PBDEs), is the most famous flame retardant and is used in worldwide. In a previous study, we identified adverse effects of neonatal decaBDE exposure on mouse epididymides, for example decrease of epididymal weight. On the other hand, neonatal exposure to diethylibestrol (DES), artificial estrogenic compounds, also causes several adverse effects on epididymes. DES exposure causes the decrease of epididymal weight, morphological abnormality, and the lasting change of expression levels of several genes. Molecular mechanisms for induction of harmful effects by decaBDE exposure remain unclear. Since many studies have reported that PBDEs have estrogenic activity, this activity may contribute to induction of adverse effects by decaBDE exposure. This study was carried out to examine how effects are caused in epididymes by neonatal decaBDE exposure, and elucidate molecular mechanisms of adverse effects by decaBDE exposure. Administration of decaBDE was performed subcutaneously at 0.25 mg/kg body weight/day, on postnatal days 1 to 5. At 12 weeks of age, epididymes were histologically examined and gene expression was analyzed using DNA microarray and real-time PCR. Our data showed that 1) no histological change was observed on epididymal tissues by neonatal decaBDE exposure, differently from that of DES, 2) decaBDE exposure could not induce the change of expression levels of genes which were affected by DES, but caused changes of expression levels of some oxidative stress related genes in mouse epididymes, 3) the expression level of Ubiqurin C (UbC) increased in decaBDE-exposed mouse epididymes. Our presented data suggest the possibility that increase of oxidative stress is related to elicitation of harmful effects in decaBDE-exposed mouse epididymes.
2130 Structural Changes in Various Organs of Male Rats Caused by Long-Term Oral Administration of Chlorpyrifos.

S. Tripathi and A. K. Srivastav, Department of Zoology, DDU Gorakhpur University, Gorakhpur, India.

- Wistar rats (male) were divided into two groups — group A (GA) served as control and group B (GB) were daily administered orally chlorpyrifos (Anu Products Ltd., India) at a dose of 5 mg/kg bw. Rats were sacrificed on 1st, 2nd, 4th, 6th, and 8th week after initiation of the experiment. Left testes and duodenum were excised and fixed in aqueous Bouin’s solution. The tissues thus fixed were routinely processed and embedded in paraffin. Sections of 5 μm thickness were cut and stained with haematoxylin and eosin. In conclusion, the findings of the present study indicate that the chlorpyrifos treatment caused degeneration of seminiferous tubules and thus inhibit the spermatogenesis in rats. Few seminiferous tubules lack the germinal epithelium. After exposure to chlorpyrifos the morphological observations of duodenum showed an increased mucus cell activity, disruption and sloughing of duodenal villar cells; lymphoctic infiltration and degeneration of cells. In conclusion the findings of the present study indicate that the organophosphate — chlorpyrifos can inhibit spermatogenesis and provoke degenerative features in the duodenum of rats and thus severely affect these organs.

2131 Assessment of Phthalate-Induced Changes in Fetal Rat Testis Gene Expression Using a rt-PCR Array.

C. Lambright1, H. Sampson1, J. R. Furr1, B. Hannas1, N. Evans1, L. E. Gray2, and V. S. Wilson1. 1ORD/RTD, US EPA, Research Triangle Park, NC; 2ORISE/US EPA Fellow; Research Triangle Park, NC.

Phthalate esters (PE) such as diethyl hexyl phthalate (DEHP) produce reproductive malformations in male rodents by reduction of testosterone (T) production and gene expression after dams are exposed during the critical period of sexual differentiation. We investigated the effects of seven PE known to reduce fetal T production and further evaluated gene expression using novel SBiosciences PCR arrays. Each array tests for 84 genes either involved in phase one drug or lipidoprotein transport and cholesterol metabolism/synthesis. Timed pregnant Sprague-Dawley rats were orally dosed with individual phthalates from gestational day (GD) 14-18. On GD 18, testes were collected from 3 fetuses per dam and cultured for 3 hours. Medium was collected and T values measured by RIA. Remaining testes were pooled by litter, RNA extracted, cleaned, quantified, and evaluated for gene expression using PCR arrays. PE were DiHP (750 mg/kg), DiHexyl (750 mg/kg), DBP (100 mg/kg), DnBP (900 mg/kg), DnNP (1500 mg/kg), DCHP (0, 100, 300, 600, or 900 mg/kg), and DEHP (750 mg/kg). Of the 84 genes on the Drug Metabolism arrays, four were significantly reduced: Cyp11b1, Cyp11a1, Cyp17a1, and ALDH2. Cyp11a1 and Cyp17a1 are involved in T synthesis, while Cyp11b1 aids in the production of cortisol and corticosterone. Using the lipidoprotein/cholesterol arrays, we identified 10 genes that were significantly altered that are involved in cholesterol biosynthesis (such as Apoa3, Dhrs2, Dhrs4, Ebp, Myk, Tm7s2). These data support that PE effects in the fetal testis are not limited to alterations in androgen synthesis and metabolism. DiBP (900 mg/kg), DiNP (1500 mg/kg), DCHP (0, 100, 300, 600, or 900 mg/kg), and DEHP (750 mg/kg). Of the 84 genes on the Drug Metabolism arrays, four were significantly reduced: Cyp11b1, Cyp11a1, Cyp17a1, and ALDH2. Cyp11a1 and Cyp17a1 are involved in T synthesis, while Cyp11b1 aids in the production of cortisol and corticosterone. Using the lipidoprotein/cholesterol arrays, we identified 10 genes that were significantly altered that are involved in cholesterol biosynthesis (such as Apoa3, Dhrs2, Dhrs4, Ebp, Myk, Tm7s2). These data support that PE effects in the fetal testis are not limited to alterations in androgen synthesis and metabolism.

2132 Modulation by Antioxidants of Chemotherapeutic Drugs-Induced Alterations in Steroidogenic Enzyme Activities in the Testis.

N. Kilarkaje and M. Al-Bader1. 1Department Anatomy, Faculty of Medicine, Kuwait University, Safat, Kuwait; 2Physiology, Faculty of Medicine, Kuwait University, Safat, Kuwait.

Combined treatment of bleomycin, etoposide and cisplatin (BEP) is a ‘gold standard’ therapy for several types of cancers. These drugs impair testicular functions, although the effects on Leydig cell steroidogenic enzymes are not known. We investigated the effects of the drugs on the enzymes and putative modulation by antioxidants of the drug effects. Male Wistar rats (13-15 week-old; N=5/group) were treated with either G1, or an antioxidant cocktail (AO): G2: α-tocopherol [100 mg/kg], L-ascorbic acid [50 mg/kg], Zn [40 μg/mL] and Se [100 μg/liter], or three cycles of 21 days each of BEP (G3: 1.5 mg/kg, 15 mg/kg and 3 mg/kg; ip); or BEP+AO (G4). In G3 and G4, E and P were given from day 1-5 and B on days 2, 9 and 16 of each cycle. The rats were anesthetized with ether and sacrificed by CO2 asphyxiation the next day. The gene expressions were quantified by ReT-PCR by taqman method. In G3 and G4, and 3-HSD were unaffected, whereas that of StAR were up-regulated, and that of P450sc, 3β-HSD and Scarb1 were up-regulated and that of Cyp19a1, 3β-hsd and 17β-hsd were down-regulated in G3 and G4. In G2, Cyp19a1, 3β-hsd and StAR expressions were down-regulated (p<0.05). The protein levels of LHR and 3β-HSD were unaffected, whereas that of Scarb1 were up-regulated, and that of Cyp19a1, 3β-HSD and Cyp17a1 were down-regulated in G2-G4 compared to G1 (p<0.05). No significant protective effects of the AO were observed, except on Cyp17a1 and Cyp19a1. All genes were localized in the cytoplasm. In conclusion, the drugs affect both gene and protein expressions of steroidogenic enzymes in Leydig cells and the antioxidants have limited protective effects (Supported by Kuwait University Grant # M/02/08, GM101/01 and GM101/05).

2133 Comparison of Fetal Testosterone Production in Various Tissues of the Male Sprague-Dawley Rat Dosed In Utero with Dipentyl Phthalate during the Critical Window of Sexual Differentiation.

Phthalate esters are high-production volume chemicals used in the manufacture of numerous plastics and consumer products, which generates major concern for potential human exposure and environmental contamination. Several studies have demonstrated adverse effects associated with phthalate exposure administered during the critical window of sexual differentiation on the development of the male reproductive system, many of which can be attributed to changes in fetal testosterone (T) production. However, there is very little information regarding reduction in fetal T in tissues other than the testes and the “Point of Departure” as it relates to the relationship between reductions in fetal T levels and resultant postnatal male reproductive malformations. Therefore, the objective of the current study was to assess fetal T production in various tissues following in utero exposure to dipentyl phthalate (DEP2) to determine the relationship between reductions in fetal T with the postnatal reproductive male malformations. DEP2 was given to timed pregnant Sprague-Dawley rats via oral gavage on gestation days (GDs) 14-18 at doses of 11, 33, 100, or 300 mg/kg/d (α=3); controls received the vehicle corn oil. At GD 18 dams were necropsied and fetal specimens (plasma, testes, reproductive tract, and whole body) were recovered for extraction of T using Solid Phase Extraction (SPE). We found the dose response curves for T production (media extraction) were very similar to the extracted T levels in the testes and serum. However, preliminary results suggest the dose response curves for the reproductive tract and whole body may be quite different from those of testes and serum levels. This abstract does not reflect US EPA policy. Supported by EPA/NTP IA # RW-75-922-85501.

2134 Cumulative Effects of a 9 Phthalate Mixture on Charles River-Sprague-Dawley (CR-SD) Fetal Rat Testosterone (T) Production and Gene Expression.

V. S. Wilson, J. R. Furr, C. Lambricht, B. Hannas, and L. E. Gray, Reproductive Toxicology Branch, US EPA, ORD, NHEERL, TAD, Research Triangle Park, NC.

In utero exposure to mixtures of 2 to 5 phthalate esters (PE) with similar modes of action have been shown to inhibit male reproductive development in a dose-additive fashion. Further when PE were administered to pregnant dams during the period of sexual differentiation, when reproductive malformations were observed in male offspring they correlated significantly to reductions in fetal T levels. We have observed that a mixture of 9 PE administered on gestation day (GD) 14-18 to Harlan SD rats (dilutions of a fixed ratio mixture: top dose of 80 mg DEHP, DiHP, DCHP, DBP, BBP, DCHP, D(hexyl)P, D(heptyl)P, and 10 mg DPeP/kg/d) reduced fetal T production in a dose additive manner (Hannas et al., 2011). The current study compared the sensitivity of the fetal tests of CR-SD to the Harlan SD rat for disruption of tests T production and gene expression of the 9 PE mixture. A pilot postnatal study with Harlan SD rats (administered at the top dose and 67, 33, 17, and 8% of the top dose) the high dose group produced a high incidence of phthalate syndrome malformations accurately predicted by dose addition modeling, but far in excess of that predicted by response addition. The CR-SD rat (ED50 = 38% of top dose) was slightly less sensitive to disruption than the Harlan SD rat (ED50 = 26%) for fetal T production. Results demonstrate that mixtures of 9 PE behave in a manner accurately predicted by dose addition modeling. Thus considering PE hazard, the identification of patients at risk from PE exposure, could underestimate the risk posed by a mixture of PE. Future postnatal 9 PE studies are planned in the CR-SD rats to determine the point of departure correlation between
reduced fetal T levels and the resultant postmale reproductive malformations. Disclaimer: This abstract does not necessarily reflect USEPA policy. Supported in part by NTP/NIEHS Interagency Agreement # RW-75-92285501.

2135 Impact of Clinically Relevant Cisplatin Treatment on the Undifferentiated Spermatogonia Population and Niche.
J. Harman and J. Richburg. University of Texas at Austin, Austin, TX.

A typical clinical cisplatin (CDDP) regimen consists of repeated cycles of 5-7 daily low dose injections followed 1-2 week recovery period; and while effective, often results in prolonged, sometimes permanent, infertility. Theoretically, undifferentiated spermatogonia (undiff-Sp), including spermatogonial stem cells (SSCs), should repopulate the testis after exposure has ceased. We hypothesize that SSC mitotic activity increases following the initial exposure to CDDP, rendering SSCs increasingly susceptible to CDDP-induced injury during subsequent cycles. We examined changes in the adult C57 undiff-Sp population and niche at days 1, 8, and 16 of the recovery period following a clinically-relevant course of 1 cycle (2.5 or 5.0 mg/kg/d) and 2 cycles (2.5 mg/kg/d) of intraperitoneal CDDP. Histological examination of the testis epithelium showed an increase in damage correlating with exposure dose and cycle number. Apoptosis was measured via TUNEL and found to increase during the recovery period following 1 cycle of 2.5 mg/kg and 5.0 mg/kg (300%), as well as 2 cycles of 2.5 mg/kg (600%) CDDP compared to controls. Immunohistochemistry (IHC) was performed using antibodies specific for FOXO1 (300%), as well as 2 cycles of 2.5 mg/kg (400%) CDDP compared to controls. Exposure dose and cycle number. Apoptosis was measured via TUNEL and found to increase during the recovery period following 1 cycle of 2.5 (50%) and 5.0 mg/kg CDDP (66%), as well as 2 cycles of 2.5 mg/kg CDDP compared with controls (50%); followed by a return to numbers following 1 cycle (2.5 or 5.0 mg/kg/d) and 2 cycles (2.5 mg/kg/d) of intraperitoneal CDDP. Histological examination of the testis epithelium showed an increase in damage correlating with exposure dose and cycle number. Apoptosis was measured via TUNEL and found to increase during the recovery period following 1 cycle of 2.5 (50%) and 5.0 mg/kg CDDP (66%), as well as 2 cycles of 2.5 mg/kg CDDP compared with controls (50%); followed by a return to numbers equal with or surpassing controls at 16d recovery. IHC analysis of GDNF revealed a general increase in expression, prominently along the basal membrane, during the recovery period in all treatment groups. These data suggest that a greater dose of CDDP in a single cycle of exposure causes a greater impact on the functional stem cell pool and its niche and multiple cycles of exposure result in a still greater impact than an equivalent cumulative dose. Future experiments focus on whether CDDP exposure targets the SSCs, the Sertoli cells, or both.

2136 Using a Rat Primary Epididymal Cell Model to Evaluate Drug-Induced Inflammation and Granulomas.
K. Stachelek1, W. Nowland1, T. Winton1, S. Kump1, S. N. Campion1, R. E. Chapin1 and M. E. Hurtt1. 1Drug Safety Research and Development, Pfizer Inc., Groton, CT; 2College of Pharmacy, University of Rhode Island, Kingston, RI.

Epididymal inflammation and sperm granuloma formation have been detected in vivo in Sprague Dawley (SD) rats following various treatments. The objective of this in vivo primary rat cell model is to identify compounds that cause epididymal inflammation and granulomas using minimal compound and fewer animals. We had previously found that potent granulomagens produced increases in transcript levels for the IL6 and GRO cytokines (3 to 10-fold increases), while less potent and negative compounds produced smaller (less than or equal to 2X) or no increases. We evaluated the marketed phosphodiesterase type 4 inhibitors, ibudilast (I), roflumilast (R), and the active metabolite roflumilast N-oxide (RNO), which are known to cause sperm granulomas in rats. Primary cultures of mixed epididymal epithelial cells were isolated and plated on Matrigel 24-well plates and exposed to increasing concentrations of test compounds. 24 hours post dosing, we measured mitochondrial metabolic activity using the MTS assay and cell lysates were evaluated for IL6, GRO, and IL10 gene expression by qRT-PCR at the IC20 (80% MTS activity). R and RNO were poorly soluble, which limited the in vitro exposure levels. Perhaps for this reason, modest increases in IL-6 and GRO were seen with R and RNO treatment (1.2- and 1-fold for R, 1.6- and 1.9-fold for RNO) while MTS activity was not reduced. However, treatment with ibudilast resulted in larger increases in IL-6 and GRO, 2.7- and 2.9-fold respectively at the IC20, consistent with its in vivo activity. These results of this study demonstrate that this primary epididymal culture model detects inflammatory signals that reflect the in vivo activity of at least one of these compounds in rats.

2137 Evaluation of an In Vitro Model of Spermatogenesis for Predicting Testicular Toxicity.
K. M. Goldstein1, M. Petrand1, P. Durand2, T. K. Baker3 and D. E. Seyler1. 1Investigative Toxicology, Eli Lilly & Co., Indianapolis, IN; 2Kallistem, Lyon, France. Sponsor: G. Thomas.

Due to the complex physiology of the testes, in vitro models have been largely unsuccessful at predicting testicular toxicity in vivo. These models often bear limited resemblance to in vivo cellular organization. We evaluated an in vitro model (Huve et al 1998) that forms tight junctions similar to the blood-testis-barrier (BTB), and supports spermatogenesis through meiosis II (secondary spermatocytes) and the formation of round spermatids. We used this in vitro model to evaluate the toxicity of four known testicular toxicants: Bisphenol A (BPA), 2-Methoxyacetic acid (MAA) 1,3-Dinitrobenzene (DNB), and Lindane in pre-pubertal rat seminiferous tubule cultures treated with compound for 28 days. Formation of the BTB (tight junctions) was measured by transepithelial electrical resistance (TEER) every 2 days. Cells were collected weekly for flow cytometric analysis to measure total viability and cell counts for each stage of spermatogenesis. Concentrations for each chemical were selected to approximate those shown to produce in vitro testicular effects. BPA and DNB decreased dramatically the TEER in a dose and time-dependent manner, whereas the effects of MAA and Lindane were less marked and transitory, even at the higher concentrations tested. Cell viability was slightly, if any, modified by the compounds; this was due most likely to the phagocytic activity of the Sertoli cells. All compounds induced dramatic dose-dependent diminutions of the populations of spermatocytes I and II, and round spermatids. It is important to note that the well-known specific toxic effects of MAA and DNB on pachytene spermatocytes were easily reproduced by this in vitro model. Combined, these assays not only predicted testicular toxicity in vivo, but also identified whether the compound directly targets the Sertoli cells or germ cells. With further validation, this cell model may be applicable as a screen to minimize running long-term live-phase studies.

2138 Vinclozolin Alters the Testosterone Homeostasis by Regulating the Rat Liver Cytochrome P450.
D. C. Escolar-Wilches1, C. L. Zazueta-Beltran1, M. L. Lopez-Gonzalez1 and A. Sierra-Santoyo1. Toxiconology, CINVESTAV-IPN, Mexico City, Mexico.

The Vinclozolin (V) is a well-characterized anti-androgenic fungicide in several species. The V is able to produce a complex pattern of induction, suppression and inhibition of cytochrome P450 (CYP) isozymes in mammals. The alteration of liver CYP expression can modify the testosterone biotransformation pattern. The objective of this work was to assess the effect of V on liver CYP expression and its repercussion on serum and urine levels of testosterone and its metabolites. Male Wistar adult rats were orally administered 100 mg/kg/d V for 7 d suspended in corn oil. After last dose the urine of 24 h was collected and animals were sacrificed and the blood was obtained by cardiac puncture. The liver was processed to obtain microsomes for enzyme assays and protein content analysis of different CYP isozymes. The testosterone and its metabolites were extracted from plasma and urine and was processed by enzymatic hydrolysis using β-glucuronidase/sulphatase and analyzed by HPLC. V exposure increased 25% the liver relative weight and was accompanied by an increase of 40.3% of total CYP content. The liver immunoreactive protein content of CYP1A1, 1A2, 2A, 2B1 and 3A2 increased 6.5-, 16.4-, 2.3-, 6.5- and 1.5-fold, respectively, in the non-treated group. The protein content of CYP2E1 was not altered by V. Enzyme activities of EROD, MROD, PROD and PNPH significantly increased 3.0-, 6.4-, 64.3- and 1.6-fold, respectively. In V-treated animals testosterone levels increased 80-fold in serum and 150-fold in urine. V affected the testosterone biotransformation pattern, androstenedione levels increased in serum and urine 54- and 3.6-fold, respectively; 6-DHT increased 112-fold in urine. Other testosterone metabolites were not affected. These results indicate that V regulates liver CYP expression and alters the testosterone biotransformation pattern. In addition, they also suggest an alteration on testosterone homeostasis which may represent another mechanism of action for V. These results will provide further insight into the relationship between toxicity and V exposure.

2139 Sperm mRNAs Are Molecular Markers of Testicular Injury in Rats.
L. Anderson1, E. Dene1 and K. Boekelheide1. 1Department of Pathology and Laboratory Medicine, Brown University, Providence, RI; 2Department of Urology, Rhode Island Hospital, Providence, RI.

Traditional endpoints used to measure male reproductive toxicity in humans, including serum and hormone analysis, are insensitive and unreliable; those used to monitor toxicity in animal studies, while sensitive, are not easily translatable to humans. It is therefore necessary to develop sensitive and reliable molecular biomarkers of testicular injury that can be used to both monitor human reproductive function and compare animal studies with human exposures. Objective: This sub-chronic dose response study aimed to build on existing data that identified 12 mRNA transcripts that were altered in the sperm following exposure to single doses of the Sertoli cell toxicants 2,5-hexane diol (2,5-HD) or carbendazim (CBZ).
Methods: Adult male Fisher 344 rats were either exposed to 0, 0.14%, 0.21%, or 0.33% 2.5-HD in the drinking water for three months, or exposed by daily oral gavage to 0, 30, 50, or 70 mg/kg CBZ in corn oil for three months. Body and organ weights were obtained, and quantifiable histopathological parameters (homogenization resistant spermatid head counts and retained spermatid head counts) were measured. Sperm mRNA was measured by qRT-PCR arrays.

Results: At doses that produced no-to-low levels of testicular injury, as assessed by organ weights and histopathology, a total of eight mRNA transcripts were altered in the cauda epididymal sperm. Four of the transcripts were significantly increased at the highest dose of HD, with clusterin increased in a dose responsive manner at all doses of HD. Six of the transcripts were significantly altered after exposure to CBZ, with clusterin also increased in a dose responsive manner at all doses of CBZ.

Conclusions: Our data indicate that sperm mRNA transcripts are sensitive markers of testicular toxicity. The clusterin transcript in particular may be a more sensitive indicator of Sertoli cell injury than the most sensitive histopathological endpoint.

2140 Effect of Neonatal Exposure to Decabromodiphenyl Ether on Transcript Levels of Splicing Factors in Mouse Testes.

H. Miyao1, N. Nakamura1, Y. Matsuno1,2, M. Komiyama1 and C. Mori1,2.

1Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan; 2Department of Pharmacology, Physiology and Toxicology, Marshall University, Huntington, WV; 3Center for Preventive Medical Science, Chiba University, Chiba, Japan.

Decabrominated diphenyl ether (decaBDE) is one of flame retardants and is used worldwide. Our previous study found postnatal exposure to decaBDE had adverse effect to male reproduction in mice. Mice were injected subcutaneously with 0.025, 0.25, and 2.5 mg/kg decaBDE during postnatal day 1-5 and evaluated at 12 weeks of age. In 0.025, and 0.25 mg/kg dose groups, the number of Sertoli cells was reduced significantly. Thyroid hormones (THs) are key players for Sertoli cells development. We identified that the transcript levels of TH receptor α (Thra) decreased significantly in testes of 0.025 mg/kg decaBDE dose group, while no change of TH levels was observed between control and all dose groups. Moreover, we found the ratio of Thra1/Thra2 level decreased in 0.025 and 0.25 mg/kg dose groups compared to control group. The ratio of Thra1/Thra2 level is known to be varied by the change physiologically, and the ratio of heterogeneous ribonucleoprotein (hnRNP) A1 (hnrp1): serine/arginine-rich splicing factor 1 (Srsf1) is related to Thra1/Thra2 level. However, no change was observed in hnrp1: Srsf1 level between control and dose groups. Therefore, we hypothesized other splicing factors may be involved in decrease of Thra1/Thra2 level. In this study, the transcript levels of hnRNP F (hnrfp) and hnRNP H1 (hnrh1) were examined by real-time PCR. Mice were dosed by above described method, and testes were collected at 12 weeks of age. Our data showed the decrease in transcript level of hnrfp in 0.025 mg/kg dose group, and decrease of hnrh1 level in 0.25 and 2.5 mg/kg dose groups compared to the control group. Our study suggests that hnrp1 and hnrh1 are also involved in the decrease of Thra1/Thra2 ratio by neonatal decaBDE exposure.

2141 RSPOs Counteract TCDD Inhibition of Canonical Wnt Signaling during Fetal Mouse Prostate Development.

A. Branan1,2, N. M. Davis1,2, R. W. Moore1,2, J. A. Schneider1,2, C. M. Zevida1,3 and R. E. Peterson1,2.

1University Wisconsin-Madison, Madison, WI; 2Pharmacy, UW-Madison, Madison, WI; 3Comparative Biosciences, UW-Madison, Madison, WI.

Prostatic buds are derived from the urogenital sinus (UGS) and later form into the prostate ductal network in adult mammals. In utero TCDD exposure causes mispositioning and reductive in dorsal and lateral prostatic bud numbers and prevents formation of ventral buds leading to ventral prostate agenesis. Here we examined canonical Wnt signaling following TCDD exposure in vitro. We found multiple components of the pathway (Lef1, Tcf1, Wnt1, Lgr5) to be downregulated by TCDD. R-spondins (RSPOs) are promoters of canonical Wnt signaling but their mechanisms for activating the canonical Wnt pathway are poorly understood. Previously, we demonstrated RSPO2 and RSPO3 promote prostatic bud development and addition of these proteins can rescue the effects of TCDD on prostatic bud growth. We now further examined the mechanism of RSPO activation of the Wnt pathway in the UGS by studying the extracellular Wnt antagonists, DKKs, and determining their effects on budding in vitro and examining LGRs, which are putative RSPO receptors, by studying mRNA expression between and during TCDD treated UGSs. Both mechanisms of Wnt activation by RSPOs have been demonstrated in other systems; however, it remains unclear if RSPOs preferentially act through one mechanism over the other. Our results showed little effect on prostate bud number following treatment with DKK1 and DKK2. We found both Lgr4 and Lgr5 mRNA expression in the basal epithelium (BE) where prostatic buds form and additionally we found a decrease by TCDD in Lgr5 mRNA levels in vitro. These results suggest that RSPOs bind to LGRs located in the BE of the UGS to initiate prostatic bud formation. Together, these data illustrate that TCDD inhibits multiple components of the Wnt signaling pathway and that the combined inhibition of these components significantly contributes to the inhibitory budding phenotype caused by TCDD. (Grant support: NIH ES01332, T32 ES007015)

2142 Sensitivity of Toxicological Endpoints to Detect Alterations in the Male Reproductive System of Nonhuman Primates.

G. D. Cappon1, D. Potter1, M. E. Hurtt2, G. F. Weinbauer2 and C. J. Bowman1, 1Pfizer Worldwide Research & Development, Groton, CT; 2Covance Laboratories GmbH, Muenster, Germany.

The assessment of the potential for a compound to cause toxicity to male reproductive processes relies heavily on histopathology and organ weights of the reproductive tissues. This is even more so with biologics where non-human primates (NHP) is the only relevant species and evaluation of functional fertility is impractical. To address this shortcoming ICH S6(R1) included a trigger for the addition of non-conventional endpoints to NHP studies in cases where there is reproductive cause for concern. To determine the sensitivity of these endpoints to perturbation we performed a power analysis of routine and targeted endpoints. The analysis was done on control data from sexual maturity Asian and Mauritian sourced NHP used in toxicity studies at Covance Laboratories GmbH. The power calculations were performed with a 2 sample two-sided t-test (α=0.05) assuming 3 NHP/group and the number of observations ranged from 98 to 472 per endpoint. For reproductive organ weights the power to detect a 50% change from control was 30%, 35%, 18% and 13% for testes, epididymides, prostate, and seminal vesicle, respectively. For testicular volume the power to detect a 50% change was ~30%, with slight differences depending on the method (caliper or ultrasound). For seminal analysis the power to detect a 50% change was 6%, 6%, 66% and 41% for ejaculate weight, sperm count, sperm motility, and sperm morphology (percent normal), respectively. For male hormone data the power to detect a 50% change was 10%, 30%, 7% and 78% for testosterone, inhibin B, luteinizing hormone, and follicle stimulating hormone, respectively. Given samples sizes of 3 per treatment group, and the magnitude of biological variability observed for these endpoints, the ability to draw conclusions about potential toxicity will be limited for most endpoints. Consequently, great care should be taken in the choice of endpoints added to general toxicity studies to assess the male reproductive system.

2143 Contribution of PI3K/Akt/DAF-16 Activity in C. elegans to Gene-Environment Interactions following MeHg Exposure.

S. J. Freetham and A. Aschner, Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, TN.

Neither genetic nor environmental factors completely explain the etiology and progression of dopaminergic (DAergic) neurodegeneration in Parkinson’s disease (PD). This study examines PI3K/Akt signaling as a mechanistic link between environmental and genetic factors known to contribute to PD. Specifically the interaction between methylmercury (MeHg) exposure, a ubiquitous neurotoxin, and PARK7(DJ-1), an autosomal recessive PD gene. PI3K/Akt signaling is highly conserved and regulates many aspects of neuronal survival and function. MeHg exposure has been shown to activate PI3K/Akt signaling and DJ-1 modifies PTEN activity, an upstream regulator of PI3K/Akt. Mutant and transgenic Caenorhabditis elegans (C. elegans) strains were used to determine if PI3K/Akt responsiveness and loss of DJ-1 increases MeHg vulnerability. Strains used include: wild type (WT) Bristol N2; strains null for daf-16, age-1, daf-18, djr-1.1, and djr-1.2; and a strain loss of DJ-1 increases MeHg vulnerability. Strains used include: wild type (WT) Bristol N2; strains null for daf-16, age-1, daf-18, djr-1.1, and djr-1.2; and a strain overexpressing DAF16:GFP. Synchronous L1 populations were treated with 0-40μM MeHg for 30 minutes followed by assessment of survival and basal slowing (a dopamine-dependent feeding behavior). Compared to WT worms, increased PI3K/Akt activity resulting from genetic loss of dal-18 (PTEN homolog) and dal-16 (FOXO homolog) led to increased death and lower basal lethal dose (LD50) values following MeHg treatment while decreased PI3/Akt activity through loss of age-1 (PI3K homolog) and overexpression of DAF16-GFP increased survival. Loss of djr-1.1 or djr-1.2 (PARK7 homolog) did not affect survival. Basal slowing was significantly reduced in WT worms following 20μM but not 10μM MeHg treatment (p<0.01). Slowing in worms lacking djr-1.1 but not djr-1.2, was decreased by 10μM and 20μM MeHg, suggesting that loss of djr-1.1 increases DAergic sensitivity to MeHg. Collectively, these findings demonstrate that MeHg-induced
Methylmercury (MeHg) is a potent environmental neurotoxicant that causes cell-type specific damage in the cerebellum in a calcium (Ca2⁺) dependent manner. The developmental effects of MeHg have been widely explored. However, the effects of chronic exposure in adults have not been characterized. The ability of MeHg to cause cell-type specific damage due to alterations in Ca2⁺ regulation raises the possibility that other subsets of neurons with vulnerability that depends on Ca2⁺ regulation could be sensitive to MeHg. This study focused on investigating the effects of chronic MeHg treatment on the mitochondrial function of nigrostriatal dopamine (NSDA) neurons. These neurons exhibit a unique physiological phenotype; they autonomously generate action potentials in the absence of synaptic input. The spontaneous action potentials rely on the influx of Ca2⁺ through Cav1.3, L-type Ca2⁺ channels. We also investigated whether co-treatment with isradipine, a Ca2⁺ channel antagonist, would protect against MeHg-mediated damage. Beginning at 3mo, male BALB/c mice were given 5ppm Hg as MeHg in their drinking water alone or were co-treated with 2ppm isradipine in their food for 6mo. Following the 6mo treatment period mouse weight gain was normal and there were no phenotypic changes. Mitochondrial function was measured in synaptosome preparations from NSDA neurons using the Extracellular Flux Analyzer (Seahorse Biosciences). Mitochondrial basal respiration, ATP production rate, maximal respiration, and spare capacity were examined. No alterations were seen in any measure of mitochondrial function in animals treated with MeHg alone or in animals co-treated with isradipine (n=6, p values=0.8494, 0.1019, 0.9178, 0.8227 respectively). These studies have demonstrated that mitochondrial function of striatal synaptosomes is unchanged following a 6mo MeHg treatment. The effects of a 12mo MeHg treatment are currently being pursued. This work was supported by a VICTER supplement to R01ES03299.
2149 Biochemical Alterations of Rat Brain Mitochondrial Enzymes Induced by Aluminium Chloride.

B. Venugopal1, K. Arumugam1, V. Dhasil1, P. Subbarayalu1 and K. Venkatesulu2.
1Kollam Medical College, Kollam, Kerala, India; 2Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX.

The present study was designed to investigate the effect of aluminium chloride (AlCl3) on various enzymes in the mitochondrial fraction of the brain of male albino rats. Results: Adult male albino rats were administered AlCl3 at two different doses, 50 mg and 100 mg/kg body weight, orally, daily for 45 days. At the end of the experimental period the animals were sacrificed, the brain was removed and mitochondrial fractions were isolated. Antioxidant enzymes like catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase and glutathione transferase were estimated in the brain extract. Other biochemical markers were also studied. Results: AlCl3 administration had no effect on the brain weight and brain weight. Almost all the antioxidant enzymes studied were markedly diminished in the brain of AlCl3 treated animals. The lipid peroxidation and hydrogen peroxide were significantly increased. The activities of calcium phosphatase and alkaline phosphatase were significantly increased. The activities of Ca++ ATPase, Mg++ ATPase and Na+ K+ ATPases were decreased by the AlCl3 treatment in the brain. However, the influence was found to be more in 100 mg treated when compared to 50 mg AlCl3 treated rats. The activity of acetylcholinesterase was diminished while the lactate dehydrogenase activity increased after aluminium treatment. Conclusion: The present study suggests the toxicity of aluminium by inducing the oxidative stress and adverse alterations in the brain metabolism and possible interference in brain coordination processes.

2150 Effects of Mercuric Chloride on Cell Surface Expression of Dopamine Transporter in PC12 Cells.

Mercury compounds are known to have a ubiquitous nature due to their ability to move through the biochemical cycle and food web. Organic and inorganic forms of mercury generally target different organ systems of the body while bio-transformation after exposure can result in the bioaccumulation of various species of the element. Divalent mercury (Hg2+), can be found within the brain following exposure to the mercury vapor of dental amalgams and after extended exposure to methyl mercury. Dopamine transporter protein (DAT) has been implicated as a link between neurotoxicity following exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Increases in DAT expression on the cell membrane have been shown to result in amplified sensitivity to MPTP. The in vitro effect of mercuric chloride (HgCl2) on the cell surface expression of DAT in stably transfected DAT expressing PC12 cells was studied. Cell viability (MTT) following treatment with 0.5ppm HgCl2 and 1-methyl-4-phenylpyridinium (MPP+) the active metabolite of MPTP was observed to result in an additive increase in toxicity compared with treatment with MPP+ alone. Using immunocytochemistry and Western blot, DAT surface expression was seen to increase following HgCl2 (0.2-2.0ppm) exposure which exhibited a biphasic pattern with the maximum expression observed at 0.5 ppm when compared to the control. With null function DAT mutant, cell viability following exposure to HgCl2 and 1ppm HgCl2 showed an absence of the increase in toxicity observed at 0.5ppm originally observed in the wild type control cells. The results show that HgCl2 is able to increase DAT surface expression in a concentration dependent manner and as a result, exposure could trigger subsequent increased susceptibility to pesticides such as MPTP that use the DAT system as pathway of toxicity.

2151 Changes in Gene Induction Associated with Lead Acetate Mediated Oxidative Stress and Mitochondrial Dysfunction in Neuronal PC12 Cells.

H. Kim1, Z. Paras1, G. Tsai1, M. Kim1, M. Shakkaran2, J. Kim2, and D. E. Heck2.
1New York Medical College, Valhalla, NY; 2Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ; 3Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ.

Lead is a major environmental heavy metal toxin that affects brain development and impairs cognition in children and adults. Despite extensive research, molecular mechanisms underlying neurotoxicity mediated by lead are not well understood. Previous studies have shown that ROS production caused by lead exposure decreases cellular antioxidant defense networks in the brain. In the present studies, we evaluated lead-mediated alterations in oxidative stress pathways in PC12 cells. Using H2DCFDA in conjunction with flow cytometry, we found that lead exposure increased ROS production up to 2.7-fold (3 hr, 1 nM to 10 μM); this effect was associated with mitochondrial membrane potential changes which were 60% lower after 24 hour treatment with 1 μM PbAc2. Using qPCR, we observed that exposure to lead resulted in the induction of anti-oxidant genes including MnSOD, catalase, NQO1, HO-1 and GST-M1. qPCR analysis also revealed induction of genes that are markers of Ca2+ flux (TRPV1), inflammation (COX-2, IL-1 β, TNFα) and apoptosis (bcl-2, bax, caspase-3). Relative mRNA for signaling kinases ERK(1 and 2), SAPK/JNK, and PKC-β were increased while that for p38MAPK was decreased. Taken together our results suggest that lead treatment of PC12 cells enhances cellular ROS levels, negatively impacts the anti-oxidant gene profile and the mitochondrial membrane potential of PC12 cells, upregulates expression of genes critical for inflammation and apoptosis and alters expression of critical cellular signaling kinases. We speculate that changes in the expression of antioxidant enzymes and signaling kinases are important in lead-mediated neurotoxicity. (Supported by AR055073)

2152 Effects of Pb2+ in the Neural Differentiation of Mouse Embryonic Stem Cells.

F. J. Sanchez-Martin and A. Puga. Department of Environmental Health, University of Cincinnati, Cincinnati, OH.

Exposure to environmental agents during embryonic life is suspected to modify the epigenetic mechanisms that regulate the gene expression patterns that control development. The resulting changes in gene expression may affect lineage differentiation and extend into adulthood, well beyond the time when the organism was exposed to the agents. This paradigm provides a testable molecular basis for the Barker hypothesis, which proposes that there is a fetal origin of adult disease. Lead (Pb) is a ubiquitous environmental toxicant whose possible effects, especially at early ages of development, include reduction of cognitive functions and IQ, behavioral effects, attention deficit and hyperactivity disorder. We are using neural differentiation of mouse embryonic stem cell (mESC) to determine the molecular changes taking place during embryogenesis and neurodevelopment as a consequence of long-term exposure to Pb2+. We find that after differentiation of mESC into neural cells, cultures express many neuronal markers, including Tubb3, Sp5, Gap43 and Hud, and do not express the glial marker Galj. Furthermore, the cells express Vglut1, a marker of glutamatergic neurons. Incubation with Pb2+ during differentiation reduces the expression of the calcium-dependent exon IV of Bdnf and alters the expression pattern of other neural genes but does not alter the morphology of the neuron and the expression of Tubb3. Thus, we conclude that after differentiation of mESC in vitro, we can obtain pure cultures of glutamatergic neurons whose gene expression patterns are changed by Pb2+ exposure. These cells should provide an useful substrate to analyze the mechanisms of toxicity of environmental neurotoxicants. (Supported by NIH grant R21 ES020048)
2153 Developmental Lead (Pb2+) Exposure and Mutant DISC1 Interact to Produce Schizophrenia-Like Neurobehavioral Abnormalities and Brain Volume Changes in Mice: A Gene-Environment Interaction Study.

T. R. Guilarte, 1, 2, J. L. McGloohan, 3, B. Abazyan, 2, C. Yang, 2, K. Hua, 2, S. Mori, 2 and M. Petrikovik. 2Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY; 2Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD; 3Radiology, Johns Hopkins School of Medicine, Baltimore, MD.

The glutamatergic hypothesis of schizophrenia suggests that hypofunction of the NMDA receptor (NMDAR) is an important factor in the pathophysiology of schizophrenia and related mental disorders. The environmental developmental neurotoxicant lead (Pb2+) is a potent and selective antagonist of the NMDAR and two recent human studies have suggested an association between prenatal Pb2+ exposure and the increased likelihood of expressing a schizophrenic phenotype later in life. Schizophrenia and other major mental disorders likely result from interactions between genetic risk factors and adverse environmental insults. We evaluated the neurobehavioral consequences of Pb2+ exposure in mice with inducible expression of mutant Disrupted-in-Schizophrenia-1 (DISC1), a candidate gene for major psychiatric diseases. We hypothesize that mutant DISC1 and Pb2+ exposure synergistically interact to produce an exaggerated phenotype in mutant mice. Mutant DISC1 and control mice born by the same dams were raised and maintained on normal or Pb2+ diet. We tested animals in a series of behaviors associated with schizophrenia and performed volumetric MRI measurements of the brain. We found that the interaction between developmental Pb2+ exposure and mutant DISC1 produced a significantly greater increase in locomotor activity, impaired pre-pulse inhibition of the acoustic startle that was abrogated by D-serine and exacerbated responses to temporally disconnected events occurs in the mPFC in parallel with memory storage in the hippocampus. The current research investigated the extent to which these processes are affected by developmental Pb exposure. Long Evans dams were fed Pb-containing food (RMH 1000 with or without added Pb acetate: 0, 150, 375, 750 ppm) prior to breeding and stayed on the same diet throughout gestation and postnatal day 25 (perinatal exposure group (Peri)). Other animals were exposed to the same doses of lead but exposure started on postnatal day 1 and continued through postnatal day 25 (early postnatal exposure group (EPN)). Beginning at postnatal day 45, animals were placed in the trace fear conditioning apparatus. Conditioning trials (CS tone-UCS shock pairings) were repeated six times during an 18 min training period. Freezing behavior was measured during the trace period. Retention testing occurred 24/48 hrs and 10 days later to assess memory consolidation and long-term memory. At the lowest level of exposure, EPN-exposed females were more impaired at short and long-term retention than were Peri-exposed females; the opposite effect was observed in males. In females, the lowest level of exposure had the greatest disruptive effect on retention. In males, the highest level of exposure had the greatest disruptive effects on retention. These data suggest complex responses of the brain to developmental Pb exposure with likely different molecular effects in hippocampus and PFC that vary with sex and timing and level of exposure. Supported by grant # ES06189-18S1 to TRG.

2154 Reduced Parvalbumin Expression in the Striatum, Frontal Cortex, and Hippocampus after Developmental Pb2+ Exposure: Examining Early Life Pb2+ Exposure As a Risk Factor for Schizophrenia.

K. Stansfield1, K. Ruby2, 3, J. L. McGloohan1 and T. R. Guilarte1. 1EHS, Columbia University, NYC, NY; 2Lake Erie College of Osteopathic Medicine, Erie, PA.

The calcium-binding protein, parvalbumin (PV), is expressed in GABAergic interneurons and is implicated in working memory and associative learning. Decreased PV expression is observed in schizophrenia patients and also in animal models of schizophrenia. N-methyl-D-aspartate receptor (NMDAR) antagonists are used to model certain aspects of schizophrenia in animal models and NMDAR antagonists decrease PV levels and the number of PV-positive interneurons, suggesting that NMDAR function plays a role in the expression of PV interneurons and in schizophrenia. Lead (Pb2+) is a potent NMDAR antagonist that has been implicated in the etiology of schizophrenia, therefore we examined the effect of developmental Pb2+ exposure on PV cell density in the striatum and PV protein expression in the striatum, hippocampus and frontal cortex of rats developmentally exposed to Pb2+. A trend of decreased PV positive cell density was observed at all levels of the striatum, however a statistically significant decrease (t11=2.2, p = 0.005) in cell density was found in the caudal striatum of Pb2+ treated rats relative to controls. Additionally, PV protein expression measured by western blot was significantly reduced in the striatum (t22=3.3; p = 0.003), frontal cortex (t7 = 2.25, p = 0.005) and hippocampus (t10 = 2.31, p = 0.04) of rats developmentally exposed to Pb2+. Overall, these findings indicate that early life Pb2+ exposure decreases the number of PV positive neurons in the striatum, and reduces the expression of PV in the striatum, frontal cortex and hippocampus. The data suggests a relationship between Pb2+ induced NMDAR hypofunction and PV expression, implicating a potential association between developmental Pb2+ exposure and the expression of a schizophrenia phenotype later in life. (This work was supported by NIEHS grant # ES06189 to TRG.)

2155 Effects of Developmental Lead Exposure on Associative Learning and Memory Are Modified by Sex, Developmental Window of Exposure, and Level of Exposure.

Trace fear conditioning is a variant of fear conditioning in which a neutral conditioned stimulus (CS) is paired with an aversive unconditioned stimulus (UCS). Trace conditioning includes a “trace” interval of several seconds separating the CS and UCS. Learning the CS–UCS association across this interval and the consolidation of the memory requires participation of both the hippocampus and medial prefrontal cortex (mPFC). Long-term storage of information associating temporally disconnected events occurs in the mPFC in parallel with memory storage in the hippocampus. The current research investigated the extent to which these processes are affected by developmental Pb exposure. Long Evans dams were fed Pb-containing food (RMH 1000 with or without added Pb acetate: 0, 150, 375, 750 ppm) prior to breeding and stayed on the same diet throughout gestation and postnatal day 25 (perinatal exposure group (Peri)). Other animals were exposed to the same doses of lead but exposure started on postnatal day 1 and continued through postnatal day 25 (early postnatal exposure group (EPN)). Beginning at postnatal day 45, animals were placed in the trace fear conditioning apparatus. Conditioning trials (CS tone-UCS shock pairings) were repeated six times during an 18 min training period. Freezing behavior was measured during the trace period. Retention testing occurred 24/48 hrs and 10 days later to assess memory consolidation and long-term memory. At the lowest level of exposure, EPN-exposed females were more impaired at short and long-term retention than were Peri-exposed females; the opposite effect was observed in males. In females, the lowest level of exposure had the greatest disruptive effect on retention. In males, the highest level of exposure had the greatest disruptive effects on retention. These data suggest complex responses of the brain to developmental Pb exposure with likely different molecular effects in hippocampus and PFC that vary with sex and timing and level of exposure. Supported by NIH ROI-E5015295.

2156 Sex- and Hemisphere-Dependent Neurochemical Changes Produced by Lead, Prenatal Stress, and the Combination.

D. A. Cory-Slechta, D. Weston, S. Liu and J. L. Allen. Environmental Medicine, University of Rochester Medical School, Rochester, NY.

Brain lateralization, important to mediation of cognition and ‘multi-tasking’, is disrupted in attention deficit disorder and schizophrenia. Altered brain lateralization could play a role in the corresponding cognitive and attention deficits associated with both low level lead (Pb) exposure and prenatal stress (PS). This study examined laterality of mesocorticostriatal (frontal cortex, nucleus accumbens, striatum, midbrain) monoamines and amino acids (frontal cortex only) that mediate such behavioral functions, both under normal (control) conditions, and in response to lifetime Pb (0 or 50 ppm), PS (restraint stress on gestational days 16-17) or Pb+PS in rats. Sex-dependent differences in brain laterality were seen even in control rats, as noted in frontal cortex, striatum and midbrain monoamines and frontal cortex amino acids. Hemispheric differences in Pb + PS effects were most notable in males, as seen in frontal cortex and striatum, but particularly in midbrain, where Pb+PS, but neither alone, significantly reduced right hemispheric levels of homovanillic acid and norepinephrine, with similar trends in serotonin. In contrast, no Pb+PS effects were found in left hemisphere. Pb+PS, but neither alone, reduced frontal cortex dopamine and increased dopamine turnover in left hemisphere of males, whereas in the right hemisphere, Pb, PS and Pb+PS reduced frontal cortex dopamine and Pb alone increased dopamine turnover. The only suggestive Pb+PS hemispheric difference in females was increased right but not left hemisphere frontal cortex GABA. Thus Pb, PS and Pb+PS can differentially influence mesocorticostriatal neurotransmitter function by hemisphere. Sex and Pb+PS differences are likely to contribute to associated sex-related alterations in behavioral outcomes, such as our previously reported contrasting effects on learning accuracy produced by Pb+PS in males vs. females. The findings also underscore the significance of defining the hemisphere used for assay in experimental studies for evaluation of CNS mechanisms of behavior.

2157 Sex-Dependent Changes in the Effects of Lead and Prenatal Stress on Impulsivity and Neurochemical Substrate.

H. Weston, D. Weston, S. Liu, J. L. Allen and D. A. Cory-Slechta. Environmental Medicine, University of Rochester Medical School, Rochester, NY.

Both lead (Pb) exposure and prenatal stress (PS) adversely affect cognition and attention.. Impulsivity is one diagnostic component of attention deficit, and enhanced impulsivity has been related to multiple neuropsychiatric disorders. This
study examined whether combined Pb+PS would enhance impulsivity compared to either alone, as such a result would provide evidence for either compound acting as a neurotoxicity enhancer or modifier, or for a lack of enhancement by Pb+PS in a context in which Pb and PS resulted in independent changes. We also examined whether Pb+PS would alter the plasticity of the dopaminergic system, in order to discern whether a Pb+PS interaction would result in an exaggeration of synaptic dysfunction after developmental insults and preventing synaptic degeneration even if apoptosis is blocked. Supported by NIH grants RO1 ES012482, T32 EH07024, P30 EY07551, P42 ES010337, RO1 DK54441, P41 RR004050 and P41 GM031421.

2158 Investigation of the Combined Neurotoxicity of Developmental Iron Deficiency and Lead Exposure.
A. Greciminger1, D. A. Cory-Slechta1 and M. Mayer-Proschel1. 1Environmental Medicine, University of Rochester, Rochester, NY; 2Biomedical Genetics, University of Rochester, Rochester, NY.

Iron deficiency (ID) and Lead (Pb) exposure are widespread public health problems that continue to affect women and children with similar risk factors, as well as produce similar neurotoxic effects on the developing CNS. Although studies of these insults singularly suggest a potential for enhanced neurotoxicity in their combination, previous work has failed to address this in relevant animal models, and consistent data from human cohorts are lacking. We utilized a maternal iron-deficient dietary model in the presence or absence of Pb-exposure to examine the possible synergism of ID and Pb during offspring neurodevelopment. Offspring of each exposure were assessed using hematologic parameters, as well as tissue Pb levels. Our data show that maternal Pb-only exposure did not cause anemia in either the dam or the offspring throughout development. In combination with ID, Pb did not decrease hematocrit levels in offspring beyond those of ID-only, arguing against the notion that Pb causes or worsens ID. However, the presence of ID significantly increased blood and tissue Pb levels by more than 50% in the dams and offspring compared to animals exposed to the same Pb levels in the absence of ID. Our data suggest that maternal perinatal ID stress increases absorption of Pb into the CNS of offspring underscoring the importance of non-anemic ID as a susceptibility factor to environmental Pb toxicity. To determine the functional impact of ID + Pb we measured overall brain maturation using the auditory brain stem response. We found significant decreases in neuronal conduction velocity in all three exposure groups (ID-only, Pb-only and ID + Pb) compared to control offspring at PND40. However, the combination of ID + Pb did not result in synergistic increases over either insult alone at this age or decibel level (70dB). Additional analysis at different ages and stimulation levels is required to determine if this lack of synergy may be due to compensatory mechanisms or is restricted to later in development.

2159 Bcl-xL-Mediated Remodeling of Rod and Cone Photoreceptor (PR) Synaptic Mitochondria (mt) After Postnatal Lead Exposure (PLE): Structure and Function.
D. A. Fox1, G. A. Perkins2, M. H. Ellisman2 and J. E. Johnson1. 1Univ. Houston, Houston, TX; 2Univ. California: San Diego, La Jolla, CA; 3Univ. Houston-Downtown, Houston, TX.

PLE produces rod-selective apoptosis (blocked by Bcl-xL) and persistent scotopic mesopic ERG and vision deficits in man and animals. Rod, but not cone, inner segment mt were considered the target: albeit PR synaptic mt were not examined. Thus, we determined the effects of PLE on these mt and if Bcl-xL provided protection. C57BL/6 mice pups had PLE during lactation by dams drinking Pb water. [BPb] was 10-20 μg/ml and at control level by 60 doa. EM, 3-D electron tomography, and oxygen consumption (QO2) studies were done at 70 doa: control, transgenic overexpressing Bcl-xL in PRs, PbLE and Bcl-xL/PLE groups. In PbLE, rod spherule and cone pedicle mt were swollen, cristae structure changed, and the no.

of segments/crista and fraction of cristae with multiple segments (branching) increased. In PbLE, mt cristae surface area and volume (abundance) decreased in spherules and increased in pedicles. PLE remodeling of spherule mt produced smaller cristae with more branching, whereas pedicle mt had larger cristae with more branching and increased cristae junction diameter. PLE decreased dark-adapted PR and PR synaptic terminal QO2. In Bcl-xL/PLE, spherules still had decreased abundance; pedicles still had increased branching, cristae segment/volume and cristae junction diameter; and PR and synaptic QO2 only partially recovered. These findings reveal cellular and compartmental differences in the structure, vulnerability and remodeling of rod and cone inner segment and synaptic mt to PLE: consistent with findings that synaptic mt are more sensitive to calcium overload, oxidative stress and ATP loss than non-synaptic mt. These PLE alterations likely underlie the persistent scotopic-mesopic deficits, and stress the importance of examining synaptic dysfunction after developmental insults and preventing synaptic degeneration even if apoptosis is blocked. Supported by NIH grants RO1 ES012482, T32 EH07024, P30 EY07551, P42 ES010337, RO1 DK54441, P41 RR004050 and P41 GM031421.

2160 Alpha-Synuclein-Mediated Activation of c-Abl and Dopamine Depletion in Dopaminergic Neuronal Cells Treated with Iron-Oxide Nanoparticles or Methamphetamine.
S. Lanté1, Z. K. Binienda1, L. Mohammed Saeed1,2, B. Robinson1, M. G. Paule2, A. S. Burrie2, S. F. Ali3 and S. Z. Imam4. 1FDANCTR, Jefferson, AR; 2Nanotechnology Center, University of Arkansas, Little Rock, AR.

Mutations in the alpha-synuclein gene have been associated with autosomal dominant forms of Parkinson’s disease (PD). Transgenic mice that over-express the human alpha-synuclein gene (primarily the point mutations A53T and A30P), develop neurological impairments similar to those of PD. Previous studies in our laboratory have shown that oxidative-stress-mediated activation of the tyrosine kinase, c-Abl, results in an increase in the phosphorylation of parkin, an important E3 ubiquitin ligase that assists in the clearance of proteins destined for proteasomal degradation. Here, we show that treatment with iron-oxide nanoparticles or methamphetamine results in activation of c-Abl, observed via the measurement of phospho-Abl. Additionally, an over-expression of alpha-synuclein protein in SHSY-5Y neuroblastoma cells was observed after these treatments. A 45% increase in the expression of alpha-synuclein was observed in SHSY-5Y cells treated with iron oxide nanoparticles (10 and 30 nanometers) at a concentration of 10 μg/ml. Similarly, a 55% increase in the expression of alpha-synuclein protein was observed 24 h after exposure to 500 μM methamphetamine. In addition, a significant depletion in dopamine was observed after treatment with either iron oxide nanoparticles or methamphetamine (55% and 65%, respectively), suggesting that both the over-expression of alpha-synuclein and excess dopamine might generate oxidative stress, which is one of the major pathways of c-Abl activation. These results suggest that the over-expression of alpha-synuclein and dopamine depletion after exposure to iron oxide nanoparticles or methamphetamine contribute to oxidative-stress mediated activation of c-Abl, thus initiating events that may lead to dopaminergic neuronal cell death.

B. D. Minjarez1, L. Valero1, A. D. Rios-Perez4, M. Sanchez del Pino1, R. Mena3 and J. P. Luna-Arias1. 1Biología Celular, CINVVEST, Mexico City, Mexico; 2Proteomics, Centro de Investigación Príncipe Felipe, Valencia, Spain; 3Fisiología, Biofísica y Neurociencias, CINVVEST, Mexico City, Mexico; 4Toxicología, CINVVEST, Mexico City, Mexico.

Alzheimer disease (AD) is the most common form of dementia affecting around 24.3 million people worldwide. As a consequence of the rapid demographic ageing, AD has become one of the most severe progressive socio-economic and medical burdens facing countries all around the world. AD brains are characterized by the presence of extracellular deposits of amyloid-β-containing plaques and intracellular neurofibrillary tangles (NFTs) composed of paired helical filaments of hyperphosphorylated Tau. AD is considered to be the result of complex events involving both genetic and environmental factors. Among them, two remarkable factors are oxidative stress and mitochondrial damage. Postmortem examinations of human brain tissue have demonstrated that iron concentrations are increased in the brains of AD patients compared to controls. The main goal of this study was the identification of proteins showing different expression levels in AD, using iTRAQ-protein labeling.
and, identification and quantitation of peptides by tandem mass spectrometry. We identified more than 721 polypeptides, where some iron regulatory proteins were found up-regulated such as Ferritin light chain, Ferritin heavy chain and Melatonin. In addition, several proteins involved in redox regulation also found such as Peroxiredoxin, Superoxide dismutase, Oxidation resistance protein 1, were up-regulated in AD brains in comparison to a normal brain. This approach will give us landscape of the proteome of AD brains that could be useful for the potential identification of AD biomarkers that may be involved in oxidative damage.

Drug induced liver injury (DILI) is a leading cause for drug failures in clinical trials and for post-approval drug withdrawals. This fact implies that the current animal-based approaches do not provide a sufficiently reliable assessment of DILI; therefore, there is an increased interest to develop new approaches for identifying hepatotoxicity, especially those that can be applied in the early drug discovery. In this study, we assessed the feasibility of using high content screening (HCS) assays of rat primary hepatocytes to predict the human specific hepatotoxicity of pharmaceuticals. We developed a predictive model using a commercial HCS assay on 8 cellular parameters that were relevant to hepatotoxicity mechanisms including cell loss, nuclear size, DNA damage, apoptosis, lysosomal mass, DNA fragmentation, mitochondrial potential, and steatosis. The model’s performance was assessed both by internal cross-validations using a library of 108 drugs with human-specific hepatotoxicity annotations and by further external validation using an additional sixteen drugs. In the leave-one-drug-out cross-validation, the HCS assay-based predictive model yielded accuracy of 68% with sensitivity of 77% and specificity of 50%, which is significantly higher than that by chance and better than the quantitative structure–activity relationship (QSAR) model developed using the same set of drugs in accuracy. The results from the external validation showed that eight out of nine of the most-DILI-concern drugs (with 89% sensitivity) and four out of seven no-DILI concern drugs (with 57% specificity) were correctly predicted. Our findings suggest that the HCS assay of rat hepatocytes can potentially approach useful accuracy for hepatotoxicity screening for drug discovery.

Our data demonstrate a clear association of basic (basic pKa > 6) and lipophilic (clogP > 2) with lysosomal compound accumulation. We also showed this accumulation was derived by the low pH in the lysosomes. In addition our data revealed membrane perturbation by the compounds with similar physicochemical properties. In an effort to understand how physicochemical properties can contribute to mitochondrial compound accumulation we selected a set of basic compounds and measured their logD (partition coefficient) at neutral (7.4) and acidic (4.7) pH. The majority of basic compounds with acidic logD (at pH 4.7) > 0.3 induced more toxicity in HepG2 cells cultured in galactose than in cells cultured in high glucose-containing media, indicating mitochondrial liability associated with these compounds. This data supports the hypothesis that compounds with relatively pH-insensitive permeability selectively accumulate into mitochondria. Interestingly, certain compounds such as nefazodone and nicardipine were shown to carry both, lysosomal and mitochondria liabilities. In summary, our data indicate that physicochemical properties alone can contribute to both, lysosomal and mitochondrial compound accumulation. How this contributes to in vivo organ toxicity needs to be further elucidated.

The β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a target of tremendous focus and development interest for the treatment of Alzheimer’s disease. While initial characterization reports of BACE1 knockout (KO) mice suggest that BACE1 is a safe target for modulation (Roberts et al., 2001; Lou et al., 2001), more recent studies present evidence of retinal pathology (Cai et al., 2012). Additionally, oral administration of a selective BACE1 inhibitor to rats has been associated with retinal changes after chronic dosing, including accumulation of autofluorescent material in the retinal pigment epithelium (RPE) and degeneration of photoreceptors in associated retina (May et al., 2011). To address these concerns we evaluated the retinas in BACE1 homozygous KO mice from an in-house colony. With the goal of enabling a shorter duration screening paradigm for ocular toxicity, we also evaluated the retinas from rats after a single intravitreal injection of BACE1 inhibitors or non specific protease inhibitor at high (~10 nM) intravitreal concentrations. We found that 3-month old BACE1 KO mice are viable and without organ or clinical pathology distinctions from wild-type (wt) littermates. Ocular evaluation by H&E staining indicated that the retinas of the BACE1 KOs were unremarkable when compared to wt mice. Ophthalmic examinations, as well as light and fluorescent microscopy following intravitreal injections of BACE1 inhibitors, revealed no significant differences in the retinas or RPE between control and treated rats 1-8 days post-injection. In summary, our results support those of others indicating retinal pathologies reported with BACE1 inhibitors are not related to downregulation of BACE1 activity. Additionally, short duration intravitreal exposure to high concentrations of selective BACE1 inhibitors or non specific protease inhibitor was not associated with retinal toxicity. This success may not be a reliable model for predicting retinal toxicity of BACE1 inhibitors.

With the goal of enabling a shorter duration screening paradigm for ocular toxicity, we also evaluated the retinas from rats after a single intravitreal injection of BACE1 inhibitors or non specific protease inhibitor at high (~10 nM) intravitreal concentrations. We found that 3-month old BACE1 KO mice are viable and without organ or clinical pathology distinctions from wild-type (wt) littermates. Ocular evaluation by H&E staining indicated that the retinas of the BACE1 KOs were unremarkable when compared to wt mice. Ophthalmic examinations, as well as light and fluorescent microscopy following intravitreal injections of BACE1 inhibitors, revealed no significant differences in the retinas or RPE between control and treated rats 1-8 days post-injection. In summary, our results support those of others indicating retinal pathologies reported with BACE1 inhibitors are not related to downregulation of BACE1 activity. Additionally, short duration intravitreal exposure to high concentrations of selective BACE1 inhibitors or non specific protease inhibitor was not associated with retinal toxicity. This success may not be a reliable model for predicting retinal toxicity of BACE1 inhibitors.

The β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a target of tremendous focus and development interest for the treatment of Alzheimer’s disease. While initial characterization reports of BACE1 knockout (KO) mice suggest that BACE1 is a safe target for modulation (Roberts et al., 2001; Lou et al., 2001), more recent studies present evidence of retinal pathology (Cai et al., 2012). Additionally, oral administration of a selective BACE1 inhibitor to rats has been associated with retinal changes after chronic dosing, including accumulation of autofluorescent material in the retinal pigment epithelium (RPE) and degeneration of photoreceptors in associated retina (May et al., 2011). To address these concerns we evaluated the retinas in BACE1 homozygous KO mice from an in-house colony. With the goal of enabling a shorter duration screening paradigm for ocular toxicity, we also evaluated the retinas from rats after a single intravitreal injection of BACE1 inhibitors or non specific protease inhibitor at high (~10 nM) intravitreal concentrations. We found that 3-month old BACE1 KO mice are viable and without organ or clinical pathology distinctions from wild-type (wt) littermates. Ocular evaluation by H&E staining indicated that the retinas of the BACE1 KOs were unremarkable when compared to wt mice. Ophthalmic examinations, as well as light and fluorescent microscopy following intravitreal injections of BACE1 inhibitors, revealed no significant differences in the retinas or RPE between control and treated rats 1-8 days post-injection. In summary, our results support those of others indicating retinal pathologies reported with BACE1 inhibitors are not related to downregulation of BACE1 activity. Additionally, short duration intravitreal exposure to high concentrations of selective BACE1 inhibitors or non specific protease inhibitor was not associated with retinal toxicity. This success may not be a reliable model for predicting retinal toxicity of BACE1 inhibitors.

With the goal of enabling a shorter duration screening paradigm for ocular toxicity, we also evaluated the retinas from rats after a single intravitreal injection of BACE1 inhibitors or non specific protease inhibitor at high (~10 nM) intravitreal concentrations. We found that 3-month old BACE1 KO mice are viable and without organ or clinical pathology distinctions from wild-type (wt) littermates. Ocular evaluation by H&E staining indicated that the retinas of the BACE1 KOs were unremarkable when compared to wt mice. Ophthalmic examinations, as well as light and fluorescent microscopy following intravitreal injections of BACE1 inhibitors, revealed no significant differences in the retinas or RPE between control and treated rats 1-8 days post-injection. In summary, our results support those of others indicating retinal pathologies reported with BACE1 inhibitors are not related to downregulation of BACE1 activity. Additionally, short duration intravitreal exposure to high concentrations of selective BACE1 inhibitors or non specific protease inhibitor was not associated with retinal toxicity. This success may not be a reliable model for predicting retinal toxicity of BACE1 inhibitors.

The β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) is a target of tremendous focus and development interest for the treatment of Alzheimer’s disease. While initial characterization reports of BACE1 knockout (KO) mice suggest that BACE1 is a safe target for modulation (Roberts et al., 2001; Lou et al., 2001), more recent studies present evidence of retinal pathology (Cai et al., 2012). Additionally, oral administration of a selective BACE1 inhibitor to rats has been associated with retinal changes after chronic dosing, including accumulation of autofluorescent material in the retinal pigment epithelium (RPE) and degeneration of photoreceptors in associated retina (May et al., 2011). To address these concerns we evaluated the retinas in BACE1 homozygous KO mice from an in-house colony. With the goal of enabling a shorter duration screening paradigm for ocular toxicity, we also evaluated the retinas from rats after a single intravitreal injection of BACE1 inhibitors or non specific protease inhibitor at high (~10 nM) intravitreal concentrations. We found that 3-month old BACE1 KO mice are viable and without organ or clinical pathology distinctions from wild-type (wt) littermates. Ocular evaluation by H&E staining indicated that the retinas of the BACE1 KOs were unremarkable when compared to wt mice. Ophthalmic examinations, as well as light and fluorescent microscopy following intravitreal injections of BACE1 inhibitors, revealed no significant differences in the retinas or RPE between control and treated rats 1-8 days post-injection. In summary, our results support those of others indicating retinal pathologies reported with BACE1 inhibitors are not related to downregulation of BACE1 activity. Additionally, short duration intravitreal exposure to high concentrations of selective BACE1 inhibitors or non specific protease inhibitor was not associated with retinal toxicity. This success may not be a reliable model for predicting retinal toxicity of BACE1 inhibitors.
related to dried blood spots and mass spectrometry provides many advantages even though the initial method development is more arduous than for typical small molecules of less than 1000 daltons. Experimental Procedures: The peptide calcitonin-salmon was chosen based on it being readily available from Sigma Aldrich and that its molecular weight is higher than normally monitored by mass spectrometry since it consists of thirty-two amino acid linear polypeptide. The compound is dosed by oral gavage at 10 mg/kg to CD-1 mice, and 8 μL of blood collected by tail clipping every two minutes. The blood is immediately transferred to Whatman 903 filter paper and allowed to dry before placing with desiccant and refrigerating. The dry blood samples are then punched out, and calcitonin-salmon is extracted from the spots and injected. The chromatographic conditions were developed using reverse phase chromatography and detection using a triple quadrupole API 4000 mass spectrometer with electrospray ionization to monitor the parent and fragment ions of both calcitonin-salmon and its analog internal standard.

Conclusions: Results show that this approach provides a toxicokinetic profile with timepoints every two minutes whilst allowing a considerable reduction in mice required for a study and giving a full profile for each individual animal. This work shows that preliminary TK data may be obtained based on 3R principles even for peptide analysis, an area that still has room for much improvement using dry blood spot sample analysis.

2167 Early and Progressive Changes in the Urinary Biomarker Profile of Cisplatin-Induced Kidney Injury in Cynomolgus Macaques.

Cisplatin-induced nephrotoxicity has been characterized in animals and humans. New urinary biomarkers may enable early or parallel detection of drug-induced kidney injury (DIKI) in non-rodent models. Our aims were to: 1) determine if a human renal biomarker panel can detect early DIKI when compared with traditional biochemical and histological indices; 2) monitor progressive cisplatin-mediated changes in DIKI biomarkers over 20 days in cynomolgus macaques. Animals (3M/3F per group) were treated with a single dose of cisplatin (2.5 mg/kg i.v. infusion; groups 1/2/4/5) or saline (groups 3/6) on day 1. Toxicokinetic profile was determined on day 1. Blood and urine samples were collected predose and postdose (days 1, 4, 9, 15, 20) for comparing changes in plasma chemistry, urinalysis and urinary DIKI biomarkers. Renal tissue was examined microscopically at different intervals. Results indicated cisplatin produced progressive renal histologic changes from sublethal findings on day 2 to maximum effects on day 21. Traditional renal markers significantly increased in plasma creatinine (8-fold), BUN (3-fold), urinary glucose (5-fold), protein (3-fold) and enzymes (GGT; NAG) between day 4-9 but resolved by day 15 when renal pathology appeared more severe. Four new biomarkers (clusterin, calbindin, lipocalin, Tamm-Horsfall protein) changed progressively and significantly from day 4 to day 20 with parallel development of renal histologic injury. Importantly, β2-microglobulin was significantly reduced before substantial renal damage observed on day 2 and increased progressively over 20 days to parallel histologic changes, suggesting this is the most sensitive biomarker for detection of onset and potentially prodromal cisplatin-induced kidney injury in cynomolgus macaques.
2171 Enhancing the Safety of Antiviral Compounds by Assessing Mitochondrial and Nuclear Transcriptional Regulation Using a Multiplex Branched DNA Screen.

M. Crosby and Y. P. Dragan, Global Safety Assessment, AstraZeneca Pharmaceuticals, LP, Waltham, MA.

The development of antiviral therapeutics can be hindered by the fact that they can lead to liver, renal, and cardiac injury. One antiviral strategy focuses on inhibiting the transcription of viral nucleic acids via nucleoside analog reverse-transcriptase inhibitors (NRTIs). NRTIs may cause toxicity due to mitochondrial DNA incorporation (mtDNA) and/or inhibition of DNA polymerase γ (Nature Rev Drug Disc 2003, 2: 812-22; Expert Opin Drug Metab Toxicol 2010, 6:1493-604). Functionally, such types of therapeutics may affect mtDNA transcription and replication, resulting in downstream defects in oxidative phosphorylation and mitochondrial biogenesis, which can lead to compromised organ function.

The strategies for ensuring mitochondrial safety include examining changes in mitochondrial biogenesis, metabolism, toxicity, and assaying for specific enzymatic activities in the electron transport chain. While these assays answer important functional questions, they may not necessarily pick up subtle changes with respect to DNA transcription and replication, which can lead to the downstream functional changes. The development of a multiplex, branched DNA (bDNA) assay to assess gene transcription in the mitochondria, as well as in the nucleus has the advantage of detecting a total of eight transcripts in a single lysate. This significantly reduces the cost, time, and consumables that would be needed for traditional qRT-PCR.

Studies using human liver epithelial cells treated with a selected group of nucleoside reverse transcriptase inhibitors, including 2',3'-dideoxyinosine, 2',3'-dideoxy-3'-thiacytidine, and 3'-azido-3'-deoxythymidine indicate that this technology may be applied to support the selection of compounds in pharmaceutical programs interested in pursuing nucleoside reverse transcriptase inhibitors as a part of their antiviral strategy.

2172 Comparison of In Vitro Models for Prediction of Hepatotoxicity of Pharmaceutical Drug Candidates.

C. McGinnis1, T. Sachnik1,2, X. Ane1, J. Johnson3, E. Viturro2 and A. Odermatt2, 1Non-Clinical Safety, Hoffmann-La Roche, Basel, Switzerland; 2Technische Universität München, Munich, Germany; 3Division of Molecular and Systems Toxicology, University of Basel, Basel, Switzerland; 4Hepregen Corporation, Medford, MA.

Liver toxicity is one of the foremost reasons for failure of a drug candidate to reach the clinic. It is also a leading cause for market withdrawals, FDA warnings and modifications of use for current medications. As a result, in vitro hepatocyte-specific studies using cells from preclinical species and also human donors are being investigated to allow for prediction of DILI during the early phase of drug discovery. During this project several novel in vitro models were studied for their potential to detect liver toxic compounds. A high-throughput, 384-well based assay with two-dimensional monocultures of rat or human primary hepatocytes was validated and applied to support the selection of compounds in pharmaceutical programs interested in pursuing nucleoside reverse transcriptase inhibitors as a part of their antiviral strategy.

2173 Bioassays to Explore Mitochondrial Functions and Anticipate Drug Toxicity.

E. Roberts, P. Picamal and N. A. Compagnone, Department of Toxicology, ICDD, Meyrin, France. Sponsor: Y. Will.

The mitochondria have been identified as one of the major players in previously unrecognized drug-induced hepatic injuries. Hepatotoxicity is the main reason for drug withdrawal in clinical phases and post-marketing. Identifying early mitochondrial toxicities is thus essential to increase the chances of success in drug development. We have developed a panel of integrated functional bioassays aiming at measuring the different functions of the mitochondrial possibly associated with mitochondrial toxicity in a high throughput and robust manner. Three major axes were explored using cell-based bioassays: the bioenergetics, the redox status and the mitochondrial DNA depletion. First, measurements of the dioxygen consumption, cellular ATP level, extracellular lactate release with regard to cell viability, were multiplexed using fluorescence and luminescence methods. The identification of mitochondrial liabilities associated to hepatotoxicity was largely improved compared to the literature. Secondly, considering that the redox status is associated to drug toxicity, we measured the modulation of the mitochondrial ROS production and antioxidant defenses in response to drugs. Finally, due to its proximity to the electron transport chain and its lack of histones, mitochondrial DNA constitutes a potential target for drug-induced damages. The mitochondrial DNA content was quantified using high resolution gel analysis. We performed all the bioassays on HepG2 cells. We tested a panel of drugs that have been marketed, known to be responsible or not for mitochondrial liabilities associated or not to liver and/or cardiac injuries. The tested compounds were classified according to mechanisms of toxicity we detected and compared to the literature. Mitochondrial liabilities can be identified with a predictivity of 84%. Coupling early indicators of mitochondrial dysfunction to late predictors of cytotoxicity provides more relevant and complete information on drug-induced mitochondrial injuries capable of reducing the large space of false negative left by existing methodologies.

2174 Glucose-Induced Gene Expression Changes Influence Barrier Function in Human Retinal Pigment Epithelial (RPE) Cells.

G. L. Gong, L. Lecureux and L. D. Lehman-McKeeman, BMS, Princeton, NJ.

The RPE forms a blood-retinal barrier in the back of the eye, and alterations in this barrier can adversely affect vision. In the present work, ARPE-19 cells were cultured in physiologically-relevant glucose levels (5 mM) and high glucose conditions (25 mM) for a period up to 3 weeks. Permeability, assessed by apical-basolateral flux of FITC-labeled dextran, was 10 ± 1 ng/ml/min in normal glucose and 6 ± 0.3 ng/ml/min in high glucose, suggesting an increase in barrier function. High glucose also increased mRNA levels of pigment-epithelial-derived factor (PEDF) about 5-fold, while decreasing VEGF-A mRNA levels about 2-fold; these changes correlated with secreted levels of these growth factors, which increased 2.3-fold and decreased 2.8-fold, respectively, in culture medium. High glucose levels increased expression of sphingosine-1-phosphate receptor 1 (SIP1) in ARPE-19 cells more than 3-fold within 1 week of treatment, a change that was maintained during 3 weeks of exposure, whereas expression of SIP3 decreased in a time-dependent manner to nearly 7-fold lower levels after 3 weeks. mRNA levels of tight junction proteins zona occludens-1 and claudin-1 were unchanged after 1 week of high glucose conditions, but decreased at 3 weeks by 2- and 8-fold respectively. The results of the present study indicate that, in ARPE-19 cells, high glucose conditions affect transcellular permeability and alter expression of proteins involved in tight junction regulation. Moreover, SIP1 and SIP3 genes, which are known to play critical roles in regulating the integrity of endothelial cell barrier function, may also contribute to the regulation of retinal barrier function in RPE cells.

2175 Towards an Integrated Risk Assessment of Hepatotoxic Drugs via Covalent Binding and Cellular Stress in Primary Hepatocytes.

M. Teppner1, E. Boeck1, B. Ernst2 and A. Paehler1, 1Non Clinical Safety, Hoffmann-La Roche Ltd., Basel, Switzerland; 2Institute of Molecular Pharmacy, University of Basel, Basel, Switzerland.

Introduction
Idiosyncratic DILI is of concern to drug development as it occurs rarely but with severe outcome. Early biomarkers for DILI besides covalent binding (CVB) are warranted to classify problematic drugs in vitro. Here we present on complementarity endpoints in primary hepatocytes that may early identify cellular damage.

Methods
Primary hepatocytes were treated with DILI drugs under attenuated oxidative stress via enzymatic in situ generation of H2O2 up to 24 h. CVB was determined by 14C binding, prostaglandins via quantification by LC-MS/MS in addition to ATP and LDH release. Expression profiles of Nrf2 regulated genes were created by qPCR analysis.

Preliminary Results
In hepatocytes generating H2O2, CVB was significantly exaggerated (13-fold for troglitazone; 20-fold for diclofenac) as compared to controls indicating further peroxisome activation of initially formed reactive metabolites. Significant increase of prostaglandin isomers was observed at lower drug concentrations and at earlier time points than changes in ATP and LDH. In rat hepatocytes prostaglandins E2 /
15(R) D2 increased by 3.3 / 2.3-fold for FeNTA and 3.0 / 2.0-fold for troglitazone with no effect on LDH or ATP.

mRNA levels indicate the activation of several keap/Nrf2 regulated genes such as NAD(P)H dehydrogenase (7,7-fold) and GSH-S-transferase η2 (6.1-fold) after 24 h for troglitazone. Heme oxygenase 1 (64.1-fold) as well as GSH-S-transferase π1 (12.3-fold) showed a transient induction after treatment with FeNTA.

Conclusions

The presented methods are useful for an early identification of DILI liabilities. Besides CBV, cellular stress in hepatocytes may contribute to development of DILI; here prostaglandins are sensitive biomarkers. mRNA levels give insight into the mechanism of toxicity. The in situ generation of H2O2 provides a supportive tool for attenuating response that is specific to drug treatment.

2177 Evaluation of High Content Mechanism Screening As a Prediction Tool for Organ Toxicity.

W. Pennie1, S. Lu1, C. Strock1, J. Gilbert2, and Y. Will2. 1Drug Safety research and Development, Pfizer Inc, San Diego, CA; 2Compound Safety Prediction, Pfizer Inc, Groton, CT; Aprecida, Watertown, MA.

Attrition due to drug safety remains a serious problem for the pharmaceutical industry. Extensive efforts are made to develop early predictive in vitro screens to assist in selecting compounds with a more desirable safety profile. Since cardiac and hepatic toxicity remain the top causes of compound attrition, much focus has been on building predictive assays for such toxicities. One platform is high content screening performed in an organ relevant cell line to assess of a variety of mechanistic toxicity parameters. We have recently shown that general cytotoxicity screening such as ATP measurement in organ specific cell lines can not accurately predict specific organ toxicity. However, we wanted to understand how by choosing more mechanistic parameters we could differentiate compounds with different organ toxicities. In the current study we selected >50 compounds with known human hepatic or cardiac toxicity. These were tested in both H9C2 cells (cardiac panel) and primary rat hepatocytes (hepatic panel) using high content mechanism screening. We found that the majority of compounds, regardless of their designated organ toxicities, displayed similar effects on the two panels tested. Only a small number of compounds demonstrated differential activity in the two panels (eg. nimesulide was only toxic in the hepatic panel). Our results indicate that sophisticated high content mechanism screening in itself is still a poor predictor for differentiating cardiac and hepatic toxicity. More organ relevant endpoints, such as BSEP/MRP assessment for hepatic toxicity and ion channel pharmacology and beating changes for cardiac injury, might increase this prediction. Whether 3-dimensional tissues or stem cell approaches will provide more realistic cell models also remains to be seen.

2178 Consequences of Mrp2 Deficiency for Diclofenac-Induced Toxicity in Rat Intestine In Vivo.

Diclofenac (DCF), a widely used non-steroidal anti-inflammatory drug (NSAID), is associated with high prevalence of severe intestinal side-effects. The reactive metabolite diclofenac acetylglucuronide (DAG) formed in the liver, and transported by bile into the intestine was reported to be involved in the intestinal injury, based on the observation that Mrp2 deficient (TR-) rat intestine was less sensitive to DCF toxicity due to the reduced biliary transport and intestinal exposure to DAG. However, it is not clear what are the direct consequences of Mrp2 deficiency in the intestine itself. Previously we reported that DCF was toxic in the rat intestine in vitro without the presence of liver metabolites. Therefore, using precision cut intestinal slices (PCIS), we compared wild type (WT) and Mrp2 deficient (TR-) rat intestine in vitro, by studying direct toxicity, DCF disposition and intracellular glutathione concentration.

PCIS from WT and TR- rats were incubated with a concentration range of DCF. DCF induced similar dose-dependent toxicity and 200 μM DCF caused a significant decrease of ATP in both strains of rats indicating that the intestine from TR-rat is not intrinsically less sensitive to DCF toxicity. As glutathione is a substrate of Mrp2, Mrp2 deficiency may influence its accumulation and thereby the DCF induced toxicity. Intestinal GSH level in the TR-rats was significantly lower than in WT rats but did not make the TR- rat intestine more vulnerable.

In both strains, hydrosyl DCF as well as DAGs were detected as the main intestinal metabolites after 5 hours incubation, less amount was excreted into the medium by PCLS of the TR- rats. The study of DCF disposition is ongoing with ensuing chamber.

In conclusion, the TR- rat intestine is not intrinsically less sensitive to DCF toxicity and the lower GSH level does not make the TR- rat intestine more vulnerable. Less intestinal metabolites are excreted by the PCLS of TR- rats, but whether this is due to lower production or lower excretion ability needs to be further validated.
2180 Structural Optimization of the Rac GTPase Inhibitor EHOP-016.

The Rho GTPase Rac family are intracellular signaling proteins that control gene expression and various cellular functions including invasion and metastasis, cell cycle progression and apoptosis. Furthermore, they have been reported to be implicated in cancer initiation and progression. Rac1 is a member of the Rho family GTPases associated with lamellipodia or invadopodia causing invading cells to migrate, and is activated via association with Guanine Exchange Factors (GEFs), among which Vav2.1. Increasing Rac1 activation has been associated with increased breast and brain cancer cell proliferation and invasion. Therefore, one main goal is to focus on the design of novel Rac inhibitors for the development of anticancer drugs. Previously, our laboratory synthesized EHOP-016, which was demonstrated to be the first known inhibitor of Vav2-Rac1 interaction in MDA-MB-435 metastatic cancer cells at low micromolar concentrations. In order to reduce the toxicity and increase the potency, we utilized molecular docking to design novel EHOP-016 derivatives. The carbazole group of EHOP-016 appeared to be required for inhibitory activity, and thus was maintained as a core fragment in further designing. It appeared from the docking experiments that replacement of the central pyrimidinone moiety with other building blocks that orient the potential inhibitors into a U-shaped conformation, provided the best docking results. Novel molecules, that according to docking results bind much better to Rac1 than EHOP-016 will be presented, and the specific interactions leading to increased binding will be discussed. As the compounds were designed to be easily accessible via laboratory synthesis, these proposed improved inhibitors of Rac activity could lead to novel antineoplastic cancer therapies.

2181 Role of Renal Cytochrome P450 Isozymes in the Bioactivation of 3, 5-Dichloroaniline In Vitro.

Chlorinated anilines are common intermediates in the production of agricultural chemicals, dyes, industrial compounds, and pharmaceuticals. Some chloroanilines can induce nephrotoxicity in vivo and in vitro. Previous studies have shown 3,5-dichloroaniline (3,5-DCA, 1.0 mM) induced nephrotoxicity in isolated renal cortical cells (IRC) following 90 min exposure. Studies from our lab have also shown IRC pretreated with non-selective cytochrome P450 (CYP) inhibitors [piperonyl butoxide (1.0 mM) and metyrapone (1.0 mM)] partially attenuated 3,5-DCA toxicity, suggesting that CYPs may play a role in 3,5-DCA bioactivation. The purpose of the present study was to further explore the role of CYP mediated 3,5-DCA bioactivation using an in vitro rat model. IRC were obtained from male Fischer 344 rats. IRC (4 x 106 cells/ml; 5 mL) were incubated with shaking for 90 min with either dimethyl sulfoxide (DMSO) or 3,5-DCA (1.0 mM). IRC were pretreated with two CYP inhibitors [isoniadil (1.0 mM), ketocanazole (0.01 mM), omeprazole (0.01 mM), diethyliothiocarbamate (DEDTCA: 0.1 mM), olean-domycin triacetate (0.5 mM), or sulfaphenazole (0.1 mM)] and cytotoxicity was determined by measuring lactate dehydrogenase (LDH) release. Pretreatment with CYP inhibitors or pretreatment with CYP inhibitors + omeprazole did not alter 3,5-DCA induced nephrotoxicity. Studies in rats have shown that DEDTCA, omeprazole, and sulfaphenazole are effective inhibitors of the CYP2C1 family isoforms. These results suggest that 3,5-DCA is bioactivated via multiple pathways, one of which involves the CYP2C family. (Supported in part by NIH Grant 8F20GM103434 to the West Virginia IDeA Network for Biomedical Research Excellence)

2182 Studying Drug Effects on Renal Tubular Secretion of Creatinine with a Novel Cellular Model Coexpressing Major Creatinine Transporters OAT2, OCT2, OCT3 and MATE1.

Serum creatinine level is a commonly used surrogate measure for glomerular damage and kidney function evaluation. It is well known that creatinine clearance in the kidney is through free glomerular filtration and transporter mediated excretion in proximal tubule. Inhibiting these transporters can result in transient increase in plasma creatinine level, which can lead to false interpretation of glomerular damage. Recently, we have identified that, in addition to OCT2 and MATE1, OAT2 and OCT3 can play major role on creatinine secretion. This finding led to development of a novel cellular model co-expressing all four transporters, for modeling active creatinine secretion in the kidney.

Using the model, we tested drugs with reported incidence of increasing serum creatinine. Most of these drugs inhibited B>A transcellular transport of [14C]Creatinine to different extent, suggesting they are able to block active tubular secretion of creatinine in vivo. It is noteworthy that Cimetidine, which has been previously demonstrated by us as a pan-inhibitor of all four transporters, was able to completely abolish creatinine transport; whereas trimethoprim, which is not an OAT2 inhibitor, only resulted in partial inhibition. These results are in good accordance with clinical studies that higher dosage of Cimetidine can completely block active creatinine secretion in proximal tubule whereas there is no statistically difference in serum creatinine level in patients under moderate- and high-dose of trimethoprim. Furthermore, salicylic acid, which was tested at clinically relevant concentrations, also exhibited a dose-dependent and substantial inhibitory effect on creatinine secretion. This suggested that in addition to causing damage to renal tubules, partial blockage of active creatinine secretion could also contribute to serum creatinine level increase caused by salicylic acid, possibly through inhibiting OAT2 and/or MATEs transporters.

2183 Proximal Tubular Transport of Mercuric Species following Compensatory Tubular Hypertrophy.

C. Bridges1, D. W. Barfuss2, L. Joshe3 and R. K. Zalups1. 1Division of Basic Medical Sciences, Mercer University, Macon, GA; 2Department of Biology, Georgia State University, Atlanta, GA.

Chronic kidney disease (CKD) is characterized by a progressive and permanent loss of functioning nephrons. As nephrons are lost, vascular, glomerular and tubular changes occur in remaining nephrons in an attempt to compensate for this loss. These changes lead to glomerular and tubular hypertrophy, hyperperfusion and hyperfiltration. We have hypothesized that tubular hypertrophy and hemodynamic changes resulting from CKD may increase the exposure of individual nephrons to nephrotoxins, such as mercury, and thus may increase the susceptibility of these nephrons to toxic compounds. To test this hypothesis we compared the transport of mercuric species in individually perfused proximal tubules isolated from normal (Sham) or uninephrectomized (NPX) kidneys. Kidneys of NPX rabbits undergo significant hypertrophy in the two weeks following surgery. Tubules isolated from NPX rabbits were larger in diameter than those from Sham rabbits. When the perfusion rate was increased in normal tubules, as a way in which to mimic hyperperfusion, we observed an increase in tubular accumulation of mercury. When tubules from Sham and NPX rabbits were perfused with cysteine-S-conjugates of mercury, we found that tubular accumulation of mercury was greater in tubules from NPX animals. Similarly, luminal disappearance flux (J) of mercury was greater in tubules from NPX animals. Taken together, our data suggest that hypertrophic changes in proximal tubules may lead to an increased ability and/or tendency of proximal tubules to take up and accumulate nephrotoxins such as mercury.

2184 Suramin Attenuates Hyperglycemia-Induced Renal Oxidative Stress, Inflammation and Fibrosis in Rats.

M. Korrapati1, B. E. Shaner1, B. A. Neely2, J. L. Alge3, J. M. Arthur4,5 and R. G. Schnellmann1,2,3. 1Drug Discovery and Biomedical Sciences, MUSC, Charleston, SC; 2Division of Nephrology, MUSC, Charleston, SC; 3Veterans Administration Medical Center, Charleston, SC.

Hyperglycemia-induced oxidative stress, inflammation and fibrosis increase susceptibility of diabetic kidneys to nephrotoxic agents. Because development of novel agents that act early to prevent progression of hyperglycemia-induced changes is important, we examined the efficacy and mechanism(s) of suramin in hyperglycemia-induced renal injury before manifestation of overt histological damage. Two groups of male Sprague Dawley rats received streptozotocin (STZ) and one group, saline. Three weeks later one STZ group received suramin (10 mg/kg). All animals were euthanized one week later (4 weeks). While there was a decrease in creatinine clearance between controls and STZ x suramin rats, there was no difference in creatinine clearance between STZ rats ± suramin intervention. LC-MS/MS-based analysis revealed increases in urinary proteins that are early indicators of diabetic nephropathy (DN) (e.g. cystatin C, clusterin, cathepsin B, and retinol binding protein 4 and peroxiredoxin-1) in the STZ group and were blocked by suramin. Endothelial intracellular adhesion molecule-1 (ICAM-1) activation, leukocyte infiltration and inflammation; transforming growth factor-β1 (TGF-β1) signaling; TGF-β1/SMAD-3-activated fibrogenic markers fibronectin-1, alpha-smooth muscle actin and collagen 1A2; activation of pro-inflammatory and pro-fibrotic pathways
brotic transcription factors nuclear factor κB (NF-κB) and signal transducer and activator of transcription factor-3 (STAT-3), respectively, were all increased in STZ rats and suramin blocked these changes. Therefore, delayed administration of suramin attenuated urinary markers of DN, inflammation by blocking NF-κB activation/ICAM-1-mediated leukocyte infiltration and fibrosis by blocking STAT-3 -TGF-β1/Smad-3 signaling, supporting the potential use of suramin in development of diabetes-induced kidney injury.

2185 Resveratrol Alters Subcellular Changes in Oxidative Stress Mediated by Cisplatin in Rat Renal Tissue.

M. Valente1, J. G. Ball1, J. Wolfe1, S. Van Meter1, M. Wright1, B. Lamyaithong2 and B. Brown1. 1Pharmacology, Physiology and Toxicology, Marshall University School of Medicine, Huntington, WV; 2Wheeling Jesuit University, Wheeling, WV.

The cancer chemotherapeutic agent cisplatin is associated with a 33% incidence of diminished renal function. Interventions to reduce renal toxicity are important in improving patient outcome. Resveratrol (RES) is a phytochemical found in grapes, cranberries and nuts. RES has been recognized as a natural agent possessing anti-cancer and antioxidant properties. This study investigated RES attenuation of cisplatin renal in vitro toxicity and focused on differences between cytotoxic and mitochondrial oxidative stress mediated by cisplatin. Male Fischer 344 rats (200-250 g) were anesthetized, with isoflurane and the kidneys were isolated. Renal cortical slices were prepared and pre-incubated with 30 μl ethanol (VEH) or 30 ug/ml resveratrol (RES, final concentration) for 30 min at 37°C. Tissue was subsequently incubated for a maximum of 120 min with 0.7%, or 150 ug/mL cisplatin. Loss of membrane integrity was evaluated as leakage of lactate dehydrogenase (LDH). Oxidative stress and nitrosative stress was assessed in kidney homogenate as well as in subcellular fractions of mitochondria and cytosol. Oxidative stress was measured by protein carbonyl formation using an Oxyblot. Nitrosative alterations were assessed using 3-nitrotyrosine formation by western blot. LDH leakage required a 120 min exposure to cisplatin. An increase in protein carbonyls as detected by Oxyblot, was increased by cisplatin and totally prevented by RES. RES also decreased protein carbons in tissue not exposed to cisplatin. Our findings showed that a 30 min RES pre-incubation diminished cisplatin renal toxicity and that protein carbonyl and 3-nitrotyrosine and early changes in oxidative stress prior to the onset of loss of membrane integrity. (Supported by NIH Grants INBRE 3P20RR016477-09S4; 5P20RR016477 and 8P20GM103434 to the West Virginia IDEA Network for Biomedical Research Excellence).

2186 Diglycolic Acid Induces Cytotoxicity in Human Proximal Tubule Cells via Preferential Inhibition of Succinate Dehydrogenase and Oxidative Phosphorylation.

G. M. Landry, C. L. Dunning, T. V. Dupree, M. J. Hitt and K. McMartin. Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center, Shreveport, LA.

Dicycled glycol (DEG) is an organic solvent used in common consumer products, thus allowing for increased risk for exposure. DEG metabolism produces two primary metabolites, 2-hydroxycycloexyacetic acid (2-HEAA) and diglycolic acid (DGA). DGA, not DEG or 2-HEAA, produces proximal tubule cell necrosis leading to acute renal failure, the hallmark of DEG poisoning. Studies were designed to assess whether the mechanism for DGA-induced cytotoxicity involves disruption of cellular metabolic processes resulting in mitochondrial dysfunction. DGA induces severe ATP depletion in human proximal tubule (HPT) cells that occurs prior to significant cell death. HPT cells pretreated with increasing DGA concentrations showed significant decreases in oxygen consumption suggesting that DGA acts as an oxidative phosphorylation inhibitor, rather than a mitochondrial electron transport chain uncoupler. Co-incubation of DGA with the antioxidant, α-tocopherol significantly reduced DGA-induced reactive oxygen species (ROS) formation, but did not reduce ethidium homodimer uptake or lactate dehydrogenase release, two measures of necrotic cell death, suggesting that ROS production is not a cause, but a consequence of DGA-induced cell death. DGA treatment also significantly and preferentially inhibits succinate dehydrogenase activity, but has no effect on other citric acid cycle enzyme activities. Intracellular transport studies utilizing DGA in competition with 14C-succinate determined an approximate IC50 value of 175 mmol/L. This value suggests that DGA-induced cytotoxicity is not due to substrate starvation of cells, but rather inhibition of metabolic processes, which occur at much lower DGA concentrations. These results indicate that DGA produces proximal tubule cell death by specific inhibition of mitochondrial-mediated processes resulting in decreased energy production and oxygen utilization.

2187 Chronic Ethanol Ingestion in Mice Induces Renal Inflammation and Injury through the Platelet-Activating Factor Receptor.

C. Latchoumycandane1, J. Liu2, L. E. Nagy2 and T. M. McIntyre1. 1Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; 2Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.

Ethanol exposure increases circulating oxidized phospholipids in rats and in alcoholic steatohepatitis patients, although the biological role of circulating oxidized phospholipids remains unclear. Platelet-activating factor (PAF), and some oxidized phospholipids, activate the Platelet-activating factor receptor (PAFR). We hypothesized that PAFR contributes to renal inflammation and injury after ethanol ingestion. In this study we find that mice fed a Lieber-DeCarli ethanol diet had increased levels of circulating PAF, and the pro-apoptotic oxidatively truncated phospholipid azelaoyl-PC. Most strikingly, PAFR-null mice had less infiltrating neutrophils, oxidized phospholipids and TUNEL positive cells in kidney as compared to wild-type (wt) mice fed with ethanol diet. Blood urea nitrogen and serum creatinine, renal functional markers, increased after ethanol exposure in wt mice but not in PAFR-null mice. The renal fibrosis marker, α-smooth muscle actin was increased in ethanol-fed wt mice, but not in PAFR-null mice. Kidney injury molecule-1 (KIM-1), a marker for proximal tubular injury, is increased during acute renal injury, and we find higher expression of KIM-1 in the proximal tubules of ethanol fed wt mice as compared to PAFR-null mice. These results suggest that PAF and bioactive PAF-like oxidized phospholipids promote renal inflammation, acute injury, and renal fibrosis. These events completely depend on a functional PAFR. This demonstrates a novel mechanism of PAFR in alcoholic renal injury.

2188 Nephrotoxicity of Epigenetic Inhibitors Used for the Treatment of Cancer.

N. E. Scholpa, M. Moore and B. S. Cummings. Pharmacological and Biomedical Sciences, University of Georgia, Athens, GA.

Several studies exist investigating the anti-neoplastic activity of epigenetic inhibitors. In contrast, fewer studies have investigated the toxicity of epigenetic inhibitors in non-target organs, such as the kidney. Even fewer have investigated both the anti-neoplastic activity and toxicity of epigenetic inhibitors under similar conditions. This study determined the anti-neoplastic activity and nephrotoxicity of epigenetic inhibitors In Vitro. The therapeutic efficacy of epigenetic inhibitors was first determined in human prostate cancer cells (PC-3 and LNCaP) using the DNA methyltransferase inhibitor 5-azacytidine (5-Aza) and the histone deacetylase inhibitor trichostatin A (TSA). Cells were also treated with carbamazepine (CBZ), an anti-convulstant with histone deacetylase inhibitor-like properties. 5-Aza, TSA, or CBZ alone (0-100 μM) did not induce decreases in MTT staining in PC-3 or LNCaP cells after 48 hr. In contrast, a frontline chemotherapeutic, did induce concentration-dependent decreases in MTT staining after just 24 hr. Treatment of prostate cancer cells with CBZ prior to docetaxel exposure decreased MTT staining in LNCaP cells, but neither TSA nor 5-Aza altered MTT staining compared to cells exposed to docetaxel alone. Treatment of normal rat kidney (NRK) and human embryonic kidney 293 (HEK293) cells with the same concentrations of epigenetic inhibitors used in prostate cancer cells significantly decreased MTT staining after 48 hr. The epigenetic inhibitors were generally more toxic than the nephrotoxicant bromate (0-400 ppm), and TSA and 5-Aza pretreatment increased the cytotoxicity of BrO3- in NRK cells. Increased cytotoxicity in NRK cells correlated to alterations in epigenetic markers such as histone phosphorylation and to alterations in the methylation of the cyclin-dependent-kinase inhibitor protein p21. Collectively, these data suggest that epigenetic inhibitors can induce nephrotoxicity at doses that are therapeutically relevant in prostate cancer cells In Vitro.

2189 hTERT-Immortalized Renal Proximal Tubule Epithelial Cells: A Model for Testing Cadmium's Role in the Development of Renal Cancer.

The incidence of renal cell carcinoma (RCC) has steadily increased in the United States over the past three decades. Therefore, it is critical that scientists are better able to understand contributing factors. Cadmium (Cd) is a recognized carcinogen and widespread environmental contaminant. The kidney is a known target organ of Cd toxicity, however the mechanistic role(s) that Cd plays in the development of RCC has not been described. Renal proximal tubule epithelial cells (RPTECs) are specifically affected by Cd because of their propensity to reabsorb Cd from filtrate...
leading to bioaccumulation. In order to elucidate the mechanisms by which Cd acts, we aim to characterize a newly developed cell line derived from renal proximal tubule epithelial cells of a healthy human male donor (RPTEC/TERT1). Our goal is to establish this new in vitro system for future toxicological and cancer research by characterizing the RPTEC/TERT1 cell line and utilizing them to conduct biologically relevant exposure studies. We will explore these goals through exposure experiments to binary mixtures of two common environmental contaminants, Cd and benz(a)pyrene (B[a]P). Our preliminary results demonstrate that these cells are sensitive to both compounds separately over a wide range of exposure levels. Additionally, the toxic effects of Cd-interacting protein, metallothionein I/II, exhibits a Cd-specific protein response, which supports its ability to function as an endocytic protein, based on in vivo evidence. The RPTEC/TERT1 cell line expresses metallocindependent enzymes necessary for processing polyyclic aromatic hydrocarbons (PAHs) which is exempted by their sensitivity to the representative PAH, B[a]P. Future experiments will further characterize DNA repair capacity of the RPTEC/TERT1 cell line and the development of mutagenic lesions when exposed to binary mixtures of sub-cytotoxic doses of Cd and B[a]P. This work will provide mechanistic support and augment current scientific knowledge regarding the development of RCC and exposure to xenobiotic mutagens and carcinogens.

2190 BUN and Serum CRE Alterations in Higa and BALB/c Mice after Subacute Administration of Fluoride via Drinking Water.
T. Kido4, 5, T. Munoda4, S. Sugaya4, H. Yanagisawa4 and Y. Aizawa4. 4Public Health and Environmental Medicine, The Jikei University School of Medicine, Tokyo, Japan; 5Preventive Medicine, Kitasato University School of Medicine, Sagamihara, Japan.

Fluoride (F) is known as an environmental pollutant. Because F is filtered by the kidney, mice with impaired renal function may be affected more significantly by F. IgA nephritis is the most common chronic glomerulonephritis. High IgA (HIGA) mice have been used as a model of IgA nephritis. The effects of fluoride on BUN and serum creatinine (CRE) of HIGA and BALB/c mice after subacute administration via drinking water were examined in this study to get basic information of the toxic effects of F on the mice with IgA nephritis. F was administered to HIGA and BALB/c mice, aged 11-12 weeks at 0, 50, 100, and 150 ppm in their drinking water for 4 weeks. The blood was sampled from the tail artery once a week. The BUN and CRE in the serum were determined by the kits. For the BUN levels in the HIGA mice, after one week from the beginning of the exposures, the mean BUN in the 50-ppm group was significantly higher than those in the 100- and 150-ppm groups. At 2 weeks, the mean value of BUN in the 100-ppm group was significantly higher than those in the 0- and 150-ppm groups. For the BALB/c mice, there were no significant differences among the groups. For the CRE in the serum of HIGA mice, after 1 week, the mean CRE in the 50-ppm group was significantly higher than those in the 0- and 150-ppm groups. For the BALB/c mice, after 3 weeks, the mean CRE in the 50-ppm group was significantly higher than those in the 0- and 150-ppm groups. The alterations in the BUN and CRE in the serum observed in the HIGA and BALB/c mice may indicate the toxic effects of F on the kidney. However, the alterations were not dose-dependent, and the effects of F on the kidney of HIGA mice were not as significant as those on kidney of the BALB/c mice. The toxic effects of F on the kidney were not enhanced in the HIGA mice at 11 to 12 weeks of age.

2192 Miniaturized Multiplex Protein Nanoarray Assays for Early Detection of Drug-Induced Nephrotoxicity in Mice and Rats.

Drug-induced toxicity is the major cause of kidney damage. The previous methods for measuring drug induced injury, namely serum creatinine and blood urea nitrogen, have been found inadequate. Recently the FDA and EMEA have qualified a panel of biomarkers that is highly useful in the early identification and characterization of kidney injury.

Here we report the development of highly sensitive and small sample volume Nanoarray multiplex assays for early detection of drug-induced nephrotoxicity in mouse and rat in-vivo models based on dip-pen nanolithography (DPNTM) using a Nanoarrayer 3000TM. This instrument enables the production of highly reproducible micro- to nano-scale arrays of proteins which occupy an area approximately 100 times smaller than conventional microarrays. The reduced array area results in reduced reagent and sample requirement and increased sensitivity due to reduced analyte depletion. For a multiplexed sandwich ELISA, arrays of specific capture antibodies are printed on activated glass slides. Samples of as little as 2-4 μl can be incubated over the arrays in 48 and 96 well format. The slides are then incubated with specific biotinylated detection antibodies followed by fluorescently labeled Streptavidin. The fluorescence is measured with a high resolution fluorescence scanner.

The multiplex assays were developed and validated for mouse (Albumin, Clusterin, Cystatin C, KIM-1, and EGF) and rat biomarkers panels (Albumin, Clusterin, Cystatin C, KIM-1, B2MG and TFF3) and showed high sensitivity and specificity. The assay was used to detect and quantify renal injury biomarkers in urine samples obtained from normal and drug compromised rats. The low volume sample requirements in conjunction with the extremely high sensitivity, selectivity, and reproducibility help enable longitudinal studies on individual rodents thus saving significant study costs and providing better toxicity data than other conventional methods used for preclinical and clinical safety and toxicity studies.

2193 Magnetic Resonance Imaging (MRI) Assessment of Renal Glomerular Filtration Rate (GFR).
M. Uteng1, A. Mah1, A. Piaia1, J. Cunliffe1, E. Persohn1, E. Tiritto1, D. Ledieu1, P. Moulin1, N. Shangari1, S. Chibout1, A. Wolf1, L. Li1, E. Pogna1 and N. Beckmann2. 1Novartis Institutes for Biomedical Research, Novartis, Basel, Switzerland; 2Global Imaging Group, Novartis, Basel, Switzerland.

MRI of kidneys after administration of the contrast agent, gadolinium-tetra-azacyclo-dodecanetetra-acetic acid (Gd-DOTA), has been reported as a promising method for assessment of GFR. However, there is little literature on the sensitivity of this method compared to standard assessments in non-clinical trials of drug development. To this end, we have conducted a study with the aim to determine the sensitivity of MRI as a method for detection of GFR in rodents. Sprague-Dawley rats were treated with Adefovir as positive control, and Tilorvidine and Entacavir as negative controls for nephrotoxicity. The rats were treated daily by oral gavage for 4 weeks with 10X and 25X human equivalent exposures doses (HED) of compounds. After 3, 10 and 28 days treatment, GFR was assessed using Ultrastable Buffer (Argus Medical Ltd, Dublin, Ireland) and did not improve the performance. Therefore, we could not demonstrate an association between the C5b-9 positively-stained glomeruli and urinary C5b-9 level in the rat PHN study. We concluded that Quidel and USCN kits performed poorly for the detection of urinary C5b-9 in rat and NHP urine.
genes. On the other hand, the creatinine filtration rate did not reveal any significant changes. The results treated with Telbivudine and Entecavir showed neither renal impairment nor toxicity for the entire study duration. In conclusion, these results demonstrated that MRI is a sensitive method for non-invasive detection of GFR changes and that this technique may be a good alternative to the standard measurements of creatinine filtration in non-clinical investigative studies.

2194 Identification of 3-Indosyl Sulfate as an Early Biomarker for Nephrotoxicant-Induced Acute Kidney Injury.

A. Won¹, T. Kim¹, Y. Shin¹, B. Lee², S. Kim¹ and H. Kim¹, ¹College of Pharmacy, Pusan National University, PUSAN, Republic of Korea; ²College of Pharmacy, Sangkyunkwan University, Suwon, Republic of Korea; ³Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea.

The identification of new biomarkers of acute kidney injury (AKI) is important for the detection of drug-induced kidney damage. Various serum or urinary biomarkers have been used to detect AKI, but these biomarkers have shown poor sensitivity and specificity. In this study, we compared the sensitivity of a new metabolomic biomarker, 3-indosyl sulfate (3-IS), with traditional biomarkers for the diagnosis of AKI using the area under the receiver operating characteristic (ROC) curve. Sprague-Dawley male rats were allocated to several groups. Each group was administered either a single dose of cisplatin (20 mg/kg, i.p.), continuous injection of cyclosporin A (10 mg/kg, i.p.), mercury chloride (1.5 mg/kg, i.p., and 7.5 mg/kg, i.p.), or gentamicin (60 mg/kg, s.c.). Urine and plasma samples were collected 1, 3, and 7 days after last injection of nephrotoxicants. Urine and blood biochemical parameters involved in kidney toxicity were measured. We also measured 3-IS levels in the serum, urine, and kidney using HPLC. In the nephrotoxicants-treated rats, blood urea nitrogen (BUN) and serum creatinine (Scr) levels were slightly increased. The 3-IS levels were significantly reduced in the urine of rats treated with cisplatin and other nephrotoxicants. In contrast, 3-IS levels were significantly elevated in the serum and kidneys of nephrotoxicants-treated rats. The 3-IS is produced by bacterial metabolism of tryptophan in the intestine, followed by oxidation and conjugation in the liver. The 3-IS is mainly excreted via urine and transported by the organic anion transporter (OAT) in the proximal tubule. Thus, reduced urinary 3-IS levels can reflect proximal tubule injury. These results suggest that urinary 3-IS may be used as an alternative to traditional biomarkers to predict AKI.

2195 A Quantitative High-Throughput Screening Platform for Predictive Kidney Toxicity.

M. Adles¹, E. Gottwald³, B. Goodwin², M. Xia¹ and V.S. Vaidya¹, ¹Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA; ²National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD.

Drug and environmental chemical-induced kidney toxicity plays an important role in the high incidence and prevalence of kidney injury in both hospitalized and non-hospitalized patients, in which many circumstances can be prevented or at least minimized by predictive toxicity screening. The goal of this study was to develop a cell-based quantitative high throughput screening (qHTS) platform with two aims: 1) to identify a more biologically relevant in vitro system for prediction of human kidney toxicity than currently used immortalized cells and 2) to identify a sensitive, specific, robust and translatable biomarker of kidney toxicity since in vivo biomarkers such as kidney injury molecule-1 do not respond in vitro. We used primary human proximal tubular epithelial cells (HPTEC) and observed that these cells in a monolayer possess human tubular epithelial characteristics like i) formation of domes; ii) expression of zonula occludens-1, cytokeratin 18 by immunostaining; iii) a wide range of efflux and influx transporters including aquaporin 1, megalin, organic cation transporter 2, multidrug resistance protein 2, P-glycoprotein by semi-quantitative PCR and 4) activity of brush-border enzymes like alkaline phosphatase, and γ-glutamyl-transferase. We found that hemeoxygeenase-1 (HO-1) mRNA and protein levels significantly increased in a concentration-dependent manner (tested over 6-point concentration curve) following exposure to structurally and mechanistically diverse kidney toxicants such as cisplatin, gentamicin, cyclosporin A and cadmium chloride and correlated well with cytotoxicity. HO-1 expression remained unchanged following treatment of HPTEC with non-kidney toxic compounds (e.g. carboplatin), demonstrating its specificity. Our results demonstrate the relevance and potential use of HPTEC in a qHTS platform using HO-1 as a biomarker for predictive safety assessment of drugs and environmental chemicals.

2196 Systems Biology Approach Identifies Transcriptional Regulator of Kidney Injury Molecule-1.

A. K. Ajayi¹, T. Kim¹, P. J. Park¹, V. Ramirez¹ and V. S. Vaidya¹, ¹Renal Division, Brigham and Women’s Hospital, Boston, MA; ²Centre for Biomedical Informatics, Harvard Medical School, Boston, MA; ³Department of Medicine, Harvard Medical School, Boston, MA.

Kidney injury molecule-1 (KIM-1) is the highest upregulated gene following kidney ischemic or toxic insult and functions as a phosphatidylserine receptor to internalize apoptotic cells. Owing to lack of information about regulation of KIM-1, we used genome-wide expression data following kidney ischemia reperfusion injury (IRI) in rats and utilizing ChIP enrichment analysis and kinase enrichment analysis we identified STAT3 and checkpoint kinase 1 (Chk1) as a potential transcription factor and kinase regulating KIM-1. Then we performed an extensive biological validation of the bioinformatics predictions and report that reactive oxygen species generation following IRI upregulates STAT3 phosphorylating it at Ser727, which further binds to KIM-1 promoter for its transcription.

We observed temporal association among pSTAT3, pChk1 and KIM-1 using immunoblotting and immunostaining in rat kidneys following IRI and in human kidneys from patients with kidney injury. To prove transcriptional regulation of KIM-1 by STAT3 we used i) primary human proximal tubular epithelial cells (HPTEC) and showed a significant increase (1.5 fold) in KIM-1 mRNA and protein following STAT3 activation. Conversely we used human renal carcinoma cell line (769 P) expressing high pSTAT3/KIM-1 and found 2-fold decrease in KIM-1 following STAT3 siRNA transfection. Furthermore, we confirmed that STAT3 binds on KIM-1 promoter in i) rat kidneys (10 fold by ChiP assay) following IRI; ii) HPTEC transfected with KIM-1-luciferase plasmid (3-fold by STAT3 activation) and iii) 769 P cells transfected with STAT3 siRNA (2-fold decrease). The binding of Chk1 to STAT3 was observed using immunoprecipitation in HPTEC by hydroxyurea (Chk1 activator). These results reveal Chk1-STAT3 as one of the key pathways regulating KIM-1 transcription.

2197 Kidney miRNAs Show Age and Sex Differences in Expression during the Rat Life Cycle.

J. C. Kewkel, V. Desai, T. Han, C. L. Moland and L. C. Fuscoe, Personalized Medicine Branch, US FDA, National Center for Toxicological Research, Jefferson, AR.

Increasing evidence for epigenetic mechanisms of gene regulation has fueled interest in the role of miRNAs in toxicogenomics for biomarker discovery. While relatively immature in comparison to other genomic resources, the growing knowledge base of individual miRNAs and their putative gene targets allows for large scale inquiry into more comprehensive, genome-wide analysis of miRNA expression. Kidney tissues in the F-344 rat model system were examined over the life cycle for the purpose of evaluating miRNAs with putative roles in drug metabolism and kidney disease. miRNA expression was characterized at 2, 5, 6, 8, 15, 21, 78, and 104 weeks of age in both sexes using Agilent 8x15k rat miRNA microarrays containing multiple probes for 677 unique miRNAs. Five animals per sex and age were used for a total of 80 samples. Agilent’s Feature Extraction software was used for initial analysis and processing of the raw data and 224 miRNAs were found to be expressed in the kidney in at least one age and sex. Combined filtering criteria of 1.5 fold change and p < 0.05 (2-way ANOVA) revealed 105 miRNAs (47%) exhibiting differential expression by age or sex. Principal component analysis (PCA) showed PC1 accounted for 21% of the variability among the 105 differentially expressed miRNAs in a pattern consistent with age-specific effects. 12 miRNAs showed increased expression at 78 and 104 weeks, consistent with an aging-related effect (e.g. miR-142-3p, miR-223). Although no large scale, sex-related patterns were evident from the PCA, some miRNAs showed sex-specific patterns of expression (e.g. miR-204, miR-499, miR-183). miR-499 has been implicated in regulation of mitochondrial dynamics through direct targeting of calcineurin. Collectively, these results comprise one of the first large-scale characterizations of global miRNAs in the kidney over the entire rat life cycle and show age- and sex-related differences that may impact susceptibility to adverse effects in the kidney.

2198 Mice Deficient in microRNA-155 Have Greater Susceptibility to Cisplatin-Induced Kidney Toxicity.

K. L. Pellegrini, V. Bijol and V. S. Vaidya, Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA.

Although originally identified as an oncogenic factor, microRNA-155 (miR-155) has also been found to be upregulated in macrophages and dendritic cells in response to a range of inflammatory stimuli and required for the activation of Th17 cells. We have previously shown miR-155 to be significantly upregulated following
ischemic or toxic insult to the kidney and the objective of this study was to further investigate the role of miR-155 in regulating kidney injury. Male miR-155/-KO and wild type C57BL/6J (WT) mice were injected intraperitoneally with 20 mg/kg of cisplatin and sacrificed at 0, 24, 48, 72, 96 and 120 h (n = 5/timepoint) for the collection of blood and kidneys. Blood urea nitrogen (BUN) and serum creatinine (SCr) were measured to determine kidney function, and kidney injury molecule (KIM-1) mRNA, histopathology (necrosis) and TUNEL staining (apoptosis) were measured to determine the extent of proximal tubular injury.

The miR-155/-KO mice had significantly higher kidney dysfunction as evidenced by more than 2-fold higher levels of BUN and SCr in the KO mice as compared to WT by 48 h. The KO mice also had significantly higher KIM-1 mRNA levels than WT mice throughout the time course, and mortality of approximately 60% was observed for the miR-155/-KO mice as compared to WT mice by 120 h. Necrosis and apoptosis were significantly increased in the kidneys of KO mice as compared to WT mice throughout the time course, and mortality of approximately 60% was observed for the miR-155/-KO mice as compared to WT mice by 120 h. These results demonstrate that miR-155/-KO mice are highly susceptible to cisplatin-induced kidney toxicity.

Tumor protein 53-induced nuclear protein 1 (TP53INP1), which phosphorylates p53 to induce apoptosis, has previously been identified as a direct target of miR-155. We hypothesize that miR-155 is repressing the levels of TP53INP1 (and in turn, the induction of apoptosis) in the kidneys of C57BL/6J mice treated with cisplatin, and that the dysregulation of TP53INP1 in miR-155/-KO mice promotes the induction of apoptosis, resulting in higher levels of kidney injury.

2199 Urinary microRNAs As Translational Biomarkers to Detect Acute Kidney Injury.

K. Ramachandran, J. Saikumari, S. S. Waikat and V. S. Vaidya. Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA.

MicroRNAs (miRNAs) are a family of short, single stranded, non-coding RNA molecules that direct the expression of nearly 60% of all protein coding genes. Extracellular miRNAs, identified in 14 different body fluids, have been proposed as biomarkers of disease and organ damage due to their stability, sensitivity, specificity and ease of detection. Previously, we identified 3 miRNAs (miR-21, -155 and -18a) that were upregulated following ischemic injury and gentamicin induced nephrotoxicity in rats. Human urinary levels of miR-21 and -155 were able to distinguish patients with and without AKI. The aim of our study was to profile the human miRNome in the urine of patients with or without AKI to identify a panel of urinary miRNAs that can serve as sensitive and specific indicators for kidney injury. To estimate the fraction of miRNAs present in the urine, we used the Human miRNome miScript miRNA PCR Array from Qiagen (mirBase version 18 containing ~1900 miRNAs) on urines pooled from 6 patients with AKI and 6 healthy controls. Samples were collected from patients admitted in the Intensive Care Unit (ICU) with a rise in serum creatinine of 100% over baseline. Using a cycle threshold (Ct) range of 19-30, miRNAs that were expressed in both, or in either one of the diseased or healthy pools were selected. All miRNAs that had Ct values >30 in both the sample sets were considered as Not Expressed and eliminated. Thus, we designed a customized array of the 378 detected miRNAs and analyzed the 12 urine samples (6 AKI and 6 healthy) individually. We found 52 miRNAs that were upregulated >5-fold in the AKI patients as compared to the controls and 35 candidate miRNAs (out of 52) were selected using a standard deviation cut-off of 1.5. Further evaluation of these candidate miRNAs for sensitivity, specificity, stability, reproducibility and robustness in an expanded cohort of patients with or without kidney damage will help in establishing the value of urinary miRNAs as non-invasive biomarkers for kidney injury.

2200 Genetic Reduction in Fibrinogen Protects from Progression of Acute Kidney Injury to Chronic Kidney Disease.

E. Craciun, A. K. Aiyay and V. S. Vaidya. Department of Medicine, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA.

The incidence of acute kidney injury (AKI) is increasing and recent studies emphasize the significant development of chronic kidney disease (CKD) and end-stage kidney disease for AKI survivors. We have shown that mRNA and protein expression in the kidney as well as urinary fibrinogen (Fg) is significantly increased following Fg heterozygosity in mice reduces plasma Fg to 75% of the normal circulating levels, protecting from AKI and promoting faster resolution of kidney damage. Therefore, we hypothesized that Fg heterozygosity would protect from AKI to CKD progression. To test this we used a Folic acid (250 mg/kg, single sq injection) induced AKI to CKD progression model in wildtype (Fg+/+), heterozygous (Fg+/-) and Fg deficient (Fg-/-) mice on Balb/c background and the mice were sacrificed at days 1 and 14 following administration (n=4/time point/group). At day 1 there was significant kidney dysfunction as assessed by blood urea nitrogen (112, 73 and 65 mg/dL for Fg+/+, Fg+/- and Fg-/- respectively) and serum creatinine (0.7, 0.6, 0.3 mg/dL for Fg+/+, Fg+/- and Fg-/- respectively), indicating protection in Fg+/- and Fg-/-.

Kidney mRNA levels of Kidney injury molecule-1 (marker of proximal tubular injury) were significantly higher for Fg+/- (80 fold) than Fg+/+ (46 fold) and Fg-/- (55 fold) as compared to unjured mice. By day 14 these markers of acute injury reverted to normal but there was increased kidney mRNA expression of fibrosis markers fibronectin (9, 4 and 8 fold in Fg+/+, Fg+/- and Fg-/- respectively) and collagens (8, 3 and 9 fold in Fg+/+, Fg+/- and Fg-/- respectively) when compared to unjured mice, with only Fg+/+ showing protection. This was confirmed histologically by Masson’s trichrome staining. We conclude that a lowered but not completely abolished level of Fg protects from AKI to CKD progression, providing a therapeutic target that could benefit AKI survivors.

2201 Urinary Levels of N-Acetyl-b-D-Glucosaminidase (NAG), Glutathione-S-Transferase (GST), Blood Lead and Plasma Creatinine As Early Indicators of Lead Nephropathy inOccupationally Exposed Subjects.

I. O. Omotoso and O. A. Adamowo. Chemical Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria; Institute of Advanced Medical Research, College of Medicine, University of Ibadan, Ibadan, Nigeria.

Lead (Pb) toxicity remains a public health problem. Although early diagnosis is paramount for meaningful intervention particularly in occupationally exposed subjects, the diagnosis of Pb poisoning at early stage remains a problem even in developed countries. This work addressed this issue by expressing urinary levels of NAG and GST as exponents of concentrations of conventional renal function markers (creatinine, urea and uric acid) and blood Pb. The result of exponential expression of these results showed a definite pattern particularly in occupationally exposed subjects relative to confirmed chronic renal failure subjects and control. When these figures were compared logarithmically, definite hyperboles for the control, the occupationally exposed and the CRF were observed; the importance of this in early diagnosis of lead nephropathy to be discussed. Based on these, we propose hypothesis that can be used in the early identification of renal tubular damage especially in subjects occupationally exposed to lead using this logarithmic model.

2202 Early Postnatal Gentamicin Treatment Reduces Glomerular Number in Extra Uterine Growth Restricted Wistar Rats.

Introduction: Nephrogenesis is the process that leads to the formation of nephrons and ceases around the 36th week of gestation in man, without the possibility of additional formation later in life. A lower number of nephrons have been associated with an increased chance at chronic kidney disease development. In the Netherlands alone, almost 8% of all children are born preterm, and many are treated with drugs or suffer from extra uterine growth restriction (EUGR) that may potentially reduce nephron formation. In this study we investigated the impact of gentamicin and cefazidime on kidney development w/wo EUGR.

Methods: Wistar rats were allocated to either normal size litters (12 pups) or increased size litters (20 pups), the last resulting in EUGR. Both cohorts were divided in control and intervention groups where animals were administered 0.9% NaCl, 4 mg/kg gentamicin or 5 mg/kg cefazidime via intraperitoneal route from post natal day 2-8. At day 8 and 35, animals were sacrificed and the kidneys were collected. Day 8 kidneys were examined for mRNA expression in a selection of targets, proliferation, apoptosis and general histopathology. Total glomerular count (estimated using stereology) and glomerular generation count were performed in kidneys collected at day 35.

Results: Gentamicin treatment in combination with EUGR resulted in 20% less glomeruli compared to sham treatment. EUGR animals had less body weight, but showed parallel growth compared to non-growth restricted animals, indicating a successful working model. No clear distinctions were noted in mRNA expression levels, glomerular generation count or general histopathology. The proliferation/apoptosis balance is currently under investigation.
2203 Resistance to Dioxin-Induced Hydronephrosis in a Mouse Strain Having Unresponsive Microsomal Prostaglandin E Synthase-1.

K. Aida-Yasuoka, W. Yoshioka, T. Kawaguchi, S. Ohasks and C. Tohyama, University of Tokyo, Tokyo, Japan.

Background: The majority of dioxin toxicity is governed by aryl hydrocarbon receptor (AhR), and the degree of toxicity is affected by its allele type. It is known that AhRb1 and AhRb2 are responsible for marked manifestation of dioxin toxicity, but that AhRd is not. Our previous works, 1) showed that COX-2 and microsomal prostaglandin E synthase-1 (mPGES-1), an inducible form of PGE2 synthase, are critical factors in the pathogenesis of hydropneumosis (HN), and suggested the presence of the possible strain difference in the development of HN between C57BL/6J and BALB/c. Thus, we here examined the incidence of dioxin-induced hydronpneumosis (HN) in mouse pups of these strains to clarify causative factors that bring out a strain difference in dioxin-induced HN.

Methods: Two strains of mice, C57BL/6J and BALB/c, harboring b1 and b2 alleles, respectively, were administered 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), at an oral dose of 15 μg/kg, 1 day after birth, to expose pups with TCDD via lactation. Kidneys were collected on postnatal day 7 for histology and gene expression analysis by quantitative RT-PCR.

Results: Incidence of HN was approx. 60% in C57BL/6J and 0% in BALB/c despite the comparable induction levels of CYP1A1 in the both strains. There was no strain difference in COX-2 mRNA abundance. A strain difference in mPGES-1 mRNA abundance was found comparable to the HN incidence. Gene expression of early growth response 1 (Egr-1), that activates mPGES-1 transcription, was increased in C57BL/6J, but not in BALB/c. In addition, mRNA of aquaporin 2, a water channel, that absorbs water at the collecting duct, was decreased in C57BL/6J and increased in BALB/c.

Conclusions: Although both C57BL/6 and BALB/c have dioxin-sensitive receptors, this study demonstrates that strain difference in the incidence of TCDD-induced HN in mouse pups can be partly explained by distinct expression differences in mPGES-1. It is also suggested that Egr-1 may modulate the induction of mPGES-1.

2204 Escape from Toxic Island: Learning Toxicology Concepts through Informational Posters and a Board Game.

D. Hardej, L. Hoffman and A. R. Scharz, Mid-Atlantic Society of Toxicology (MASOT), Bordentown, NJ; Pharmaceutical Sciences, St. John's University, Queens, NY.

Escape from Toxic Island is a program that was developed by the MASOT Education and Outreach Committee to teach toxicology concepts to school aged children. The program is composed of informational posters containing basic toxicology concepts followed by a board game with toxicology questions. Answers to many of the questions were contained in the posters and children were encouraged to use them to obtain correct answers as they moved along the game board. One of the informational posters contained basic definitions and toxicology concepts such as routes of exposure, signal words used in the labeling of toxic substances and government agencies that regulate toxicity. The second poster explored toxicity in and around the home and included information about cleaning products, pesticides, and car care products. The program was developed by the Chair of the MASOT Education and Outreach Committee. Review of the informational posters and game board was accomplished by Education and Outreach Committee members who represent academia, industry and government experts in toxicology to ensure relevance and accuracy of information. In step with the success of the Inspector Toxic board program developed 2 years ago by this committee, island themed costumes and props were utilized. Toxic Island’s resident pirate, Captain Toxic, assisted with instruction and game play. Incorrect answers were cheerfully corrected after “walking the plank.” The audience for the program resulted from a joint effort of St. John’s University and the Afterschool All Stars Program. The Afterschool All Stars program provides free programs to roughly 80,000 children in need in 13 different cities in the continental U.S. and Hawaii. Volunteers were recruited from MASOT, St. John’s faculty, and graduate and undergraduate toxicology students. Learning outcomes for the program are based on responses made to questions posed on the game board. Respondents who answered incorrectly to game board questions were encouraged to explore the informational posters for correct answers.

2205 A C. elegans Dose-Response Protocol and Inquiry Lab in an Undergraduate Toxicology Course.

M. J. Pomeroy-Black, Biology, LaGrange College, LaGrange, GA.

In order to prepare students for a multi-week research project, it is essential to allow them to practice the protocols that will be used in the project. Using C. elegans, students initially observed normal behavior and identified the developmental stages of the organism. Students then practiced transferring C. elegans between plates and explored various endpoints that could be used in their research project, including avoidance, locomotion and feeding. During the next lab session pairs of students were given protocols for a dose-response lab activity in which they were assigned a chemical and performed a dilution series, and used the dry drop test as a measure of avoidance. Data were compiled and statistically analyzed after the lab. After establishing this basis of knowledge the students designed and conducted their own experiment for the remainder of the semester. Student pairs wrote a research proposal based on a literature search, gathered preliminary data in the lab and embarked on several replications of their experiment. Students analyzed their data using an ANOVA and presented their research as a poster session to the broader community.

2206 The Best of the Worst: A Novel Approach to Teaching Environmental Toxicology.

C. P. Curran, Biological Sciences, Northern Kentucky University, Highland Heights, KY.

Curriculum development for undergraduate toxicology courses taught is challenging, because of the varied preparation and background of students enrolled. Students are typically majoring in environmental science, chemistry, or biology, and each discipline has unique program requirements. Environmental toxicology courses present even greater challenges for students without a solid grounding in ecology or biochemistry. A novel course was developed at Northern Kentucky University, focused on problem-based learning and team-based learning to engage students in identifying and understanding environmental toxicology issues in their local communities and in a variety of ecosystems (polar, temperate and tropical). Sample activities such as “What is the Worst Environmental Problem in the World?” will be explained along with the pedagogical underpinnings of the curriculum design. Student satisfaction with the course was extremely high (4.8 on a 5.0 scale), indicating this course could be a model for other undergraduate educators.

2207 Risk Assessment Capstone Project for Seniors in an Undergraduate Toxicology Program.

S. M. Ford, College of Pharmacy & Allied Health Professions, St. Johns University, Jamaica, NY.

Capstone projects are intensive, active learning exercises for seniors to apply their knowledge and skills to a complex problem in their discipline. The projects vary in form and function. They may be done in teams or by individual students; the tasks may be self-selected or assigned. Planning and implementation are student-directed under supervision of faculty. Outcome of the work may be a written document and/or an oral presentation. The scope should be substantial, utilize critical thinking, and draw upon the learning objectives of the major. In our BS Toxicology program, seniors are assigned a risk assessment in the course Regulatory Toxicology and Risk Assessment. They are given a hypothetical disaster, involving a population exposed to a chemical through air, water, food, soil, or medication. Ideally the chemical chosen is one for which the toxicological data is sparse, so that students must evaluate the agent based on its properties and chemical class. The scenario includes the amount released, the exposed population, and the media of exposure. The result of the project is a written risk analysis, a website, and presentation of their findings to the College. The capstone project requires the students to utilize the facts and concepts of toxicology in an analytical manner, and apply the skills of writing, oral communication, and teamwork to a realistic situation. The public presentation informs the larger university community on the process of toxic risk assessment.
Development of a Summer Undergraduate Research Program in Toxicology and Environmental Health Sciences.

L. M. Aleksunes1, 3, L. Liang2, 3, E. Caswell7 and D. L. Laskin1, 3, 1Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ; 2Department of Health Systems and Policy, University of Medicine and Dentistry of New Jersey-School of Public Health, Piscataway, NJ; 3NIHES Center for Environmental Exposures and Disease, Piscataway, NJ.

Exposure to research opportunities in toxicology and environmental sciences is key to the development of the next generation of scientists. The Community Outreach and Engagement Core of the NIEHS Center for Environmental Exposures and Disease at the University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School and Rutgers University has developed a summer research fellowship program to promote toxicology and environmental sciences as careers in biomedical research. The program consists of 10-week basic science and translational research experiences for undergraduates and was also designed to include weekly events including laboratory safety and responsible conduct of research training, a field trip to a pharmaceutical company, career development and research seminars and student presentations. Participants of the 2012 summer research program ranked the field trip as the most valuable weekly activity followed by presentations from toxicologists and environmental health scientists. Based on pre- and post-survey results, over 60% of respondents reported that a career as a scientific researcher was most appealing based upon satisfaction from doing research, the perceived benefit of scientific knowledge to the community, and an overall interest in science. In addition, 87.5% of respondents will continue to pursue research after completion of the summer research program. This includes five students pursuing Ph.D. degrees beginning in 2012 or 2013. A summer research program engages undergraduates in full-time research experiences and provides unique opportunities to promote toxicology and environmental sciences as research areas for the next generation of scientists and enhances career development skills. Supported by ES020721, ES050922, and ASPET SURF.

Incorporation of Toxicology and Risk Assessment Principles into an Environmental Health Course.

Environmental health deals with a multitude of public health issues ranging from sanitation to hazardous materials to air and water quality. Practitioners are largely involved in the regulatory side of protecting public health, which requires an intimate understanding of toxicology and risk assessment. However, many of the identified deficiencies with risk assessment are perpetuated by the educational curricula. For example, chemical hazards are introduced to students and evaluated by regula-tors on a case-by-case basis, often based on one toxicological endpoint alone. Strong emphasis is placed on making comparisons of reference doses to exposure estimates without regard to the effect of uncertainties associated with inadequate data. High uncertainty alone could result in the selection of a more toxic substance over one less studied. A unique class project was created to give environmental health students, our future regulators, an improved perspective on how toxicological information can be used to make informed decisions that best protect human health and wellbeing. The multi-step exercise focuses on a decision made by the World Health Organization to bring DDT back into use to fight malaria. Students work in groups to collect chemical, toxicological, efficacy, and economic aspects of a common pesticide used for mosquito control. The class then comes together to compare and discuss the group results and select the best pesticide option for the impacted region. A semi-quantitative risk management tool is also used for a more objective determination. Lastly, a surprise change in one circumstance causes perspectives to dramatically shift. A detailed description of the project and handouts will be provided.

Provisional Advisory Levels (PALs) for Chloroethanol (Ethylene Chlorohydrin).

S. Milanez1, P. M. McGinnie2, L. Koller3 and F. Aedesing4, 1Oak Ridge National Laboratory, Oak Ridge, TN; 2RG York and Associates, Syracuse, NY; 3Environmental Health & Toxicology, Cornallis, OR; 4US EPA, Washington DC.

PAL values developed for hazardous materials by the US EPA represent general public environmental exposure limits for oral and inhalation exposures corresponding to three different severity levels (1, 2, and 3) for 24-hour, 30-day, 90-day, and 2-year durations. PAL 1 represents the threshold for mild effects; PAL 2 represents the threshold for serious, irreversible or escape-impairing effects; PAL 3 represents the threshold for lethal effects. PALs have not been promulgated nor have they been formally issued as regulatory guidance, but are intended for use at the discretion of risk managers in emergency situations when site-specific risk assessments are not available. The PAL document for chloroethanol was developed based on the SOP and QAPP requirements. Chloroethanol (2-chloroethanol; ethylene chlorohydrin), is a colorless, combustible liquid with a faint ether-like odor, and is soluble in water and organic solvents. It is a high production volume chemical that is used as an industrial solvent and a chemical manufacturing intermediate. It is formed when ethylene oxide is used to sterilize polyvinyl chloride plastics and to fumigate foods. Humans and animals exposed by inhalation or orally exhibited CNS, GI, and respiratory symptoms, and had post-mortem lesions in numerous internal organs. All PALs were derived using rat...
data because the human data were not adequate; the animal data were generally consistent among species and with the limited human data. Developed PAL values for oral exposure are 35 mg/L as the PAL 1 for 24 hours; 110 mg/mL as the PAL 2 for 24 hours, and 30 and 90 days; 230 mg/L as the PAL 3 for 24 hours; and 160 mg/L as the PAL 3 for 30 and 90 days. PALs derived for inhalation exposure are 0.26 ppm and 0.78 ppm as the 24-hour PAL 2 and PAL 3, respectively. For 30 and 90 days, the inhalation PAL 1 is 0.0015 ppm and the PAL 2 is 0.015 ppm. Other oral and inhalation PAL values were not developed due to insufficient data.

2213 Provisional Advisory Level (PAL) Development for Lewisite and Sulfur Mustard.

PAL values developed for hazardous materials by the US EPA represent general public emergency exposure limits for oral and inhalation exposures corresponding to three different severity levels (1, 2, and 3) for 24-hr, 30-d, 90-d, and 2-yr durations. PAL 1 represents the threshold for mild effects; PAL 2 represents the threshold for serious, irreversible or escape-impairing effects; PAL 3 represents the threshold for lethal effects. PALs have not been promulgated nor have they been formally issued as regulatory guidance. They are intended to be used at the discretion of risk managers in emergency situations when site-specific risk assessments are not available. Application of PAL protocols has been performed for lewisite and sulfur mustard to estimate inhalation exposure limits; oral PAL values are not recommended (NR) due to insufficient data. PAL values for the vesicants, lewisite and sulfur mustard, are based on ocular effects in humans and animals or lethality thresholds in rodents. Lewisite inhalation PAL 1, 2, and 3 values are NR, 0.01, and 0.037 mg/m3, respectively, for 24-hr; and NR for 30/90-d and 2-yr.

Sulfur mustard inhalation PAL 1 values are 0.00083 mg/m3 for 24-h and 0.00010 mg/m3 for 30-d/90-d and 2-yr. PAL 2 values are 0.0042 mg/m3 for 24-h, 0.00029 mg/m3 for 30-d, and 0.00097 mg/m3 for 90-d and 2-yr. PAL 3 values are 0.088 mg/m3 for 24-h and NR for 30-d/90-d and 2-yr.

2214 Provisional Advisory Level (PAL) Development for Fentanyl.

C. S. Wood1, C. Baird2, L. Koller3, and F. Adeshina. 1Oak Ridge National Laboratory, Oak Ridge, TN; 2US Army Public Health Command, Aberdeen, MD; 3Environmental Health and Toxicology, Coralsus, OR; 4US EPA, Washington DC.

PAL values developed for hazardous materials by the US EPA represent general public emergency exposure limits for oral and inhalation exposures corresponding to three different severity levels (1, 2, and 3) for 24-hr, 30-d, 90-d, and 2-yr durations. PAL 1 represents the threshold for mild effects; PAL 2 represents the threshold for serious, irreversible or escape-impairing effects; PAL 3 represents the threshold for lethal effects. Minimum data requirements must be met or a value may be considered NR (not recommended). PALs have not been promulgated nor have they been formally issued as regulatory guidance. They are intended to be used at the discretion of risk managers in emergency situations when site-specific risk assessments are not available. Application of PAL protocols has been performed for fentanyl to estimate oral and inhalation exposure limits.

Fentanyl is a highly potent, synthetic opioid used clinically as an analgesic and anesthetic. Dose-response information from humans showed that effects were similar between children and adults. The magnitudes of sedation and analgesia were positively correlated with dose. Side-effects included pruritus, nausea, vomiting, headache, bradycardia, vertigo and respiratory depression leading to decreased oxygen saturation at higher doses. Oral PALs were based on adverse side-effects in humans. Oral PAL 1 and 2 values are 0.03 and 0.23 mg/L, respectively, for 24-hr/30-d/90-d; oral PAL 3 and all 2-yr values are NR. Inhalation exposure resulted in sedation and respiratory depression. Inhalation PAL 1, 2, and 3 values are NR, 0.0037, and 0.11 mg/m3 respectively, for 24-h. The 30-d/90-d/2-yr inhalation PALs are NR.

2215 Development of a Chronic Reference Concentration for Decalin.

L. D. Stuchal, R. E. Weil and S. M. Roberts. Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL.

Decalin is a naturally occurring dicyclopentanone present in crude oil and produced as a product of combustion. Its ability to solubilize oils and fats makes it useful in paints, cleaning fluids, gasoline, and varnishes. Because of its widespread use in many types of commercial products, decalin is ubiquitous in the environment and exposure by the general public is of concern. Neither oral nor inhalation toxicity values are currently available for decalin in published sources despite recurring point and non-point source releases. To derive a reference concentration (RfC) for decalin, inhalation toxicity studies were reviewed using a weight-of-evidence approach. A two-year mouse inhalation study conducted by the National Toxicology Program was chosen as the critical study for the derivation of the chronic RfC. In this study, a significant increase in the occurrence of hepatotoxicity was detected at the highest concentration tested (400 ppm) in male mice. Benchmark dose modeling was utilized to derive a point of departure for hepatic necrosis, syncytial alteration, and erythrophagocytosis. For data not amenable to modeling, a point of departure was derived using the no observable adverse effect level (NOAEL). The most sensitive adverse effect, syncytial alteration resulted in a BMDL10 of 7.8 ppm using the Log-logistic model. A chronic RfC for decalin of 0.08 mg/m3 was calculated by conversion of the BMDL10 to a human equivalent continuous inhalation concentration of 1.4 ppm (7.9 mg/m3) using a dosimetric adjustment factor of 1 and application of a total uncertainty factor of 100. The chronic decalin RfC was derived despite several toxicity database limitations, including a small number of chronic inhalation studies and uncertainty regarding reproductive effects. Future research on decalin toxicity is needed to better characterize the adverse effects associated with its chronic inhalation.

2216 Weight-of-Evidence Evaluation of Methyl Methacrylate
Olfactory Effects in Humans and Derivation of an Occupational Exposure Level.

M. Pemberton1, L. A. Bailey2 and L. R. Rhomberg3. 1Systos, Cheshire, United Kingdom; 2Gradient, Cambridge, MA.

Methyl methacrylate (MMA) causes olfactory effects in rodents that are considered relevant to humans. Recent scientific studies have focused on understanding the parent lack of species concordance between the rodent and occupational studies. We have applied the hypothesis-based weight-of-evidence (HBWoE) approach to evaluate the concordance of the available data and the hypothesis that the observed difference in sensitivity between rats and humans may be the result of physiological and biochemical differences. Our WoE analysis integrated several lines of evidence [animal, human, mode of action (MoA), and toxicokinetics data] and found: 1) acute and chronic rat and mouse MMA inhalation studies consistently indicate degenerative lesions of the main olfactory region as the most sensitive endpoint; 2) numerous studies support an MoA for MMA involving high concentrations of carbonylesterase activity in nasal epithelial tissue that metabolizes MMA to methyl acrylic acid (MAA), an organic acid with irritative and corrosive properties; 3) carbonyl esterases are a group of non-specific enzymes that are widely distributed throughout the body in animals and humans; 4) toxicokinetic studies and a physiologically based pharmacokinetic (PBPK) model describing inhalation dosimetry of MMA in the upper respiratory tract (URT) of rats and humans point to differences in nasal morphology and biochemistry that help reconcile these differences as species-specific manifestations of a common toxicological process, and predict a rat-to-human dosimetry adjustment factor (DAF) of 3 to 8, consistent with observed lower sensitivity in humans compared to rats; and 5) worker studies, although somewhat limited, consistently suggest a no observed adverse effect level (NOAEL) for URT irritation, including olfactory dysfunction, of 50 ppm. We derived MMA occupational exposure levels (OELs) from animal data (ranging from 28-118 ppm) and human data. Overall, our WoE analysis supports use of the human data for derivation of an MMA OEL of 50 ppm.

2217 An Updated Dose-Response Evaluation of Aldrin and Dieldrin.

The United States Environmental Protection Agency (USEPA) reviewed the cancer and non-cancer effects of the organochlorine insecticides, aldrin and dieldrin, in the late 1980's. The results of those assessments are reported by USEPA's Integrated Risk Information System (IRIS). These assessments include reference dose (RfD) values of 0.00003 and 0.00005 mg/kg-day and cancer slope factor values of 17 and 16 (mg/kg-day)-1 for aldrin and dieldrin, respectively. The USEPA methods for dose-response analysis have changed in the decades since these evaluations were done. The dose-response analyses of cancer and non-cancer health effects of aldrin and dieldrin were re-evaluated using current methodology, including benchmark dose (BMD) analysis (BMD5 Version 2.2 software) and current body weight scaling. A literature review was updated to determine the most appropriate adverse effect endpoints. Using current methodology and information, the cancer slope factors for aldrin and dieldrin were estimated to be 3.4 and 7.0 (mg/kg-day)-1 respectively (i.e., about 5 and 2.3 fold lower risk than previous assessments). The current analyses estimated RfD values of 0.0001 and 0.00008 mg/kg-day for aldrin and dieldrin.
and dieldrin, respectively (both higher than previous assessments). Because aldrin and dieldrin are no longer used as pesticides in the United States, they are a low priority for additional review by the USEPA. However, because they are persistent and still detected in environmental samples, quantitative risk assessments based on the best available methods are required. Several national and international health assessment organizations (e.g., WHO) do not consider aldrin and dieldrin to be human carcinogens. Recent epidemiologic studies do not demonstrate a causal association between aldrin and dieldrin and human cancer risk. These re-evaluations, based on current methodologies and available data, suggest that these two compounds pose a lower human health risk than currently reported by USEPA.

2218 Benzene: Development of a 24-Hour, Health-Protective Comparison Value.

J. T. Haney, Toxicology Division, Texas Commission on Environmental Quality, Austin, TX.

Texas has the most extensive volatile organic compound (VOC) ambient air monitoring network in the nation. As part of that network, the TCEQ collects every sixth-day, 24-hour canister VOC data. These data are used to calculate annual averages for comparison to chronic, health-protective Air Monitoring Comparison Values (AMCVs) (i.e., RfC-like values for noncarcinogenic effects, 1E-05 excess risk levels for cancer effects). In regard to acute exposure durations, however, the TCEQ typically has only 1-hour AMCVs, which while conservative are not designed to evaluate 24-hour sample results. Thus, the development of 24-hour, health-protective AMCVs would allow the TCEQ to more fully utilize 24-hour VOC data for the evaluation of potential public health concerns. The TCEQ has developed a proposed 24-hour AMCV for benzene since it is a ubiquitous VOC of both agency and public interest. Critical effect dose-response data for hematotoxicity from mouse studies indicate an effect level range of 10-100 ppm for subacute exposure (e.g., 6-8 hours per day, 5-10 days). A point of departure (POD) from these studies was used to develop the 24-hour value. The total number of exposure hours exceeds 24 hours for all these subacute studies and available toxicokinetic information indicates the time between the intermittent daily exposures would not allow for clearance of benzene’s hematotoxicity-implicated metabolites (e.g., hydroquinone, hydroquinone glucuronide, catechol) from the bone marrow as evidence suggests they are not readily excreted. Using the same POD (LOAEL of 10.2 ppm) and uncensored faceted log transformations of the TCEQ used to develop the 1-hour AMCV (180 ppb) but without duration adjustment (based on toxicokinetic considerations) results in a conservative 24-hour, health-protective AMCV of 100 ppb. This value is well below even chronic human hematotoxicity observed adverse effect levels (e.g., 7.2-13.6 ppm). The proposed 24-hour AMCV is considered sufficiently conservative for the adequate protection of public health and would significantly complement TCEQ health effect evaluations of ambient air data.

G. Barrett1, P. Chantal2, S. Wright3, P. Pelletier1, H. Ryan1,2 and J. Field1. 1Toxicology and Flammability Risk Assessment Unit, Consumer Product Safety Directorate, Health Canada, Ottawa, ON, Canada; 2Product Safety Laboratory, Consumer Product Safety Directorate, Health Canada, Ottawa, ON, Canada; 3Compliance and Enforcement Division, Consumer Product Safety Directorate, Health Canada, Ottawa, ON, Canada. **Sponsor: G. Chen.**

It has been demonstrated that swallowed jewellery items may become lodged in the stomach, and morbidity and mortality have been associated with jewellery containing lead. Due to its inherent toxicity, the use of cadmium to make costume jewellery may pose an analogous threat. In the absence of reliable human toxicity data, the results from animal studies were used to derive an oral acute provisional minimal risk level (pMRL) of 0.0732 mg/kg bw for cadmium. Health Canada analyzed approximately 200 children’s jewellery samples that were judged small enough to fit into a child’s mouth for cadmium content. A subset of these samples were also subjected to migration testing, which revealed no consistency between the total amount of cadmium in a sample, and the amount that might be released in the simulated physiological environment of the stomach over an extended period (such as in the case of a piece of jewellery lodged in the stomach over several days). Since standardized migration testing cannot accurately predict the amount of cadmium that might leach out of a sample under such circumstances, the use of total cadmium content to derive a guideline is considered the most health-protective approach. Limiting total cadmium content to 130 ppm removes variables that interfere with migratable cadmium quantification (such as the thickness and composition of the surface plating, and elemental composition of the amalgam) and is protective of the scenario of an ingested piece of jewellery lodged in the stomach for an extended period of time.

2220 Assessment of Risks to the US Population Posed by Exposure to Gold and Ceramic Dental Restorations.

R. E. Peters1, M. Richardson2, S. Clemow1, K. James1 and S. D. Siciliano2. 1University of Saskatchewan, Saskatoon, SK, Canada; 2Stantec Consulting Ltd., Ontario, ON, Canada; 3SNC-Lavalin Environment, Ottawa, ON, Canada. **Sponsor: L. Weber.**

There is significant mercury exposure from dental amalgam used in restorative practice. However, little is known about the chemical exposures and risks of alternative dental restorative materials. Thus, it is difficult for clinicians to weigh the performance, risks, and benefits of dental amalgam to alternate restorative materials. Here we provide the first population-level risk assessment for gold alloy and ceramic restorative materials. Employing the US National Health and Nutrition Examination Survey (NHANES) data from 2001 to 2004, we assessed the exposure of adults to the components of gold alloy and ceramic dental restorations in the US general population. Three specific exposure scenarios were considered: 1) all restorations were either gold alloy or ceramic; 2) all crowns were gold alloy or ceramic; and 3) 11% of fillings were either gold alloy or ceramic, in 30% of the population. Silver appears to be the most problematic component of gold alloy restorations, due to a combination of relatively high toxicity and high proportional composition. Based on the toxicity of silver and its proportional content in gold dental alloys, it was estimated that adults could possess an average of 4 teeth surfaces restored with gold before exceeding the Reference Exposure Level (REL) for silver. Lithium appears to be the most problematic component of dental ceramics. All other ceramic components considered resulted in estimated daily doses well below their respective RELs. Based on the toxicity of lithium and its proportional content in dental ceramics, it was estimated that adults could possess an average of 16 tooth surfaces restored with ceramics before exceeding the REL for lithium. Relative to dental amalgam and gold alloys, ceramics present the fewest and lowest chemical exposures and risks.

2221 Development of an Oral Cancer Slope Factor for Acrylamide Based on Tumors Relevant to Humans.

J. D. Urban1, C. M. Thompson2, R. Deskin3, M. Waite4 and L. C. Haws4. 1ToxStrategies, Inc., Austin, TX; 2ToxStrategies, Inc., Houston, TX; 3Cytec Industries, Inc., Woodland Park, NJ.

Acrylamide is an industrial chemical used mainly in the production of polyacrylamides. Acrylamide and polyacrylamides have many uses, including uses as flocculants and flow control agent for enhancing oil production from wells, in the production of dyes, organic chemicals, contact lenses, cosmetics and toiletries, in sugar refining, and as a chemical grouting agent and soil stabilizer. Acrylamide is also used as a component in fried foods and the potential routes of human exposure in the general population is diet. In their most recent risk assessment for acrylamide, USEPA developed an oral cancer slope factor (OSF) of 0.5 (mg/kg-day)-1 based on a 2-year drinking water study that reported increased incidences of thyroid tumors and tunica vaginalis mesotheliomas (TVMs) in male F344 rats. However, there is considerable evidence that F344 rats are particularly susceptible to TVMs, and therefore TVMs may not be relevant to humans. As such, our objective was to evaluate the overall weight of the evidence regarding each tumor type and to derive an OSF for acrylamide based on those tumors relevant to humans. Among the tumors induced by acrylamide (thyroid tumors, TVMs, mammary gland tumors, CNS tumors), thyroid and mammary gland tumors were considered most relevant to humans. Using the rat OSF for the combined increased incidences of thyroid and mammary gland tumors observed in female F344 rats, we derived a human OSF using a rat-to-human dose metric conversion factor based on serum levels of the primary acrylamide metabolite, glyciamide (widely considered to be the putative human carcinogen). The final human OSF for combined thyroid and mammary gland tumors was determined to be 0.09 (mg/kg-day)-1. This OSF suggests a lower cancer potency for acrylamide based on target tissues more relevant to humans. It should be noted however, the FDA and NTP just completed a 2-year, multi-species drinking bioassay and the results of this study may impact future OSF estimates for acrylamide.

P. Sheehan and K. Bogen, Exponent, Oakland, CA.

The carcinogenic potency of MTBE was initially evaluated by State of California scientists in 1999 based on a gavage study with rats (Belogog et al. 1995, 1997, 1998) and inhalation studies with rats and mice (Bird et al. 1997). Potency was estimated at that time using a linearized multistage model. Since then, an additional
rodent cancer bioassay of MTBE in drinking water (Dodd et al. 2011), several genotoxicity and mutagenicity studies, evaluations of MTBE metabolites formaldehyde and tert-butyl alcohol (TBA), as well as other studies providing information on MTBE's mode of action have been reported. In addition, the U.S. Environmental Protection Agency (EPA) declared the data on lymphomas and leukemias from Belpoggi et al. (Ramazzini Institute) as unreliable for risk assessment raising additional uncertainty about California's potency estimate. The new data and remaining reliable historic rodent bioassay data were used to re-evaluate the cancer potency or slope factor (CSF) of MTBE considering mode of action (MOA). The overwhelming majority of studies indicate that neither MTBE nor TBA is genotoxic. In stark contrast, formaldehyde is clearly genotoxic, but when generated by MTBE metabolism is efficiently detoxified to preclude elevating background levels and associated genotoxic damage. Based on genotoxicity and MOA analyses, the most likely CSF for MTBE is zero, unless chronic exposures induce target-tissue toxicity including in sensitive individuals. A corresponding expected CSF value for MTBE conditional on a linear MOA was estimated to be 0.000018 mg/m^3.

The overwhelming majority of studies indicate that neither MTBE nor TBA is genotoxic. In stark contrast, formaldehyde is clearly genotoxic, but when generated by MTBE metabolism is efficiently detoxified to preclude elevating background levels and associated genotoxic damage. Based on genotoxicity and MOA analyses, the most likely CSF for MTBE is zero, unless chronic exposures induce target-tissue toxicity including in sensitive individuals. A corresponding expected CSF value for MTBE conditional on a linear MOA was estimated to be 0.000018 mg/m^3.

The overwhelming majority of studies indicate that neither MTBE nor TBA is genotoxic. In stark contrast, formaldehyde is clearly genotoxic, but when generated by MTBE metabolism is efficiently detoxified to preclude elevating background levels and associated genotoxic damage. Based on genotoxicity and MOA analyses, the most likely CSF for MTBE is zero, unless chronic exposures induce target-tissue toxicity including in sensitive individuals. A corresponding expected CSF value for MTBE conditional on a linear MOA was estimated to be 0.000018 mg/m^3.

The overwhelming majority of studies indicate that neither MTBE nor TBA is genotoxic. In stark contrast, formaldehyde is clearly genotoxic, but when generated by MTBE metabolism is efficiently detoxified to preclude elevating background levels and associated genotoxic damage. Based on genotoxicity and MOA analyses, the most likely CSF for MTBE is zero, unless chronic exposures induce target-tissue toxicity including in sensitive individuals. A corresponding expected CSF value for MTBE conditional on a linear MOA was estimated to be 0.000018 mg/m^3.

The overwhelming majority of studies indicate that neither MTBE nor TBA is genotoxic. In stark contrast, formaldehyde is clearly genotoxic, but when generated by MTBE metabolism is efficiently detoxified to preclude elevating background levels and associated genotoxic damage. Based on genotoxicity and MOA analyses, the most likely CSF for MTBE is zero, unless chronic exposures induce target-tissue toxicity including in sensitive individuals. A corresponding expected CSF value for MTBE conditional on a linear MOA was estimated to be 0.000018 mg/m^3.

The overwhelming majority of studies indicate that neither MTBE nor TBA is genotoxic. In stark contrast, formaldehyde is clearly genotoxic, but when generated by MTBE metabolism is efficiently detoxified to preclude elevating background levels and associated genotoxic damage. Based on genotoxicity and MOA analyses, the most likely CSF for MTBE is zero, unless chronic exposures induce target-tissue toxicity including in sensitive individuals. A corresponding expected CSF value for MTBE conditional on a linear MOA was estimated to be 0.000018 mg/m^3.

The overwhelming majority of studies indicate that neither MTBE nor TBA is genotoxic. In stark contrast, formaldehyde is clearly genotoxic, but when generated by MTBE metabolism is efficiently detoxified to preclude elevating background levels and associated genotoxic damage. Based on genotoxicity and MOA analyses, the most likely CSF for MTBE is zero, unless chronic exposures induce target-tissue toxicity including in sensitive individuals. A corresponding expected CSF value for MTBE conditional on a linear MOA was estimated to be 0.000018 mg/m^3.

The overwhelming majority of studies indicate that neither MTBE nor TBA is genotoxic. In stark contrast, formaldehyde is clearly genotoxic, but when generated by MTBE metabolism is efficiently detoxified to preclude elevating background levels and associated genotoxic damage. Based on genotoxicity and MOA analyses, the most likely CSF for MTBE is zero, unless chronic exposures induce target-tissue toxicity including in sensitive individuals. A corresponding expected CSF value for MTBE conditional on a linear MOA was estimated to be 0.000018 mg/m^3.

The overwhelming majority of studies indicate that neither MTBE nor TBA is genotoxic. In stark contrast, formaldehyde is clearly genotoxic, but when generated by MTBE metabolism is efficiently detoxified to preclude elevating background levels and associated genotoxic damage. Based on genotoxicity and MOA analyses, the most likely CSF for MTBE is zero, unless chronic exposures induce target-tissue toxicity including in sensitive individuals. A corresponding expected CSF value for MTBE conditional on a linear MOA was estimated to be 0.000018 mg/m^3.
An Inhalation Risk Assessment for Measured Ambient Air Concentrations of 6:2 Fluorotelomer Alcohol.

6:2 Fluorotelomer Alcohol (CAS#647-42-7, 1-Octanol,3,3,4,4,5,5,6,7,8,8,8-tridecafluoro-6,2 FTOH) is a raw material used for manufacturing surfactant and polymeric products. 6:2 FTOH vapor phase inhalation is a potential exposure route. The aim of the current investigation was to 1) compare the oral and inhalation repeated-exposure toxicity data to confirm systemic toxicity, target organs, and lack of an exposure route effect, 2) confirm similar metabolic and toxicokinetic profiles via both exposure routes, and 3) conduct an inhalation risk assessment for reported ambient air concentrations. In an inhalation range-finder (5-days) and a 28-day inhalation toxicity study, the profile of 6:2 FTOH and its metabolites in plasma under controlled inhalation exposure was investigated as well as the systemic toxicity and target organs. These studies provided a basis for toxicity comparison, plasma metabolites, and dosimetry between inhalation and oral dosing. Similar toxicity, metabolic and toxicokinetic profiles via both exposure routes were confirmed. Benchmark Dose Analysis (BMD) was conducted on the subchronic toxicity endpoints to determine the most sensitive effect and the corresponding BMD associated with that effect. Based on this analysis, the corresponding human equivalent dose (HED) was calculated to be 1.4 mg/kg bw/day. An additional assessment factor of 2 was applied to extrapolate from the subchronic to a chronic exposure and resulted in a final HED of 0.7 mg/kg bw/day. An equivalent air concentration was determined using an allometric scaling factor to arrive at a human equivalent concentration (HEC) of 2.5 mg/m3. This HEC was then divided by the reported indoor and outdoor air concentrations to arrive at a margin of exposure (MOE). MOEs calculated for inhalation exposure to indoor or outdoor air ranged from 1.1E+05 to 2.5E+07. This assessment indicates there is no human health risk expected even at the highest ambient air concentrations of 6:2 FTOH reported.

Derivation of an Occupational Exposure Limit for Inorganic Borates Using a Weight of Evidence Approach.

M.J. Vincent1, A. Mayer1, E. Hack1, P. Nance2 and W. Ball1. FERA, Cincinnati, OH; 1The Henry Jackson Foundation, Bethesda, MD; 2Rio Tinto Minerals, Greenwood Village, CO.

Inorganic borates are encountered in many settings worldwide, spurring international efforts to develop exposure guidance (U.S. EPA 2004; WHO 2009; ATSDR 2010) and occupational exposure limits (OEL) (ACGIH 2005, MAK 2011). We derived an updated OEL to reflect new data and current international risk assessment frameworks. We assessed toxicity and epidemiology data on inorganic borates to identify relevant adverse effects. International risk assessment frameworks (IPCS 2005; IPCS 2007) were used to evaluate endpoint candidates: reproductive toxicity, developmental toxicity, and sensory irritation. For each endpoint, a preliminary OEL was derived and adjusted based on consideration of toxicokinetics, toxicodynamics, and other uncertainties. Dose-response modeling supported selection of the point of departure for each endpoint. Developmental toxicity was the most sensitive systemic effect. An OEL of 1.6 mg B/m3 was estimated for this effect based on a point of departure (POD) of 63 mg B/m3 with an uncertainty factor (UF) of 40. Sensory irritation was considered to be the most sensitive effect for the portal of entry. An OEL of 1.4 mg B/m3 was estimated for this effect based on the identified POD and an UF of 1. Reproductive effects are not the most sensitive basis for OEL derivation. An OEL of 1.4 mg B/m3 was derived as an 8-hour TWA based on sensory irritation potential. The OEL is expected to protect from systemic toxicity endpoints.

US EPA Decabromodiphenyl Ether Alternatives Hazard Assessment Results.

J. Rhoade1, M. Kawa1, E. Lavio1, C. Baier-Anderson2 and J. Tunkel1. 1SRC, Inc., East Syracuse, NY; 2US EPA, OPPT, DfE, Washington DC.

The U.S. Environmental Protection Agency (US EPA) Design for Environment (DfE) Program undertook a chemical alternatives assessment for decabromodiphenyl ether (decaBDE) as part of the Action Plan for Polybrominated Diphenyl Ethers (PBDEs) published in December 2009. DE convened a multi-stakeholder partnership to explore the human health and environmental profiles of functional and viable alternatives to decabromodiphenyl ether (decaBDE). The partnership identified ~ 30 functional alternatives to decaBDE. The hazard assessment for decaBDE and the alternatives involved similar metabolic and toxicokinetic pathways and similar target endpoints for consideration of human health and ecological toxicity, and occupational endpoints. The alternatives included a range of flame retardant chemicals including both halogenated and non-halogen organic substances, inorganic matter, and non-polymeric substances and novel, new to market substances. Some alternatives were well characterized for all endpoints, while others were lacking data. Analog data, predictive models, structural alerts and expert judgment were used to make hazard designations for endpoints with data gaps. Trends for human health, ecological toxicity and fate characteristics were indicated in a matrix format and compared in the prioritization process. In a novel, molecular structure range, molecular structures, and/or functional groups were found to be most influential on the hazard designations. A novel component of this assessment was the evaluation of higher molecular weight polymers for their human health and ecological toxicity based on their low potential for bioavailability and variability in low molecular weight polymers. Effective hazard assessment approaches of hazard criteria coupled with decision-making protocols are practical tools for businesses to use early in materials selection processes and will contribute to more sustainable product development. The resulting hazard profiles should be of value to manufacturers making substitution decisions in preparation for the upcoming decaBDE phase out.

Predicting Bioavailability of Arsenic in Mining Soils.

L.G. Mitchell1, N.T. Basta2, S.W. Casteel3, S. Whitacre4, L.E. Naught5 and P.A. Myers6. 1Toxic Substances Control, Cal EPA, Sacramento, CA; 2Ohio State University, Columbus, OH; 3University of Missouri, Columbia, MO.

Arsenic (As) is a naturally occurring element in soil and a key chemical of concern at former mine sites in California. Risk assessment calculations typically utilize default oral toxicity values, which are based on ingestion of readily soluble forms of As such as sodium arsenate (NaAs). However, mining soils in California are relatively high in iron hydroxide phases that bind As strongly, resulting in reduced solubility/bioavailability. The juvenile swine model is an approved, but often cost prohibitive, method for determining the relative bioavailability (RBA) of As in soils compared to that of NaAs. RBAs can be used to adjust toxicity criteria, resulting in a more accurate site-specific risk assessment. In vitro methodologies have proven to be useful surrogates for in vivo feeding studies in predicting bioavailability for other metals but lack precision for arsenic, particularly in high iron content soils. Six soil samples collected from Empire Mine State Historic Park (total As 302-12,041 mg/kg) were analyzed in the juvenile swine model. RBA’s ranged from 4 to 20%. Gastrointestinal modeling correlated but underestimated RBA (1-9%). Sequential chemical extraction procedures (SEP) were applied to fractionate the As in soils into (F1) non-specifically sorbed; (F2) specifically sorbed; (F3) amorphous and poorly-crystalline oxides of Fe and Al; (F4) well-crystallized oxides of Fe and Al and residual As phases. The results of these extractions demonstrated that the sum of non-specifically sorbed and specifically sorbed arsenic (F1+F2) was similar to the predicted in vitro bioaccessibility while F1+F2+F3 is a conservative estimate of the in vivo RBA (10-50%). SEP could prove to be a cost-effective and valuable screening tool for estimating in vivo RBA. In summary, the assumption of 100% bioavailability of As in mining soils grossly overestimates exposure and risk to human health. Adjustments for As bioavailability in these materials and similar mining wastes provides a more accurate assessment of human exposure.

A Quantitative Risk Assessment of 1-Bromopropane, Based on Tumor Data.

D.A. Dankovic1 and G. Dorson2. 1Risk Evaluation Branch, CDC/NIOSH, Cincinnati, OH; 2Document Evaluation Branch, CDC/NIOSH, Cincinnati, OH.

The "green" movement has resulted in the introduction of several new "environmentally-friendly" substitutes into commerce, including 1-bromopropane (1-BP; CAS no. 68-94-5). Although use of 1-BP is intended to minimize ozone depletion, occupational exposure is of concern. Case studies, occupational exposure assessments, and epidemiological investigations have suggested that workplace exposure to 1-BP may be associated with neurological, reproductive, and hematological effects. Previous quantitative risk assessments of 1-BP have been based on toxicological study of these and other non-cancer endpoints. This poster presents a quantitative risk assessment based on a NTP chronic bioassay, in which rats and mice were exposed to 125-500 or 62.5-250 ppm 1-BP, respectively, for up to 2 years. Inhalation of 1-BP produced alveolar/bronchiolar adenomas and carcinomas in female mice, adenomas of the large intestine in female rats, and keratoacanthoma/squamous cell carcinoma of the skin in male rats. Benchmark concentrations (BMC) and lower 95% confidence limits (BMCL) estimates at the 1 in 1000 response level (0.1%) were based on a previously published model average procedure. The BMC (BMCL) estimates were 0.85 (0.41) ppm for alveolar/bronchiolar adenoma + carcinoma; 13.5 (2.76) ppm for large intestine adenomas; and 3.73 (1.44) ppm for keratoacanthoma + squamous cell carcinoma of the skin. The BMC
The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

The toxicology, urinalysis, hematology, clinical chemistry, or coagulation parameters were observed. Males and females exposed to 82 mg/m³ ACUDYNÉ™ had increased breathing zone aerosol concentrations during product use. In the 13-wk study, no treatment-related changes in daily clinical observations, functional tests, ophthalmology, urinanalysis, hematology, clinical chemistry, or coagulation parameters were observed. The No Adverse Effect Concentration was 8 mg/m³ for males and females. Assuming 100% deposition, the inhaled dose of ACUDYNÉ™ polymer at an aerosol concentration of 8 mg/m³ was estimated to be 0.47 mg/gm lung/day in rats. Based on the calculated human equivalent dose methods, urinanalysis, hematology, clinical chemistry, or coagulation parameters were observed. Males and females exposed to 82 mg/m³ ACUDYNÉ™ had increased mediastinal and tracheobronchial lymph nodes, higher absolute and relative lung weights, and chronic-active bronchial-alveolar inflammation after 13-wks of exposure. Females also had decreased feed consumption and body weight gains. The ACUDYNÉ™ Shine is one of a family of acrylic polyurethanes used in hair care product applications such as gels/mousse, and pump or aerosol sprays at concentrations up to 7 % w/v to enhance the properties of the product. The pattern of use provides a potential for inhalation exposure to both consumers and salon workers. Sprague Dawley rats were exposed 6 h/day, 5 d/wk, for two- or 13-wks to ACUDYNÉ™ polymer concentrations of 0, 2, 11, and 100 mg/m³, or 0, 1, 8, and 82 mg/m³, respectively, to provide toxicologic data for human risk assessment. A simulated consumer/occupational exposure monitoring study was conducted to determine typical breathing zone aerosol concentrations during product use. In the 13-wk study, no treatment-related changes in daily clinical observations, functional tests, ophthalmology, urinanalysis, hematology, clinical chemistry, or coagulation parameters were observed. Males and females exposed to 82 mg/m³ ACUDYNÉ™ had increased mediastinal and tracheobronchial lymph nodes, higher absolute and relative lung weights, and chronic-active bronchial-alveolar inflammation after 13-wks of exposure. Females also had decreased feed consumption and body weight gains. The No Adverse Effect Concentration was 8 mg/m³ for males and females. Assuming 100% deposition, the inhaled dose of ACUDYNÉ™ polymer at an aerosol concentration of 8 mg/m³ was estimated to be 0.47 mg/gm lung/day in rats. Based on a rat-to-human inhalation dosimetry factor of 24-32, the human equivalent inhaled dose at the same aerosol concentration was estimated to be 11.3 to 15.1 mg/gm lung/day.

Results of the exposure monitoring study indicated breathing zone concentrations of respirable aerosol particles of 0.38 and 0.11 mg/m³ and daily polymer lung deposition of ≤ 0.19 and ≤ 0.44 mg/gm lung for consumer and occupational exposure scenarios, respectively. Based on the calculated human equivalent margin of exposure of > 25,000 to 150,000 for all exposure scenarios, repeated daily inhalation exposure to ACUDYNÉ™ Shine polymer in hairspray formulations poses no significant human health risk.

Elemental bromine is the active ingredient in brominating cartridges, and is registered for disinfection of drinking water aboard ships and oil drilling platforms. Since bromine disproportionate in water to bromide (stable) and hypobromite (unstable) ions, this assessment applies specifically to inorganic bromide, whereas health-based guideline values for bromate and organic bromine compounds have been developed elsewhere. Repeated oral exposure in various mammalian species is associated with central nervous system effects expressed as behavioral and EEG changes. Repeated oral dosing also causes a hypothyroid effect that is specific to rats and not observed clinically. A third generation-study using NaBr administered via the diet, the NOAELs for reproductive and parental effects were 48 and 12 mg Br/kg-day, respectively. In oral developmental toxicity studies, the NOAELs for both parental and developmental effects were 77 and 196 mg Br/kg-day, in rats and rabbits, respectively. Chronic administration of KBr or methyl bromide via the diet of rats did not result in treatment-related adverse findings. There is extensive clinical experience with various bromide salts based on their historical use as sedative-hypnotics and in treatment of seizure disorders. When male and female volunteers were administered NaBr capsules for 12 weeks, there was a small effect on EEGs that was reproducible but within normal limits. Serum T4, T3, and related hormone levels remained within normal limits. The most sensitive effect was gastric irritation expressed as nausea that occurred shortly after the ingestion of the capsules, but no longer occurred when the capsules were taken with a meal. Based on the absence of sedation and EEG changes within normal limits, the human systemic NOAEL was 7 mg Br/kg-day. Using a 10x uncertainty factor to account for intraspecies variability, an RfD of 0.7 mg/kg was determined for bromide, which corresponds to a Total Allowable Concentration of 12 mg/L in drinking water and accounts for exposure of the general population to bromide from the diet.

A published meta-analysis of relevant case-control and cohort studies was updated with two recent studies to further examine the association between low-level arsenic exposure and bladder cancer risk, and whether meta relative risks (mRR) differed significantly from bladder cancer risks predicted in a 2001 report by the National Research Council (NRC). Cancer risk estimates from NRC (2001), which are based on data from southwestern Taiwan, form the basis of the U.S. Environmental Protection Agency’s 2010 proposed cancer slope factor for assessing arsenic cancer risks. Our updated meta-analysis of nine studies improved the precision of the previous estimate (mRR = 1.11; 95% CI: 0.95–1.30), with no significant association observed between low-level arsenic exposure and bladder cancer (1.07; 0.95–1.26; p-heterogeneity = 0.54). RRs for never-smokers in the individual studies and the mRR were consistently below 1.0 (0.83; 0.65–1.06; p-heterogeneity = 0.89). Thus, exposure misclassification/regression to the null cannot explain the lack of a significant positive relationship for never-smokers. The mRR was modestly elevated for ever-smokers, but not significantly, with heterogeneity among studies (1.19; 0.95–1.45; p-heterogeneity = 0.04). To evaluate the independent effect of arsenic in comparison to NRC (2001) risk estimates for the U.S., the mRR for bladder cancer in never-smokers was compared to RRs predicted by NRC (2001) at various water concentrations within the low-level studies and for less than lifetime exposures. The collapsed category mRR for never smokers was 0.82 (0.62-1.10) using cut-points in individual studies near 50 ppb and was compared to RRs calculated for smokers in the U.S. based on NRC (2001). The 95% CI did not include NRC predicted RRs at 20 or 50 ppb, even for half lifetime exposures (RRs of 1.14 and 1.31, respectively). Results of low-level studies differed significantly from, and were inconsistent with, risks predicted by NRC (2001) for non-smokers including those with less than lifetime exposure.

Intestinal tumors have been observed in mice (but not rats) following chronic exposure to high concentrations of hexavalent chromium (Cr(VI)) in drinking water. Mice (but not rats) also exhibit histological lesions consistent with intestinal wounding, specifically villous blunting and crypt hyperplasia—collectively termed diffuse hyperplasia. Recent mode of action studies support that these tumors were indeed the result of chronic wounding and regenerative hyperplasia to repair the intestinal mucosa. Herein, we develop an oral reference dose (RfD) that is protective of the intestinal tumor lesion (diffuse hyperplasia), and therefore is protective of intestinal cancer. A rodent physiologically based pharmacokinetic (PBPK) model was used to predict internal dose measures for chromium in the duodenum, jejunum, and ileum of mice under the conditions of the 2-year bioassay. These internal dose metrics together with corresponding incidences for diffuse hyperplasia in each intestinal segment were used to characterize the dose–response relationship for the small intestine in a single plot containing a robust dataset with as many as 24 data points. Points of departures (PODs) were derived using benchmark dose modeling and global nonlinear regression, with models providing acceptable fits differing <3-fold. Human equivalent lifetime average dose values were estimated for each POD using two different methods of extrapolation with the human PBPK model for chromium. Dividing the PODs by uncertainty factors (UFs) of 10-30 yields a range of 8 RfD values (2 modeling approaches × 2 human equivalent dose methods × 2 UF values). The resulting RfD range is protective against diffuse hyperplasia, and is therefore protective of both noncancer and cancer effects in the small intestine. This range of RfD values leads to acceptable Cr(VI) concentrations in drinking water that are greater than those typically found in drinking water sources (<5 mg/L).
Cr(VI) acts by a mutagenic MOA because it damages DNA in vitro and in some in vivo tests. Several recent reviews have concluded that Cr(VI) is only weakly mutagenic and that genetic/epigenetic changes resulting in genomic and/or microsatellite instability, inflammation, oxidative stress and deregulation of repair mechanisms play a role in carcinogenicity. Further, recent data for mouse small intestinal cancers caused by Cr(VI) in drinking water support a cytotoxic MOA involving chronic inflammation and healing

2239 Assessment of Potential Perchlorate Exposures from the Use of Household Chlorine Bleach

T. Lewandowski

US Government surveys have indicated that perchlorate (ClO4) occurs at low levels (generally below 4 μg/L) in many U.S. public water supplies. Although small amounts of perchlorate in water may be due to natural processes, the higher concentrations of perchlorate found in some drinking water supplies (up to 100 μg/L) are believed to be the result of past use of ClO4 in aeronautics, explosives and/or fireworks, which subsequently affected nearby water bodies or watersheds. The potential health consequences of exposure to low concentrations of ClO4 in drinking water remain controversial, with disputed epidemiology findings and questions about the relevance of animal study data to humans. Because a small amount of ClO4 is produced by the normal decomposition of chloride in household chlorine bleach, we examined whether the use of bleach under various scenarios could lead to exposures associated with possible health effects. We considered bleach of different ages and different label strengths and used a temperature- and time-sensitive model to estimate the decomposition of chlorate to ClO4. Predicted ClO4 concentrations in bleach ranged from 1 to 34 μg/L. The exposure scenarios considered addressed the use of bleach for household laundry, emergency water decontamination, “shock treatment” of private drinking water wells, and regular treatment of water in private swimming pools. In each case, our analysis indicated that potential exposures to ClO4 from the use of chlorine bleach would be well below levels associated with potential health effects. For example, the maximum ClO4 exposure of a pregnant woman drinking water sanitized with chlorine bleach in an emergency decontamination situation was estimated at 0.2 μg/kg-day, 35 times less than the dose associated with minimal effects on iodide uptake in humans. Thus the presence of ClO4 as a decomposition product in household bleach does not pose an adverse health risk for consumers.

2240 Derivation of a Reference Dose for Resorcinol

B. H. Magee

Resorcinol is a common chemical used in industry. US EPA has no final or provisional toxicological criteria for resorcinol. In 2004, a critical analysis of the toxicological database was performed with the purpose of deriving a scientifically reasonable Reference Dose (RfD). Key studies, critical effect(s) and associated doses (No Observed Adverse Effect Levels (NOAELs) and/or Lowest Observed Adverse Effect Levels (LOAELs) are identified and adjusted using uncertainty factors (UFs) to determine an oral RfD. The analysis of available information from epidemiological studies and animal studies at the time established the one-generational dose range finding study conducted by WIL Research Laboratories (WIL, 2003) and sponsored by the Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF) as the definitive study for the RfD. It identified thyroid toxicity as the critical effect of resorcinol exposure and 61 mg/kg-day as the NOAEL. The derived RfD was 2 mg/kg-day. The RfD was endorsed and approved by a Toxicology Excellence for Risk Assessment (TERA) Independent Peer Review Panel and approved by the Pennsylvania Department of Environmental Protection’s (PaDEP’s) Cleanup Standards Science Advisory Board (“CSSAB”) in 2004. Soon after that time, a full two-generational reproductive toxicity study was completed (WIL, 2005) and published (Welsh et al., 2008). The NOAEL from this definitive study for the same critical effect was 375 mg/kg-day, and the corresponding RfD is 13 mg/kg-day using the WIL (2005) results, thus indicating that the RfD of 2 mg/kg-day endorsed by the TERA Panel and approved by PaDEP in 2004 was health-protective. Meanwhile, other regulatory regimes, such as REACH have focused on a more limited list of critical effects in order to derive the relevant Derived No Effect Levels (DNELs) for the development of Chemical Safety Assessments. This can lead to

2237 A Screening Level Assessment of the Health and Environmental Hazards of Organohalogen Flame Retardants

D. A. Eastmond, V. S. Bhat and K. Capsel

Organohalogen flame retardants are extensively used in both industrial and consumer products. However, relatively little is known about the potential of many of these chemicals to cause adverse health and environmental effects. To address this, we conducted a health and environmental hazard screening of almost 100 brominated or chlorinated flame retardants based on the GreenScreen® or Quick Chemical Assessment Tool (QCAT®) methodologies. Priority consideration was given to human health hazards such as carcinogenicity (including mutagenicity and genetic toxicity), reproductive or developmental toxicity, endocrine disruption, and acute mammalian toxicity. Environmental hazards given priority consideration included acute aquatic toxicity, persistence, and bioaccumulation. Using publicly available information, each hazard category was assigned a concern level (low, moderate, high, or very high) based on pre-defined numerical ranges, such as no-observed adverse effect levels, and hazard classification schemes from authoritative sources, when available. Less than 10% of the screened chemicals had empirical data to assess each priority hazard category. Where empirical data were not identified, structure activity relationship (SAR) models were relied upon to predict hazard potential. After assigning concern levels for each priority health effect, each chemical received a score, similar to a report card (A, B, C, D, or F). The majority of the screened chemicals received a D or F grade due to lack of data suggesting high hazard, SAR model predictions, and/or excessive data gaps. Carcinogenicity was the most prominent potential health hazard identified based on empirical data. The most prevalent data gap was endocrine disruption due to the lack of identified empirical data or computer models able to predict this hazard. This study highlights the limited toxicity information available for these widely used chemicals, and indicates that more testing and oversight is critically needed to identify safer alternatives for fire prevention.

2238 Air Quality and Human Health Risks Along the Texas Gulf Coast

T. Redfield and D. McCant

There are several urban and industrial regions along the Texas Gulf Coast that house some of the largest ports in the US, numerous refineries, thousands of chemical/petrochemical facilities and manufacturing plants. Given its dense population and industrial activity, monitoring and regulation of air quality in these regions is critical for protection of human health. The TCEQ has developed the largest ambient air monitoring network in the US to address cumulative emissions in the area. In the coastal regions alone, there are more than 47 fixed-site air monitors (17 AutoGC and 30 canisters), some of which have been operational for 20 years. Acrolein, benzene, 1,3-butadiene, and formaldehyde are considered air toxics of greatest concern. To evaluate risks associated with these air toxics, we collected site-specific concentrations of these four chemicals and evaluated them from both an acute and chronic health perspective by comparing them to TCEQ health-protective values called ambient air monitoring comparison values (AMCVs). We calculated average annual concentrations measured by 1-h AutoGC or 24-h canister and found that concentrations of these air toxics have steadily declined. Using long-term average concentrations of these air toxics, we calculated long-term risks to be well within our acceptable risk goal (< 1E-5) or a hazard quotient (<1) for the majority of monitoring sites. The long-term average benzene concentration at Lynchburg Ferry and Huisache monitors reached concentrations that resulted in risk (1.8 and 1.1 E-5, respectively) slightly above our risk goal. To better understand dynamics of air toxics at sites with a history of exceeding the long-term AMCV, we used 1-h AutoGC data to characterize ambient conditions contributing to exceedances. We found exceedances of the respective acute AMCVs to be rare. Instead, a few (<30%) hourly concentrations influenced the average concentration thereby causing long-term exceedances. The decline in air toxics concentrations due to improved monitoring and regulations has now resulted in air toxics at acceptable levels at all monitors in the coastal region.
outcomes which differ from those outlined above and are often even more conservative. This paper explores the background to these divergences and highlights that the context under which an RfD or DNEL is developed has a significant bearing on the final determination made.

2241 Risk Estimates for Dioxins, Furans, and PCBs in Edible Fish and Shellfish at the San Jacinto River Waste Pits, Texas, USA.

E. S. Williams, S. Usenko and B. W. Brooks, Environmental Science, Baylor University, Waco, TX.

From the 1960s to the early 1980s, paper process wastes were disposed of at a pits site on the San Jacinto River. Eventually the pits subsided into the river, spreading polychlorinated dioxins, furans, and biphenyls into the adjacent aquatic ecosystem. Consumption advisories have been in place for local fish and shellfish since 1990. The San Jacinto River Waste Pits site was identified during a Total Maximum Daily Loads process, and was added to the National Priorities List in 2008. Previous efforts to characterize bioaccumulation of chlorinated compounds on the site included sampling of sediment and thirteen species of fish and shellfish. During the sampling period, numerous persons were observed fishing on or near the site. Important fish and shellfish consumed from the area appear to be clams (Mercenaria spp.), blue crabs (Callinectes sapidus), and black drum (Pogonias campestris). Mean TCDD concentrations in clams, crabs, and fish from the site were 28, 3.6, and 2.25 pg/g wet weight, respectively. TCDF was the only other dioxin/furan congener detected, but ten dioxin-like PCBs were observed in these samples. Excess lifetime cancer risk estimates posed by consumption of contaminated fish and shellfish were calculated using default exposure parameters; risk estimates for reasonable maximum exposures ranged from 1.2 * 10^-5 to 1.51 * 10^-4.

2242 Evaluation of the Glyphosate Developmental Toxicity Database: Absence of Potential for Cardiovascular Malformations.

A. Williams, G. Kimmel, C. Kimmel and J. DeSesso, ExxonMobil, Arabian, Alexandria, VA.

The herbicide glyphosate has undergone multiple safety tests for developmental toxicity in rats and rabbits. The European Commission's 2002 review of available glyphosate data (European Commission, 2002; BBA, 1998-2000) discusses, in particular, specific heart defects observed in individual rabbit developmental toxicity studies, but describes the evidence for a potential causal relationship as equivocal. The present assessment was undertaken to analyze the body of information generated from the seven unpublished rabbit studies submitted to European regulatory agencies in order to determine if glyphosate poses a risk for cardiovascular malformations. In addition, the results of six unpublished developmental toxicity studies in rats were considered. Five of the seven rabbit studies (dose range: 10-500 mg/kg/day) were GLP- and testing guideline-compliant for the era in which the studies were performed; a sixth study predated testing and GLP guidelines, but generally adhered to these principles. The seventh study was judged inadequate. In each of the adequate studies, offspring effects occurred at or above doses that caused maternal toxicity. An integrated evaluation of the six adequate studies, using conservative assumptions, demonstrated that neither the overall malformation rate nor the incidence of cardiovascular malformations increased with dose up to the point where severe maternal toxicity was observed (generally ≥150 mg/kg/day). Random occurrences of cardiovascular malformations were observed across all dose groups (including control) and did not exhibit a dose-response relationship. In the six rat studies (GLP and testing guideline compliant; dose range: 30-3500 mg/kg/day), a low incidence of sporadic cardiovascular malformations was reported that was clearly not related to treatment. In summary, assessment of the entire body of the developmental toxicity data reviewed fails to support a potential risk for increased cardiovascular defects as a result of glyphosate exposure during pregnancy.

2243 Oral Risk Assessment for Isooctane—A Class-Based Approach Using the Surrogate n-Hexane.

B. Wang1, P. Undesser2 and M. Whittaker1, 1ToxServices LLC, Washington DC; 2Water Quality Association, Liule, IL.

Isooctane is a volatile liquid commonly found in gasoline. It is principally released into the environment via the manufacture, use and disposal of products associated with the petroleum industry. Although the most likely route of human exposure to this chemical is through inhalation, products such as polyethylene pipes used for distribution of drinking water can release it in water, and it has high oral absorption. NSF/ANSI 61 Annex A (2012) risk assessment guideline was used to determine an acceptable level of isoctane in drinking water. Weight of evidence indicates that isoctane is not mutagenic or carcinogenic. All the available repeated dose oral studies are short term in nature and the majority was designed to address the 2244 Deriving Dermal Safe Harbor Levels for DEHP Relevant to Consumer Products for Adults.

T. Jonaitis, J. W. Card and J. Haighton, Intertek Cantox, Mississauga, ON, Canada.

Di(2-ethylhexyl)phthalate (DEHP), a plasticizer in various consumer products, is listed as a chemical known to the State of California to cause cancer and reproductive toxicity. The Proposition 65 Safe Harbor Levels (SHL) for DEHP include a Maximum Allowable Dose Level (MADL) for DEHP, specific to the oral route, of 410 μg/day for adults (58 μg/day for infants, 10 μg/day for neonatal boys). The No Significant Risk Level (NSRL) for cancer of 310 μg/day, while not route-specific, was based on an oral study. While DEHP in children's toys is of concern due to mouthing behavior, most 60-day notices of violation for DEHP are related to consumer products intended for adults. Thus, there is a need for realistic, dermal-specific SHLs and accurate calculations of exposure. From studies on dermal absorption of DEHP from plastic film (present at 25.5 mg/cm² of film, or 40.37% w/w) applied to the skin of rats (used as a conservative estimate of migration of DEHP from a product into the human body since rats have a higher dermal absorption of DEHP than humans), a maximum dermal absorption of 0.1% was determined. Comparatively, the reported oral bioavailability of DEHP is 25%. Using these values, the dermal MADL would correspond to 102,500 μg/kg/day for adults (410 μg/day x 0.25 oral absorption fraction/0.001 dermal absorption) and the dermal NSRL would be 77,500 μg/day. From the same study, a dermal absorption rate of DEHP from the plastic was calculated to be approximately 0.24 μg/cm²/hour for the rat which corresponds to 0.016 μg/cm²/hour for humans, given observed species differences. This can be used to calculate dermal exposures with correction for differing concentrations. Also, a migration rate of 1.4 μg/cm²/hour can be used to determine the DEHP skin loading for estimating transfer of DEHP from a consumer product onto the hands, and then directly and indirectly to the mouth for comparison to the oral SHLs. In summary, route-specific SHLs are considered useful for realistically estimating risks associated with exposure of adults to DEHP from consumer products.

2244 Microfluidic Steroidogenesis Assays for In Vitro Toxicant Screening.

A. B. Theberge1, 1, E. Berthier1, C. J. Hedman5, B. P. Casavant2, N. P. Keller1, 3, W. A. Bushman1, 3 and D. J. Beebe1, 2.

1Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI; 2Biomedical Engineering, University of Wisconsin-Madison, Madison, WI; 3Urology, University of Wisconsin-Madison, Madison, WI; 4Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI; 5Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI. Sponsor: C. Bradford.

Many endocrine disrupting compounds act by interrupting steroidogenesis, thus disrupting subsequent processes that rely on steroids for signaling such as hormone-mediated pathways crucial for development. High-throughput in vitro assays are required to identify such compounds efficiently. Liquid chromatography-mass spectrometry (LC-MS) is a gold standard technique for steroid characterization and quantification, but traditional methods for steroid extraction with organic solvents, typically used to remove matrix components prior to LC-MS, require many manual steps which are time consuming and labor intensive. Use of hydrophobic interaction chromatography coupled with LC-MS avoids these problems. However, short retention times, with the lack of suitable internal standards, make quantification challenging. High-throughput screening requires automation to enable high-throughput analysis. The present study describes a microfluidic platform for high-throughput screening of steroidogenesis assays in vitro. The microfluidic platform is designed to facilitate high-throughput toxicology screening that can include both in vitro and toxicokinetic components. It is expected that the microfluidic platform will enable rapid high-throughput steroidogenesis assays that can be used for in vitro toxicant screening and early hazard identification.
steps, thus presenting a bottleneck for steroid analysis. To expedite steroid extraction, we developed an integrated microfluidic device consisting of a bottom channel for cell culture and a top channel in which steroids are extracted directly from culture media into organic solvent. The top channel is accessible with a pipette or robot liquid handler, which can be used to transfer the sample to an LC-MS autosampler for analysis. We extracted cortisol solutions of known concentration to demonstrate consistent extraction over a range of biologically relevant concentrations spanning two orders of magnitude. We validated this microfluidic system with the human adrenocortical cell line H295A, demonstrating that these cells produce steroids in microculture and respond to cAMP, a known stimulant of steroidogenesis. Microfluidic extraction was also used to isolate a panel of steroids including cortisol, corticosterone, and testosterone, which were quantified using LC-MS. In addition to high-throughput toxicant screening, the microfluidic platform holds great potential for steroidogenesis assays with limited samples, such as primary cells. Funded by NIH T32ES007015.

PS

2246 An Improved In Vitro Method for Determining Chemical Effects on Steroidogenesis Using LC/MS/MS to Monitor Multiple Steroid Hormones Combined with Gene Expression.

C. M. Toole, H. Wagner, K. Lewis and J. M. McKim.1 CeeTox, Inc., Kalamazoo, MI; 2OpEn, LLC, Durham, NC.

Steroid hormones play vital roles in development. Environmental compounds can impact the steroidogenic pathway producing a wide range of effects. Quantifying multiple steroids from a single biological sample, coupled with gene expression of the enzymes that form them, allows for a better evaluation of these effects. The human adrenal H295R cell line is currently used by the Environmental Protection Agency (EPA) to screen for chemical effects on steroidogenesis by evaluating production of Estradiol (E2) and Testosterone. Following EPA guidelines, 22(R)-hydroxycholesterol (22RHC) can be added (20-40 μM) to the culture medium to increase basal production of E2. Addition of 22RHC to the H295R culture medium bypasses steroidogenic acute regulatory protein (StAR). To evaluate the induction mechanism of 22RHC, H295R exposures were conducted using both 22RHC and forskolin, a known inducer of steroidogenesis. 22RHC and forskolin were administered to cells at 0.4, 1, 10, 20 and 40 μM and 0.03, 0.2, 0.3, 1, 3 and 10 μM, respectively for 48 hr. RT-PCR was used to quantify the expression of 9 steroidogenic genes and LC/MS/MS was used to measure hormone levels of 12 steroids. forskolin was found to upregulate mRNA of CYP11B2, HSD3B2, CYP21A2, CYP17A1, CYP19A1 in a dose-dependent manner. StAR mRNA was also increased at the highest exposure concentration. No significant upregulation of mRNA was observed in the 22RHC-exposed cells within the solubility limit. Steroid levels from LC/MS/MS displayed first and zero order enzyme kinetics. LC/MS/MS results showed that 22RHC exposures significantly increased early event markers (e.g., progesterone, pregnenolone, DOC, and 11 DOC), whereas forskolin exposures resulted in higher levels of most steroids. These results demonstrate that steroid genes are not regulated by a positive feedback loop in 22RHC-exposed cells. This study shows that evaluation of multiple steroid levels combined with gene expression provides a more complete picture of steroidogenesis.

PS

2247 Mapping Pathways of Endocrine Disruption in MCF-7 Cells: 2D and 3D Culture Systems.

M. M. Vantangoli, S. Hall and K. Boekelheide. Brown University, Providence, RI.

It is becoming increasingly important to identify endocrine-active compounds early in toxicity testing, placing weight on the use of in-vitro screening. Currently, the pathways of endocrine disruption are being mapped in response to estrogenic compounds. In this study, human breast adenocarcinoma MCF-7 cells are being utilized to map pathways of estrogenic disruption following exposure to estrogenic endocrine-active compounds. Our study utilizes two models, a 2-dimensional system representative of classical in-vitro studies, and a scaffold-free 3D culture system. Both systems follow a protocol that includes 72 hours of growth in media containing 10% FBS for 72 hours, followed by 48 hours in media containing 5% stripped serum. Treatment of compounds of interest began following the 48 hours. Preliminary data shows that our 2D system is responsive to estrogenic compounds including estradiol, DES and BPA across several endpoints, including cell proliferation and protein expression. Over a range of concentrations of estradiol (0.01nmM-100nmM) and times (1, 3, 6, and 12 hours) analysis of gene expression showed increases in classical estrogen responsive genes including progesterone receptor (1.5-3.5 fold), cathepsin D (1.5-2 fold), estrogen-inducible pS2 (1.5-4 fold) and GREB1 (4-14 fold) at concentrations as low as 0.01nmM estradiol. These results were also shown by Western blotting, with time-dependent increases in pS2 and GPR30 following estradiol stimulation. Our 3D system exhibits cell-contact and membrane interactions that may play a role in evaluating toxicities of estrogenic endocrine-active compounds. Here, we show the potential use of both 2D and 3D culture of MCF-7 cells to assess the estrogenic activities of suspected estrogenic-active compounds.

PS

2248 Cell-Specific Control of Estrogen Response Mechanisms in HEa-9903 and T47D-KBluc Cell Lines.

Estrogen signaling can be adversely affected by endocrine disrupting chemicals via agonism or antagonism. Cell lines capable of detecting agonism and antagonism are useful screening tools for determining estrogenic activity of chemicals. Transcriptional effects of the Estrogen Receptor (ER) are modulated by interactions with coregulatory proteins that function as either coactivators (agonism) or corepressors (antagonism). Selective ER modulators (SERMs), such as tamoxifen, favor recruitment of corepressors that inhibit transcriptional activity. In different tissues, tamoxifen can have partial-agonist-antagonist activities which may be related in part to the milieu of ER coactivators and corepressors in these tissues. To further elucidate effects of SERMs on transcriptional activity, agonism and antagonism was evaluated using reporter gene assays in two cell types, hERα-HEa-9903, derived from a human cervical tumor, and T47D-KBluc, stably transfected breast cancer cells. Cells were acclimated in 96-well plates and exposed for 24 hr to tamoxifen (TAM), 4-OH tamoxifen (4HTAM), raloxifene (RALON), estradiol (E2), dibydrotestosterone (DHT), corticosterone (CORT), or 17-methyltestosterone (MT). Cytoxicity, luminescence, and solubility were measured. An agonist response was demonstrated for TAM, RALOX and 4HTAM in hERα-HEa-9903 cells, but not T47D-KBluc. Antagonism also showed distinct results for the two cell types where T47D-KBluc cell demonstrated a potential additive effect with 4-HTAM and the maximal response was 4-fold higher than E2. RALOX and TAM also demonstrated enhanced responses in hERα-HEa-9903 cells. Because T47D-KBluc cells have endogenous ERα and ERβ, and hERα-HEa-9903 cells have exogenous ERα, coupled with the fact that coactivators and antagonists may be different in breast and cervix tissues, these results should be interpreted with caution. In the ongoing analysis, the resulting mechanisms controlling agonism and antagonism may be regulated, at least partially, by separate and distinct gene binding mechanisms. These findings show that measuring estrogenic activity in two cell lines may provide a more accurate assessment of estrogen response.

PS

2249 Profiling of ERα-Coregulator Binding As a Means for Functional Classification of Unknown Endocrine Disruptors.

R. Houtman1, S. Wang2, J. M. Aarts1, W. Westerink3, B. J. Blaauw4, T. Rovers5 and R. van Beuningen5.1 Plant Gene Interactome of PhytoE, Den Bosch, Netherlands; 2RIKILT-Institute of Food Safety, Wageningen UR, Wageningen, Netherlands; 3Division of Toxicology, Wageningen UR, Wageningen, Netherlands; 4WU Research, Den Bosch, Netherlands; 5Division of Toxicology, Institute for Risk Assessment Sciences, Utrecht, Netherlands.

Testing chemicals for their endocrine-disrupting potential, e.g. interference with estrogen receptor alpha (ERα) signaling, is an important aspect of chemical safety profiling. Due to drawbacks of in vivo testing, the development of in vitro alternatives has a high priority. In a previous study, we have demonstrated an in vitro assay which profiles binding of (un)liganded nuclear receptors to a microarray of coregulator-derived peptides, as a good candidate. Here, a set of 13 model compounds, US-EPA recommended for ERα gene reporter assay proficiency testing, was used to assess reproducibility, robustness and added value of our assay. ERα-coregulator binding profiles in the presence of a concentration series of each compound were generated. With a median coefficient of variation of 5% and excellent correlation (R2=0.99) between duplicate measurements, the uncertainty level of the peptide binding profiles in the presence of a concentration series of each compound was well within the range observed for other commonly used in vitro ER functional assays. Per compound, a dose-response curve for each ERα-coregulator interaction was constructed. Our results show correct prediction of estrogenicity for 12 out of 13 tested compounds. The potency ranking for 9 out of 10 of the ERα agonists exactly matched for that of transcriptional activation as reported by ICCVAM and US-NIEHS with excellent correlation (R2=0.98). Moreover, unsupervised classification (Hierarchical clustering, Euclidean distance, average linkage) with the compound-characteristic ERα-coregulator binding profiles results in structurally related compounds to cluster together, whereas the steroid test compounds have an aromatic A-ring were separated from those with a cyclohexene A-ring. This latter feature should be exploited to build a prediction model to enable classification of unknown toxican by comparison with pre-profiled references.
Endocrine disruptor compounds (EDCs) are a group of natural or synthetic compounds that have the capacity to interact with the endocrine system of living organisms and consequently causes adverse health effects in an intact organism, or its progeny, or (sub)populations. Due to the impact that this interaction could have on human health, there is an increasing interest in assessing the risk of the exposure to EDCs. Currently, several in vitro and in vivo assays have been developed and few of them validated and regulated acceptable. For instance, the US EPA developed the Endocrine Disruptor Screening Program, which has recently been implemented.

For the program a large number of experimental animals will be still used even for testing some of the in vitro assays. Herein, we performed the inter-laboratory validation of two robust models that addresses agonistic and antagonistic effects on the human hormone receptor, the YE5 (Yeast Estrogen Screen) and the YAS (Yeast Androgen Screen). Both assays are non-animal alternatives to the estrogen and androgen receptor binding assays proposed in the EDSP and OECD Conceptual Framework. The ring trial is the final experimental part of the validation process at the European Center for Validation of Alternative Methods (ECVAM). A set of 24 blinded compounds (7 estrogens and 6 androgens of diverse potency, 3 anti-estrogens, 3 anti-androgens and 5 negative compounds) have been tested in five different laboratories. The analysis of the first phase of this ring-trial already demonstrates a high reproducibility for both methods among the different participating laboratories.

NICEATM conducted an international validation study of the BG1Luc estrogen receptor (ER) transactivation (TA) test method. The test method evaluation report was reviewed and the method accepted by U.S. regulatory agencies and the Organisation for Economic Co-operation and Development. In 2011, NICEATM nominated the BG1Luc ER TA to Tox21 to be evaluated for adaptation into a quantitative high throughput screening (qHTS) assay. The Tox21 collaboration, an effort by the National Toxicology Program, NIH Chemical Genomics Center, Organisation for Economic Co-operation and Development. In 2011, NICEATM nominated the BG1Luc ER TA to Tox21 to be evaluated for adaptation into a quantitative high throughput screening (qHTS) assay. The Tox21 collaboration, an effort by the National Toxicology Program, NIH Chemical Genomics Center, Organisation for Economic Co-operation and Development.

The test method evaluation report was reviewed and the method accepted by U.S. regulatory agencies and the Organisation for Economic Co-operation and Development. In 2011, NICEATM nominated the BG1Luc ER TA to Tox21 to be evaluated for adaptation into a quantitative high throughput screening (qHTS) assay. The Tox21 collaboration, an effort by the National Toxicology Program, NIH Chemical Genomics Center, Organisation for Economic Co-operation and Development.

The basic helix-loop-helix perARNT-SIM (bHLH-PAS) superfamily of transcription factors plays an important role in the biological response to endogenous and xenobiotic small molecules. The Aryl hydrocarbon receptor (AhR) is a prototypical member of the bHLH-PAS, and is crucial for immune and environmental changes. AhR mediates cellular responses to environmental pollutants such as aromatic hydrocarbons through induction of phase I and II enzymes but also crosstalks with other nuclear receptor signaling pathways. To identify potential AhR ligands as part of the Tox21 collaboration, we have optimized and miniaturized a cell-based AhR luciferase reporter gene assay in the recombinant human HepG2 cell line HG2L7.5c1 into a 1536-well plate format. We have validated this assay by screening a library of 1280 pharmacologically active compounds (LOPAC) plus 88 Tox21 chemicals in triplicate using a quantitative HTS (qHTS) platform.

The ability to test a large number of compounds in a short period of time is critical for the development of chemical prioritization tools. The Tox21 consortium adapted the BG1Luc ER TA manual method to a qHTS assay by screening a library of 1280 pharmacologically active compounds (LOPAC) plus 88 Tox21 chemicals in triplicate using a quantitative HTS (qHTS) platform.

The Tox21 consortium adapted the BG1Luc ER TA manual method to a qHTS assay by screening a library of 1280 pharmacologically active compounds (LOPAC) plus 88 Tox21 chemicals in triplicate using a quantitative HTS (qHTS) platform.
From the primary screen, we have identified a group of relatively potent compounds in oxime, CGS 15943, an adenosine receptor antagonist; the cyclin-dependent kinase inhibitor kenpaullone; the amoīlode analgœue phenamīl; and the gastric proton pump inhibitor omeprazole. Validation of the cell-based assay on our integrated robotics system gave a signal to background ratio of 5 and average Z' factors of 0.4, that indicates this assay is suitable for qHTS of the Tox21 10K library. These findings support the utility of a cell-based AhR luciferase assay system for the high-throughput detection of compounds activating the AhR signal transduction pathway. Supported by EPA Interagency Agreement Y3-HG-7026-03.

2255 Comet and Nucleotide Postlabeling Results in the Chicken Egg Genotoxicity Assay.
A. M. Jeffrey1, L. Desch2, J. Duan3, K. D. Brunnenmanna1, E. Vock2, M. I. Jatupradu2 and G. M. Williams1.1Department of Pathology, New York Medical College, Valhalla, NY; 2Boehringer Ingelhein Pharma GmbH & Co. KG, Biberach, Germany.

For the chicken egg genotoxicity assay, an in vitro alternative model for assessing genotoxicity, we used white leghorn chicken (Gallus gallus) egg fertilized before full development of the nervous system. Injections were made on days 9, 10 and 11, the last 3 hours before termination. Livers were harvested for the COMET assay for DNA strand breaks and nucleotide postlabeling for DNA adducts. To deliver test substances, a variety of vehicles were evaluated, covering the range (from hydrophilic to hydrophobic) of solubility, using the endpoint of viability of the embryo-fetus. The following suitable vehicles were selected, i.e., 50 µl of distilled water, 50 µl of 0.5% aqueous methylcellulose, and 50 µl 20% Solutole HS15 for hydrophilic, amphiphilic, and hydrophobic substances, respectively. Test substances were injected with a 1 ml plastic BD syringe using a 0.4 mm x 13 mm needle. Following the injection into the air sac, the eggs were sealed with paper tape. Test compounds included diethylnitrosamine (hydrophilic) and 2-acetylaminofluorene (hydrophobic). The eggs were incubated and maintained at 37° ± 0.5° C and 60% ± 5% relative humidity. On day 11, the shells of viable eggs were opened at the blunt end, and the allantoicchorionic membrane was retracted to allow access to the entire anterior (visceral) aspect of the chicken fetus via the yolk sac. Fetal weights, were recorded after removal of the surrounding excess yolk. The embryos were allowed to develop in the isolated liver. The liver was opened and the entire liver was removed and weighed. Diethylnitrosamine (0.25 - 4.0 mg cumulative dose per egg) and 2-acetylaminoﬂuorene (0.1-0.6 mg) were tested over a dose range and subsequent alkaline COMET assays were conducted on isolated liver cells. Both compounds gave a positive dose response with plateaus occurring at the higher doses. In addition, 2-acetylaminofluorene was positive in the nucleotide postlabeling assay and showed patterns of DNA adducts similar to those previously observed in turkey eggs and rats.

2256 Development of Hazard Evaluation Support System (HESS) and the Attached Database (HESS DB) for Repeated-Dose Toxicity of Chemical Substances.
T. Yamada1, T. Abe1, R. Hasegawa1, Y. Sakuratani1, J. Yamada1, T. Yamashita2, M. I. Jatupradu2 and G. M. Williams1.1Department of Pathology, New York Medical College, Valhalla, NY; 2Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.

In a proof-of-concept study, we assessed the effect of drugs that are known to interact with p-glycoproteins, Cytochrome P-450, and the Ah-receptor, on fatty acid oxidation in intact HepG2 cells. In order to circumvent the use of radio-labeled material, we assessed fatty acid oxidation in intact cells by measuring the effect of palmitate, a long-chain fatty acid, on oxygen uptake in an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with the latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passage 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs (nelfzodone, ketoconazole, tolcapone, flutamide, tamoxifen, imipramine and troglitazone) known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used.

2257 Mitochondrial Bioenergetics and Drug-Induced Toxicity in a Panel of Mouse Embryonic Fibroblasts with Mitochondrial DNA Single Nucleotide Polymorphisms.
C. V. Pereira1, P. J. Oliveira2, Y. Will3 and S. Nadanaciva4.1CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; 2Pfizer Inc, Groton, CT.

Mitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity. Therefore, we used an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with the latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passage 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs (nelfzodone, ketoconazole, tolcapone, flutamide, tamoxifen, imipramine and troglitazone) known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used.

2258 Assessment of Drug-Induced Inhibition of Fatty Acid Oxidation in Intact Cells.
S. Nadanaciva1, L. Qiu and Y. Will3.1CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; 2Pfizer Inc, Groton, CT.

Fatty acid oxidation in mitochondria is an important metabolic pathway for energy generation in the heart and in organs such as the liver and muscle during fasting. Drug-induced inhibition of fatty acid oxidation in the liver can lead to microvesicular steatosis or macrovesicular steatosis and eventually to liver failure. Moreover, since the liver is the supplier of energy in the form of glucose (via gluconeogenesis) and ketone bodies to other organs, inhibition of fatty acid oxidation in the liver can lead to a deficiency in the energy supply for extra-hepatic tissues.

Fatty acid oxidation in intact cells has traditionally been assayed by measuring the production of titrated water from labeled fatty acids such as tritiated palmitate. In order to circumvent the use of radio-labeled material, we assessed fatty acid oxidation in intact cells by measuring the effect of palmitate, a long-chain fatty acid, on cellular oxygen consumption under an extracellular flux analyzer. We observed an increase in the oxygen consumption of cells such as c2c12 mouse myoblasts, HepG2 cells (a liver-derived carcinoma cell line) and hepatocytes upon palmitate addition. Etoomoxir, an inhibitor of carnitine palmitoyltransferase-1 (an enzyme catalyzing the rate-limiting step of long-chain fatty acid entry into mitochondria) inhibited respiration. In a proof-of-concept study, we assessed the effect of drugs (amiodarone, tamoxifen, tianeptine and perhexilene) that are known to inhibit mitochondrial fatty acid oxidation. Our results showed that the measurement of drug-induced changes in cellular oxygen consumption in the presence of palmitate is a convenient method by which to assess inhibition of fatty acid oxidation in cells.
in cell index, indicative of cytotoxicity, after exposure to 12.5–50 μM DCMBQ over a 72-hour period. Using the alkaline comet assay, a significant genotoxic effect (one-way ANOVA, \(p < 0.05 \)), indicated by increased tail moment, was observed in cells exposed to ≥20 μM DCMBQ for 24 hours. To further determine the mechanism of toxicity, reactive oxygen species (ROS) production was measured using the fluorophore DCFDA (2',7'-dichlorofluorescin diacetate) in cells exposed to DCMBQ 5–50 μM for 2–72 hours. Significant time and concentration dependent increases in ROS were observed (two-way ANOVA, \(p < 0.05 \)) for ≥15 μM DCMBQ at 24 hours of exposure but as early as 4 hours of exposure for 50 μM DCMBQ. This effect was significantly reduced by the addition of N-acetylcysteine (NAC), a ROS scavenger. Likewise, simultaneous addition of NAC to cells treated with highly genotoxic concentrations of DCMBQ in the alkaline comet assay reduced tail moment values to those comparable with untreated control groups. Based on these results, we conclude that DCMBQ is cytotoxic and genotoxic under these experimental conditions, and these effects are due at least in part to ROS production. As DCMBQ has been detected in finished drinking water samples, additional testing is urgently required to determine potential effects on human health.

2260 Intra- and Interlaboratory Validation Studies on Reactive Oxygen Species Assay for Photosaftey Evaluation of Pharmaceuticals.

1University of Shizuoka, Shizuoka, Japan; 2T aisho Pharmaceutical Co., Ltd., Saitama, Japan; 3Saitama University, Saitama, Japan; 4Asahi Kasei Pharma Corporation, Saitama, Japan; 5AstraZeneca Co., Ltd., Saitama, Japan; 6Sanet Pharmaceutical Co. Ltd., Nara, Japan; 7National Institute of Health Sciences, Tokyo, Japan.

A reactive oxygen species (ROS) assay was previously developed for photosafety evaluation of pharmaceuticals. Although outcomes from the previous multicenter validation study were indicative of satisfactory transferability, reproducibility, and predictive capability of the ROS assay using AlphaScreen CPS/CPS plus solar simulators, the feasibility of different solar simulators for the ROS assay has never been elucidated. Herein, in 4 participating laboratories, 2 standards and 42 coded chemicals, including 23 photoxotins and 19 non-photoxotic drugs/chemicals, were assessed by the ROS assay using Seric XXI–2500V2 solar simulators with the aim of evaluating the compatibility of different solar simulators for the ROS assay. In the ROS assay on quinine (200 μM), a typical phototoxic drug, the intra- and inter-day precision (coefficient of variation; CV) were found to be 1.7–9.4% and 2.7–6.9%, respectively. The inter-laboratory CV for quinine averaged 13.2% for singlet oxygen and 7.1% for superoxide. The ROS assay on 42 coded chemicals (200 μM) provided no false negative predictions as compared to the in vitro/in vivo phototoxicity, although several false positives appeared. These results were regarded a convincing demonstration that the ROS assay is compatible with, and can be adapted to, other available suitable solar simulators without losing performance.

2261 Investigating the Role of Mitochondrial Dysfunction in Zoniporide Toxicity.

P. Rana, S. Rachel and Y. Will

Zoniporide, an inhibitor of the Na+H+ exchanger-1 was developed for the reduction of myocardial ischemic injury in acute coronary syndromes, in the high-risk surgical setting, and secondary for prevention in patients with ischemic diseases. A 28-days intravenous infusion rat study revealed target organ toxicity of the sciatric nerve, spinal cord, and stomach injury (Petersen et al., 2008). Due to insufficient efficacy, zoniporide was discontinued after the phase 2 clinical trial. We have previously reported that zoniporide seems to affect mitochondrial function (Rana et al., 2011) here, we expand on our studies by investigating further mechanisms that could lead to this mitochondrial disturbance. We tested zoniporide in rat liver mitochondria for its inhibition of mitochondrial respiration and conducted mitochondrial swelling experiments to study possible mitochondrial permeability transition pore (MPT) effects of zoniporide. We further tested this compound in H9c2 cells growing in glucose and galactose media and measured ATP depletion and Caspase 3/7 levels. Finally, we tested zoniporide on the flux analyzer and measured immediate effect on mitochondrial respiration and glycolytic rates. In the cell based assays, we tested zoniporide alone and in the presence of Cyclosporine A (CSA), which has been known to close the MPT. We observed that zoniporide did not induce significant increase in extra cellular acidification rate (ECCR) suggesting that cell injury is primarily mitochondria targeted as cells switches respiration from mitochondrial OXPHOS to glycolysis. Co-incubation with CSA has a rescue effect on Caspase3/7 levels in galactose growing cells. In summary, we believe that zoniporide induced cell injury includes primarily mitochondria by causing MPT.

This was further confirmed using a flux analyzer, where there was decrease in oxygen consumption rate and increase in extra cellular acidification rate (ECCR) suggesting that cell injury is primarily mitochondria targeted as cells switches respiration from mitochondrial OXPHOS to glycolysis. Co-incubation with CSA has a rescue effect on Caspase3/7 levels in galactose growing cells. In summary, we believe that zoniporide induced cell injury includes primarily mitochondria by causing MPT.

2262 Validation of an HTS-Amenable Assay to Detect Drug-Induced Mitochondrial Toxicity.

R. Swiss1, A. L. Niles2, J. J. Cali2 and Y. Will2

1Compound Safety Prediction, Pfizer Global Research & Development, Groton, CT; 2Promega, Madison, WI.

Drug-induced mitochondrial dysfunction has been shown to contribute to organ toxicity and late stage attrition. Therefore, testing for drug-induced mitochondrial dysfunction pre-clinically is vitally important and has the ability to greatly impact the success of a potential drug candidate. Several assays have been developed but are hampered for high-throughput screening because they either require special reagents, isolated mitochondria or specialized equipment.

Here we validate the assay using 384-well format, a dual parameter assay that measures both cytotoxicity and mitochondrial toxicity simultaneously during very short exposure durations using standard detection methods. In this assay, cytotoxicity is measured by evaluating cell membrane integrity via the presence or absence of a distinct pro tease activity associated with necrosis. For our initial evaluation, K562 cells were grown in both glucose-supplemented media and galactose-supplemented media and were tested in parallel. The objective was to see how many mitochondrial toxicants this cell-based assay would be able to detect.

We validated the assay using the classical mitochondrial toxicants antimycin A, CCCP and, oligomycin, as well as two drugs known to have mitochondrial liabilities (nefazodone, and flutamide) as well as a non-specific detergent digitonin, in a 384-well plate format with a 2 hour exposure.

We determined the assay to have excellent reproducibility with less than 3 fold differences between IC50 values form day to day. Once the assay was validated, we screened a set of 75 commercial compounds that included compounds known to cause differential organ toxicities with known or unknown mitochondrial liabilities. Our screening data identified that compounds could be sorted into 7 different categories based on the calculated IC50s of each condition, the cytotoxicity measurement in both glucose and galactose-grown cells and the ATP measurement in both media conditions. Our results are currently evaluated for their sensitivity and specificity in comparison to other existing assays.

2263 Establishing a Link between Redox Cycling and Cell Death for Quinone and Flavin Chemotypes.

L. Jones, P. Rana, R. Swiss, R. Naven and Y. Will

1Compound Safety Prediction, Pfizer Global Research & Development, Groton, CT.

Oxidative stress is one of the major mechanisms of drug induced toxicity. One electron reduction of oxidants generates reactive oxygen species (ROS) via redox cycling. In biological systems, the flavo enzymes mediate the transfer of electrons to the quinone by reducing it to the semiquinone. Recently, we evaluated flavins analogues for their ability to redox cycle and tried to establish their association to toxicity. We investigated menadione (a quinone analogue) and toloxafavin (a flavin analogue) for its attribution to its redox cycling activity which leads to oxidative stress which eventually leads to cell death.

In our proof of concept study, we investigated the redox cycling capability of menadione and toloxafavin by utilizing a biochemical assay that measures the H2O2 produced through redox cycling of compounds. Next, we tested these compounds in THLE cells using high content imaging to assess the production of ROS using dihydro-DCFDA (DHE). In addition, we measured glutathione and ATP levels in THLE cells. Next, we wanted to know if we could rescue the detrimental effects of redox cycling on cell health, by incubation with two different antioxidants. One of them was catalase, which effectively dismantles hydrogen peroxide with water as a byproduct, the other was N-acetyl-cysteine (NAC), which minimizes oxidative stress.

Here, we report that both menadione and toloxafavin redox cycle and produce hydrogen peroxide (ROS), both in the biochemical assay as well as in the cell based assay. Glutathione levels were also depleted with both of these compounds. Furthermore, the ROS formation and glutathione depletion lead to cell injury that is measured by ATP depletion. Catalase was able to dismantle H2O2 in the biochemical assay. In the cell based assay, ROS, glutathione and ATP effects were recovered in the presence of NAC. In summary, we established the involvement of redox cycling of quinones and flavin chemotypes to toxicity in THLE cells.
A tier I rat primary hepatocyte multi-endpoint cytotoxicity assay (MECA) system is an effective tool to assess and rank order compounds on predicted potential to induce toxicity in repeat-dose in vivo rat toxicology studies. Our MECA system utilizes three primary biochemical endpoint assays: an ATP assay for cell viability, a lactate dehydrogenase (LDH) assay for membrane integrity and a WST-1 assay for mitochondrial function. A positive signal in the WST-1 assay should be further characterized with a Tier II specific assessment of sub-mitochondrial toxicity. To determine potential mitochondrial liabilities, our Tier II mechanistic assessment includes a JC-1 assay for Mitochondrial Pore Transition (MPT) status, a 2′,7′-dichlorofluorescein diacetate (DCFDA) assay for reactive oxygen species (ROS) production, a Caspase 3/7 assay for apoptosis, and a Seahorse XF24™ assay system to determine functional oxidative phosphorylation (mitochondrial respiration). HMG-CoA reductase inhibitors (statins) are compounds that lower cholesterol and reduce cardiovascular disease. There has been increasing evidence that some statins may affect mitochondrial function, leading to adverse effects such as myopathy or rhabdomyolysis. We investigated the effects of multiple statins, including simvastatin, on various mitochondrial functional endpoints. Tier I screening of the statins in primary rat hepatocytes identified a general mitochondrial liability with a 50% decrease in WST-1 throughout the concentration range. In Tier II assays demonstrated that simvastatin treatment induced hepatocellular apoptosis at high concentrations and lowered both basal mitochondrial respiration and maximal respiratory control compared to control at non-cytotoxic concentrations. These data corroborate the decreased WST-1 reading and suggesting impaired electron transport chain function. A multi-tiered approach is essential to fully characterize potential mitochondrial dysfunction and add predictive value to in vitro toxicology screens in early phases of drug discovery.

2265 Impact of Exposure Profile on Toxic Response Using Hepatocytes (HepaRG) Co-cultured with Intestinal Cells (Caco-2).

[Background, Purpose] To develop an alternative method to *in vivo* toxicology studies, a general approach would be to extrapolate key markers identified in the early stage of the *in vivo* toxic response into an *in vitro* system. Under *in vitro* conditions, a test substance is absorbed, distributed, and/or metabolized before reaching target cells, whereas in an *in vitro* system, compounds are directly exposed to target cells and metabolic activation might or might not be involved. To address the impact of the significant difference of chemical exposure profiles between *in vivo* and *in vitro* systems, we have developed a co-culture system consisting of HepaRG cells and Caco-2 cells as a model for hepatocytes, where the system simulates intestinal absorption and liver metabolism processes.

[Methods] The toxic responses of the co-culture system toward four chemicals (ace- toaminophen, carbon tetrachloride, amiodarion, and EGCg) reported to have a hepatotoxic effect were compared to the single HepaRG and Caco-2 cell lines. The HepaRG cells were tested to simulate enzyme-specific hepatotoxicity. In vitro exposures of test chemicals were tested to simulate single-compound hepatotoxicity.

[Results] Co-culturing with Caco-2 cells increased ALB and CYP expression in HepaRG cells. Although treatment with each test chemical changed LDH and GSH activity in both cell systems, dosages of EGCg were very different for similar toxic effects. Monitoring of EGCg concentration and GSH activity revealed a two-fold lower EC50 Cmax, a 10-fold higher AUC (0-24), and reduction of GSH activity after 12 hr for the co-culture system.

[Discussion, Conclusion] This study demonstrated that the exposure profile of test substances may affect the toxic response of cultured cells. It is important to develop *in vitro* models that reflect the *in vivo* exposure conditions.

2266 Combinatorial High-Throughput Gene Transfection on a Chip for Metabolism-Induced Toxicity Screening.

M. Lee1, S. Kron1, D. Lee2, D. Shah1, B. Knu2, D. S. Clarke1 and J. S. Dordick1.

1Department of Chemical and Biological Engineering, Bencorlus Polytechnic Institute, Troy, NY; 2Central R & D Institute, Sensing Electron-Mechanic Co., Taiwan, Republic of Korea; 3Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA; 4Solidus Bioscience, Inc., San Francisco, CA.

Variation in metabolic enzyme expression among segments of the human population may cause deviations from the expected pharmacokinetic profile of a drug, resulting in idiosyncratic toxicity or a lack of efficacy. Cells that stably express metabolic enzymes are emerging tools for prediction of these rare clinical events; however, it is difficult to create and maintain a library of stable cell lines that mimics the diversity of metabolic profiles. To address this need, we have developed a “Transfected Enzyme and Metabolism Chip” (or TeamChip) for high-throughput analysis of systematic drug metabolism and toxicology. The TeamChip is prepared by infecting an array of miniaturized 3-D cell cultures on a micropillar chip with varying concentrations of recombinant adenosinurides carrying genes for different metabolic enzymes in a microwell chip, which generates an array of cell cultures with differentiated metabolizing capabilities. As a proof of concept, we have demonstrated the controlled expression of individual drug-metabolizing enzymes (CYP3A4, 2D6, 2C9, 1A2, 2E1, and UGT1A4) in THLE-2 human liver cell line on the chip by altering the multiplicity of infection of the various recombinant adenoviruses. The expression levels of the metabolizing enzymes on the chip were determined by cell immunofluorescence assays and the activity of the expressed enzymes in THLE-2 cells were tested with fluorogenic dyes. By printing the 6 recombinant adenosinurides into the microwell chip in a combinatorial way, we were able to achieve 144 combinations of multiple metabolic enzymes expressed in THLE-2 cells on a single TeamChip. Finally, 6 model compounds that were shown to be hepatotoxic, in some cases idiosyncratically and withdrawn from the market, were tested to simulate enzyme-specific hepatotoxicity.

2267 Validation of High-Throughput and High-Content (HT/HC) Assays to Support 21st Century Toxicity Evaluations.

1American Chemistry Council, Washington DC; 2Du Pont Global Health Centers for Health and Environmental Sciences, Newark, DE; 31dernon LLC, Winston, GA; 4ExxonMobil Biomedical Science Inc., Annadale, NJ; 5The Dow Chemical Company, Midland, MI; 6Dow Corning Corporation, Midland, MI.

Advances in high throughput and high content (HT/HC) methods have the potential to improve the efficiency and the effectiveness of toxicity evaluations and risk assessments. However, scientific confidence in these methods and their prediction models must be formally established before use in regulatory decision making. Traditional validation approaches that define relevance, reliability, sensitivity and specificity may not be readily applied since a number of these methods are proprietary; HT/HC methods may use one of a kind robotics; although run individually, these assays are likely to be used as a group or battery for decision making and, HT/HC methods are not exact replacements for in vivo testing. Building on the frameworks developed in the 2010 Institute of Medicine Report on Biomarkers and the OECD 2007 Report on (Q)SAR Validation, we present frameworks that can be adapted to address the validation challenges of HT/HC methods. These require explicit specification of context and purpose of use such that scientific confidence can be defined to meet different applications (e.g., a lesser degree of confidence may be acceptable for priority setting compared to that required to support hazard characterization, or classification/labelling). We recommend that a specific validation strategy be developed and implemented for HT/HC assays and their prediction models, focused on the specific biological response of interest. We discuss how anchoring the assays and their prediction models to Adverse Outcome Pathways should facilitate the interpretation of results and support scientifically defensible fit-for-purpose assessments. We build scientific confidence in these new and emerging tools by identifying specific validation criteria and assay results and prediction models should be subjected to independent scientific peer review.
platform maybe most appropriate for specific endpoints for unique chemical categories. Such analysis assists industry stakeholders in planning the use of QSAR models for hazard communication, regulatory compliance, and sustainable life cycle management.

2269 Use of a Cell-Based Assay to Monitor the Stability of the Tox21 10K Compound Library.

R. Huang1, J. Zhao1, M. Xiu1, K. L. Witt2, K. Houck3, R. R. Tice2, D. Ding3 and C. P. Austin1. 1NCATS/NIH, Rockville, MD; 2NTP, NIEHS/NIH, Research Triangle Park, NC; 3NCCT, EPA, Research Triangle Park, NC.

In Tox21 Phase II, a collection of ~10K compounds (http://www.epa.gov/ncct/dsstox/sdf_tox21s.html) is being screened against a battery of nuclear receptor and stress response pathway assays. Knowing the identity and purity of each substance and its stability in dimethyl sulfoxide (DMSO), the solvent of choice, is critical to the interpretation of assay results. In the screening protocol, a copy of the 10K library, maintained in the Tox21 robotics facility at room temperature (RT), is used in multiple assays over a 4-month period. In addition to an ongoing analytical analysis on the library at time 0 and 4 months, the complete results of which will not be available until mid 2013, we evaluated compound stability using the p53-beta lactamase reporter gene (p53-BLA) assay to monitor biological activity. This assay was selected because it is a highly reproducible (>95%) cell-based assay with a relatively high hit rate (16%). The library was tested 1 day, 2 weeks, 2, 4, and 6 months after being placed on the robot. The number of compounds that showed a significant change in activity (loss or gain) as an indication of compound degradation at each time point compared to the freshly thawed library (day one) reached a plateau of 1.7% of the 10K library at approximately 4 months. Most of the change in activity appeared to occur within the first 2 weeks and included compounds such as dinoterb, bithionol and captafol. Results show that the majority of compounds are relatively stable at RT for up to 6 months, with the caveat that the compounds inactive against p53 (i.e., the majority of the library) were not captured by this method. This study is the first attempt to use a cell-based assay to systematically monitor the stability of a large-scale, environmentally focused compound library. The results can be used to determine when to replace the library plates, and they also serve to validate the quality of the Tox21 production screen process—from compound storage and handling to robotic operations and assay performance.

2270 Application of Metabolomics In Vitro for Identification of Toxicological Modes of Action.

T. Ramirez1, N. Bordag2, W. Mellert1, H. G. Kamp1, T. Walk2, R. Looser2 and C. P. Austin1. 1NCATS/NIH, Rockville, MD; 2NTP, NIEHS/NIH, Research Triangle Park, NC.

Metabolomics is a versatile technology with multiple potential applications in commerce and most importantly for compounds under development. With regards to the toxic compounds, the receptors most responding were a subset of 5 CNS and heart receptors (M2, alpha2, beta1, GABA, N neuronal). The purpose of the study is to get a better understanding of the data generated on the selection of 15 CNS and Heart receptors potentially playing a causative role in the toxic effect. The analysis of the profiles observed with the set of 73 public domain chemicals was completed as follows:

-Comparison of the LD50 values estimated via the different models (V0, V1, experimental)

-Taxicalogical categorization based upon the LD50 threshold of 500 mg/kg

-Identification of the receptors most responding and understanding of their biologic relevance

No variation of the LD50 values was observed for 43 chemicals while an increase or a decrease was assigned to 10 and 20 chemicals respectively. As expected, the decrease in the LD50 value made the model more predictive for 16 out of the 20 compounds. With regards to the toxic compounds, the receptors most responding were a subset of 5 CNS and heart receptors (M2, alpha2, beta1, GABA, N neuronal). Next step will consist of checking the relevance of such receptors for a set of proprietary chemicals. As such, we could envisage the development of a more economical and pragmatic model that would be useful for early screening purposes.

2271 Functional Genomics Approach in Yeast and the DT40 Avian Cell Line Identify Conserved Mechanisms of Trichloroethylene Toxicity.

V. De La Rosa and C. Vulpe. University of California, Berkeley, Berkeley, CA.

Trichloroethylene (TCE) is an industrial solvent and a common drinking water contaminant. Previous studies have identified the TCE metabolite DCVC as responsible for increased kidney toxicity and renal cancer, yet the molecular events mediating renal toxicity an cancer remain controversial. Our studies in yeast provide a foundation for identifying potential mechanisms of TCE renal toxicity and to establish an alternative model for identifying mechanisms of toxicity in humans. A functional genomics approach in yeast identified DNA damage and repair pathways important in response to DCVC exposure. Specifically, mutagenic translesion synthesis (TLS) and nucleotide excision repair (NER) pathways were found to play important roles in DCVC toxicity. This data suggests DCVC may cause direct DNA damage that elicits a mutagenic repair response. Follow-up studies were conducted in the DT40 avian cell to assess if the mutagenic DNA repair response is conserved in higher eukaryotes. The viability of DNA repair mutants was significantly decreased particularly for TLS and NER mutants. Furthermore, western blot analysis showed initiation of TLS repair after DCVC exposure. These results support a conserved DNA damage and mutagenic repair mechanism mediating DCVC renal toxicity. Additionally the results support a functional genomics approach in yeast as a viable model for identifying mechanisms of toxicity in higher organisms, including humans.

2272 The Value of Pharmacological Data to Support Systemic Acute Toxicity Evaluation of Compounds: A Profile Analysis.

Developing alternatives in the area of acute systemic toxicity implies combination of multiple parameters. We showed that integration of cell-death data, pharmacological profiles and physico-chemical properties resulted in a significant improvement of the LD50 prediction model originally developed by CerTox. In order to reduce the false negative rate, correcting factors were applied to the model; this included considerations of a clear dose-response effect, the magnitude of the response and the number of receptors responding. A decrease of the LD50 parameter was expected the cited criteria were met. At a LD50 threshold of 500 mg/kg, the predictive performances of the so called V1 model were extremely encouraging with an overall concordance of 88%. The purpose of the study is to get a better understanding of the data generated on the selection of 15 CNS and Heart receptors potentially playing a causative role in the toxic effect. The analysis of the profiles observed with the set of 73 public domain chemicals was completed as follows:

-Comparison of the LD50 values estimated via the different models (V0, V1, experimental)

-Taxicalogical categorization based upon the LD50 threshold of 500 mg/kg

-Identification of the receptors most responding and understanding of their biologic relevance

No variation of the LD50 values was observed for 43 chemicals while an increase or a decrease was assigned to 10 and 20 chemicals respectively. As expected, the decrease in the LD50 value made the model more predictive for 16 out of the 20 compounds. With regards to the toxic compounds, the receptors most responding were a subset of 5 CNS and heart receptors (M2, alpha2, beta1, GABA, N neuronal). Next step will consist of checking the relevance of such receptors for a set of proprietary chemicals. As such, we could envisage the development of a more economical and pragmatic model that would be useful for early screening purposes.

2273 Development of In Vitro Organotypic 3D Epithelial Models for High-Throughput Screening of Toxicological, Immunological and Developmental Signaling Pathways.

C. Mankus, G. Jackson, J. Bolmarciich, P. Hayden and M. Klauser. Mattrek Corporation, Ashland, MA.

Currently, there is a growing need for moderate to high-throughput toxicological assays that predict mechanisms of action possessing in vivo-like features of organotypic models. Here, we describe the development of in vitro organotypic 3D skin (EpiDerm™) and airway (EpiAirway™) models with the added feature of luciferase reporter function. The two models are well-suited for cell-based assays using multiple stress response pathways. Currently, there is a growing need for moderate to high-throughput toxicological assays that predict mechanisms of action possessing in vivo-like features of organotypic models. Here, we describe the development of in vitro organotypic 3D skin (EpiDerm™) and airway (EpiAirway™) models. Each model has demonstrated a dose response to positive control test articles including, TBHQ, Nutlin-3, ZnCl2, PMA, TNFα and TCDD, respectively, with an average induction of 3-15 fold over vehicle when luciferase activity in tissue

SOT 2013 ANNUAL MEETING 485
extracts was quantified using a microplate luminometer. TF reporters can be assem-
bled in custom 96-well arrays for screening of unknown test compounds and mon-
itoring of cell signaling pathway activity. Using this format, 3 test articles and a neg-
ative control (N=3) can be tested against 8 stress pathways in a single assay resulting
in a heat map-like profile of pathway activation. The ultimate goal of the project is
to develop a panel of 14 TF reporter models for both skin and airway models that
can be assembled into custom 96-well high-throughput arrays as well as additional
individual tissue formats. Results from these initial 6 models indicate that EpiDermtm and EpiAirwaytm reporter models will provide novel tools for con-
ducting mechanistic human toxicological studies.

2274 In Vitro Predictive Toxicology for Breast Cancer.
R. Rudel1, J. Ackerman1 and C. Vulpe2, 1Silent Spring Institute, Newton, MA;
2University of California, Berkeley, CA.

Identifying chemicals that increase breast cancer (BC) risk could help prevent BC,
but rodent bioassays are expensive. In vitro and computational methods are being
developed to predict adverse effects with limited in vivo testing. The present work
aims to develop in vitro methods to predict chemicals that can increase BC risk.
Animal and human studies suggest that both genotoxic carcinogens and cer-
tain hormone exposures increase BC risk. Our initial goal is to identify in vitro tests
that predict mammary gland carcinogens (MCs) in rodent bioassays, since few breast
carcinogens have been studied in humans. We have previously identified 208
chemicals causing mammary tumors in rodents in at least one study. We used the
Chemical Carcinogenesis Research Information System (CCRIS) to compare geno-
toxicity profiles for MCs with 27 ‘non-carcinogens’ (nonCs) that did not show in-
creased tumors at any site in National Toxicology Program bioassays. We included
five assay types: bacterial mutagenicity, and in vitro and in vivo micronuclei and
chromosomal aberration. Data from at least one of these were available for 158
MCs and 22 nonCs. We found that most MCs are genotoxic: 87% were positive in
>15% of CCRIS entries within any assay type, with or without metabolic activa-
tion (MA), while 10% were consistently negative (i.e., no study was positive). In
comparison, 59% of nonCs were consistently negative. Since many in vitro predic-
tive toxicity programs do not include MA, we also evaluated whether MA was
needed for genotoxicity. Without MA, the MCs that were consistently negative for
genotoxicity increased from 10% to 24%, and the number consistently positive
(i.e., positive in >15% of entries in every assay type) dropped from 66% to 48%. In
comparison with increased UVB (290 – 300 nm) exposure by removing the tissue culture plate
dish during exposure using a xenon arc solar simulator. This direct (uncovered) ex-
posure increased the UVB irradiance from approximately 19 mJ/cm2 to approxi-
mately 32 mJ/cm2, concomitant with the recommended 5 J/cm2 UVA dose. While
cell survival was modestly reduced, the resulting IC50, OD50 absorption, PIF, and MPE
endpoints from this enhanced UVB exposure alone and response to Chlorpromazine indicate no adverse effect on the validity of the assay and accept-
able Guidance-defined results under these exposure conditions. This additional
ability to test UBV absorbers provides all the advantages of the assay to this subset
of test materials, enhances this step in the preclinical process of drug discovery
and further establishes the robustness of the assay as a valid step in preclinical drug
development.

2275 In Vitro to In Vivo Extrapolation Using Data from ToxCast.
M. DeVito1, S. S. Auerbach1, A. Merrick1, K. L. Witt1, K. Janardhan1,
D. Malarkey1, H. Nagai2, L. Shah1, C. Cotton1 and B. Judson1, 1NTF NIEHS,
Research Triangle Park, NC; 2ORD, US EPA, Research Triangle Park, NC; 3ILS,
Research Triangle Park, NC; 4Nihon Nohyoka Co. Ltd., Tokyo, Japan.

Using data from the USEPA ToxCast Phase I model was developed to predict
non-genotoxic rat liver carcinogens. The model predicts that chemicals that activate
PARRt increases in oxidative stress as measured by H2AX phosphorylation,
decreases in MCP-1 or are anti-androgens in vitro are likely to induce rat liver tumors
through non-genotoxic mechanisms. The present study evaluated the concordance of
these in vitro responses to in vivo effects. The studied chemicals were either posi-
itive in the predictive model and were rat liver carcinogens (acetohlor, carbaryl,
perfluorooctanoic acid (PFOA), 2,5-Pyridinedicarboxylic acid dipropyl ester (2,5-
PCDA), in acenocumarol); positive in the model but were negative in a rat bioassay
(bisphenol A, flusilazole) or were negative in the model and in vivo (triclosan).
Using the highest dose from the cancer bioassay, male Sprague-Dawley rats were
exposed by gavage to chemicals for 4d and euthanized 4h after the last dose. Livers
were removed for gene array analysis. Serum MCP-1 levels were determined. In
vitro and in vivo, PARRt was activated by PFOA and acetohlor. Triclosan was posi-
tive in vivo, but not in vitro. None of the chemicals altered serum MCP-1 in vivo
(2,5-PCDA and simazine, were positive in vitro). Carbayl and bisphenol A in-
duced H2AX phosphorylation in vitro but were not positive in vivo. Bisphenol A,
acetohlor and flusilazole showed anti-androgen activity in vitro and in vivo. While
negative in vitro, 2,5-PCDA, PFOA, carbaryl and triclosan altered androgen re-
sponsiveness in vivo. While acetohlor and oxidant stress was not in vitro but not in vivo. In contrast, triclosan induced oxidative stress responsive genes in vivo but
not in vitro. PARRt pathway activation has a good concordance in vivo and in
vivo. Results for anti-androgenicity, MCP-1 and oxidative stress were much less concordant between in vivo and in vivo. This abstract does not necessarily reflect
the policies or views of NIH or the USEPA.

2277 Comparison of Multiple Assay Formats to Measure Kinase
Inhibitor Activity.
K. Leach and D. Puppala. Compound Safety Prediction, Pfizer, Groton, CT.

Protein phosphorylation is a key mechanism for controlling cellular functions,
and protein kinase inhibitors show good efficacy as oncology therapeutics. Currently
there are 15 marketed kinase inhibitors, with many more in clinical trials. A key
component of drug discovery efforts for these inhibitors is the optimization of ki-
rase selectivity, since a greater degree of promiscuity is associated with a greater risk
of safety concerns. A wide variety of biochemical and cellular kinase assays which
utilize multiple technologies are available for testing compounds and determining
kinase activity, and an important consideration is the translation across these assays.
A set of 14 Pfizer kinase inhibitors with different primary kinase targets were pro-
filed across three different types of assays: biochemical kinase assays measuring pep-
tide substrate phosphorylation; ActivX technology, which measures specific bind-
ing to kinases within a cell lysate; and cell-based kinase assays, measuring
endothelial substrate phosphorylation. The biochemical assays were conducted at
2278 Mouse Cecal Microbiota Converts Monomethylarsonic Acid
(MMA) to an Array of Oxy- and Thio-Arsenical Metabolites.
M. J. Kohan1, D. J. Thomas2, T. Finlay2, M. Mantha1, K. M. Herbison-Davis2
and J. T. Creed1, 1MCCEARD, NERL, US EPA, Cincinnati, OH; 2ISTD, NHEERL,
US EPA, Research Triangle Park, NC.

The metabolism of arsenicals markedly affects their tissue distribution and reten-
tion as well as the toxic and carcinogenic effects of this metalloid. Metabolism of ar-
senicals by the microbiota of the gastrointestinal tract has been shown to convert
inorganic and dimethylated arsenicals to various methylated species. Here, anaero-
obic microbiota from ceca of adult female C57BL/6 mice was incubated with 20,
2279 Paraoxonase Activity in Subchronic Low-Level Inorganic Arsenic Exposure.

O. Adefuniwa1, O. K. Afolabi1, A. D. Wusu1, O. O. Oginni1, O. E. O. Abam2, D. O. Babayemi1, E. A. Balogun1 and O. O. Odukoya1.
1Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria; 2Chemistry, Federal University of Agriculture, Abeokuta, Nigeria.

Epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and cardiovascular diseases. While the exact mechanism of this arsenic-mediated increase in cardiovascular risk factors remains enigmatic, studies indicated a role for oxysterols in causation in cardiovascular diseases. To study the association between inorganic arsenic exposure and cardiovascular diseases, rats were exposed to sodium arsenite (50, 100 and 150 ppm) and sodium arsenate (100, 150 and 200 ppm) in their drinking water for 12 weeks. PON activities towards paraoxon (PONase) and phenylacetate (AREase) in plasma, lipoproteins, liver and brain microsomal fractions were determined. Inhibition of PONase and AREase in plasma and HDL characterized the effects of the two arsenics. While arsenite inhibited PONase by 33% (plasma) and 46% (HDL) respectively, arsenate inhibited the enzyme by 41 and 34% respectively. AREase activity was inhibited by 52 and 48% by arsenite, the inhibition amounted to 72 and 67% respectively by arsenate. The pattern of inhibition in plasma and HDL indicated that arsenite induced a dose-dependent inhibition of PONase whereas arsenate induced a dose-dependent inhibition of AREase. In the VLDL, arsenate inhibited PONase and AREase while arsenite inhibited PONase. In the hepatic and brain microsomal fractions, only the PONase enzyme was inhibited by the two arsenicals. The inhibition was more pronounced in the hepatic microsomes where a 70% inhibition was observed at the highest dose of arsenate. Microsomal cholesterol was increased by the two arsenicals resulting in increased cholesterol/phospholipid ratios. Our findings indicate that decreased PON activity observed in arsenic exposure may be an incipient biochemical event in the cardiovascular effects of arsenic. Modulation of PON activity by arsenic may also be mediated through changes in membrane fluidity brought about by changes in the concentration of cholesterol in the microsomes.

2280 Comparative Early Oncogenic Effects of Cadmium and Inorganic Arsenic in Human Lung Epithelial Cells.

R. I. Person, E. I. Tokar and M. P. Walsey. NTP; NIEHS, NIH, Research Triangle Park, NC.

Cadmium (Cd) and inorganic arsenic (iAs) are known human lung carcinogens. In this study, we compare development of in vitro cellular models of human lung cancer induced by Cd or iAs. We have shown chronic, low-level (5 μM) Cd (as CdCl2) induces an acquired cancer phenotype in human lung epithelial cells (HPL-1D) after 20 weeks of continuous exposure. Here we compare an iAs model in development to this previously developed Cd model. The HPL-1D cells that were used are an immortalized, non-tumorigenic human peripheral epithelial cell and were used with both agents. HPL-1D cells were chronically exposed to non-toxic levels of Cd (5 μM) or iAs (2 μM) and over 20-26 weeks of chronic exposure signs of oncogenic transformation were observed. At the end of the exposure, colony formation in soft agar, invasion and expression of cancer relevant genes were used to assess oncogenic phenotype in these cell models. By 26 weeks of continuous iAs exposure, secreted MMP-2 significantly increased to 147% of control, near levels typical of a cancer phenotype. In comparison, after only 20 weeks of Cd exposure, MMP-2 levels increased to 358% of control and cell invasion and colony formation increased by more than 3-fold compared to control cells, all indicating an oncogenic phenotype. Following iAs exposure (26 weeks) increases were seen in MT-1A (768% of control) and MT-2A (614% of control) expression, similar to that seen with Cd transformation. Expression of epithelial-to-mesenchymal transition marker Vimentin and metal transporter MRP2 in control with chronic iAs exposure. High VEGF oncogene expression is often seen in lung adenocarcinomas and after 26 weeks of chronic iAs treatment expression increased to 4.3-fold above control. The SLCO9A8 (ZIP 8) transporter, which is known to influx Cd, though increased by Cd transformation was unchanged in chronic iAs exposure. Thus, it appears that both Cd and iAs can early signs of transformation in human lung epithelial cells, although some gene expression is inorganic specific.

2281 Metallothionein Blocks Arsenic-Induced Oxidative DNA Damage.

W. Qu and M. P. Walsey. NTP; NIEHS, NIH, Research Triangle Park, NC.

Metallothionein (MT) plays an important role in detoxication of inorganics. Inorganic arsenic is a toxic metalloid and a human carcinogen that may act, in part, by causing oxidative DNA damage (ODD). MT can limit ODD induced by other inorganic carcinogens, like cadmium. Although MT can mitigate arsenic toxicity in vivo, how MT impacts arsenic-induced ODD has not been defined. Here, we studied ODD induced by acute arsenic treatment in vitro and the effects of cellular MT using cells that poorly express MT (MT-I/II double knockout; called MT-null cells) compared to parental wild-type (WT) MT competent cells. MT-null and WT cell lines were first exposed to arsenite (NaAsO2) for 24 h to assess cytotoxicity. Arsenite was much less cytotoxic in WT cells (LC50 = 11.0 ± 1.3 μM, mean ± SEM) than MT-null cells (LC50 = 5.6 ± 1.2 μM). Arsenic-induced ODD was measured by the immuno-spin trapping method which measures DNA radicals after conversion to stable DNA nitrones in situ. Arsenite treatment (1 or 5 μM; 24 h) induced much less ODD in WT cells (121% and 141% of control, respectively) than in MT-null cells (220% and 260%). In WT cells arsenic caused concentration-related increases in MT expression (in mRNAs and protein) and in metal-activated transcription factor 1 (MTF1), a requirement for induced MT gene expression by arsenic. In contrast, in MT-null cells, the basal levels of MT were very low and were not increased by arsenic. Transfection of MT-I into MT-null cells markedly reduced arsenic-induced ODD. Two important transport genes, Mrp1 and Mrp2, showed increased expression in WT cells but not MT-null cells. Arsenic caused concentration-related increases in the oxidant defense genes, HO-1 and GSTζ2 in both WT and MT-null cells, but to much higher levels in WT cells. Thus, MT protects against arsenic-induced ODD in MT competent cells potentially by multiple mechanisms including direct sequestration and scavenging oxidant radicals. MT-competent cells are more adept at activating metal transport systems and oxidant response genes, although the role of MT in these responses is unclear.

2282 Increase Blood Pressure, Changes of Left Ventricular Geometry, and Function in Children Environmentally Exposed to Inorganic Arsenic.

1Toxicology, Cinvestav-IPN, D.F., Mexico; 2ICMPIO, D.F., Mexico; 3Health and Work, IMSS, D.F., Mexico.

Hypertension is a known cardiovascular risk factor to develop final cardiac events and epidemiologic studies in adults have been related hypertension with inorganic arsenic (iAs) exposure. Left ventricular mass (LVM) increase is a potent predictor of cardiovascular morbidity and mortality and it is stimulated by higher blood pressure as well as impaired myocardial contractile performance. Fraction effect (EF) has been employed as a good index of global systolic function. The aim of this study was evaluate the association between iAs exposure, blood pressure, and echocardiographic parameters in children. In this cross-sectional study 170 children (3-14 years old) chronically exposed to iAs through drinking water were recruited in an endemic area of central part of Mexico. LVM and EF were derived from echocardiographic parameters in children. In this cross-sectional study 170 children (3-14 years old) chronically exposed to iAs through drinking water were recruited in an endemic area of central part of Mexico. LVM and EF were derived from echocardiographic parameters in children. In this cross-sectional study 170 children (3-14 years old) chronically exposed to iAs through drinking water were recruited in an endemic area of central part of Mexico. LVM and EF were derived from echocardiographic parameters in children. In this cross-sectional study 170 children (3-14 years old) chronically exposed to iAs through drinking water were recruited in an endemic area of central part of Mexico. LVM and EF were derived from echocardiographic parameters in children. In this cross-sectional study 170 children (3-14 years old) chronically exposed to iAs through drinking water were recruited in an endemic area of central part of Mexico. LVM and EF were derived from echocardiographic parameters in children. In this cross-sectional study 170 children (3-14 years old) chronically exposed to iAs through drinking water were recruited in an endemic area of central part of Mexico. LVM and EF were derived from echocardiographic parameters in children. In this cross-sectional study 170 children (3-14 years old) chronically exposed to iAs through drinking water were recruited in an endemic area of central part of Mexico. LVM and EF were derived from echocardiographic parameters in children.
Dimethylalanine acid (DMAV) is the major urinary metabolite of inorganic arsenic in humans and small animals. DMAV is weakly cytotoxic, however, it is reduced to dimethylarsinous acid (DMAIII) which is over 100 times more toxic. Although glutathione S-transferase omega 1 (GSTO1) catalyzes the reduction of DMAV, its role in DMAV reduction in vivo or in cell extracts is uncertain. We studied the reduction of DMAV to DMAIII and in rats and in rat liver cytosol to better understand its mechanism. To assess DMAV reduction in rats, we devised a novel procedure. This is based on following the time course of the accumulation in the blood of the RBC-bound dimethylarsenic (DMA), which represents DMAIII. Therefore, we serially measured the RBC-bound DMAs in the blood of DMAV-injected anesthetized rats with ligated renal pedicles. These studies indicated that reduction of DMAV to DMAIII was rapid, as in 90 min 31% of the injected 50 μmol/kg DMAV dose was converted to DMAIII that was sequestered by the circulating erythrocytes. Pretreatment of rats with glutathione (GSH) depletors (phorone or BSO) delayed the elimination of DMAV and the accumulation of RBC-bound DMAs, whereas the methyltransferase inhibitor PAD was without effect. Reduction of DMAV by rat liver cytosol was assayed by extraction of DMAIII from the incubations of cytosol with DMAV and quantification by HPLC-HG-AFS. We found that reduction of DMAV required cystolic protein and GSH and was inhibited by thiol reagents, GSSG and dehydroascorbate. Although thioridoxin reductase (TrxR) inhibitors (aurothioglucone and trivalent antimony) inhibited cystolic DMAS reduction, TrxR plus NADPH alone or when added to the cytosol failed to support DMASV reduction. On ultrafiltration of the cytosol through a 3 kDa filter, the reducing activity in the retentate was lost but was largely restored by NADPH. Such experiments also indicated that the reducing enzyme was larger than 100 kDa, and was not GSTO1. In summary, reduction of DMAV to the supertoxic DMAIII in rats and rat liver cytosol is rapid and GSH dependent, yet its mechanism is still elusive.

2284 Fibronectin Expression in Human Bladder Cells (UROtsa) Exposed to or Malignantly Transformed by Arsenic or Cadmium.

A. R. Klinger1, M. E. Jen1, J. K. Willit1, H. M. Hewitt1, X. Zhou1, S. Somji2, S. H. Garrett2, D. A. Sens3, and I. R. Dunlay1. 1. Anatomy, University of North Dakota, Grand Forks, ND; 2. Pathology, University of North Dakota, Grand Forks, ND.

Fibronectin is an extracellular matrix glycoprotein that is present in nearly all connective tissues as well as a soluble protein within the blood. The main functions of fibronectin relate to cellular adhesion, cell migration, and cell signaling. In the bladder, fibronectin is found within the lamina propria, blood vessels, nerves, and smooth muscle basement membrane. Fibronectin is present at very low levels in the normal bladder epithelium but in bladder carcinomas it has been found to be substantially increased in expression and/or present in oncofetal alternatively spliced forms. This has led to several studies of fibronectin as a potential prognostic marker in bladder cancer. The purpose of the current study is to validate initial microarray studies that indicated strong differential expression of fibronectin in UROtsa bladder cells transformed with cadmium compared to non-malignant UROtsa cells. Fibronectin mRNA and protein were found to be increased in 6 of 7 cadmium transformed cell lines as well as in 5 of 6 arsenic transformed cell lines compared to the non-transformed parent cells. The ability of fibronectin expression to be altered epigenetically by histone acetylation or DNA methylation or directly by exposure to arsenic or cadmium was also examined. Fibronectin mRNA and protein was found to consistently decrease during 24-72 hours exposure to arsenic but was not consistently changed by short term exposure to cadmium. The results of this study show that alternations in fibronectin expression may correlate with transformation of bladder cells exposed to heavy metals.

2285 Gene Expression Changes Induced by Various Arsenicals In Vitro.

P. R. Dodmane, L. L. Arnold, K. L. Pennington and S. M. Cohen. Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE.

Inorganic arsenic (IA) is a human urinary bladder, skin and lung carcinogen. The mechanism by which IA induces tumors is unknown. IA is metabolized to methylated arsenicals and excreted in urine. In vitro trivalent arsenicals are more cytotoxic than pentavalent forms. Multiple studies have documented a range of arsenic-induced gene changes in vivo and in vitro, but the dose response is unclear. In this study, the dose response for IA and effects of various arsenicals for gene expression changes was evaluated in human bladder epithelial cells (HBEc). Primary HBEc were exposed to 0.1, 1, 5 or 10 μM of AsII, 1 μM MMAI and 1.4 μM DMAIII for 24 h and 5.8 μM AsIII for 72 h. Increasing concentration of AsIII showed increasing number of differentially expressed genes (DEG) correlating with increasing cytotoxicity. The lowest AsIII used, 0.1 μM, did not induce any DEG, whereas there were 211, 1701 and 1732 DEG at 1, 5 and 10 μM of AsIII, respectively. Pathway analysis showed only IFN signaling and pattern recognition receptor pathways (PRPR) being altered with 1 μM AsIII. IFN signaling was also altered with 5 μM AsIII in addition to NFR2-mediated oxidative stress response (NOSR) and IL-17A signaling. Ten μM AsIII altered NOSR in addition to glutamate metabolism, cell cycleG1/S checkpoint and p53 signaling. No other DEG were induced.

2283 Reduction of Dimethylarsenate to the Supertoxic Dimethylarsinate by Rats and Rat Liver Cytosol.

Human and rodent liver cytosols contain dimethylarsenic acid (DMAV)-reducing activity. We purified the reducing activity from the cytosol failed to support DMAV reduction. On ultrafiltration of the cytosol through a 3 kDa filter, the reducing activity in the retentate was lost but was largely restored by NADPH. Such experiments also indicated that the reducing enzyme was larger than 100 kDa, and was not GSTO1. In summary, reduction of DMAV to the supertoxic DMAIII in rats and rat liver cytosol is rapid and GSH dependent, yet its mechanism is still elusive.

2286 Effects of Treatment with Dimethylarsinous Acid (DMAIII) on the Urinary Bladder Epithelium of Female Arsenic Methyltransferase (As3mt) Knockout Mice and C57Bl/6 Mice.

L. L. Arnold, P. R. Dodmane, K. L. Pennington and S. M. Cohen. Pathology and Microbiology. University of Nebraska Medical Center, Omaha, NE.

Chronic exposure to inorganic arsenic (InAs) is carcinogenic to the human urinary bladder. It produces urothelial cytotoxicity and proliferation in rats and mice. DMAV, a major methylated urinary metabolite of InAs, is a rat bladder carcinogen. DMAIII was shown to be the likely urinary metabolite of DMAV-directed urothelial changes and is postulated to be one of the active metabolites of InAs. To evaluate potential DMAIII-directed urothelial effects, it was administered to As3mt knockout mice which cannot methylate arsenicals. Female C57Bl/6 wild type and As3mt knockout (group) was administered DMAIII at 0.1 M and 1 M for four weeks. Urothelial effects were evaluated by light and scanning electron microscopy (SEM) and immunohistochemical detection of bromodeoxyuridine (BrdU). DMAIII significantly increased the BrdU labeling index in the knockout group compared to control and to the treated wild type group. DMAIII induced a greater increase in the incidence of simple hyperplasia in knockout mice (4/10) compared to wild type mice (2/10). All treated knockout mice had more and larger intracystic-plastic granules, compared to the treated wild type mice. Changes in SEM classification were not significant. In conclusion, DMAIII induces urothelial toxicity and regenerative hyperplasia in mice and most likely plays a role in inorganic arsenic-induced urothelial changes. However, in mice, DMAV does not induce hyperplasia, suggesting that urinary concentrations of DMAIII do not reach cytotoxic levels in DMAV-treated mice.

2287 Arsenite Inhibits DNA Repair through S-Nitrosation of Poly (ADP-Ribose) Polymerase 1.

Arsenic, a widely distributed carcinogen, is known to significantly impede the activity of other carcinogens such as ultraviolet radiation and benzo[a]pyrene at low, non-cytotoxic concentrations. Evidence from our lab and others suggests inhibition of DNA repair could be an important mechanism of arsenic co-carcinogenesis. We recently demonstrated that reactive nitrogen species (RNS) induced by arsenic may play an important role in inhibition of PARP-1 activity, but the role of RNS in the mechanism of arsenic inhibition is not clear. In this work, we show that (III)-induced RNS caused S-nitrosative modification on cysteine residues of Poly(ADP-ribose) polymerase (PARP-1), a key DNA repair protein in base excision repair. We found that similar to the effect of a NO donor, As(III) treatment in HaCat cells induced S-nitrosation on PARP-1 protein. This S-nitrosator of PARP-1 could be reduced by L-NAME (nitric oxide synthase inhibitor), c-PTIO (nitric oxide scavenger) or ascorbic acid. In addition, As(III) treatment lead to zinc loss and activity inhibition of PARP-1 protein isolated from cells. Importantly, we confirmed that S-nitrosation on zinc finger DNA binding domain of PARP-1 via generation of NO, leading to zinc loss and activity inhibition of PARP-1. These findings provide novel insight into the molecular mechanism of As inhibition of PARP-1.
Epidemiology studies have shown a strong link between chronic arsenic exposure and bladder cancer. An immortalized human urothelial cell line, UROtsa has been widely used as a model of arsenic-induced bladder toxicity. Chronic exposure to 1μM sodium arsenite transforms UROtsa to a cancerous cell line, URO-ASSC. This phenotype is stable with no further arsenite selection, and URO-ASSC is typically assayed for malignancy without arsenite exposure. In the absence of arsenite, we found that both UROtsa and URO-ASSC demonstrate constitutive autophagy. Recent evidence suggests that autophagy is a survival mechanism for cancer. This led us to hypothesize that disrupting autophagy could reduce malignant potential in URO-ASSC. We found that URO-ASSC accumulates LC3II protein levels 3.4 fold faster compared to UROtsa when autophagic flux was blocked with bafilomycin A1 in a 2-hour time course, suggesting a higher rate of autophagic turnover in URO-ASSC. Impairing autophagy in URO-ASSC by siRNA against ATG7 resulted in 65% reduction of anchorage-independent growth, a key phenotype of arsenic-induced malignant transformation. Surprisingly, when we reintroduced URO-ASSC cells to 1μM of arsenite exposure, LC3-II levels and autophagic flux were reduced by 50%, suggesting that ongoing exposure to arsenite impairs autophagy. This autophagy impairment was also associated with a 55% reduction in soft agar growth in the presence of 1μM arsenite. These in vitro experiments provide insight into the complex effect of arsenic exposure on the process of autophagy and its relationship to arsenite-induced malignancy. Furthermore, these studies raise the possibility that ongoing arsenic exposure may suppress malignant growth concurrently with establishing the malignant phenotype, perhaps in part through modulating the autophagic pathway. The translational impact of this finding could have bearing on human populations such as those in Chile, that transition from periods of sustained arsenic exposure to periods in which arsenic exposure has been reduced.

Arsenic is an environmental pollutant that induces apoptosis in various tissues. However, underlying molecular mechanisms of arsenic-induced apoptosis are not clear. Recently, we have found that apoptosis through the overaccumulation of p53 is involved in cadmium toxicity in rat proximal tubular cells (NRK-52E cells). Moreover, gene expressions of Ube2d family, which conjugate ubiquitin to p53, mediating tissue- or cell-specific pathways for p53 stability. As[III] in HBMECs and HK-2 cells. Our findings suggest that As[III] increases cell- or tissue-specific pathways for p53 stability. AS3MT may be an important determinant of risk associated with chronic iAs exposure. Concentrations of iAs, MAs, and DMAs in urines from residents of Churchill County, Nevada, were used to calculate primary (MAs/iAs) and secondary (DMAs/MAs) methylation indices (MI). AS3MT genotypes were determined for 198 individuals selected on the basis of lowest and highest secondary MIs. The incidence of an AS3MT polymorphism (rs11191439) that replaces a methionyl residue in position 287 with a threonyl residue (M287T) affected the secondary MI. For the M287T polymorphism, median values for secondary MIs were 6.5 in 150 individuals homozygous for wild-type AS3MT, 2.8 in 43 individuals heterozygous for wild-type and mutant alleles, and 2.4 in 5 individuals homozygous for the M287T polymorphism. In contrast, median values for primary MIs were unaffected by this polymorphism. Two intrinsic variants (T35587C and G35991A) reported to alter the levels of MAs and DMAs in other studies did not alter primary and secondary MIs in this population. These results indicate that the common M287T polymorphism of AS3MT is associated with altered profiles of methylated arsenicals in urine from individuals chronically ingesting iAs in drinking water. Linkages among AS3MT genotype-dependent alterations in urinary arsenical profiles, the catalytic properties of AS3MT variants, and disease susceptibility require further examination. (This abstract does not reflect U.S. EPA policy).

Arsenic exposure has been linked to atherosclerosis; however, molecular mechanisms involved in arsenic-enhanced atherosclerosis are unknown. Previously, we have shown in vitro and in vivo that arsenic inhibits transcriptional activation of the liver X nuclear receptors (LXR), key regulators of macrophage lipid homeostasis. Here, we evaluated the role of LXRα in arsenic-induced atherosclerosis using the ApoE-/- mouse model. In ApoE-/- mice, 200 ppb arsenic increased atherosclerotic plaque size after 13 weeks. In contrast, LXRα-deficient ApoE-/- mice did not show increased plaque size following arsenic exposure, indicating that arsenic may enhance atherosclerosis in an LXRα-dependent manner. In the ApoE-/- mice, we saw significant changes in plaque composition, and thus in LXRα-/-ApoE-/-, we assessed plaque staining of: 1) lipid deposition and macrophage content and 2) collagen composition and smooth muscle cell content. Interestingly, arsenic decreases macrophages in LXRα-/-ApoE-/-, whereas no change was observed in ApoE-/- exposed mice. However, arsenic increased lipids in both genotypes, suggesting impaired macrophage cholesterol efflux capacity and subsequent lipid accumulation. Secondly, we observed that arsenic decreased collagen content in LXRα-/-ApoE-/- and ApoE-/- to the same extent, but arsenic increased smooth muscle cells, a major collagen producing cell type, in the in LXRα-/-ApoE-/-, while they were decreased in ApoE-/- This indicates that LXRα may be involved in maintaining matrix integrity. In fact, arsenic-exposed LXRα-/-ApoE-/- plaques had increased matrix metalloproteinase (MMPs) activity compared to both control LXRα-/-ApoE-/- and ApoE-/-, which could be responsible for both the decrease in plaque collagen and the smooth muscle cells invasion. Our observations suggest that arsenic may increase atherosclerosis formation through LXR inhibition, but it may alter plaque composition in a LXR-independent manner.

Arsenic (As(III)) is a worldwide environmental pollutant and a human carcinogen. It is well recognized that the carcinogenicity of As(III) is largely dependent on the methylation levels (monomethyl, dimethyl, and trimethyl) that are present during the process of metabolism in mammals. Oxidative methylation, is based on the findings that As(III) is sequentially converted to monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), and trimethylarsine oxide (TMA(V)) in both humans and in laboratory animals such as mice and rats. Activation of the aryl hydrocarbon receptor (AhR) ultimately leads to the induction of the carcinogen activating enzyme cytochrome P450 1A1 (CYP1A1). Therefore, in this study we examined the effects of co-exposure to MMA(V), DMA(V), and TMA(V) in the absence and presence of the AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), on the expression of CYP1A1 in HepG2 cells. Our results showed that
treatment of HepG2 cells with MMA(V), DMA(V), or TMA(V) alone signifi-
cantly induced GR mRNA, protein, and catalytic activity levels. Furthermore, when the cells were co-exposed to MMA(V), DMA(V), or TMA(V) in the presence of TCDD, there was further potentiation of the TCDD-mediated induction of CYP1A1 mRNA, protein, and catalytic activity levels. In addition, MMA(V), DMA(V), and TMA(V) in the absence and presence of TCDD induced the AhR-dependent XRE-driven luciferase reporter activity, suggesting an AhR-dependent mechanism. In conclusion, this is the first demonstration that As(III) metabolites, MMA(V), DMA(V), and TMA(V) induce CYP1A1 mRNA, protein, and catalytic activity levels in an AhR-dependent mechanism and represents a novel mechanism by which As(III) causes carcinogenicity. Supported by NSERC Discovery Grant RGPIN 250139-12.

J. Currier1, R. Saunders2, L. Ding2, W. M. Bodnar1, P. Cable1, T. Matouk1, J. Creed1 and M. Styblo1. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC; 3Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC; 4Institute of Analytical Chemistry of the ASCR, Brno, Czech Republic; 5Microbiological and Chemical Exposure Assessment Research Division, NERL, US EPA, Cincinnati, OH.

Several methods are used for quantifying the toxic inorganic arsenic (iAs) metabolites, methylarsonic acid (MA(III)) and dimethylarsinic acid (DMA(III)), including reversed-phase high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) and hydride generation-cryotrapping-atomic absorption spectrometry (HG-CT-AAS). While HG-CT-AAS has consistently detected these arsenicals in biological samples, HPLC-ICP-MS has provided contradictory results. Here, we compare the capacities of both methods to detect and quantify MA(III) and DMA(III) in an in vitro methylation system containing recombinant human arsenic (+3 oxidation state) methyltransferase (AS3MT), S-adenosyl methionine, a non-thiol reductant tris(2-carboxyethyl)phosphine, and arsenite (As(III)) or As(III) as substrates. HPLC separation of the in vitro methylation mixture resulted in significant losses of MA(III) and DMA(III) with total arsenic recoveries below 25%. Ultrafiltration showed that both MA(III) and DMA(III) are bound to AS3MT. Oxidation of the mixture with H2O2, prior to HPLC separation increased arsenic recoveries to ~95% but oxidized MA(III) and DMA(III), thus preventing quantification of these metabolites. In contrast, direct HG-CT-AAS analysis revealed large quantities of MA(III) and DMA(III) and high total arsenic recoveries (>72%) after cytotoxic treatment. These data suggest that HPLC-ICP-MS can provide false-negative results when used for analysis of MA(III) or DMA(III) in biological samples containing protein at concentrations as low as those commonly found in human urine.

2294 The Retention ofTrivalent Arsenic Metabolites inUrothelial Cells Is Associated with Markers of As Exposure and Diabetes.

M. Styblo1, J. Currier1, C. González-Horta2, L. M. Del Razo1, B. Sánchez-Ramírez1, L. Ballinas-Casarubias1, G. G. García-Vargas1, M. C. Ishida2, R. Saunders1, Z. Drohmai1 and D. Lonze1. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Universidad Autónoma de Chihuahua, Chihuahua, Mexico; 3CINVESTAV-IPN, Mexico City, Mexico; 4Universidad Juárez del Estado de Durango, Durango, Mexico; 5University of Nebraska Medical Center, Omaha, NE; 6Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC.

Exposure to arsenic in drinking water has been linked to an increased prevalence of diabetes. Laboratory evidence suggests that methylarsonic acid (MA(III)) and dimethylarsinic acid (DMA(III)) that are formed in the course of iAs metabolism contribute to the diabeticogenic effects of iAs exposure. However, no data are available on tissue concentrations of these toxic metabolites in humans. Here, we used a newly developed hydride generation(HG)-cryotrapping(CT)-inductively coupled plasma-mass spectrometry method with limits of detection of 0.04-2 pg As to examine the retention of tri- and pentavalent metabolites of iAs in urinary bladder exfoliated cells (BECs) isolated from urine of 343 residents of Chihuahua, Mexico who ingest drinking water contaminated with up to 400 ppb As. The urinary metabolites of iAs were measured by HG-CT-atomic absorption spectrometry. The sum of As species in BECs ranged from 0.8 to 3.137 pg As/10,000 cells. Notably, iAs was the major species retained in BECs (~66% of total As). MA(III) and DMA(III) accounted for 8 and 2% of total As. We found positive statistically significant correlations between the concentrations of As species in BECs and in urine (r = 0.12-0.55, p<0.001). When adjusted for age, sex, and BMI, trivalent arsenicals retained in BECs were significantly correlated with markers of diabetes, fasting plasma glucose (FPG) and 2-hour plasma glucose (2HPG) (r = 0.13-0.20, p<0.001). Urinary iAs, MAs, and DMAAs also correlated with FPG and 2HPG (r = 0.15-0.21, p<0.001). Thus, both urinary metabolites of iAs and the metabolites retained in BEC can be used as biomarkers of the diabetogenic effects of iAs exposure.

2295 Oxidation State Specific Analysis of Arsenic Species in Tissues of Wildtype and Arsenic (+3 Oxidation State) Methyltransferase (As3mt) Knockout Mice.

C. Douillet1, J. Currier1, R. Saunders2, Z. Drohmai1 and M. Styblo1. 1Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC; 2Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC.

As3mt catalyzes the conversion of inorganic arsenic (iAs) to methylated metabolites, including methylarsonic (MA(III)) and dimethylarsinic (DMA(III)). While this enzyme is critical for the detoxification of ingested iAs, MA(III) and DMA(III) are more toxic than iAs. The As3mt-KO mice can thus be used to explore the role of MA(III) and DMA(III) in the adverse effects of iAs exposure. Wild-type (WT) C57BL/6J mice exposed to 50 ppm As as arsenite (As(III)) in drinking water developed diabetes characterized by impaired glucose tolerance and insulin resistance. Methylated arsenicals were detected in tissues maintaining glucose homeostasis, but the oxidation state of As was not determined. Our recently developed HG-CT-AAS method for the oxidation state specific speciation of As in complex biological matrices was used to compare retention of tri- and pentavalent As species in tissues of WT and As3mt-KO mice drinking water with iAs. As3mt-KO mice were exposed to 0, 15, 20, 25 or 30 ppm and WT mice to 50 ppm As as As(III) for 4 weeks. As3mt-KO mice retained almost exclusively iAs; iAs was the most prevalent species in liver, pancreas, adipose, lung, heart, and kidney, ranging from 53 to 74% of total As. Methylated arsenicals did not exceed 10% of total As in any tissue. Tissues of WT mice retained iAs and methylated arsenicals; As(III), MA(III) and DMA(III) represented 55-68% of the total iAs in the liver, pancreas, and brain. High levels of MA(III) were found in the intestine and intestinal content of WT, but not As3mt-KO mice, suggesting that intestinal bacteria are not a major source of methylated As species. Our results indicate that internal total As doses in tissues critical to glucose homeostasis (liver, pancreas, skeletal muscle, adipose) equivalent to WT mice can be achieved in As3mt-KO mice after exposure to 25 and 30 ppm As. Future studies will compare the diabetogenic effects of iAs exposure in WT and As3mt-KO mice.

2296 Photo-Activatable GFP-Labeled Rat Glucocorticoid Receptor (paGFP-rGR) As Model to Study Effects of Arsenic on Endocrine Receptor Activation and Cellular Localization.

S. K. Schmaling1,3, F. Zandbergen1, A. Adelhayo2,3, M. C. Connelly1,4, V. Chakravani1, J. E. Bodwell1 and J. W. Hamilton1,3. 1Marine Biological Laboratory, Woods Hole, MA; 2Brown University, Providence, RI; 3Bridgewater State University, Bridgewater, MA; 4Valdosta State University, Valdosta, GA; 5Dartmouth Medical School, Lebanon, NH.

Exposure to arsenic (As) is associated with an increased risk of many serious illnesses including several types of cancer, type 2 diabetes, cardiovascular disease, and reproductive and developmental problems. Previous research showed that As can act as an endocrine disruptor, altering the regulation of gene expression by numerous nuclear hormone receptors, including the Glucocorticoid Receptor (GR). At very low doses (0.05-1 μM) As enhanced hormone-mediated, GR-regulated gene expression by 18-fold, at intermediate non-cytotoxic concentrations (1-5 μM) As inhibits receptor-mediated gene expression. We have hypothesized that these differential effects reflect separate mechanisms with different targets and that the inhibited activation could be caused by 1) altered rate of hormone receptor translocation to the nucleus, 2) altered number of receptors that translocate, 3) altered steady-state nuclear levels of receptor (e.g., by decreases in nuclear export), 4) altered efficiency of receptor function, or some combination of these. To test this, we used HEK293 cells to generate a cell line stably expressing rat GR fused to photo-activatable Green Fluorescent Protein (HEK293-paGFP-rGR), allowing
for intracellular tracking of GR using microscopy. The paGFP-rGR leaves biochemical in a similar manner as native GR. PaGFP-rGR mediates hormone-induced gene expression and microscopy showed that the rate and extent of nuclear translocation of paGFP-rGR increase in a concentration dependent manner in response to synthetic glucocorticoid. We found that intermediate As concentrations reduce this translocation. (Supported by NIH-NIEHS SRF (P42 ES07373), NSF REU (0115378), and NIH-NRSA (2T3 ES 2727-21)).

2297 In Utero Arsenic Exposure and Epigenetic Changes in the Mouse Liver: Comparisons with Transcriptional Modulation.
K. Bailey¹, D. Rojas², Z. Drobna³ and R. C. Fry²-³. ¹Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC; ²Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC; ³Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC.

Chronic exposure to high levels of iAs in drinking water is associated with cancers of the skin, urinary bladder, lung, liver, and prostate in humans. Exposure to iAs during fetal development has been of particular concern as this developmental time point is often particularly sensitive to the effects of environmental toxicants. In C3H and CD1 mice, iAs acts as a complete transplacental carcinogen in which male offspring born to pregnant C3H and CD1 females exposed to 85 ppm iAs in drinking water during the latter part of gestation [gestational day (GD) 8-18] have an increased incidence of hepatocellular carcinomas (HCCs) in adulthood, a major form of cancer associated with chronic iAs exposure in humans. Analyses of normal-appearing liver tissue from transplacently-exposed newborns and adults with liver tumors have previously reported perturbations in gene expression and/or global DNA methylation levels and suggested these alterations may contribute to iAs-associated liver carcinogenesis. Here, we examined the gene expression profiles of >35,000 transcripts and the DNA methylation levels of >15,000 CpG islands associated with gene promoters of fetal male CD1 mice (GD 18) transplacentally exposed to a hepatocarcinogenic dose (85 ppm) of iAs (GD 8-18). Compared to vehicle-exposed mice, we observed statistically significant changes in the transcriptome (308 transcripts) and DNA methyolase (191 gene promoters) in gestationally-exposed fetal males (p<0.05, 1.3-fold change vs. controls). Surprisingly, when using the same criteria for the identification of changes in DNA methylation and transcript levels, there were no common genes. These results suggest alterations in the DNA methylation may not necessarily be predictive of changes in gene expression and the relevance of these alterations in disease development warrant further study.

2298 Arsenic Compromises Airway Epithelial Barrier Properties in Primary Mouse and Immortalized Human Cell Cultures.
C. L. Sherwood¹, ², ³, A. Ligouri¹, ², ³, C. Olsen¹, ², ³, C. Lami², ³, ⁴, L. J. Burgess⁵ and S. Beitzel⁴, ³. ¹Arizona Respiratory Center, AZ Health Sciences Ctr, Tucson, AZ; ²Cell and Molecular Medicine, AZ Health Sciences Ctr, Tucson, AZ; ³Arizona Respiratory Center, AZ Health Sciences Ctr, Tucson, AZ; ⁴Applied Medical Sciences, University of Southern Maine, Portland, ME; ⁵Shimane University Faculty of Medicine, Izumo, Japan.

Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion. Lung effects from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As a key player in innate immune defense, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants. In animal and human studies, arsenic ingestion can lead to altered lung function suggestive of epithelial barrier dysfunction. In this report, we evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic (i.e., < 4 μM) as Na-arsenate; equivalent to ~300 ppb) on airway epithelial barrier properties. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 μM) and sub-micromolar (0.8 μM) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered localization patterns of barrier proteins claudin-1 and occludin at cell-cell contacts. In order to better quantify arsenic-induced changes in barrier molecular components we used the same arsenic exposure on an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic increased the protein expression of claudins -4, -5, and -7 as well as the mRNA levels of claudin-7 in 16HBE14o- cells. Additionally, micromolar levels of arsenic resulted in altered phosphorylation of occludin. In summary, exposure to environmentally-relevant levels of arsenic can alter both the structure and function of airway epithelial barrier constituents and, consequently, basic innate immune defense in the airway.

2299 Associations of Single Nucleotide Polymorphisms and Haplotypes in Arsenic ([3 Oxidation State] Methyltransferase (AS3MT)) with Arsenic Metabolism: A Case Study in Arsenic Contaminated Areas from Vietnam.
T. Agua¹, T. Kunito², N. M. Tue³, V. M. Lan², T. B. Minh³, P. K. Trang³, J. Fujihara³, H. Takeshita³, S. Takahashi³, P. H. Vier¹, S. Tanabe⁴ and H. Iwata³. ¹Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan; ²Shinbun University, Minamata, Japan; ³Center for Environment and Sustainable Development (CETASD), Vietnam National University, Hanoi, Vietnam; ⁴Faculty of Chemistry, Vietnam National University, Hanoi, Vietnam; ⁵United Nations Industrial Development Organization (UNIDO), Hanoi, Vietnam; ⁶Shimane University Faculty of Medicine, Izumo, Japan.

To understand associations of single nucleotides polymorphisms (SNPs) and haplotypes in arsenic ([3 oxidation state] methyltransferase (AS3MT) with arsenic metabolism, we investigated local residents from arsenic-contaminated areas of Vietnam. Analysis of 18 SNPs revealed that there were four haplotype (HT) groups (HT1; AS3MT 03963 – 06144 – 12390 – 14215 – 35587 – 37950; HT2; AS3MT 04602 – 35991; HT3; AS3MT 05913 – 09749 – 27215; HT4; AS3MT 358903 – 37853) in this population. Urinary monomethylarsenic acid (MMA)/inorganic As (IA) and MMA/dimethylarsenic acid (DMA) ratios were used as indicators of arsenic metabolism. AS3MT 12590 genotype and HT2 and 4 groups were significantly related to MMA/IA ratio. In this study, we found that MMA/IA ratio was significantly higher in HT2 and 4 groups than in HT1 and HT3. These results suggest that the AS3MT 12590 genotype and HT2 and 4 groups may significantly contribute to arsenic metabolism.

2300 Mechanism of Arsenic Carcinogenesis in Normal Human Lung Cells.
H. Xie¹, ², ³, J. Wise¹, ², ³, S. Martin¹ and S. Huang¹. ¹Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME; ²Marine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, ME; ³Aplied Medical Sciences, University of Southern Maine, Portland, ME.

Arsenic originates from both geochemical and numerous anthropogenic activities including mining, combustion of fossil fuels, wood preservation, agriculture and metallurgy. Exposure of the general public to significant levels of arsenic is widespread. Arsenic is a well-documented human carcinogen. Long-term exposure to low levels of arsenic in drinking water have been linked to bladder, lung, kidney, liver, prostate, and skin cancer. Among them, lung cancer is of great public concern. However, little is known about how arsenic causes lung cancer and few studies have considered effects in normal human lung cells. The purpose of this study was to determine the cytotoxicity and genotoxicity of arsenic in human primary bronchial fibroblast (NHBHE) and epithelial cells (NHBHE). Our data show that arsenic induces a concentration-dependent increase in cell death after short (24 h) or longer (120 h) exposures. Arsenic induces concentration-dependent but not time-dependent increase in chromosome damage in fibroblasts. No chromosome damage is induced after either 24 h or 120 h arsenic exposure in epithelial cells. Using comet assay and gamma-H2AX foci forming assay, we found that 24 h or 120 h exposure to arsenic induces increases in DNA double strand breaks in both cell lines. These data indicate that arsenic is cytotoxic and genotoxic to human lung primary cells. However, the mechanism of arsenic-induced genotoxicity could be different in bronchial epithelial cells than that in fibroblasts. This work is supported by NIEHS grant R15ES021587 (H.L.) and by NIEHS grant ES016893 (J.P.W.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

2301 Gene Expression Alterations among Adults with Chronic Arsenic Exposure in Bangladesh.
Y. Chervona¹, A. Muftoi2, T. Kluz¹, M. V. Gamble² and M. Costa³. ¹Environmental Medicine, New York University School of Medicine, New York, NY; ²Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY.

Background: Exposure to arsenic (As) is associated with an increased risk of several cancers, as well as, cardiovascular disease, and childhood neuro-developmental deficits. Arsenic compounds are weakly mutagenic, but can alter DNA methylation and post-translational histone modifications (PTM-Hs) levels, as well gene expression.
Methods: Water and urinary arsenic, as well as, gene expression profiles were analyzed in peripheral blood mononuclear cells (PBMCs) from a subset of participants (N=20) of a folate clinical trial in Bangladesh (FACT study). Gene expression profiling was performed using Affymetrix exon ST 1.0 arrays. Differentially expressed genes were identified in a global analysis and real-time PCR was used to validate the expression findings.

Results: Expression analysis revealed that a total of 561 and 1198 genes had a change in expression (p<0.05) with increasing arsenic exposure, in males and females respectively. When examined together (N=20), 177 genes had a > 1.25 fold change in expression. The analysis revealed that some genes appear to be gender specific (i.e. adenosylhomocysteinase (AHCET), oxoglutathione (alpha-ketoglutarate) dehydrogenase (lipomide) (OGDH), lysine (K)-specific demethylase 5CUD (JARID1C/D), and SET domain containing (lysine methyltransferase) 7, while others changed in the same direction among both males and females (i.e. potassium voltage-gated channel, Isk-related family, member 3 (KCNN3), elongation factor, RNA polymerase II, 2 (ELL2), NADH dehydrogenase (ubiquinone) 1 beta sub-complex, 8 (NDUFB8), lactate dehydrogenase D (LDHD)). Moreover, both males and females exhibited a decrease in the expression of DNA repair genes with increasing arsenic exposure.

Conclusion: Chronic exposure to As is associated with gender specific alterations in gene expression profiles of Bangladeshi adults.

2302 Changes in Regulation of Lipid Metabolism from Low-Dose Arsenic Exposure.
A. Adebayo1, 2, F. Zandberg1 and J. W. Hamilton1, 2, 1Brown University, Providence, RI; 2Marine Biological Laboratory, Woods Hole, MA.

Arsenic (As) is naturally present in the environment, and it can be found at various levels in drinking water resulting from contamination of groundwater. Arsenic exposure may cause metabolic imbalances in exposed individuals. The current study was performed to understand downstream events contributing to arsenic-induced disease, many responsible mechanisms have not been elucidated. Control of mRNA expression and action presents a new promising means for understanding downstream effects of arsenic exposure; however, there are few reports of how arsenic regulates expression of miRNA and impacts their function. Our preliminary data indicated induction of miR-29 in white and brown adipose tissue isolated from arsenic exposed (100 μg/L in drinking water for 2 wk) mice and in human adipose-derived mesenchymal stem cells (hMSC) as arsenic inhibited adipocyte differentiation, Further analysis via real-time PCR revealed a 2-3 fold induction of miR-29b following arsenic exposure in hMSCs. The miR-29 family has been identified by multiple studies to be involved in cardiovascular and metabolic diseases, with reduced stem or progenitor cell differentiation capacity believed to be a fundamental means for disease progression. Analysis of downstream proteins by Western blot indicates that C/EPB-beta, an inhibitor of adipogenesis, is upregulated in arsenic treated cells and this upregulation is diminished in cells stably expressing an inhibitor of miR-29b. These data show that exposure to low-dose arsenic effects expression of miRNA in hMSCs, negatively affecting their ability to properly differentiate into adipocytes. Supported by NIEHS grant R01ES013781.

2303 Survey of Arsenic in Drinking Water in the Southern Gobi Region of Mongolia.
P. B. Olkhanud1 and E. K. Silberfeld. 1Department of Environmental Health Sciences, HSUM, Ulaanbaatar, Mongolia; 2Department of Environmental Health Sciences, JHSPH, Baltimore, MD.

Arsenic (As) is a naturally occurring toxicant of global concern. The extent of As content in ground water, however, has not been fully assessed in Mongolia, where all drinking water is sourced from groundwater. Mongolia is currently experiencing rapid mining development, especially in the southern region, which is triggering population growth that will drive increasing water demand for safe drinking water. Moreover, the high prevalence of As exposure and As related diseases just across the border in northern China further highlights the necessity for relevant studies in Mongolia. Thus, this study attempts to determine As concentrations in water sources near the Oyu Tolgoi mine in the Southern Gobi region of Mongolia and investigate its relationship with area, type and depth of the well, and develop a geostatistical map describing the spatial pattern of As concentration in the drinking water sources. The results of our study show that the current and the potential future exposure to As in the Southern Gobi region of Mongolia is significant. In terms of current exposures, almost half of the Herder’s wells that are currently in use and 16.4% of the Monitoring boreholes contain As levels above the World Health Organization’s recommended level. The results also indicate different levels of As concentrations in the water from different types of tube-wells even in the same area and a decreasing tendency of As concentration with increasing well depth suggesting that As in the drinking water sources in the Southern Gobi region of Mongolia is a critical public health issue, especially given the current mining boom in this region.
2306 Evaluating Arsenic Speciation in Fish, Shellfish, and Seaweed Using LC-ICP-MS

B. D. Laird and L. Chan, Department of Biology, University of Ottawa, Ottawa, ON, Canada.

Rationale & Objectives: Risk due to dietary arsenic (As) exposure is specification dependent. For example, although elevated As concentrations are commonly observed in fish, shellfish, and seaweed, the health risks are generally assumed to be low due to the predominance of organoarsonicals (e.g., arsenobetaine). However, little specification data is available to support this assumption for many types of seafood. The objective of the research described in this poster is to fill this data gap by quantifying the relative contribution of various As species for a variety of store-bought seafood samples.

Methodology: Seafood samples were purchased from several supermarkets for As speciation analysis using Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry (LC-ICP-MS). The samples included cherry stone clams, oyster shell clams, tiger prawn, halibut, mackerel, ling cod, marlin, snapper, yellow grouper, and Porphyra seaweeds. Extraction of As species was performed with a methanol-ammonium carbonate solution using a DigiPREP block digestion system. Quantified As species included As(III), As(V), arsenobetaine, arsenocheoline, dimethylarsinic acid, and monomethylarsonic acid.

Results: Total As concentrations ranged between 6 (king mackerel) and 135 (ling cod) μg g⁻¹ (d.w.). The main contributor to As concentrations tended to be arsenobetaine, which ranged between 35% (yellow grouper) and 100% (king mackerel). As(V) was not a significant contributor (<1%) to total As concentrations in any of the samples.

Conclusions: Arsenobetaine was the major As species in most of the seafood samples tested. Future work will be done to assess whether As speciation in foods is modified when digested in simulated gastrointestinal fluids.

2307 Reduction of Arsenite-Enhanced Ultraviolet Radiation DNA Damage by Supplemental Zinc

K. L. Cooper, B. S. King, M. M. Sandoval, K. Liu and L. G. Hudson, Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM.

Arsenic is recognized as a human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenic interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenic in cultured cells and a DNA repair target protein, poly (ADP-ribos) polymerase-1. The study objective was to determine whether zinc ameliorates the effects of arsenic on UVR-induced DNA damage in human keratinocytes and in an in vivo model. In order to investigate the potential zinc effects, normal human epidermal keratinocytes (HEKa) and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UV exposure. Poly (ADP-ribos) polymerase activity and DNA damage in each treatment group were measured in normal human keratinocytes by immunocytochemistry and mutation frequencies at the hprt locus were measured. DNA damage was assessed by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenic effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From this data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo. This suggests that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic-exposed human populations.

2308 Arsenic-Stimulated Adipose Fat Metabolism Is Mediated by G-Protein Coupled Receptors

Y. García-Figueroa, I. R. Klei and A. Barchowsky, Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA.

Consumption of low to moderate levels of arsenic (As(III)) promotes a number of diseases that may stem from dysregulated adipose tissue and glucose metabolism. As(III) inhibits adipocyte differentiation and insulin-stimulated glucose uptake. However, little is known of the impacts of As(III) on adipose lipid storage and lipolysis, as well as mechanisms through which As(III) affects lipolysis. We recently demonstrated that As(III)-inhibited human mesenchymal stem cell (hMSC) differentiation to adipocytes was mediated by G-protein coupled endothelin-1 receptors and hypothesized that a similar mechanism signals for As(III)-stimulated lipolysis within 24 h relative to untreated adipocytes and caused a progressive loss of peripin-coated, Nile red positive lipid droplets) derived from primary brown adipocytes exposed to 1 μM As(III) for 24 to 72 h. As(III)-stimulated lipolysis occurs within 24 h relative to untreated adipocytes and caused a progressive loss of peripin-coated, Nile red positive lipid droplets over 72 h. As(III)-stimulated lipolysis was not associated with an increase in CAMP. However, pre-incubation of the adipocytes with the Gi-inhibitor, Pertussis toxin (Ptx), attenuated As(III)-stimulated lipolysis and lipid droplet loss. Selective inhibition of Gi-coupled endothelin-1 type A and B receptors (EDNRA/EDNRB) also attenuated the effects of As(III), but inhibition of other adipose Gi-coupled receptors involved in fat metabolism was ineffective. The endothelin receptors have different roles in the As(III) responses, since EDNRA inhibition was more effective in preserving lipid droplets and peripin expression while blocking either endothelin receptor attenuated As(III)-stimulated lipolysis. These findings provide additional evidence that As(III) effects on adipogenesis, adipose cell function, and lipid metabolism are mediated through stimulation of specific G-protein coupled receptors. Supported by NIEHS grant R01ES013781 and R01ES013781-S1.

2309 Autophagy Is a Cell Self-Protective Mechanism against Arsenic-Induced Cell Transformation

G. Chen, T. Zhang and Y. Qi, University of Kentucky, Lexington, KY.

Subchronic exposure to arsenic increases the incidence of human cancers, such as skin, lung, colon and rectal cancer. The mechanism for arsenic-induced tumorigenesis is still not clear. It is generally believed that DNA damage and genomic instability, generated by arsenic-promoted oxidative stress, account largely for this process. The major sources of reactive oxygen species (ROS) are arsenic-damaged mitochondria. Autophagy is a catabolic process functioning in turnover of long-lived proteins and dysfunctional organelles such as mitochondria. Defects of autophagy cause stress condition. Furthermore, autophagy promotes genomic instability and increase the risk of tumorigenesis. In the present study using a human bronchial epithelial cell line, BEAS-2B cells, we investigated the role of autophagy in arsenic-induced cell transformation, an important step in arsenic tumorigenesis. Our results show that subchronic arsenic exposure induces BEAS-2B cell transformation accompanied with increased ROS generation and autophagy activation. However, the pattern for ROS and autophagy alteration was different. Arsenic exposure generated a prolonged and steady increase of ROS levels, while the activation of autophagy, after an initial boost by arsenic administration, decreases in response to subchronic arsenic exposure, although the activity is still higher than a non-treated control. Further stimulation of autophagy increases mitochondria turnover and decreases ROS generation as well as arsenic-induced cell transformation. Contrarily, inhibition of autophagy activity decreases mitochondria turnover and enhances arsenic-induced ROS generation and cell transformation. In addition, the mTOR signaling pathway is involved in arsenic-mediated autophagy activation. Our results suggest that autophagy is a cell self-protective mechanism against arsenic-induced cell transformation.

2310 In Utero Low-Level Arsenite Exposure Alters Blood Biochemistry in Adult Mice Predisposing for Liver Steatosis

P. Sanchez Sorria, S. Quach, R. N. Hardwick and T. D. Camenisch, 1, 2, 3
1, 2 College of Pharmacy, University of Arizona, Tucson, AZ; 3Steile Children's Research Center, University of Arizona, Tucson, AZ; 4Southwest Environmental Health Sciences Center, University of Arizona, Tucson, AZ.

Chronic exposure to low levels of arsenic in drinking water has been strongly correlated to higher incidence of hypertension as well as other cardiovascular diseases. Additionally, recent animal studies have shown that chronic exposure to 100 parts per billion (ppb) sodium arsenite resulted in a significant increase in systolic blood pressure, and a similar increase was observed in diastolic blood pressure. Additionally, mice exposed to arsenic developed concentric left ventricular hypertrophy. In order to explore the mechanisms of arsenic-related adult disease, we wanted to evaluate how in-utero exposure contributes to the development of disease, later in adulthood. Mice were exposed to either 100 ppb in-utero, or sodium chloride (control) and were maintained for 34 weeks through adulthood. Blood biochemistry analysis was done, and organs were harvested for histological assessment, as well as protein and RNA studies. Results show that mice exposed to arsenic in-utero had significantly elevated blood glucose levels, as well as significantly higher cholesterol, LDL, and HDL levels with no significant change in weight, when compared to control mice. Furthermore, liver enzymes alkaline phosphatase (ALP), alanine transaminase (ALT), and aspartate transaminase (AST) were elevated in the in-utero exposed mice, when compared to controls. Consistent with these results, oil red-o stain of liver sections show moderate steatosis and higher lipid content in the arsenic treated animals. Taken together, these results show that exposure to arsenic early in life may predispose for the development of metabolic diseases as well as cardiovascular ones.

2306 Evaluating Arsenic Speciation in Fish, Shellfish, and Seaweed Using LC-ICP-MS.

2307 Reduction of Arsenite-Enhanced Ultraviolet Radiation DNA Damage by Supplemental Zinc.

2308 Arsenic-Stimulated Adipose Fat Metabolism Is Mediated by G-Protein Coupled Receptors.

2309 Autophagy Is a Cell Self-Protective Mechanism against Arsenic-Induced Cell Transformation.

2310 In Utero Low-Level Arsenite Exposure Alters Blood Biochemistry in Adult Mice Predisposing for Liver Steatosis.
2311 Arsenic Impairs Adult Muscle Stem Cells and Skeletal Muscle Integrity.
A. Roperti1, D. Stoltz2, B. Goodpaster3, E. Brown4, G. Distefano5, A. Barcowsky6 and F. Ambrosio7, 1Bioengineering, University of Pittsburgh, Pittsburgh, PA; 2Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA; 3Medicine, University of Pittsburgh, Pittsburgh, PA; 4Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA; 5Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA.

Arsenic (As(III))-contaminated drinking water is a global health concern as chronic As(III) exposure poses risk for a number of cancers, diseases, and disabilities. As(III) exposure is associated with skeletal muscle weakness, impaired gait, and fatigue. While As(III) and other metals impact embryonic stem cells and development, it is not clear how As(III) impairs adult stem cell functions in tissue maintenance and regeneration. We hypothesized that As(III) exposure affects adult skeletal muscle stem cell (MuSC) metabolism and function to disrupt muscle maintenance and repair capacity. To investigate this hypothesis, we examined muscle integrity, MuSC metabolism, and phenotype in hind limb muscles isolated from mice exposed to 0 or 100 μg/L As(III) for 5 weeks. Histological analysis demonstrated disrupted muscle bundles with perivascular fatty inclusions and ultrastructural analysis revealed large, fused muscle cell mitochondria in As(III) exposed mice relative to control. MuSC isolated from the As(III) mice and cultured without As(III) for multiple doublings retained a phenotype with mitochondrial myopathy, autophagy, uncoupled oxidative phosphorylation, and impaired differentiation. This phenotype was a maladaptation to stress, as As(III) altered growth kinetics and resistance to oxidative stress. The phenotype and altered growth kinetics were reproduced in multiple experiments with embryonic stem cells, muscle fibers, and myotubes. This phenotype and altered growth kinetics were attributed to stress-induced premature senescence (SIPS), the increase of Pi-induced calcification in the presence of 1 mM inorganic phosphate (Pi), monomethylarsonic acid, or dimethylarsinic acid. None of the treatments induced VSMC calcification in the presence of 1 mM inorganic phosphate (Pi), but 1 μM AsIII increased calcification when induced with 2.5 mM Pi. Cytotoxicities of the four arsenic species were assessed with an LDH assay and acidiﬁne orange/ethidium bromide staining. Results revealed that the calcification increase with AsIII was accompanied by a rise in cytotoxicity due to simultaneous incubation with 2.5 mM Pi. This calcification increase was also observed in the aortas of an established vascular calcification model in which nephrectomized rats fed with a high Pi diet were treated with vitamin D3. Several known mechanisms that might explain arsenic toxicity in our experimental model were discarded: apoptosis, oxidative stress, and inflammatory activation. Nevertheless, both senescence-associated β-galactosidase (SA-β-gal) activity and p21 expression were increased by AsIII, which reveals the induction of SIPS. AsIII also caused dedifferentiation of VSMC, as shown by the reduced expression of the VSMC markers SM22α and calponin. Senescence and similar patterns of gene expression were also observed in the aortas of healthy rats treated with 50 ppm AsV in drinking water for one month.

In conclusion, both the premature senescence in aortic VSMC with phenotypic dedifferentiation and the increase of Pi-induced calcification are novel mechanisms of arsenic vascotoxicity observed in vitro and in vivo.

2312 Arsenic Induces Premature Senescence and Vascular Calcification In Vivo and In Vitro.
V. Sorribas, C. Sosa and A. Martin-Pardillos. Laboratory of Molecular Toxicology, University of Zaragoza, Zaragoza, Spain. Sponsor: A. Anadon.

Arsenic is a natural vasculotoxic agent with ubiquitous exposure to both, human and animals. Several mechanisms have been proposed to explain the vascular toxicity of arsenic. This work describes new mechanisms that affect the vascular smooth muscle cells (VSMC): stress-induced premature senescence (SIPS), dedifferentiation, and medial vascular calcification. Rat aortic VSMC were treated with 1-100 μM of sodium arsenate (AsV), arsenite (AsIII), monomethylarsonic acid, or dimethylarsinic acid. None of the treatments induced VSMC calcification in the presence of 1 mM inorganic phosphate (Pi), but 1 μM AsIII increased calcification when induced with 2.5 mM Pi. Cytotoxicities of the four arsenic species were assessed with an LDH assay and acidiﬁne orange/ethidium bromide staining. Results revealed that the calcification increase with AsIII was accompanied by a rise in cytotoxicity due to simultaneous incubation with 2.5 mM Pi. This calcification increase was also observed in the aortas of an established vascular calcification model in which nephrectomized rats fed with a high Pi diet were treated with vitamin D3. Several known mechanisms that might explain arsenic toxicity in our experimental model were discarded: apoptosis, oxidative stress, and inflammamson activation. Nevertheless, both senescence-associated β-galactosidase (SA-β-gal) activity and p21 expression were increased by AsIII, which reveals the induction of SIPS. AsIII also caused dedifferentiation of VSMC, as shown by the reduced expression of the VSMC markers SM22α and calponin. Senescence and similar patterns of gene expression were also observed in the aortas of healthy rats treated with 50 ppm AsV in drinking water for one month.

In conclusion, both the premature senescence in aortic VSMC with phenotypic dedifferentiation and the increase of Pi-induced calcification are novel mechanisms of arsenic vascotoxicity observed in vitro and in vivo.

2313 Prolonged iAs Exposure Leads to Abrupt Insulin Signaling in L6 Myocytes.
I. L. Druwe1, J. J. Sollome1, J. Gonzales and R. R. Vaillancourt. Department of Pharmacology & Toxicology, The University of Arizona, Tucson, AZ.

Diabetes mellitus is a metabolic syndrome characterized by inappropriate production of insulin or the inability of cells to respond to insulin. It is estimated that by the year 2050, 1 in 3 U.S. adults will have diabetes mellitus. Insulin is the principal hormone involved in lowering blood glucose and functions by suppressing liver gluconeogenesis and glycolysis and by stimulating the glucose uptake in skeletal muscle and adipocytes. Recent epidemiological studies both in the USA and abroad have linked chronic ingestion of low levels of inorganic arsenic (iAs), an environmental toxicant, to the onset of diabetes mellitus. Although these observations have been met with some skepticism, there are few mechanistic studies to elucidate the mechanisms by which iAs perturbs insulin signaling. The few studies that have been performed have focused namely on adipocyte in-vitro models. Here we show that L6 myocytes, an insulin responsive cell line, exposed to low doses of iAs (0.25 to 2 μM) for 4 or 7 days showed a decreased insulin stimulated glucose uptake but no decrease in phospho-AKT or phospho-AS160. In addition, we found that phospho-ERK signaling decreased, while phospho-p38 MAPK signaling increased in response to prolonged iAs treatment. Interestingly, enough increased p38 MAPK activity has been associated with insulin resistance. These data support the epidemiological evidence that chronic exposure to low, physiologically relevant levels of arsenic can contribute to insulin resistance and type 2 diabetes, and that the mechanisms involved are different than those produced by iAs in adipocyte cell models. While the etiology of type 2 diabetes has yet to be elucidated these data show that in addition to pharmacological treatment and lifestyle modifications, environmental exposures should also be considered when evaluating the etiology of type 2 diabetes.

2314 Gene Expression Changes Associated with Chronic Low-Level Monomethylarsonic Acid Exposure in Human Urothelial Cells.
M. Medeiros1, T. Minh le1, D. J. Troup1, P. Novak2 and A. Gandolfi3, 1Pharmacology and Toxicology, University of Arizona, Tucson, AZ; 2Biocentre ASCR, Institute of Plant Molecular Biology, Ceske Budejovice, Czech Republic.

Bladder cancer has been associated with chronic arsenic exposure. Monomethylarsonic acid (MMAIII) is a metabolite of inorganic arsenic and has been shown to transform a human urothelial cell line (UROtsa). It was used as a model arsenical to examine the mechanisms of arsenical-induced malignant transformation of urothelium. A microarray analysis was performed to assess the transcriptional changes in UROtsa from chronic 50 nM MMAIII exposure that leads to transformation at three months. The analysis revealed only minor changes in gene expression at one and two months of exposure, contrasting with substantial changes observed at three months of exposure. To assess the changes occurring between 2 and 3 months of exposure, incremental analysis was performed for 29 genes, covering 7 distinct pathways (mitogenic, PI3K/AKT, apoptosis, JAK/STAT, oxidative stress, DNA repair, and inflammation), that were found changed at 3 months of exposure based on the gene array analysis. Between 2 and 3 months of exposure, progressive alterations in the expression of several genes (i.e., PDGFRα, COX2, XAF1) were observed. These alterations are being correlated with expected phenotypic changes (i.e., hyper-proliferation, colony formation in soft agar) in the transforming cells. Since short-term exposure (up to two months) has not been shown to induce transformation, the gene expression changes observed for cultures treated up to 3 months and beyond suggest that a stress-threshold exists. This study was supported by the Superfund Basic Research Program Grant (NIH grant ES04940) from National Institute of Environmental Health Sciences, and the Trainee in Toxicology and Teratology (NIEHS) grant ES007191. Additional support from NIH grant CA23074, and NIEHS grant ES06694.

2315 Multidrug Resistance Protein 1 Confers Resistance to Organic Arsenic Compound in HL-60 Cells.
H. Narenmandula, S. Xu and Y. Zhang, Department of Pharmacology, Toxicology, and Biochemical Pharmacaceutics, Zhejiang University, Hangzhou, China. Sponsor: D. Thomas.

Arsenic trioxide is established as one of most effective drugs for treatment of patients with acute promyelocytic leukemia (APL). However, non-promyelocytic leukemia HL-60 cells is exhibits resistance to As2O3, and little is known about the underlying resistance mechanism for As2O3 and its biomethylation products, namely, monomethylarsonic acid (MMAIII) on the treatment of tumors. In the present study, we investigated the molecular mechanisms underlying iAsIII and its intermediate metabolite MMAIII-induced anticancer effects in the HL-60 cells. Here, we show that the HL-60 cells (MMAIII treatment) exhibit resistance to inorganic As2O3 (IC50-10 μM), but are relatively sensitive to its intermediate MMAIII (IC50-3-5 μM). Moreover, we found that the multidrug resistance protein 1 (MRP1), but not MRP2, are expressed in HL-60 cells, which reduced the intracellular arsenic accumulation, and conferred resistance to inorganic iAsIII and MMAIII. Pretreatment of HL-60 with MK571, an inhibitor of MRP1, significantly increased iAsIII and MMAIII-induced cytotoxicity and arsenic acid (AEIs) levels, suggesting that the expression of MRP1/4 may lead to HL-60 cells resistance to trivalent arsenic compounds.
An integrative evaluation of the toxicopathological effects of aflatoxin B1 (AFB1) was conducted in this study. Briefly, male F344 rats were orally exposed to a single-dose of AFB1 at 0.5, 5, or 50 μg/kg body weight (BW) or repeated-dose of AFB1 at 0.5, 5, 10, or 25 μg/kg BW for up to 5 weeks. Biochemical and histological changes were assessed together with the formation of AFB1-lysine adduct (AFB-Lys) in serum and liver foci positive for placental form glutathione S transferase (GST-P+). In single-dose protocol, serum ALT, AST and ALP were dose-dependent accompanied with maximal changes (>100 fold) in liver foci positive for GST-P+ at 3-day after treatment. Animal that received 250 μg/kg AFB1 showed concurrent bile duct prolifereation, necrosis and appearance of GST-P+ hepatocytes at 3-day while the pre-neoplastic GST-P+ foci appeared after 1-week. Neither liver GST-P+ hepatocytes nor foci were induced by 50 μg/kg AFB1 treatment. In repeated-dose protocol, bile duct proliferation and liver GST-P+ foci co-occurred after 3-week, followed by proliferation of GST-P+ foci after 4-week and dramatic ALT, AST and CK elevations after 5-week exposure in animals received 75 μg/kg AFB1. Liver GST-P+ hepatocytes and foci appeared in a dose- and time-dependent manner, low dose of AFB1 (5 μg/kg) did not induce liver GST-P+ foci formation throughout the experiment. Serum AFB-Lys increased temporally at low doses (5-25 μg/kg) and reached a maximum after 2-week exposure at 75 μg/kg group, consistent with liver histological changes that may affect the adduct formation. This integrative study demonstrates that liver GST-P+ cells and foci are sensitive biomarkers for AFB1 toxic effect and correlated with bile duct proliferation and biochemical alterations in F344 rats, which hold promise as potential target for future intervention strategies.

In this study, two experiments (in vivo and in vitro) were carried out to study the effects on OTA and FB1 on pigs mononuclear cells as well as on live pigs to assess the effects of these mycotoxins on their health with particular reference to the immune system and pathomorphological changes. The in vitro study showed a time vs concentration decrease of pigs mononuclear cells were used the MTT assay and exposed to 5 and 40 ng/ml for ochratoxin A and 5 and 40 μg/ml of FB1 at 12, 24 and 48 hrs. While the in vivo study showed the ochratoxin A induced highest cell viability decrease as compared to FB1 when exposed singularly, whereas exposure to both mycotoxins simultaneously showed further reduction of cell viability. In the in vivo study was done with myotoxic nephropathy induced in eighteen young pigs with mouldy diets containing 0.5 ppm ochratoxin A (OTA) and/or 10 ppm fumonisin B1 (FB1) for three months. To prove mycotoxin related damage provoked by OTA was seen in the kidneys, as expressed by the strong degenerative changes in proximal tubules and fibrosis in kidneys, FB1 was found to induce an increase in permeability of vessels mainly in lung, brain, cerebellum or kidneys and slight to moderate degenerative changes in kidneys. The exposure to both mycotoxins simultaneously revealed synergistic pathomorphological changes characterized by the combination of the main lesions provoked by each mycotoxin alone, being stronger in their expression when administered together. In addition, Exposure to both mycotoxins and their combination showed induced humoral immune response in all experimental pigs shown by decrease in antibody titer.
DON-induced CCK release in STC-1 cells. The results suggest that DON might induce CCK release in enteroendocrine cells by increasing CaSR sensitivity to extracellular [Ca2+]0 which mediates increased [Ca2+]i influx via L-type-VSCCs Ca2+ and TRPA1 cation channels. DON-induced calcium and hormonal responses demonstrated herein might ultimately contribute to anorexia and emesis potentially as a protective mechanism following ingestion of the toxin.

2321 Red Clover Exhibits Multifaceted Activity on Breast Cancer Cells.

B. M. Dietz, J. Eske, M. Darji, S. Chen, G. F. Pauli and L. L. Bolton, Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL.

An increased breast cancer risk for postmenopausal women taking hormone therapy has been demonstrated by the Women's Health Initiative. Botanical dietary supplements, including red clover products, are commonly used to alleviate menopausal symptoms but still lack efficacy and safety studies. Red clover isoflavones, such as biochanin A and genistein, have been promoted for their cancer preventive activity, in part due to genistein's ERβ selective activity. Other studies suggested possible side effects in estrogen sensitive tissue due to genistein's ERα mediated estrogenicity. This study examined the controversial claims by performing several estrogenic assays with a well-characterized clinical red clover extract and pure isoflavones. Proliferation experiments in ERα breast cancer cells (MCF-7) showed that the effect of the red clover extract on cell proliferation is highly concentration dependent and that has a bell-shaped curve: Low- and high concentrations (30 - 100 ng/mL and > 5 μg/mL, respectively) reduced cell proliferation, whereas intermediate amounts (300 ng/mL - 1 μg/mL) increased it. The pure isoflavones, genistein and biochanin A, exhibited similar bell-shaped dose dependencies. Low (10 nM) and high isoflavone concentrations (>10 μM) decreased cell proliferation, whereas cell survival increased at 300 nM - 1 μM. These findings are in agreement with prior reports of genistein preferentially binding to ERβ with IC50 values from 0.80 to >100.0 μM, from 9.0 to 100.0 μM and from 70.0 to >100.0 μM in CHO-K1 cells, α-zol and β-zol alone or in combination in hamster ovary (CHO-K1) and human hepatoma (HepG2) cells using the MTT assay after 24, 48 and 72h of exposure, b) to evaluate the interactions of mycotoxins mixtures in both cell lines by the isobologram analysis and, c) to study the in vitro metabolism of ZEA in both types of cells using liquid chromatography coupled to the mass spectrometry detector-linear ion trap (LC-MS-LIT). The IC50 values obtained for individual mycotoxins range from 59.4 to >100.0 μM, from 30.0 to 33.0 μM and from 55.0 to >75.0 μM in CHO-K1 cells and from 70.0 to >100.0 μM, from 20.6 to 26.0 μM and from 38.4 to >100.0 μM in HepG2 cells for ZEA, α-zol and β-zol, respectively. Isobologram analysis provides a combination index (CI) value to determine the type of interaction that occurs. The interactions of ZEA and its metabolites became slightly synergistic at low levels (CI from 0.34 ± 0.10 to 0.81 ± 0.33) followed by additive effect (CI from 0.80 ± 0.18 to 8.54 ± 7.76) and turned into antagonism (CI from 1.41 ± 0.16 to 26.17 ± 20.72). The metabolic assays demonstrated that no conversion of ZEA in α-zol and β-zol was detected. However, other metabolites products of ZEA, α-zol and β-zol were generated in both cell lines.

Acknowledgement: The Science and Innovation Spanish Ministry (AGL2010-17024/ALI).

Deoxynivalenol (DON, vomitoxin), a trichothecene mycotoxin produced by Fusarium, frequently contaminates cereal grains causing reported outbreaks of human and animal food poisoning making it a relevant public health concern. Although these outbreaks have the rapid onset of emesis as a common hallmark, the mechanisms for this adverse effect are not fully understood. Recently, our laboratory has demonstrated that the mink (Neovison vison) is a suitable small animal model for investigating trichothecene-induced emesis. We employed the mink to determine the role of gut satiety hormone peptide YY3-36 (PPY3-36) and neurotransmitter 5-hydroxytryptamine (5-HT) in DON-induced vomiting. Emesis induction following intraperitoneal exposure to DON at 100 and 250 μg/kg bw initiated within 15 to 30 min which persisted for up to 120 min. Measurement of DON in plasma by ELISA revealed that the emetic period correlated with distribution and clearance of the toxin. Significant elevations in both PPY3-36 (30 to 60 min) and 5-HT (60 min) were observed during emesis. Pretreatment with the 5-HT3 receptor antagonist granisetron was found to completely suppress induction of vomiting by cisplatin, a known 5-HT inducer, as well as DON.

Interestingly, granisetron pretreatment could partially block PPY3-36 induced emesis. Taken together, the results presented here suggest that both PPY3-36 and 5-HT play contributory roles in DON-induced emesis.
improve food safety is to reduce exposures to AF using montmorillonite clay which binds AFs in the GI tract and decreases bioavailability of these toxins. Our recent work in Ghana has shown that communities at risk for AF exposure are also at high risk for fumonisin (FB) exposure. In this study, montmorillonite clay was tested for FB binding capacity in combination with AFB1, in a rodent model. Fisher-344 rats were gavaged once with 0.125 mg AFB1/kg b.w. and/or 25 mg FB1/kg b.w. following an acclimation period with feed containing clay additive. Urine samples were collected at 12 hr time intervals for 72 hr following gavage and were analyzed for AF and FB biomarkers. Lower AFM1 and FB levels in the urine were indicative of an acclimation period with feed containing clay additive. Urine samples were significant lower than control. This level of hepatic AFB1 detoxification is substantially more than that in livers of domestic turkeys, which are more susceptible than chickens to AFB1. These data support previous findings that in vitro conjugation of AFB1 by GST is an accurate predictive marker species resistance to this mycotoxin. Supported in part by NRI Competitive grant 2007-35205-17880 from the USDA-NRI Animal Genome Project.

2328 Bisphenol A (BPA) Levels in Liquid Supernatants of Canned Foods Determined by Highly Sensitive BPA ELISA.

H. Kim1, A. Joakim1, D. Kaplan1, K. Friedman2 and D. Punt1, 1Detroit Res & Dev, Inc., Detroit, MI; 2Institute of Environmental Health Sciences, Wayne State University, Detroit, MI.

BPA [2,2-(4,4′-dihydroxydiphenyl)propane], an endocrine disruptor, mimics the action of 17β-estradiol (E2) in mammals, increasing the risk of hormone-related health problems such as early puberty, infertility, breast, ovarian and prostate cancers and insulin resistance. Fetuses and newborns are most vulnerable to the BPA toxicity. Recently, BPA levels of canned soup solids were measured by LC/MS/MS (detection limit, 2 ng/g) and it was found that the soup solids contained 10 to 80 ng/g BPA. A subsequent study revealed that the group that consumed a 12-ounce serving/day, for 5 days of canned soups, excreted 19-fold higher BPA in urine (mean, 21 ng/ml) compared with the control group that consumed same amounts of fresh soups (mean, 1.1 ng/ml). BPA in liquid supernatants of canned foods contain 10-fold lower levels of BPA compared to the solids. To screen BPA in supernatants, a highly sensitive and facile BPA ELISA has been developed after production of BPA polyclonal antibodies by immunization of a goat with carboxylalkyl-derivatized BPA conjugated to KLH. The detection limit of the BPA ELISA was 1 pg. Whereas anti-BPA slightly cross-react with BFB, BPF or resveratrol, which are structurally similar to BPA. Ten-fold diluted supernatants of canned soups were applied to BPA ELISA. Supernatants obtained from 3 kinds of soups (3 cans/each kind of soup, 9 data points) produced by first company contained 9.56 ± 0.96 ng/ml, 9.07 ± 0.38 ng/ml and 10.38 ± 0.83 ng/ml of BPA, similar to ~8.70 ng/ml of BPA levels in supernatants of second company. A negative control, supernatants of canned vegetables, contained extremely low levels of BPA (0.65 ± 0.02 ng/ml), suggesting use of BPA-free can linings. These results demonstrate that the competitive BPA ELISA is suitable for measurements of BPA leaching from the epoxy film-coated cans using liquid supernatants from canned foods.

2329 Perinatal BPA Exposure at Low Doses Impairs Oral Tolerance and Immunization to Ovalbumin in Offspring Rats at Adulthood.

Aims: Bisphenol A (BPA) used in food packaging impacts gut epithelial barrier after perinatal exposure. Because oral desensitization by gut epithelial mucosal immune response, aim was to address the consequences of perinatal BPA exposure at low doses on oral tolerance and immunization at adulthood. Methods: Dams were treated per os from gestation day 15 to pup weaning with BPA [0.5, 5 or 50 μg/kg/d] or vehicle (corn oil). Female offspring (day 45) were used to assess paracrine and transcellular jejunal permeability by Using chambers, and immune response to ovalbumin (OVA) after either oral tolerance, immunization or oral challenge. Results: Perinatal BPA exposure decreased jejunal paracellular permeability by 2-fold at 0.5 and 50 μg/kg/d, and by 3-fold at all doses for transcellular permeability (p<0.05). BPA exposure at 5 and 50 μg/kg/d increased anti-OVA IgG titer after an oral tolerance protocol (116±62×103 and 86±29×103 respectively vs 7.2±2.2×103 in control; p<0.04). Anti-OVA IgG titer were only increased at 5 μg/kg/d after OVA immunization. Enhanced humoral response in rats exposed to 5 μg/kg/d was associated with higher IFNγ secretion by spleen in OVA-sensitized (2-fold) and MLN of OVA-tolerized (20-fold) rats (p<0.05). Final, oral OVA challenge in BPA group increased MPA activity (316±34 vs 184±22 μg protein in control; p<0.05). IFNγ concentration (2-fold, p<0.05), and decreased TGFβ concentration (3-fold, p<0.05) in the colon, indicating inflammation. Conclusion: Perinatal exposure to low doses of BPA decreased jejunal paracellular and transcellular permeability, and impaired oral tolerance and immunization to dietary antigens at adulthood. BPA treatment during perinatal period affects intestinal homeostasis in a nonlinear dose-response relationship. These results suggest that perinatal period is a critical window for BPA exposure that may trigger food intolerance in later life.

2326 Development and Validation of an Analytical Method for Vomitoxin in Gavage Dose Formulations Used in Rodent Toxicology Studies.

J. C. Blake1, D. P. Coleman1, J. Gilliam1, M. A. Silinski1, R. A. Fernandez1, C. S. Smith2, B. Collins2 and V. G. Robinson2, 1RTI International, Research Triangle Park, NC; 2Division of National Toxicology Program, NIEHS, Research Triangle Park, NC. Sponsor: K. Levine.

Vomitoxin, also known as deoxynivalenol (DON), is a trichothecene mycotoxin produced by certain types of Fusarium fungi. It occurs predominantly in grains such as corn, wheat, barley, and rice, and has been shown to have great stability during storage, processing, and cooking of food. Because of the potential for widespread contamination of food and exposure to farmers through inhalation, the National Toxicology Program is investigating the toxicity of vomitoxin. Thus, the current study was undertaken to develop and validate a formulation analysis method for vomitoxin in deionized water as a gavage vehicle for use in toxicology studies. Important objectives of an analytical method for supporting a toxicology study are to insure that the correct test article is being administered at the specified dose concentrations and that the dose formulations are stable. To achieve these objectives, an Ultra Performance Liquid Chromatography (UPLC) method was developed and validated for analysis of vomitoxin in deionized water. Sample preparation involves a simple dilution with water and addition of an internal standard solution (2,6-dimethylphenol in acetonitrile). The method was successfully validated over the range 1.5 to 720 μg/mL. The limit of detection was estimated as 0.2 μg/mL and the limit of quantitation was estimated as 0.8 μg/mL. Assessment of formulation stability, at ambient and refrigerated storage conditions, over a 42-day period was evaluated. Dose simulation stability testing was also conducted to evaluate the formulation stability for at least three days under similar dosing conditions. In addition, analysis period stability of the analytical preparations was assessed. This method will be used to support toxicology studies of vomitoxin conducted by the National Toxicology Program.

2327 Comparative Hepatic Glutathione S-Transferase Mediated Detoxification of Aflatoxin B1 in Chickens.

B. R. Bunderson1, C. Rowe1, S. J. Lamont2 and A. Coulomb3, 1Toxicology Graduate Program, Utah State University, Logan, UT; 2Department of Animal Science, Iowa State University, Ames, IA.

Efficiency of hepatic glutathione S-transferase (GST)-mediated conjugation of bioactivated aflatoxin B1 (AFB1) is critical to species resistance to this toxic and carcinogenic mycotoxin. Poultry are among the most susceptible animals, and domestic turkeys are especially susceptible, a condition we have shown to be associated with a deficiency of AFB1-detoxifying GSTs. Chickens are more resistant than domestic turkeys, yet little is known about their hepatic GST detoxification capabilities. In this study, we compared hepatic GST-mediated detoxification of prototype substrates 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (ECA), and cumene hydroperoxide (CHP) and toward the exo-AFB1-8,9-epoxide (AFBO) in livers of Broiler, Fayoumi, and Leghorn chickens. All birds had equivalent GST activities, except Fayoumi, which was significantly lower than CDNB. Broiler, Fayoumi, and Leghorn had similar GST-mediated conjugation activities toward AFBO (6.5 ± 0.2, 6.1 ± 0.6, 6.4 ± 0.2 pmol/min/mg, respectively). This level of hepatic AFB1 detoxification is substantially more than that in livers of domestic turkeys, which are more susceptible than chickens to AFB1. These data support previous findings that in vitro conjugation of AFB1 by GST is an accurate predictive marker species resistance to this mycotoxin.
2330 Perinatal BPA Exposure at Low Doses Impairs Immune Homeostasis and Promotes Intestinal Parasitic Infection in Young Rats.

Sponsor: D. Zalko.

Aims: Perinatal exposure to 5μg/kg/day of the food contaminant bisphenol A (BPA) impaired oral tolerance in adult rats (see Ménard et al, abstract 1). Herein, we aimed to address the consequences of BPA perinatal exposure on immune homeostasis in young rats at weaning, i.e. oral tolerance, systemic immunization with ovalbumin (OVA) and parasitic infection. Methods: Dams were given per os from gestational day 15 to pup weaning BPA [5μg/kg/d] or vehicle (corn oil). Weaned female offspring (day 25) were used to assess para- and trans-cellular jejunal permeability by Using chambers, and immune responses following oral tolerance or immunization to OVA, or after infection with a gut nematode Nippostrongylus brasiliensis (N bra). Results: Perinatal treatment with BPA did not affect intestinal permeability or humoral response (anti-OVA IgG titers) following either oral tolerance or immunization in D25 rats. However, a decrease of OVA-induced IFNγ secretion was observed in spleen of OVA-sensitized rats (53±15 vs 317±162 pg/ml; p<0.05) and in mesenteric lymph nodes of OVA-tolerized rats (3.9±2.3 vs 19±16 pg/ml; p<0.05). The lack of cellular response to food antigens questioned the ability of BPA-exposed rats to clear intestinal infections. A 3-fold increase in N bra liver was observed in the intestine of BPA-exposed rats compared to controls (281±689 vs 757±291 larvae/g of faeces, respectively; p<0.05), but no significant change in myeloperoxidase activity into jejunal tissues. Conclusion: Perinatal exposure to low dose of BPA did not affect humoral response to the food antigen OVA in juvenile rats. However, a decrease of OVA-induced IFNγ secretion in BPA-exposed rats emphasized a lack of specific cellular response to food antigens. Finally, perinatal BPA treatment evoked an increased risk to intestinal parasitic infection without triggering an inflammatory response, demonstrating impaired immune defence in early life stages.

2331 Perinatal Peripuberal Exposure to Bisphenol-A Increases Hepatic Steatosis in Immature and Adult Mice.

P. Shimpi1, A. Donepudi1, V. More1, M. Parangic2, S. DaFonte2, B. Rubin3 and A. J. Slitt4. 1Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI; 2Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA.

While diet and physical activity remain the predominant reason for development of obesity and obesity-related disease, there is some concern that environmental exposure to chemicals may be a predisposing factor. Bisphenol A (BPA), a component of many plastics because of widespread concern about the estrogenic activity (EA) of bisphenol-A (BPA), however, BPA-Free plastics have not been thoroughly vetted by most product manufacturers to ensure that they do not release other chemicals that have EA. We have used a robotized MCF-7 and BGI-Luc assays currently undergoing validation by ICCVAM/NICEATM to quantify the total EA in chemicals leaching from a various widely-available plastic resins used to make consumer products and packaging. This study expands the prior work of Yang et al, 2011(EHP 119:989-998). We assayed the total EA in chemical mixtures leaching from unstressed and stressed polycarbonate (PC), polypropylene (PP), polyethylene (PE), amoxicillin copolymer(COC), and polyethylene terephthalate glycol-modified (PETG - Tritan™) plastic resins. Plastic resins were subjected to simulated common-use stresses of dishwashing, microwaving, and sunlight, and then extracted for ~72 hours at 37 degrees Celsius by saline (hydrophilic) or ethanol (hydrophobic) solvents. The total EA in these leachates were then quantified and EA-specific responses were validated by conducting confirmation assays. EA positive determinations were made on samples with values 3 standard deviations or more higher than vehicle controls. Using these criteria, Tritan PETG and PC resins were consistently significantly positive for EA. PE and PP samples often tested positive for EA, but some consistently had no detectable EA. COC resins had no detectable EA. Our data show that BPA-Free often does not mean EA-Free, i.e., that leaching of chemicals having EA from the plastic resins is often not addressed by simply choosing BPA-Free materials.

2333 Microsomal Metabolism of Asarone Isomers.

A.T. Cartus and D. Schrenk. Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany.

The alkenylbenzenes alpha-asarone (αA; CAS: 5273-86-9), beta-asarone (βA; CAS: 5273-86-9), and gamma-asarone (γA; CAS: 5353-15-1) are constituents of various plants, e.g. Acorus calamus (Sweet Flag) and some peppers. Both, αA and βA are considered non-carcinogenic to rodents and esterifiable EA. Microsomal liver enzymes (CYP) exhibit genotoxicity and/or carcinogenicity of γA have been evaluated so far. Several alyllic alkenylbenzenes such as safrole, estragole and methyleugenol are well known genotoxic carcinogens, whereas their propenyl analogues are not. This suggests that an allylic side chain, and therefore the capability for the formation of an 1’OH metabolite, may be a basic prerequisite for the carcinogenicity of those compounds. However, the propenyl compounds αA and βA are an exception of that “allylic rule”. We suggest the ortho-methoxy groups of αA and βA to be a key structural element for the mode of action of their carcinogenicity.

We investigated the metabolism of αA, βA and γA using liver microsomes from different species (including human). Identity of metabolites was confirmed by LC/MS/MS and 1H-NMR spectroscopy in comparison with synthesized reference standards.

Our results show that the side chain hydroxylation of αA and γA was the predominating metabolic step leading to E-3’OH (from αA) and γ-3’OH (from γA), respectively, together with the formation of side-chain dihydrodiols, for which the epoxides may be the precursors. To a smaller extent, we found enzymatically formed secondary metabolites derived from the alcohols like 3’oxygenated γA and 3’oxygenated αA, but no corresponding carboxylic acids. Furthermore, we found the corresponding mono-demethyled phenolic metabolites. These results are comparable to our previous results on phase I metabolism of methyleugenol and methyleugenol. In contrast, βA showed a more complex pattern of metabolites: in addition to Z-3’OH, the unexpected direct formation of 1’OH was proven. This metabolic step, possibly facilitated by steric attraction of the Z-configurated αA side chain and the ortho-methoxy substituent, may explain the carcinogenicity of βA, but not of αA, where no β1 OH metabolite was found.

2334 Histamine in Scombroid Fish Poisoning: Toxicology, Epidemiology and Dose-Response Analysis.

Y. Zhang and P. M. Bolger. US FDA, College Park, MD.

Histamine plays important physiological functions such as immune responses and gastric acid secretion. However, ingestion of fish containing large amounts of spoilage-originated histamine can result in scombroid fish poisoning (SFP), a common chemical-originated food poisoning that affects cardiovascular, gastrointestinal and neurological systems. Fish importing countries have established various regulations and limits for histamine in fish and fishery products to protect consumers. However, many limits were established in a pre-quantitative risk assessment era. An assessment of toxicological and epidemiological data indicates that although other biogenic amines might also play a role in the etiology of SFP, histamine is the most significant causative agent. Due to limitations of the disease-reporting system, the epidemiology-based dose-response approach is not suitable in developing a safety limit of histamine in fish. Instead, a dose-response analysis was conducted
based on human oral challenge studies selected. Both the NOAEL and BMD assessments identified 50 mg of histamine per meal as the dose where either adverse effects were not noted or the estimate of additional risk (lower confidence level) was low. At this level healthy adults would not be expected to exhibit any of the symptoms associated with SFP. This dosage level will not apply to children and individuals with a specific sensitivity to histamine. In addition, this level was derived from data on small number of subjects. While the variation of response appears to be reflected in the study results, further studies would be most helpful in refining this threshold value. Using a conservative serving size of 250 g fish/meat/eal, the maximum concentration of histamine in fish that should not cause an adverse effect was calculated as 200 ppm. Compliance sampling plan can be derived based on this threshold level to ensure a desirable level of protection of the public health.

The widely used food additive carrageenan (CGN) has been shown to induce intestinal inflammation, ulcerative colitis-like symptoms, or neoplasm in the gut epithelium in animal models, which are also clinical features of human inflammatory bowel disease. In this study, the effects of CGN on pro-inflammatory transcription factors NF-κB and early growth response gene 1 product (EGR-1) were evaluated in terms of human intestinal epithelial barrier integrity. Both pro-inflammatory transcription factors were elevated by CGN and only NF-κB activation was shown to be involved in the induction of pro-inflammatory cytokine interleukin-8. Moreover, the integrity of the in vitro epithelial monolayer under the CGN insult was maintained by both activated pro-inflammatory transcription factors NF-κB and EGR-1. Suppression of NF-κB or EGR-1 aggravated barrier disruption by CGN, which was associated with the reduced gene expression of tight junction component zonula occludens 1 and its irregular localization in the epithelial monolayer (This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by Ministry of Education, Science, and Technology Grant 2012R1A1A2005837).

Licorice is a widely consumed in soy products and dietary supplements for its reported beneficial health effects including cancer prevention. However, there have been conflicting data suggesting that genistein ingestion has both anticancer and cancer promoting activities. Cytochromes P450 (CYP1A) play key roles in the metabolic activation of many carcinogens. Since genistein has both anti-estrogenic and estrogenic activities, sex-specific factors could also contribute to its biological activities. In the current study, human hepatoma HepG2/C3A cells were cultured in media with defined human sex hormone profiles to investigate CYP1A1 inhibition and induction by genistein. In male hormone supplemented cells, CYP1A1 and CYP1A2 gene expression activities were induced to higher extent compared with female hormone supplemented cells after either β-naphthoflavone or genistein treatment. However, basal gene expression of CYP1A1 and CYP1A2 were higher in female- than in male-hormone supplemented cells. In the inhibition studies, CYP1A1 activities were significantly lower in the male-specific medium than in female-specific medium. The results showed that genistein could exert both long-term (3-day) induction and short-term (1-hr) inhibition effects on CYP1A1 activities in vitro which could explain the inconsistent cancer-related reports. Furthermore, there were significant differences in both the inductive and inhibitory effects of genistein between the male- and female-specific media suggesting that sex hormones, in physiological concentrations and ratios, can modulate the effects of genistein on CYP1A gene expression and activities in a human liver cell line.

License
cause adverse effects in humans using methods complying with OECD guidelines. All studies were conducted according to Good Laboratory Practice. Acutely, Optimash BG is not an eye irritant, a very mild skin irritant, and not toxic by ingestion with an oral LD50 greater than 2000 mg/kg bw. Optimash BG is not a mutagen, a clastogen, or an aneugen. In the in vitro cytogenetic test using cultured human lymphocytes cells, Optimash BG did not induce chromosomal aberrations (both structural and numerical) in the presence and absence of metabolic activation (S-9 mix) up to the highest concentration (5000 ug TP/ml). No mutagenic activity was noted in the Ames assay in the presence and absence of S-9 mix up to 5000 ug TP/plate. In a repeated 90 days oral (gavage) in Wistar rats, no biological or statistical differences were observed. Also, no treatment-related changes in the hematology and clinical chemistry were noted at study termination. The NOAEL was established at 80 mg total protein/kg bw/day (97.6 mg TOS/kg bw/day). Under the worst-case scenario that Optimash BG is applied at the maximum rate and the enzyme is neither destroyed nor removed during processing, the use of the enzyme in grain processing, carbohydrate processing and brewing is not expected to result in adverse effects to humans. With a margin of safety of 258 and a PADI of 39%, the use of Optimash BG is not of toxicological concern. The NOAEL was established at 80 mg total protein/kg bw/day (97.6 mg TOS/kg bw/day). Under the worst-case scenario that Optimash BG is applied at the maximum rate and the enzyme is neither destroyed nor removed during processing, the use of the enzyme in grain processing, carbohydrate processing and brewing is not expected to result in adverse effects to humans. With a margin of safety of 258 and a PADI of 39%, the use of Optimash BG is not of toxicological concern.

2340 A 13-Week Subchronic Toxicity Study of Glycidol Fatty Acid Esters in F344 Rats.

T. Toyoda1, Y. Cho1, S. Oram1, J. Akagi1, A. Nishikawa2 and K. Ogawa1.

1Division of Pathology, National Institute of Health Sciences, Tokyo, Japan; 2Biological Safety Research Center, National Institute of Health Sciences, Tokyo, Japan.

Glycidol fatty acid esters (GEs) have been recently identified as food process contaminants in refined edible oils. Although there is toxicological concern arising from potential release of glycidol from parent esters during digestion in the gastrointestinal tract, little is known about in vivo toxicity of GEs. In the present study, subchronic toxicity of two types of GEs, oleate and linoleate esters, was investigated with administration at concentrations of 0, 225, 900 and 3600 ppm (equivalent molar concentration to 800 ppm glycidol) in drinking water for 13 weeks to male and female F344 rats. For comparison, treatment with 200 and 800 ppm of glycidol was also performed. Body weight gain of both sexes was markedly reduced with 800 ppm glycidol compared to the controls, and the cause was considered at least partly related to decreased water consumption. Hematological data showed significant increase of MCV in 800 ppm glycidol females and decrease of WBC in 3600 ppm oleate ester females. In serum biochemistry, increase of total cholesterol and potassium and decrease of ALT were detected in 800 ppm glycidol males, 3600 ppm oleate ester males, and 800 ppm glycidol females, respectively. Serum creatinine levels in both sexes were decreased in the 800 ppm glycidol group. Relative weights of kidney and spleen were significantly increased in 200 and 800 ppm glycidol males and 800 ppm females. In addition, increase of relative kidney weights was also found in 3600 ppm oleate ester males. On histopathological assessment, increase of relative kidney weights was also noted in the epididymal ducts of 800 ppm females, but not in ester groups. Although more detailed analysis will be needed to clarify any testicular toxicity of glycidol and in vivo genotoxicity of GEs, our results suggest that oleate and linoleate esters might be less toxic to F344 rats than glycidol itself.

2341 Modes of Action Underlying Citrinin-Induced Renal Carcinogenesis.

1Division of Pathology, National Institute of Health Sciences, Tokyo, Japan; 2Division of Microbiology, National Institute of Health Sciences, Tokyo, Japan; 3Biological Safety Research Center, National Institute of Health Sciences, Tokyo, Japan.

Citrinin (CTN), a mycotoxin produced by Penicillium and Aspergillus, is known to induce renal tumors in rats; however, the involvement of genotoxic mechanisms remains unclear. To evaluate the genotoxic potential of CTN, reporter gene mutation, comet, and micronucleus assays were performed. For the reporter gene mutation assay, cultures of 5 male Fischer 344 rats were treated with CTN at the same doses by gavage for 2 days to extirpate the kidneys 3 days after the last dosing. For the comet and micronucleus assays, groups of 5 male F344 rats were treated with CTN at the same doses by gavage for 2 days to extirpate the kidneys or bone marrow, respectively. In the reporter gene mutation assay, the high dose (40 mg/kg) was decreased to 30 mg/kg on day 4 because of severe weight loss. The results of the reporter gene mutation and comet assays suggested that CTN did not induce DNA damage and subsequent gene mutations. Positive result was obtained only in the micronucleus assay, which might result from numerical chromosomal aberrations due to microtubule dysfunction by CTN. Therefore, it seems likely that non-genotoxic mechanisms are involved in CTN-induced carcinogenesis. In kidney samples from gpt delta rats, increases in the labeling indices of proliferating cell nuclear antigen (PCNA)-positive cells and mRNA expression levels of cell cycle-related genes (i.e., cyclin E1, cyclin A2, cyclin B1, and E2F1) were observed at all doses, despite the fact that the low dose showed no toxicological effects. Accordingly, the promotion of cell cycle progression observed in the kidneys of CTN-treated rats may have resulted from a direct mitogenic function of CTN. Increased phospho-ERK levels resulted from a direct mitogenic function of CTN. Increased phospho-ERK levels in both sexes were decreased in the 800 ppm glycidol group. Relative weights of kidney and spleen were significantly increased in 200 and 800 ppm glycidol males and 800 ppm females. In addition, increase of relative kidney weights was also found in 3600 ppm oleate ester males. On histopathological assessment, increase of relative kidney weights was also noted in the epididymal ducts of 800 ppm females, but not in ester groups. Although more detailed analysis will be needed to clarify any testicular toxicity of glycidol and in vivo genotoxicity of GEs, our results suggest that oleate and linoleate esters might be less toxic to F344 rats than glycidol itself.

2342 The Dynamics of a Harmful Algal Bloom and Paralytic Shellfish Toxins in Juneau, Alaska.

1Department of Biology, Appalachian State University, Boone, NC; 2School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, AK; 3Department of Natural Sciences, University of Alaska Southeast, Juneau, AK. Sponsor: G. LeBlanc.

Paralytic shellfish poisoning (PSP) is a deadly neurological syndrome resulting from the ingestion of shellfish containing high levels of paralytic shellfish toxins (PSTs), and approximately seven cases of PSP are reported in Alaska annually. The main causative toxin is the neurotoxin saxitoxin, which is produced by the dinoflagellate Alexandrium sp. In June and July 2012 during this summer undergraduate project at the University of Alaska Southeast, plankton tows, seawater samples, and bivalve samples revealed a significant bloom of Alexandrium and subsequent toxin event in seawater and bivalves. Saxitoxin was extracted from the water column by filtering 1L of seawater and sonicating the filter for one hour in diH2O. The concentration of saxitoxin in seawater, measured using ELISA, ranged from 26 μg/L to 230 μg/L during the bloom. Nine species of bivalves, Saxidomus giganteus, Mytilus trossulus, Clioneardium nuttallii, Protobranchia staminea, Mya truncata, Mya arenaria, Tresus capax, Macrotermos polynyma, and Hiatella arctica, were sampled for saxitoxins using ELISA following soft tissue homogenization and extraction. Two species, Mytilus trossulus and Saxidomus giganteus, exceeded the regulatory limit for saxitoxin, 80 μg/100g wet wt. Mytilus trossulus saxitoxin concentrations ranged from 67 to 215 μg/100g, while S. giganteus ranged from 143 to 279 μg/100g. After the bloom, concentration of saxitoxin in the seawater and M. trossulus decreased, at a rate of 5.7ug/day, but remained elevated in S. giganteus. The concentration of saxitoxin in M. trossulus was below the FDA regulatory limit of 80μg/100g wet wt. 26 days after the bloom of Alexandrium was detected. Recreational harvest of bivalves in Alaska is not regulated for PSP; however, these results suggest that PSP risk is very high, particularly for S. giganteus.

2343 Acute and 28-Day Oral Toxicity Evaluation of siRNAs and Longer Double-Stranded RNAs in Mice.

1Monstar Laboratory, St. Louis, MO; 2Xenomixx, LLC, Stilwell, KS; 3Auragen, Inc, Austin, TX.

RNA interference is being used in agricultural biotechnology as a selective tool for developing crop traits. There are numerous biological barriers to uptake and activity of ingested nucleic acids that are ubiquitous components of animal diets. To evaluate the potential for adverse effects of dietary double stranded RNAs (dsRNAs), we conducted oral toxicity studies in mice with a pool of four 21-mer small interfering RNAs (siRNAs) and a 218 base pair dsRNA targeting the mouse ortholog of vacuolar ATPase (vATPase). When dsRNA targeting the insect ortholog of vATPase is expressed in corn plants, they are insecticidal against corn rootworm. Test materials were administered to CD-1 mice by oral gavage in a single dose acute toxicity study at 2000 μg/kg and in a 28 day repeat dose oral toxicity study at 1, 10, and 100 mg/kg. Torula yeast RNA was included as a control in both studies. There was no impact of treatment on body weight, food consumption, clinical observations, or gross pathology in the acute toxicity study. The acute NOAELs for both the siRNAs and dsRNA were 2000 μg/kg, the highest doses tested. In the 28-day study, there were no treatment-related adverse effects on body weight, food consumption, clinical observations, clinical chemistry, hematology, gross pathology, or micropathology. The NOAELs in the 28 day study for both the siRNAs and dsRNA were 100 μg/kg, the highest doses tested. In summary, siRNAs and longer dsRNAs with 100% sequence identity to mouse vATPase do not result in adverse effects when administered orally to mice in a large dose. These results are consistent with the current body of knowledge that exogenous dsRNA molecules in food, even those with sequences identical to human and/or animal origin, are safely consumed.
and F. Wu.

Arsenic is a ubiquitous, naturally occurring metalloid that poses a significant human cancer risk. While water consumption provides the majority of human exposure to arsenic, naturally occurring levels of arsenic in grains, vegetables, meats and fish, as well as through food processed with water containing arsenic (e.g. cooking rice) present a significant exposure to millions of individuals worldwide. To estimate the global burden of diseases attributable to toxic inorganic arsenic in food, we first evaluated the weight of evidence that supports a causal role for arsenic in a number of cancers and non-cancer disease endpoints. We determined that there was substantial evidence from large epidemiological studies that arsenic causes skin, lung, and bladder cancer in humans. The body burden of toxic arslenicals from foods is difficult to estimate and highly variable due to the natural distribution of arsenic in soils and water and the complication posed by multiple toxic inorganic and organic arslenicals, as well as non-toxic organic arslenicals contributing to total arsenic levels. Therefore we used GEMS/FAO-STAT estimates of food consumption in thirteen global clusters and JECFA reported measurements of total and inorganic arsenic in different foods to determine the upper and lower boundaries of foodborne arsenic contribute to a significant, but low level of global disease burden. Supported by the WHO Foodborne Disease Burden Epidemiology Reference Group, Chemical Toxicology Task Force.

2345 Hydrogen Peroxide Levels in Freshly Brewed Coffee and Effects on Storage.

S. N. Uppu1, B. London1, S. N. Murthy1 and R. M. Uppu1, 1Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA; Science, Dutchtown High School, Geismar, LA.

Coffee originating in the 15th century from Ethiopia is one of the heavily consumed beverages. Although there are studies on caffeine and other components of coffee such as cafestol, the presence of hydrogen peroxide (H2O2) in coffee was not known till recently as it was confined to scientific community and some informed public. It is a general belief that H2O2 is formed only after long periods of storage or with certain roasting practices. The present study focused on dispelling the myths of H2O2 in coffee. We first measured H2O2 in freshly brewed coffee from different companies by ferrous oxidation-xylenol orange binding (FOX) method. Following this, we examined the time dependent accumulation of H2O2 and its changes with temperature. H2O2 concentration was estimated in coffee obtained from different vendors. Contrary to the general belief that the accumulation of H2O2 is an aging phenomenon of coffee, we found this toxicant even in freshly brewed coffee. This was true for all brands tested, and H2O2 content increased upon storage. The high extent was seen in coffee stored on the hot plate compared to the ones kept at room temperature/in cold. The H2O2 content of coffee from different vendors ranged between 0.29 and 0.82 mM, which is 5- to 20-fold higher than the typical H2O2 concentrations at which significant cytotoxic effects have been reported for assay systems using neuroblastoma and other cell types. Our findings shed new light on the probable toxic effects of a commonly consumed beverage like coffee, and the time and temperature dependent variations of keeping. While there are documented benefits of consumption of coffee, the H2O2 medicated toxic effects and pre-incubation test by Salmonella typhimurium strains TA98, 100, 1535, and 1537 and the complication posed by multiple toxic inorganic and organic arslenicals, as well as non-toxic organic arslenicals contributing to total arsenic levels. Therefore we used GEMS/FAO-STAT estimates of food consumption in thirteen global clusters and JECFA reported measurements of total and inorganic arsenic in different foods to determine the upper and lower boundaries of foodborne arsenic contribute to a significant, but low level of global disease burden. Supported by the WHO Foodborne Disease Burden Epidemiology Reference Group, Chemical Toxicology Task Force.

2346 Toxicologic Evaluation of the Calcium Binding Protein Apoaequorin.

P. Marone1, M. R. Bauter2, H. Hofman-Huther1 and D. Moran1, 1Toxicology, Eurofins Product Safety Laboratories, Dayton, NJ; 2BLS Bioscientific Laboratories GmbH, Flensburg, Germany; 3Quincy Bioscience, Madison, WI.

The present study evaluated the mutagenic and toxicologic potential of a proprietary calcium binding jellyfish protein, Apoaequorin. The test article was investigated for its potential to induce gene mutations according to a plate incorporation assay. The test article was investigated for its potential to induce gene mutations according to a plate incorporation assay.

2347 Toxicological Evaluation of a High-Purity Transresveratrol from an Alternative Synthetic Route.

trans-Resveratrol is a naturally-occurring, polyphenolic compound found predominantly in grapes and red wine. resVida (≥ 99.0% trans-resveratrol manufactured by DSM) has previously been assessed for safety based on toxicity studies (Williams et al, 2009) and obtained self-GRAS status in 2008. An alternative manufacturing process is now available in which trans-resveratrol is obtained with the same high purity of ≥ 99.0% but with different trace components to those in the original manufacturing process. Several of these new resveratrol-related by-products are found in nature (for example trans-pterostilbene). A safety assessment of the new process trans-resveratrol and its by-products was undertaken. The assessment process comprised:

- Identification of the new by-products
- Literature review for information on new by-products
- In silico analysis (DEREK) for toxic alerts of new by-products
- Structural analogue comparisons where appropriate
- In silico analysis (METEOR) for likely metabolism of newly identified by-products
- Ames tests (Salmonella Typhimurium Reverse Mutation Assays) with representative and spiked batches (to maximal specification level) of the new process material
- Definition of a new upper limit specification for newly identified by-products

Information presented from this process includes summarized data from the Ames test, which showed no mutagenic potential, with or without S9. From the assessment of all this information it was concluded that ≥ 99.0% trans-resveratrol produced from the alternative route is safe and suitable for use within the marketing limits defined in the GRAS evaluation of the original process material. Williams LD, Burdock GA, Edwards JA, Beck M, Bausch J (2009) Safety studies conducted on high-purity trans-resveratrol in experimental animals, Food Chem Toxicol 47(9):2170-2182.

2348 A 28-Day Gavage Study of 2-Methylfuran in Male Fischer 344 Rats.

S. S. Gill1, M. Kavanagh1, W. Cherry1, M. Barker1, M. Weld2 and G. M. Cooke1, 1TRD, Health Canada, Ottawa, ON, Canada; 2Chemical Health Hazard Assessment Division, Health Canada, Ottawa, ON, Canada. Sponsor: R. Mehta.

In thermally treated products, a series of alkylated furan derivatives have been found, in particular 2-substituted alkylfurans such as 2-methylfuran. These methyl analogues are metabolically activated in a similar fashion as the parent furan, yielding highly reactive unsaturated dialdehydes. There is limited toxicological data available for 2-methyl furan which makes conducting a risk assessment difficult. This pilot study was designed to determine the degree of 2-methylfuran for future subchronic studies needed to determine a NOAEL. Male Fischer 344 rats 5-6 weeks of age were administered 2-methylfuran by gavage to final concentrations of 0, 0.4, 1.5, 5, 6, 12, or 25 mg/kg bw/day. The animals were weighed daily prior to gavage and food consumption was measured weekly. The liver was the primary target organ which developed dose-dependent toxicity. Relative liver weights were increased by 42% at 25 mg/kg bw/day. Histological changes in the liver were observed at 0.4, 1.5, 3, 6, 12 and 25 mg/kg bw/day. These changes were not accompanied by clinical changes in serum liver enzyme markers such as ALT, ALP and AST. Clinical biochemistry markers for kidney were altered but these were not accompanied by histological changes. At 25 mg/kg bw/day, spleen weights were increased and the prostate was significantly increased in size. Some hematological parameters were also altered. In this pilot study, the liver was the major target organ.
2349 Characterization of Bacterial Mutagenicity QSAR Predictions of Food Additives to Support Safety Assessments in a Regulatory Setting.

K. P. Cross¹, G. J. Myatt¹, K. Arvidson² and K. Muldoon-Jacobs³. ¹Leedscope, Inc., Columbus, OH; ²Center for Food Safety and Applied Nutrition, US FDA, College Park, MD.

Assessment of food additive safety at the U.S. FDA has utilized quantitative SAR (QSAR) analysis models for endpoints ranging from generic toxicity, reproductive and developmental toxicity to rodent carcinogenicity. However, many of the QSAR models in routine use were originally developed for drug and industrial chemical assessments. Consequently a performance assessment on their use for compounds of interest to FDA CFSAN was undertaken. A set of approximately 4000 compounds of interest to CFSA was assembled and used to characterize the performance of a QSAR model developed for predicting overall Salmonella mutagenicity. The test set was used to assess the suitability of the chemical space of the model for predicting food additive compounds. Overall performance statistics for accuracy, sensitivity, specificity and domain of applicability were measured. Structural classes were identified through compound clustering based on structural fingerprints that were well-predicted, poorly predicted, and not able to be predicted. Additionally, a set of structural alerts that represent different mutagenic toxicophores was assembled and used to help more precisely quantify performance. Variation in performance was observed across different toxicophores, providing a detailed picture of the model's strengths and weaknesses from a structural perspective in assessing food additives.

2350 The Role of Palmitoylation in Chemical and Microbial Toxicity: Signal Pathways, Protein Binding and Trafficking.

Multicellular organisms use chemical messengers to transmit signals among organs and to other cells. Relatively small hydrophobic molecules such as lipids are excellent candidates for this signaling purpose. In most proteins, palmitic acid and other saturated and some unsaturated fatty acids are esterified to the free thiol of cysteines and to the N-amide terminal. This process enhances the surface hydrophobicity and membrane affinity of protein substrates and play important roles in modulating protein trafficking, stability, and sorting. Protein palmitoylation has been involved in numerous cellular processes, including signaling, apoptosis, and neuronal transmission. The palmitoylation process is involved in diseases such as Huntington's disease, various cardiovascular and T-cell mediated immune disorders, and cancer. Our study on lipopolysaccharide and dexamethasone treatment to rats provides insights on the role of protein palmitoylation in chemical and microbial toxicity. In the liver of animals treated with 10 mg/kg DON, palmitic acid decreased by 22% between 3 and 24 hr and increased 24% between 24 and 72 hr as compared to the controls. LPS at 83 μg/kg caused 54% decrease in elaidic acid between 3 and 24 hr, and 7% between 24 and 72 hr while stearic acid decreased 33% between 3 and 24 hr and 60% between 24 and 72 hr as compared to the controls. Palmitate is a component of the LPS of Gram-negative bacteria. The bacterial outer membrane enzyme lipid A palmitoyltransferase PdeP confers resistance to host immune defenses by transferring a palmitate chain from a phospholipid to the lipid A component of LPS. PdeP is sensitive to cationic antimicrobial peptides (CAMP) which are included among the products of the Toll-like receptor 4 (TLR4) signal transduction pathway. This modification of lipid A with a palmitate appears to both protect the pathogenic bacteria from host immune defenses and attenuate the activation of those same defenses through the TLR4 signal transduction pathway.

2351 Compartment-Regulated Expression of Macrophage-Inhibitory Cytokine 1 under Mucosal ER Stress.

S. Park, H. Choi, K. Do, J. Kim and Y. Moon. Lab. of Mucosal Esposone and Bio modulation, Department Microbiology and Immunology, Pusan National University School of Medicine and Medical Research Institute, Yongsan, Republic of Korea.

Endoplasmic reticulum (ER) stress causes global translational arrest during protein biosynthesis. In spite of global translational arrest, the critical stress responsive genes, including macrophage inhibitory cytokine 1 (MIC-1), are particularly turned on. Functionally, MIC-1 played pivotal roles in ER stress-linked apoptotic death, which was also influenced by C/EBP homologous protein, a well known apoptotic mediator of ER stress. ER stress enhanced MIC-1 mRNA stability instead of translational activation, and there were two mechanistic translocations critical for mRNA stabilization. First, C/EBP homologous protein triggered protein kinase C-linked cytosolic translocation of the Huh/ELAVL1 (Elav-like RNA-binding protein 1) RNA-binding protein, which bound to and stabilized MIC-1 transcript. As the second critical compartment-regulated modulation, ER stress-activated ERK1/2 signals contributed to enhanced stabilization of MIC-1 transcript by controlling the extended holding of the nucleated mRNA in the stress granules fusing with the mRNA-degrading processing body. Taken together, these two sequential compartment-associated mechanisms can account for stabilized transcription and subsequent re-initiation of translation of pro-apoptotic MIC-1 gene under mucosal ER stress (This study was carried out with the support of National Joint Agricultural Research Project of RDA (project number P0008405032012) RDA, Republic of Korea).

2352 Azathioprine-Induced Hepatotoxicity in an In Vitro Inflammation-Immune Model.

A. Maruf¹ and P. J. O’Brien¹,². ¹Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada; ²Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.

Azathioprine (AZP) is widely used in clinical practice for preventing graft rejection in organ transplantations, various autoimmune and dermatological diseases with documented unpredictable toxicity. Several experimental models suggested that an episode of inflammation during drug treatment predisposes animals to tissue injury. Inflammation caused by infections or endotoxins markedly activates NADPH oxidase. In the phagosome, superoxide radicals spontaneously form hydrogen peroxide (H2O2) and other reactive oxygen species. The effect of inflammation on AZP using “Accelerated Cytotoxicity Mechanism Screening” technique was investigated in this study. The concentration of AZP required to cause 50% cytotoxicity in 2 hr towards isolated rat hepatocytes was found to be 400 μM. AZP (400 μM) significantly increased cytotoxicity compared to control hepatocytes. When a non-toxic H2O2 generating system (glucose/glucose oxidase) was added to the hepatocytes prior to the addition of AZP, an increase in AZP cytotoxicity was observed. Because neutrophils or Kupffer cells release myeloperoxidase on activation, the effect of adding peroxidase to the hepatocytes exposed to H2O2 on AZP was also investigated. AZP showed a significant increase in cytotoxicity compared to drug-control in presence of glucose/glucose oxidase with or without horseradish peroxidase. A significant increase was also observed with glutathione depleted and catalase inhibited hepatocytes. Furthermore, AZP increased reactive oxygen species (ROS) formation, lipid peroxidation and decreased %mitochondrial membrane potential with our inflammation-immune model indicating the involvement of oxidative stress by glutathione oxidation, lipid peroxidation and mitochondrial toxicity. Protection was achieved by a ROS scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (200 μM) and an antioxidant N,N’-diphenyl-p-phenylenediamine (2 μM). These results raise the possibility that the presence or absence of inflammation may be another susceptibility factor for azathioprine-induced hepatotoxicity.

2353 Indole-3-Carbinol and 3, 3'-Diindolylmethane Decrease Histone Deacetylase 3 Which Plays an Important Role in the Promotion of Staphylococcal Enterotoxin B-Induced Immune Cell Activation.

P. B. Busbee, M. Nagarkatti and P. Nagarkatti. USC School of Medicine, Columbia, SC.

Staphylococcal enterotoxin B (SEB) is an exotoxin produced by the Staphylococcus aureus bacterium. This toxin is classified as a “superantigen” because of its ability to directly bind T cell receptors with MHC II class region of antigen presenting cells, which activates a large proportion of T cells. SEB is commonly associated with classic food poisoning, and more recently gained attention as a potential biological warfare agent since it is easily aerosolized. We have shown that indole-3-carbinol (I3C) and one of its byproducts, 3, 3'-diindolylmethane (DIM), which are found in cruciferous vegetables, is able to reduce the number of SEB-activated T cells both in vitro and in vivo. These compounds were also able to reduce immune cell activation, induce apoptosis, and decrease proinflammatory cytokine release. In the current study, we assessed the role histone deacetylases (HDACs) played in SEB-treated cells, as well as what effect I3C/DIM had on them. Using inhibition specific for Class I or Class II HDACs, we showed that inhibition of Class II HDAC leads to decreased immune cell activation, increased apoptosis, and reduction in proinflammatory cytokine release in SEB-activated cells. However, inhibition of Class II
HDACs had opposite effects, suggesting a dual role of these HDAC classes in SEB stimulation, where Class I HDACs were important in SEB-mediated immune cell activation. Screening HDAC expression with western blots, we were able to determine that HDAC3 was the main HDAC upregulated after SEB stimulation, and I3C and DIM treatment was able to decrease this expression level. This research establishes for the first time the important role Class I HDACs, particularly HDAC3, play in SEB-induced immune cell activation. We were also able to provide more evidence for the effectiveness of I3C/DIM treatment in SEB through the downregulation of HDAC3. (Supported in part by NIH grants P01AT003961, R01AT006888, R01ES019313, R01MH094755, P20RR032684 and VA Merit Award BX001357).

2354 Quantification of Cytokines: Enzyme-Linked Immunosorbent Assay versus Cytometric Bead Array.

Cytokines are important inflammatory mediators. Disturbance of the balance of pro- and anti-inflammatory cytokines may result in multiple organ toxicity. In this study, we compared two commonly used immunassays for the detection of cytokines, i.e. Enzyme-Linked ImmunoSorbent Assay (ELISA) and Cytometric Bead Array (CBA).

BD OptEIA ELISA kits and BD CBA Flex Sets were used to determine interleukin 4 (IL-4), interleukin 10 (IL-10) and interferon gamma (IFN-γ) levels in serum of untreated rats and in assay diluent. The intra-assay variation was determined after spiking with the individual recombinant standard of an ELISA kit at concentrations within the ELISA standard range or spiking with the combined recombinant standards of the CBA sets at concentrations within the CBA standard range. In addition, inter-assay variation was determined by spiking at two concentrations within the range of both ELISA and CBA standards and by analyzing these spiked samples using both methods on the same day. Both ELISA and CBA methods showed similar coefficients of variation for all cytokines, i.e. less than 15% for the majority of measurements. The accuracy of these data was determined with one or more cytokines within 75-125% for most measurements using both methods. Spiking of serum samples showed clearly that serum contains factors that interfered with the quantification of IL-4, IL-10 and IFN-γ using the selected ELISA kits and CBA sets. For example, quantification of IL-10 in spiked serum showed an accuracy of approximately 30% using both methods and IFN-γ analysis resulted in an accuracy of <30% using ELISA and an accuracy of 70-80% using CBA. The absolute values of cytokines in spiked serum samples may differ between both methods, like for IFN-γ, but relative levels of cytokines always correlated with the spiked concentrations using either one of these methods. In conclusion, both ELISA and CBA showed similar precision and consistency in relative cytokine levels.

2355 Aryl Hydrocarbon Receptor-Dependent Retention of Nuclear HuR Suppresses Cyclooxygenase-2 Expression Independent of DNA-Binding.

M. Zago¹, J. Sheridan¹, P. Naïr¹, A. Rico de Souza¹, I. E. Gallouzi¹, S. Boussau¹, S. Di Marco¹, Q. Hamid¹, D. H. Eidelman¹ and C. J. Baglole¹, ¹McGill University, Montréal, QC, Canada; ²McMaster University, Hamilton, ON, Canada.

Rationale: The aryl hydrocarbon receptor (AhR) has emerged as an endogenous suppressor of cyclooxygenase-2 (Cox-2). Cox-2 is an immediate-early gene that is robustly increased by cigarette smoke exposure. We have published that the AhR suppresses cigarette smoke-induced Cox-2 protein but not mRNA, suggesting post-transcriptional regulation as a mechanism. The AhR may destabilize Cox-2 mRNA by retaining the RNA-binding protein (RBP) HuR in the nucleus. There is known association between the AhR and HuR. Therefore, we investigated whether AhR-dependent retention of nuclear HuR is responsible for Cox-2 mRNA destabilization.

Methods: AhR⁻/⁻, AhR+/+, AhRDBD/DBD (harboring a mutant AhR unable to bind DNA) and AhRDBD/B6 mouse lung fibroblasts were exposed to cigarette smoke extract (CSE) for 3 h followed by Actinomycin D (ActD) for 30 minutes, 1 or 3 h, Cox-2 protein and mRNA were analyzed by western blot and qRT-PCR, respectively. HuR expression was assessed by western blot and immunofluorescence. AhR⁻/⁻ cells were transfected with HuR siRNA and exposed to 1% CSE for 3 h with or without ActD for an additional 3 h. Cox-2 mRNA was then assessed by qRT-PCR.

Results: Steady-state Cox-2 mRNA levels significantly declined upon ActD treatment in AhR⁻/⁻ cells, AhRDBD/DBD and AhRDBD/B6 cells, suggesting that the AhR destabilizes Cox-2 mRNA by a DRE-independent mechanism. Cox-2 mRNA instability was due to the nuclear retention of HuR. CSE did not alter HuR expression, but induced cytokines and HuR shuttling only in AhR⁻/⁻ cells. Knockdown HuR in AhR⁻/⁻ cells significantly decreased Cox-2 mRNA expression after exposure to ActD.

Conclusions: AhR-dependent retention of nuclear HuR suppresses cigarette smoke-induced Cox-2 protein by a mechanism that is independent of DNA-binding activity. These important findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target.

2356 Ultraviolet Radiation (UVB)-Induced Migration of Skin Dendritic Cell Subsets Is Mediated through Transforming Growth Factor Beta Signaling.

A. Ravindran¹, J. Mohammed¹, A. J. Gundersen¹, M. C. Udey¹ and A. B. Glick², ¹Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, State College, PA; ²Dermatology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD.

Ultraviolet radiation (UVB) is the leading cause of skin cancer worldwide. UVB also modulates certain inflammation driven cutaneous pathologies such as contact hypersensitivity through actions on skin resident dendritic cell (DCs). Transforming Growth Factor-β (TGF-β) is a potent immunoregulatory cytokine in the skin microenvironment. Here, we show that TGF-β is required for UVB-induced activation and migration of dendritic cells to the skin draining lymph nodes. We indicated skin of Skin Hairless (SKH1) mice with UVB in the absence or absence of SB431542, a small molecule inhibitor of the TGF-β type 1 receptor and measured lymph node migration of skin dendritic cell subsets at acute time points. Topical inhibition of TGF-β1 pathway with SB431542 suppressed the migration of skin dendritic cell subsets, primarily CD103⁺/CD207⁺ and CD207⁻/DC populations to the lymph nodes in response to UVB irradiation. In addition, in an ex vivo, skin explant assay for the migration of dendritic cells, UVB-induced DC migration into culture media was suppressed with topical inhibition with SB431542. In mice expressing a dominant negative receptor for TGF-β in CD11c⁺ dendritic cells (CD11c-ΔTRβ1 DNR), UVB induced migration of the DC subsets was suppressed directly linking TGF-β1 signaling in DCs to UVB-induced migration of DCs. Treatment with SB431542 also suppressed UVB-induced interferon γ (IFNγ) secretion as well as the effector differentiation of T lymphocytes within the lymph nodes. Consistent with decreased activation within the lymph nodes, SB431542 decreased UVB activation of the skin infiltrating CD4 and CD8 lymphocytes after acute treatments and in UVB-induced skin tumors. Together, these data show that the TGF-β1 signaling pathway is important for the inflammatory response to UVB irradiation of the skin, mediated primarily through the dendritic cells.

2357 Alterations in the Hepatic Transcriptome during Live Citrobacter Rodentium Infection.

M. D. Merrell and E. T. Morgan, Pharmacology, Emory University, Atlanta, GA.

Infection and inflammatory signaling can significantly alter drug metabolism enzyme expression (DME), thereby impacting the capacity of the liver to clear toxicants from the body. Previous work in our laboratory has detailed the modulation of protein expression of several hepatic DMEs during colonic infection with live Citrobacter rodentium (C. rodentium). These alterations included particularly strong downregulation of Fmo3 and Cyp4a family members. (Supported in part by NIH grants P01AT003961, R01AT006888, R01ES019313, R01MH094755, P20RR032684 and VA Merit Award BX001357). These alterations included particularly strong downregulation of Fmo3 and Cyp4a family members. Ontology biology analysis. Genes showing differential expression during infection were identified and indicated several potential pathways that may be responsible for these effects. Supported by grant R01072372 from the NIH.
2358 Silencing of Keap1 in Macrophages Boosts Lipopolysaccharide-Induced Transcription of Interleukin 6 via IkBα Activation.

Interleukin-6 (IL6) is a multifunctional cytokine that regulates immune and inflammatory responses. Multiple transcription factors, including NF-κB and nuclear factor E2-related factor 2 (Nrf2), are implicated in the transcriptional regulation of IL6. Kelch-like ECH-associated protein 1 (Keap1) is a substrate adaptor protein for a Cullin 3-dependent E3 ubiquitin ligase complex, which regulates the degradation of various vital proteins, including Nrf2 and IkBα. In agreement with previous studies, stable knockdown of Nrf2 in RAW 264.7 mouse macrophages led to significantly attenuated antioxidant response and decreased expression of IL6 under basal and lipopolysaccharides (LPS)-treated conditions. However, Nrf2 activation alone (e.g., under tert-butylihydroquinone exposure) did not increase the expression of IL6, suggesting that Nrf2 is a necessary, but not sufficient, factor in regulating LPS-induced transactivation of IL6. In contrast, silencing of Keap1 in RAW cells and human monocyte THP1 cells markedly augmented the expression of IL6 under non-stressed and LPS-challenged conditions. The enhanced expression of IL6 in Keap1-knockdown (Keap1-KD) cells was significantly attenuated by silencing of IkBα, but not Nrf2, suggesting that stabilized IkBα resulting from Keap1 silencing is the major downstream event responsible for the transactivation of IL6. This finding was further confirmed by the enhanced protein levels of IkBα and subsequent increased expression and phosphorylation of NF-κB p65 in the Keap1-KD cells. Together, the present studies demonstrated that silencing of Keap1 in macrophages boosts LPS-induced transcription of IL6 via IkBα activation. Given the importance of IL6 in inflammatory response, targeting Keap1 could be a novel approach in the treatment and prevention of inflammation and associated disorders.

2359 Potent Protection against PM2.5 Diesel Exhaust Particle-Caused ROS Generation and Vasculature Permeable through Regulation of Nrf2-Induced Pathways by Triterpenoids.

C. Tseng, C. Lin, M. K. Gordon and M. Chao, Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan; 2Biomedical Engineering, Chung Yuan Christian University, Chung-Li, Taiwan; 3Joint Program of Toxicology, Rutgers University, Piscataway, NJ.

Epidemiologies suggest that an increase of PM2.5 diesel exhaust particles (DEP) in ambient air corresponds to an increase in myocardial infarctions within 48 hours. To cause such disorder, the close association of capillaries and alveoli should allow inhaled DEP to get in close proximity to capillary endothelial tubes. However, the mechanism of how DEP travel from the alveolar space into bloodstream remains unclear. Our group has suggested that DEP might upregulate Nrf2 pathway and induce vascular permeability factor VEGF-A secretion. Once VEGF-A goes up, DEP may cause cell-cell adherent junction disruption and transmigrate into the circulation. In order to minimize the level that DEP traveling in the bloodstream, two triterpenoids (oleanic acid, ursolic acid) were used as antioxidant. After DEP ± triterpenoids treatment, MTT was used to examine cell viability of 3D capillary-like endothelial cultures, Cm-H2DCFDA assays were used to determine the extent of ROS production in the model, and confocal microscopy was used to evaluate the endothelial junctional proteins in the cell-cell borders and localization of Nrf2 as well. At high dose DEP, 80% of the tube cells die within 24 hours. Cells treated with 25 μg/ml DEP plus triterpenoids not only the translocation of Nrf2 and downstream HO-1 mRNA expression was reduced, but also ROS generation was inhibited. Additionally, Z-stacks images revealed that DEP not only accumulated on the surface of capillary tubes, but also penetrated into the lumen. VE-cadherin was observed to redistribute in response to DEP. Once combine with triterpenoids, endothelial tube cells were slightly affected only at high dose DEP injuries caused by DEP-induced ROS were blocked. Our results suggest that triterpenoids might prevent DEP transmigration into bloodstream by inhibiting oxidative stress production and endothelial adherent junctions alteration.

2360 Differential Responses upon Inhalation Exposure to Biodiesel versus Diesel Exhaust on Oxidative Stress, Inflammatory, and Immune Outcomes.

A. A. Shvedova, N. V. Yanamala, A. V. Tkach, E. R. Kisín, A. R. Murray, T. Khalilullin, M. Hatfield, S. H. Gavett and I. Gilmour, 1PPRB, HELED, NIOSH, Morgantown, WV; 2Department of Physiology and Pharmacology, School of Medicine, WVU, Morgantown, WV; 3Cardiopulmonary and Immunotoxicology Branch, US EPA, Research Triangle Park, NC.

Biodiesel (BD) exhaust may have reduced adverse health effects due to lower mass emissions and reduced production of hazardous compounds compared to diesel exhaust. To investigate this possibility, we compared adverse effects in lungs and liver of BALB/c mice after inhalation exposure (0, 50, 150 and 500 μg/m3; 4 hr/day, 5 d/wk, for 4 wk) to combustion exhaust from 100% biodiesel (B100) and diesel (D100). Compared to D100, B100 exhaust caused a significant accumulation of oxidatively modified proteins (carbonyls), increase in 4-hydroxynonenal (4-HNE), reduction of protein thiols, depletion of antioxidant - glutathione (GSH), a dose-dependent increase in the levels of biomarkers of tissue damage (LDH) in lungs, and inflammation (myeloperoxidase, MPO) in both lungs and liver. B100 exposure also significantly enhanced expression of cytokines IL-6, and IL-12p70 (in a dose-dependent manner), along with IL-10, TNF-α and MCP-1 (increased compared to control) in both lung and liver tissues. Overall, the cytokine profiles in the lung and liver suggest that B100 and D100 exhaust elicit similar innate immune responses, predominantly involving T-cell independent pathways; however, the magnitude of inflammation was greater following B100 exhaust exposure. Interestingly, exposure to D100, but not B100 exhaust, induced a significant increase in the levels of IFN-γ in the lungs, suggesting a broader engagement of Th1 component by D100 exhaust. Based on this, we hypothesize that the distinctive organic compounds and/or oxidative products formed as a result of increased oxidative stress upon BD exposure, are capable of targeting biological/molecular pathways that are distinct from D100 exposure. (This abstract does not represent US EPA policy).

2361 THP-1 and HMC-1 Cell Interaction with Epithelial Cells in a 3D Tetraculture System of the Alveolar Barrier Modulates the Response to Oxidative Stress.

S. G. Klein, S. Tommaso, L. Hoffmann, B. Blömeke, CRP - Gabriel Lippmann, Belvalux, Luxembourg; 2Department of Environmental Toxicology, University of Trier, Trier, Germany.

Exposure to fine and ultra-fine ambient particles is still a problem of concern in many industrialised parts of the world and the intensified use of nanotechnology may further increase exposure to small particles. Among the various mechanisms, the production of oxidative stress is considered to be one of the key mechanisms how particles affect tissues. Complex in vitro coculture systems may be valuable tools to study related processes and to further evaluate the effects of particles on the lung (Klein et al., 2011). Therefore, a system consisting of four different human cell lines that should mimic the cell response of the alveolar surface in vitro was developed in order to be used with a native aerosol exposure system (Vitrocell™ chamber). It is composed of: type-II epithelial cells (A549), differentiated macrophage-like cells (THP-1), mast cells (HMC-1) and endothelial cells (EA.hy 926), seeded in a 3D orientation on microporous membranes. Oxidative stress was induced by incubating the cells with 2,2'-azobis-2-methylpropanimidamide, dihydrochloride (AAPH; 20 mM), and quantified as the oxidative products formed as a result of increased oxidative stress upon BD exposure, are capable of targeting biological/molecular pathways that are distinct from D100 exposure. Results are reported as fold increase in ROS production relatively compared to untreated cells.

Single cell cultures of EA.hy 926 (11.8 +/- 1.4), THP-1 (11.5 +/- 1.3) and HMC-1 (14.7 +/- 2.9) showed significantly higher oxidative stress than the tetraculture (6.6 +/- 0.75). A549 cells showed the highest amount of oxidative stress (3.4 +/- 0.18) compared to other cultures. The interplay of model cell for the immune system (THP-1 and HMC-1) with A549 epithelial cells strongly influences the behaviour of our system, resulting in an alleviative effect for oxidative stress compared to the monocultures. The use of the tetraculture system may lead to a more realistic judgement about the hazard of new compounds in the future.

2362 ADME Studies on Nanoparticles Are So Far of Limited Use for PBPK Modeling.

U. Carlander and G. Johanson, Institute of Environmental Medicine, Work Environment Toxicology, Karolinska Institutet, Solna, Sweden.

The health hazards with nanoparticles (NP) are largely unknown, and human data are unlikely to be generated to any great extent. Previous experience with xenobiotics shows that combined use of animal ADME studies and PBPK modeling is
useful in human health risk assessment and this approach should be useful also for NP. However, it requires that animal experiments are carried out and reported in an appropriate way. The aim of this study was to review published data on the biodistribution of intravenously injected NP. By this approach the additional complexity of absorption is avoided. Data were mainly retrieved for gold, silver, titanium dioxide, silica and polymeric NP. Very few of the 66 reviewed articles, covering 244 NP varieties, estimates of bioaccumulation uncertain. Most studies present data for blood, liver and spleen, many also for lungs and kidneys. A few studies suggest that NP deposits in muscle, bone and carcass should not be neglected. Overall, our review indicates that it is difficult to draw general conclusions about NP biodistribution. With the limited data at hand, it seems that no individual factor such as size, coating, shape, charge, chemical composition or agglomerations status can explain the biodistribution. In conclusion, the ADME of NP is complex and additional studies are needed. To be useful in PBPK modeling, these studies should include more complete NP characterization, cover more organs and time points, have longer follow-ups, and account for the mass balance. It would be valuable to develop a standard protocol for ADME studies of NP. This study was financed by a grant from the Swedish Council for Working Life and Social Research.

2365 Differential Response of Brain and Liver Free Fatty Acids following Administration of Iron Nanoparticles in Rats.

Z. K. Binienda1, I. A. Ross2, B. Gough1, S. F. A. El2, S. Z. Imam1 and C. S. Kim2

1Neurotoxicology, NCTR/FDA, Jefferson, AR; 2Toxicology, CFSAN/FDA, Laurel, MD.

Intranasal treatment with ferric oxide nanoparticles (tx-Fe2O3 and γ-Fe2O3 NPs), in rats caused microglial proliferation and activation in olfactory bulbs, hippocampus and striatum. Our in vitro studies with SHSY-5Y neuroblastoma cells exposed to 10 and 30 nm ferric oxide NPs showed over expression of alpha-synuclein protein, depletion of dopamine, and conditions for oxidative stress. Here, we examined the response of brain and liver free fatty acids (FFAs) in adult male Sprague-Dawley rats treated intraperitoneally (i.p.) either with saline (control) or ferric oxide (Fe2O3 –) NPs at 25, 50 and 100 mg/kg. Rats were sacrificed 72 hrs after injection to harvest caudate nucleus and liver. Long chain FFAs were extracted with chloroform and methanol (4, 8 v/v) from tissue homogenates and the extracts were shaken, followed by centrifugation. The supernatants were reconstituted with Heps, chloroform and methanol (3,2, 4, 8 v/v). The chloroform was then evaporated under nitrogen. The residue was reconstituted with ether- hexane (50:50, v/v) and eluted by column chromatography on acid-washed Florisil. FFAs were derivatized with BF3/methyl and fatty acid methyl esters were quantitated using gas chromatography. Concentrations of saturated FFAs (palmitic, stearic) in the liver and brain did not change following injection of the iron NPs. However, unsaturated brain FFAs (oleic, linoleic) were decreasing in a dose-related fashion in the CN (p<0.05). In the liver, the concentration of the unsaturated FFAs increased significantly at 25 and 50 mg/kg (p<0.05) but was no different from control at 100 mg/kg. These data indicate a differential response of liver and brain unsaturated fatty acids to iron nanoparticle exposure, suggesting different mechanisms in the liver and brain in response to oxidative stress.

2366 Effects of Cerium Oxide Nanoparticles on Fibroblast Function in Relation to Lung Fibrosis.

J. Y. Ma, B. Hines, M. Barger, R. R. Mercer and V. Cazanova, PPRB/Held, NIOSH, Morgantown, WV.

The emission of cerium oxide nanoparticles (CeO2-) in the diesel exhaust, when cerium compounds were used as a diesel engine catalyst to lower the diesel exhaust NOx, is a well known fact. Our previous studies have shown that CeO2induced pulmonary inflammation and lung fibrosis. The objective of the present study is to investigate the modification of fibroblast function by CeO2 in relation to fibrosis. Male Sprague Dawley rats were exposed to CeO2 (0.15 to 7 mg/kg) by a single intratracheal instillation and sacrificed at various times post exposure. Alveolar macrophages (AM) were isolated by bronchoalveolar lavage (BAL), and lung fibroblasts were isolated from the lung tissues. The first BAL fluid and AM culture medium obtained after a 24 h incubation time were saved for further analysis. The results show that at 28 days after CeO2 (3.5 mg/kg) exposure, lung fibrosis was evident by increased hydroxyproline content in lung tissues and enhanced Sirius Red staining collagen fibers in the lung. In addition, the presence of stress actin, expressed as α-smooth muscle actin (SMA), in fibroblasts was also significantly increased when compared to the control. Lung fibroblasts isolated from CeO2-exposed rats at 28 days post-exposure showed a dose-dependent decrease in proliferation rate using the MTT assay. Treating primary fibroblasts with CeO2 in vitro, did not significantly affect cell proliferation rate; however, when treated with the first BAL fluid collected at 3- or 10-days after CeO2 exposure, significantly increased cell proliferation when compared to the control. In vitro treatment of fibroblasts with TGF-β1 significantly increased α-SMA expression. These results
Demonstrate that CeO2 induces a diverse network of mediators that affects fibroblast proliferation and functional changes that may play a role in lung fibrosis. These findings suggest potential health effects of CeO2 exposure.

2367 Toxicity of Nanoparticles Embedded in Paints Compared to Pristine Nanoparticles.

Nanomaterials are increasingly being used in the paint industry due to their unique physical and chemical properties. Nanoparticles often used in paints and coatings are TiO2 (anti-UV, self-cleaning, air purification), Ag (anti-microbial) and SiO2 (fire retardant, anti-scratch).

In this study, the toxic effects of 3 pristine nanoparticles (TiO2, Ag and SiO2), 3 aged paints containing nanoparticles (TiO2, Ag and SiO2) and control paints without nanoparticles were compared.

BALB/c mice were weekly oropharyngeally aspirated with nanoparticles or paint particles (two dimensions less than 100 nanometres) for 5 weeks. Mice were then sacrificed 2 or 28 days after the last aspiration. The local (lung/bronchoalveolar lavage fluid) and systemic (blood) toxicity was evaluated (cell counts, inflammatory cytokines, blood clotting parameters).

The pristine nanoparticles showed no effects in the blood and a subtle toxic effect in the lungs, which was most pronounced in the case of Ag nanoparticles (increase in neutrophils (7.8×10^3), 2-fold increase in pro-inflammatory cytokines KC and IL-1β). The paints containing nanoparticles did not show significant toxicity.

In conclusion, we demonstrated that although pristine particles show some toxic effects, the paints containing nanoparticles did not show significant toxicity.

2368 A 15-Day Oral Exposure to Dispersed TiO2 P25 Particles Induces Epithelial Barrier Dysfunction and Bacterial Translocation in the Rat Intestine.

E. Housse0,1, E. Gauthier1, M. Nabil1, N. Naud1, A. Aït-Belgnaoui1, N. Thieriet2, M. Carré1, J. Cravedi1, V. Théodorou1 and F. Pierre1. INRA Toxadim, Toulouse, France; ANSES, Maisons-Alfort, France; CEA-LAN, Grenoble, France. Sponsor: D. ZALKO.

Aim: Titanium dioxide (TiO2) has a long-standing use as food additive and is promised to be used in food packaging as antimicrobial in biosurfaced foods. Possible hazards of ingested TiO2 particles for human digestive tract are under discussion. We addressed consequences for gut barrier function in rats orally exposed to TiO2 P25 (85% anatase/15% rutile) at human level exposure.

Methods: Male rats were orally given either vehicle (Ve) or TiO2 P25 (provided by European Commission-Joint Research Center in the OECD sponsorship program) at 10, 1, 0.1, 0.01, 0.001 mg/kg BW/day in aggregated forms or ultrasonicated to obtain a stable dispersed submicron-sized TiO2 commonly found in food. Particle size was measured by dynamic light scattering. Duodenal to colonic paracellular (4kD dextran) epithelial permeability was studied by using sodium. Lipid peroxidation was assessed by Thioarbituric Acid Reactive Substances (TBARS) assay, and inflammation through neutrophil myeloperoxidase activity (MPO). Bacterial translocation (BT) was assessed in mesenteric lymph nodes (MLN), liver and spleen.

Results: Oral treatment with dispersed TiO2 P25 particles (mean hydrodynamic diameter 650nm) at 100 or 10μg/g increased epithelial permeability (p<0.01) in the jejunum (+70% vs Ve) and colon (+57±19% vs Ve), and only in the jejunum at 10μg/g/kg/d (85%; 0.19±0.07 vs 0.1±0.03 nmol dextran.cm2.h-1 in Ve; p<0.05).

At all doses, dispersed TiO2 did not affect TBARS and MPO levels across the gut, whereas rats dosed with 1000 or 160 μg/kg/day increased epithelial permeability (p<0.01) (10±0.2 vs 9.3±0.3 log10cfu/g of tissue, respectively), but not liver and spleen. Neither gut permeability nor BT was affected in rats exposed to non-dispersed TiO2. Conclusion: Chronic oral exposure of rats with dispersed TiO2 at human relevant dietary exposure alters intestinal barrier, with features of bacterial translocation suggesting enhanced risk of pathogen uptake.

2369 The Effect of Nanoparticles from Secondhand Cigarette Smoke on the Mouse Lung.

Z. Wu1, M. McCawley2, E. Kimani3 and R. D. De Vries4, 5. Neurobiology and Anatomy, West Virginia University, Morgantown, WV; 2Community Medicine, West Virginia University, Morgantown, WV. Sponsor: J. Nurkiewicz.

Secondhand cigarette smoke (also named Environmental tobacco smoke (ETS)) is an environmental trigger factor that leads to airway inflammation and airway hyperresponsiveness (AHR) in susceptible individuals and animals. The constituents of ETS exist in the gas-phase and the aerosol particles which consist predominantly of nanoparticles (two dimensions less than 100 nanometres). The purpose of this study is to characterize the role of nanoparticles on ETS-induced airway responses.

The mice were exposed to side-steam tobacco smoke (SS), a surrogate to ETS, or 50 nm nanoparticles, or 80 nm nanoparticles, or gas-phase or filtered air (FA) for 3hrs. Lung function and inflammation in bronchoalveolar lavage (BAL) were measured following exposure. Methacholine (MCh) dose response for lung resistance (RL) was significantly elevated, and dynamic pulmonary compliance (Cdyn), was significantly decreased, in the SS, nanoparticles exposure groups compared with the FA and groups gas-phase exposure. At the same time, the total cells and neutrophils were significantly elevated in both SS and nanoparticles exposed mice. However, MCh dose-response curves for RL and Cdyn, inflammation were not significantly changed in the 50 nm nanoparticles and 80 nm nanoparticles exposure group.

These results suggest that nanoparticles from second hand cigarette smoke play an important role in smoking-induced lung injury.

2370 The Comparative Immunotoxicity of Mesoporous Silica Nanoparticles and Colloidal Silica Nanoparticles in Mice.

S. Lee1, H. Yun2 and S. Kim1. 1. Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; 2Engineering Ceramics, Powder & Ceramics Division, Korea institute of Materials Science, Changwon, Republic of Korea.

Mesoporous silica (MPS) nanoparticles (NPs), which have unique pore structure, extremely high surface area and pore volume, have attracted attention for their potential biomedical applications, such as carriers for controlled drug delivery and matrix for tissue regeneration. To use MPS NPs for biomedical devices, their bio-compatibility both in vitro and in vivo should be confirmed in mouse models.

Therefore, in this study, we examined the biodistribution of MPS NPs after oral administration in mice. In this study, we used MPS NPs with particle size below 100 nm to examine their biodistribution and pharmacokinetics in mice.

Results: MPS NPs showed no acute toxicity to mice. MPS NPs were distributed in the liver, spleen, lung, bone marrow and serum after oral administration. However, MPS NPs were not detected in the other organs such as heart, kidney, intestine and brain.

These results suggest that MPS NPs are safe for oral administration in mice.

2371 Evaluation of Intestinal Absorption of Amorphous Silica Nanoparticles.

K. Misato1, Y. Yoshida1, M. Uji1, A. Udaka1, T. Mori1, M. Yamaguchi1, T. Hirai1, T. Yoshi1, H. Nabheshi1, T. Yoshikawa1, S. Tsunoda1,2,3,4. 1Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Suita, Japan; 2National Institute of Health Science, Tokyo, Setagaya, Japan; 3Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Osaka, Itabashi, Japan; 4NEI center, Osaka University, Osaka, Suita, Japan.

With the recent development of nanotechnology, amorphous silica nanoparticles (nSP) with particle size below 100 nm have already been used in various foods as anticaking agents. Therefore, to ensure the safety of nSP, it is an urgent need to obtain safety information of nSP. However, there is little information about biodistribution of nSP after oral administration in mice. In this study, we examined the biodistribution and absorption of nSP via oral route in vivo and in vitro. BALB/c mice were orally exposed to nSP with diameter of 70 nm (nSP70) or 1000 nm (mSP1000) at 2.5 μg/body for 28 days. After the last administration, we observed the localization of silica particles in various tissues by transmission electron microscope. Both silica particles were observed in some tissues such as spleen and liver, although these results were qualitative analysis. Next, we evaluated the absorption of silica particles through intestine quantitatively by everted sac method. Although about 0.3% of mSP1000 in mucosal side was absorbed into serosal side, the level of absorbed nSP70 was about...
2372 Indomethacin/Indomethacin Ester-Loaded Nanocapsules Reduce Brain Tumor in C57Bl/6 Mice with No Observable Local Toxic Effect.

S. F. Rodrigues1, L. Fiel1, N. Pereira1, J. Machado1, K. Elach1, S. S. Gutierrez2, A. R. Pohlmann2 and H. S. Farkas1. 1Clinical and Toxicological Analysis, University of São Paulo, São Paulo, Brazil; 2Organic Chemistry, UFRGS, Porto Alegre, Brazil. Sponsor: S. Barros.

Introduction: Potentiation of the indomethacin (IndOH) cytotoxicity was demonstrated in vivo when IndOH was loaded combined with its ester (IndOEt) in poly(e-caprolactone) nanocapsules (NC). Objective: To determine whether the antitumor activity of IndOH is kept in vivo when it is combined with IndOEt in NC and the capacity of those NC to cross the blood brain barrier (BBB). Methodology: Intravital microscopy was used in oral-, intraperitoneally- (i.p.) or intravenously- (i.v) treated female C57Bl/6 mice to visualize: 1) The intensity of red fluorescence within and outside cerebral (pial) veins after rhodamine-labeled NC treatment; 2) The interaction of leukocytes-rhodamine-labeled and platelets-FITC-labeled with the endothelial cells of pial veins. The BBB permeability was measured by the Evans blue extravasation assay. Effect of two-week IndOH/IndOEt-NC treatment on the volume of a brain tumor (induced by direct injection of glioblastoma cell line [GL261] into the brain) was measured. Ethical Committee number: CEUA/FCF/349. Results: The intensity of fluorescence outside the vessels dramatically increased 30 minutes following i.v. NC injection compared to 10 minutes after i.p. injection, and 1, 2 and 4 hours after oral intake (P<0.05). No increase in leukocyte or platelet adhesion to endothelial cells, and Evans blue extravasation were noticed. IndOH/IndOEt-NC profoundly reduced the brain tumor. Conclusion: Antitumor activity of IndOH in brain is kept when it is combined to its ester into NC and may be due to a focal effect once they cross the BBB. Supported by: FAPESP, CNPq.

2373 Isoprostanes As a Biomarker of Nanoparticle-Induced Toxicity In Vivo.

J. Manzo1,2, T. Coccini1,2, E. Roda1 and C. Signorini1. 1University of Pavia, Pavia, Italy; 2Maugeri Foundation IRCCS, Pavia, Italy; 3University of Siena, Siena, Italy.

Oxidative stress was indicated as one of the main mechanisms associated with nanoparticle (NP)-induced toxicity. In this study, the validity of plasma F2-isoprostanes (F2-Isop) as a proposed oxidative stress marker (Hallwell & Lee, Antioxid Redox Signal, 2010), was examined in rats treated intratracheally with a single dose of cadmium-doped silica nanoparticle (SNC-GD), a model nanoparticle previously shown to induce oxidative stress in vivo (Coccini et al, J Nanopart Res, 2012). The response to SNC-GD (1 mg/rat) was evaluated 24 hr, 7 and 30 days post-instillation by immunocytochemistry analysis of superoxide dismutase (SOD1), inducible nitric oxide synthase (iNOS) and cyclooxygenase type 2 (COX-2) expression in pulmonary tissue. Lung and plasma levels of F2-Isop were measured in parallel by GC/NICI-MS/MS analysis. Furthermore, the effects of SNC-GD were evaluated in comparison with those caused by equivalent amounts of CdCl2 or SNC. In the animals exposed to SNC-GD, pulmonary SOD1, iNOS, and COX-2 immunoreactivity was enhanced in a time-dependent manner (-7 <30 days). Pulmonary total F2-Isop were also increased significantly on thirty days post-exposure (46.7±11ng/g in SNC-GD vs 32.8±7.8 ng/g in control). Pronounced elevation of free F2-IsopS similarly occurred in plasma (54.6±22 pg/ml in the SNC-GD group compared to 28±8 pg/ml in controls). The increase in plasma F2-Isop was already detectable at day 7 and lasted until day 30 post-exposure. In the animals treated with silica nanoparticles no changes were observed regarding the immunohistochemical and biochemical parameters tested. The pulmonary response to CdCl2 was less pronounced than that found with SNC-GD. These results indicate the potential of SNC-GD to cause long-lasting oxidative tissue injury following pulmonary exposure in rats and (ii) a promising role for F2-IsopS as indicator of nanoparticle-induced oxidative insult (Grants: Italian Ministry of Health & University, and CARIPLO Foundation Rd. 2011 – 2096).

2374 Biokinetics of Nanoscale Europium Oxide Particles following an Acute Inhalation in Rats.

O. H. Creutzenberg, H. Kock and D. Schaudien. Inhalation Toxicology, Frauhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany. Sponsor: G. Dusenberg.

Nanoscaled europium oxide (Eu2O3) particles were selected to investigate the biokinetics following inhalation. The rare earth Eu allowed a very high accuracy in analysis of potential translocation from lungs to remote organs. An aqueous dispersion of commercially available Eu2O3 particles (0.1 w-%) was prepared in phosphate buffer (0.15 w-%) incl. bovine serum albumin (0.25 w-%). A suspension partially consisting of nanoscaled particles could be realized by mechanical homogenization and ultrasonic treatment and was aerosolised with pressurised air. Rats inhalated the dry aerosol for 6 hours in a single inhalation. Phosphate facilitated the disintegration of the Eu2O3 particles in lung alveoli after deposition. The potential translocation of Eu2O3 particles was followed by chemical Eu analysis and transmission electron microscopy (TEM). Using chemical analysis, 36.8 μg/lung Eu2O3 were detected 1 hour after inhalation in lungs. The amount declined slightly to 34.5 μg after 1 day and 35.0 μg after 5 days. The liver showed an increase of Eu2O3 from 32.3 ng 1 hour up to 294 ng 5 days after inhalation. Additionally, lung-associated lymph nodes, thymus, kidneys, heart, and testes exhibited an increase of Eu2O3 over the time period investigated. In the blood, the highest amount of Eu2O3 was found after 1 hour whereas feces, urine and mesenteric lymph nodes revealed the highest amount after 1 day. In the other organs such as brain, spleen, adrenals and epididymides no changes of the Eu amount were detected. By TEM analysis, Eu2O3 particles could be detected only in lungs, in liver, however, with one of the highest chemical Eu concentrations, no particles were detectable. In conclusion, mixed type metal oxide/phosphate particles are a suitable tool for biokinetic investigations after inhalative uptake. The use of Eu2O3, combined with chemical and TEM analysis was a very suitable model to examine the translocation potential. Bioavailability was limited to soluble Eu2O3, a translocation of Eu2O3 particles was not evident.

2375 NanoMiner—Resource for Human Transcriptomics Data in Nanoparticle Research.

B. Endel1, L. Kong1, S. Tuomela1, L. Ha lone1, H. Ahl fors1, O. Yli-Harja1, R. Lahesmaa1 and R. Autio1. 1 Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; 2 Department of Signal Processing, Tampere University of Technology, Tampere, Finland; 3 Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.

The potential impact of nanoparticles on the environment and on human health has attracted considerable attention in recent years. Transcriptomics data generated from tissues or cells exposed to nanoparticles are being gathered at ever-increasing rates. In addition to the importance of the original findings, such data can have value if interpreted in a broader context and combined with other published results. To encourage the efficient use of the data, we have developed NanoMiner (http://nanominer.cs.tut.fi/), an integrative transcriptomics data resource for nanoparticle research. The data in NanoMiner is collected from public repositories, and the database currently contains 404 human transcriptomics samples of cells exposed to various types of nanoparticles. All samples in NanoMiner have been annotated, preprocessed and normalized using standard methods to ensure the quality of the data analyses and to enable systematic use of the database across different experimental setups and platforms. With NanoMiner, it is possible to: 1) search and plot the expression profiles of one or several genes of interest, 2) cluster the samples based on expression values and differential expressions of the genes belonging to a specific KEGG pathway or any other pathway of interest, 4) detect the nanoparticles causing differential expression of selected genes, 5) analyze enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms for the detected genes, and 6) search the expression values and differential expressions of the genes belonging to a specific KEGG pathway or Gene Ontology. The NanoMiner database is thus a valuable collection of microarray data and can also be used as a data repository for future analyses.

2376 Nano-Silica Aspiration Exposure Induces Endothelial Disfunction in Diabetic Mice.

S. A. Brenner1, M. Frame1, A. M. Dewaz1 and J. E. Vigilance1. 1 Biomedical Engineering, Stony Brook University, Stony Brook, NY; 2 Faculty of Medical Sciences, The University of The West Indies, Cave Hill, Barbados; 3 Nanobioscience, University of Albany College of Nanoscale Science and Engineering, Albany, NY. Sponsor: T. Turkiewicz.

Silica (SiO2) nanoparticles are widely used in many diverse industries, such as polishing agents in semiconductor fabrication, as potential biomedical drug delivery agents, and in fabrics to make them wrinkle free. Our goal was to evaluate the ef-
feels of nano-silica (SiO2, longest dimension 51.9 ± 16.2 nm, aspect ratio 1.1 ± 0.1) on small arteries in vitro. First, a paracellular route was observed. After intravenous injection of human plasma samples (normotensive, saline) was directly applied to arteries (micropipette, 137 pg total dose), using a hamster cheek pouch intravital microscopy model (isolaurane, N=6). Endothelial dysfunction (loss of dilation to acetylcholine, ACH 10-4M) was evident within minutes (dilation of 78 ± 14% to constriction -5 ± 6%, p<0.05), while dilation to adenosine was unaffected. Constrictor responses to phenylephrine were diminished by SiO2 exposure (from -61±4% to -12±2%); importantly, the baseline diameters were not altered by direct exposure to SiO2, and the vessels retained some responses. Next, mice were exposed to 20ug of SiO2 via aspiration, and 24 hours later the cremaster m. model was examined (isolaurane). Db/db controls (N=6) have mild endothelial dysfunction seen as a diminished dilation to ACH (10-4M, dilation of 43±14% to 10±6%). Exposure to SiO2 (40gm wt, N=4) induced a profound endothelial dysfunction seen as constriction to ACH (-13±2%). Dilation to adenosine was unaffected. In C57BL/6, exposure to SiO2 (25gm wt, N=2) did not significantly alter dilation to ACH or adenosine compared to controls (N=6). Further, in the aspiration model, constrictor responses to phenylephrine were not affected in either strain. Thus, direct exposure to 137 pg SiO2 induced endothelial dysfunction immediately in healthy hamsters. Aspiration of 20ug induced a profound endothelial dysfunction in diabetics but not in the genetic background controls. (NIH DK68401, HL5492)

Copper oxide nanoparticles (Cu-NPs) are frequently used in medical devices, paints, fabrics or as antimicrobials. Their industrial applications may lead to the contamination of aquatic ecosystems. The toxicological and human health risks of NPs in the environment are hard to evaluate due to a lack of knowledge about the mechanisms by which NPs interact with biological systems. In this study, we investigated the toxicity of Cu-NPs and the ionic copper(II) form in wild-type (WT) zebrafish (Danio rerio, AB-strain) embryos and hbb-GFP transgenic zebrafish (Danio rerio, AB-strain) embryos by comparing bare Cu-NPs to the mass equivalent ionic form of copper(II) (CuCl2) at various concentrations (1.25- to 20 ug/ml). The toxicity was determined by phenotypic changes in the zebrafish embryos including survival, heart rate, motor neuron development and absorptive permeability. Both Cu-NPs and CuCl2 were lethal to zebrafish embryos at 20 ug/ml (within 24-hrs) and 10 ug/ml (within 48-hrs), with CuCl2 being more toxic at equivalent mass concentrations. Similarly, the heart rate was significantly reduced following exposure to either Cu-NPs or CuCl2 in a concentration-time dependent manner. Additionally, the embryo permeability studies showed that exposure to either Cu-NPs or CuCl2 (5 ug/ml) for 24-hrs significantly increased the topological absorption of the fluorescent tracer 6-coumarin (6CM). Furthermore, embryos treated with either Cu-NPs or CuCl2 (2.5 ug/ml for 48-hrs) showed a significant reduction (near 2-fold) in spiral motor neurons. These results indicate that both CuCl2 and Cu-NPs can be toxic to zebrafish embryos causing significant neurotoxicity and cardiotoxicity at exposure levels that do not cause lethality.

Quantum dots (QDs) are engineered nanoparticles frequently composed of a CdSe core, ZnS shell, and an assortment of polymer coatings specific to their application. QDs are used in electronic systems because of their semiconductor properties and in biomedical research and medicine as imaging tools because of their unique fluorescence properties. Their widespread use and heavy metal core composition have raised concerns about their safety. An important consideration in evaluating QD toxicity is the accurate quantification of these nanoparticles within tissues. The current measurement methods favored include inductively coupled plasma mass spectrometry (ICP-MS) for the metal components of QDs, and QD fluorescence directly in tissue sections using microscopy. However, ICP-MS is expensive and cannot distinguish between metals present in QDs or free ions, and fluorescence microscopy is often difficult because of interfering tissue autofluorescence. We adapted a silver-enhanced autometallography technique for detecting QDs in frozen tissue sections. This technique is efficient and inexpensive, and quantification of QD signal using immunofluorescence correlates well with direct QD fluorescence measurements. The ability to efficiently measure QDs in tissues will provide important dose information that can be useful for evaluating the adverse health effects of QD exposures.

The physico-chemical properties of nanoparticles (NP) and their agglomeration state influence their toxicokinetics, reinforcing the importance of the characterization of the exposure dose. The objective of this study was to evaluate the influence of initial particle size and agglomeration state of inhaled 20 mg/m3 TiO2 aerosols on rat's pulmonary response. Groups of rats (n=6) were exposed for 6 hr to aerosols composed of either 5, 10-30 or 50 nm TiO2. Two distinct agglomeration states were obtained. Aerosols were composed majorly of either large (LA) (>100 nm) or small agglomerates (SA) (<100 nm). A control group was exposed to compressed air. Exposures were characterized using weight measurement for mass concentration, an electrical low pressure impactor (Dekati) for size distribution and electron microscopy for agglomerates observation. Pulmonary response was analyzed 16 hr after the end of exposure through bronchoave lavage fluid, and lung histology. Total cell count, number of macrophages and neutrophils were increased statistically (p<0.05) compared to control for the 10-30 and 50 nm LA aerosols, while increases were significant only for total cell count and number of macrophages for the

Wistar rats with 1, 2 and 4 mg/kg b.w of NiO-NPs for 48h and 14 days showed increased intracellular ROS generation, DNA damage, micronuclei formation and apoptosis in bone marrow cells. Tomato seeds exposed to NiO-NPs for 4 h, exhibited repression of root length, higher activities of antioxidant enzymes, and increased frequency of apoptotic and necrotic cells in comet assay. Flow cytometric analysis of 2 mg/ml treatment group revealed 122% higher ROS generation with alteration of mitochondrial membrane. Cell cycle data showed a shift of 65.5% cells towards apoptotic subG1 phase vis-à-vis control showed 16.5% cell in subG1. An increase in caspase-3 like protease activity validates the involvement of mitochondria-dependent intrinsic apoptotic pathway. Thus, this study has provided a new insight into the fundamental mechanism of NiO-NPs induced toxicity and signifies its potential to induce cell death in animal and plant cells.
Silica nanoparticles (SiO2-NPs) are the one of most widely used and important nanomaterials in nanotechnology. Lung tissue is one of the main routes of entry nanoparticles, which may cause severe pulmonary toxicity. However, the toxicological effects and the precise mechanisms of SiO2-NPs on lung are still unclear. Here, we attempted to investigate the toxic injuries and the definite mechanism of SiO2-NPs on the acute pulmonary toxicity. The adult male ICR mice were exposed to intratracheal silica NPs of 50 mg/kg SiO2-NPs and lung tissue were collected after 7 days. Our results found that SiO2-NPs increased 40% mortality rate and significantly induced pulmonary morphological and histological changes with neutrophils, macrophage and fibroblast cells from the terminal bronchiol. The lung tissue weight/body weight ratio (LW/BW) increased 2-fold suggested that SiO2-NPs may trigger pulmonary edema. Meanwhile, the malondialdehyde (MDA) levels in the treated lung tissue were increased.Moreover, SiO2-NPs caused apoptosis-related signals, including up-regulation of Bax and down-regulation of Bcl-2 and activation of caspase cascades mRNA expression, which accompanied with triggered the endoplasmic reticulum (ER) stress identified through several key molecules, such as activating the CHOP, XBP-1, caspase-12, and increasing the GRP-78/94 mRNA expression. These results suggest that SiO2-NPs induced an oxidative stress, and cause acute pulmonary toxicity through mitochondria and endoplasmic reticulum pathways.

Biodistribution and Toxicity Profiling of Nanosilica in Rats after Subchronic Oral Exposure.

Synthetic amorphous silica (SAS) is a conventional food additive. In earlier publications, we have shown that up to 43% of SAS in food products can be nanosized. Yet, the behavior and biological effects of ingested nanosized silicas are still largely unknown. We evaluated the biodistribution, accumulation, and toxicity of two nanomaterials: NM-202 from the OECD testing program, and a food nanomaterial. (Funded by NIEHS RC2 ES018772 and R01 ES020897)

The T-box Transcription Factor TBX21 (T-BET) Inhibits Airway Goblet Cell Hyperplasia Induced by Nickel Nanoparticles in Mice.

Engineered nanomaterials (ENMs), including metal nanoparticles, are increasingly used in many industrial applications, including electronics and engineering. Additionally, the human health risks that ENMs pose are of growing concern, especially in susceptible populations such as asthmatics. The T-box transcription factor TBX21 (T-bet) maintains Th1 cell development in the lung and loss of T-bet has been associated with the development of allergic airway inflammation characterized by Th2 cells. The purpose of this study was to determine if mice deficient in T-bet are susceptible to goblet cell hyperplasia caused by nickel nanoparticles (NINP). Wild type (WT) and T-bet/- mice were exposed to a NINP (4 mg/kg) and lung tissues were collected at 1 or 21 days. The mucin-positive staining area (goblet cell hyperplasia) was quantified by morphometry using Axitran blue/PAS-stained lung sections. Whole lung mRNA levels for mucin genes (MUC5AC and MUC5B) were measured by Taqman real-time RT-PCR. Bronchoalveolar lavage fluid (BALF) was collected for differential cell counts and for measuring levels of secreted cytokines known to regulate goblet cell hyperplasia, namely IL-13 and CCL2. NINP exposure caused a marginal increase in goblet cell hyperplasia in WT mice at 1 or 21 day post-exposure, However, NINP caused a significant (p<0.001) increase in goblet cell hyperplasia in T-bet/- mice and a significant (p=0.05) increase in MUC5AC and MUC5B mRNA levels at 21 days. Furthermore, IL-13 protein levels and eosinophilic infiltration were elevated (p<0.001) after 1 day in the BALF while CCL2 mRNA and protein levels were significantly increased at 1 and 21 days. These findings identify T-bet as a potentially important generic susceptibility factor for NINP exposure and suggest that individuals with pre-existing allergic airway disease are at a higher risk for environmental and occupational exposures to nanomaterials. (Funded by NIEHS RC2 ES018772 and R01 ES020897)
Acute Toxicity Study of Nanoparticles of Bismuth Trioxide by Inhalation Exposure in Male Rats.

O. C. Barbier1, B. Quintanilla-Vega1, L. M. Del Razo1, M. Cortés-Torres1, R. Angulo-Olais1, M. Uribe-Ramírez1, M. J. Solís-Heredia1, G. Martínez-Aguilar1, A. Barrera-Hernández1, L. C. Sanchez-Pérez1, E. Beraa1 and A. De Viveira-Biz1. 1Toxicology Department, CINVESTAV-IPN, Mexico City, Mexico; 2Farmacología, Mexico City, Mexico.

Bismuth (Bi) compounds are widely used in several products, including metallurgical alloys and medical devices; Mexico is among the largest Bi producers. Bi toxicity and supported by LLNL CRADA No. PNNL/284.

This work performed under the auspices of the U.S. Department of Energy by Nanotoxicology has gained attention in the last decade due to the dramatically increase of nanomaterials in new appliances and their release to the environment. We conducted an in vivo study to evaluate the toxicity of Bi-NP by inhalation exposure. We exposed adult male Wistar rats (n=7) to an acute inhalatory dose (140 mg/kg, b.w. dispersed in 10 mg/ml BSA) of Bi2O3 nanoparticles during 5 h using the InExpose SCIREQ® inhalation system by nebulization of 1.05 ml Bi2O3 suspension/min. The control group (n=7) received nebulized phosphate buffer in BSA. Physiological parameters such as body weight and relative organ weights, and histopathology were determined. In addition, complete blood count (CBC) and blood chemistry were evaluated. Bronchoalveolar lavage (BAL) was performed to evaluate pulmonary inflammation by differential cell count. Relative weights of spleen, liver, kidney and testes were significantly higher (12-23% increase) in the exposed group, while the histopathology revealed alterations in lungs, liver, brain and spleen, and damage in the epithelium seminiferous. CBC, blood chemistry and BAL parameters were not affected by the acute inhalation exposure to Bi-NP. In our experimental conditions, Bi2O3 nanoparticles showed moderate toxicity by inhalation exposure. Further studies are needed to evidence adverse effects due to the exposure to these NP; a subchronic study is underway to reach this objective.

Zinc oxide nanoparticles (ZnO-NPs) demonstrate selective cytotoxicity toward cancer cells in culture, and this effect may extend to other metal oxide nanoparticles (MO-NPs). Therefore, MO-NPs may possess unique qualities applicable to nanomedicine. To realize their potential as anticancer agents, we must identify safe and effective MO-NPs. We developed a screening approach that first utilizes cell culture assays to identify MO-NPs that prevent cancer cell proliferation and determine the mechanism of selective toxicity. Then we assess the toxicity of the MO-NPs utilizing the embryonic zebrafish assay, an efficacious model for nano-safety assessment because of its high homology with humans and use of minimal test material. We prioritize MO-NPs that demonstrate relatively low toxicity to the zebrafish yet maintain preferential toxicity toward cancer cells in culture for assessment in a zebrafish xenograft model of glioblastoma. By xenotransplanting human glioblastoma cells into the cranial of zebrafish, we have developed an assay to identify MO-NPs that selectively inhibit cancer cell proliferation in vivo. We are testing four MO-NPs: zinc oxide, titanium dioxide, cerium dioxide, and tin dioxide. Preliminary results demonstrate that ZnO-NPs inhibit glioblastoma cell proliferation at 0.1 mM. Our screening paradigm holds promise for identifying physico-chemical traits which enhance the anti-cancer properties of MO-NPs while supporting safe NP design. Research support: NSF 134468, NIEHS P30 ES000210, ES 016896, T32 ES07060, and Air Force Research Laboratory #FA8650-05-1-5041.
have been well-demonstrated to be one of the key pathogenic factors for cardiorespiratory disorders. Previous studies investigating deposition and clearance have used mostly radiolabeled-PM, fluorescent labeling or specially engineered nanoparticles (NPs) with physical and chemical properties that are atypical of ambient PM. A low cost and high throughput alternative is needed that will permit direct measurement of PM deposition and clearance. Here, we have used luminense trivalent europium (Eu3+) as a reporter of ionic species oxide nanoparticles (LDHs) synthesized by a low cost spray flame synthesis to study the deposition and clearance of PM in rats. As rare earth elements, the lanthanides (i.e. Gd and Eu) exhibit very low natural abundance, and provide extremely good detection sensitivity in different organs with the use of inductively coupled plasma mass spectroscopy (ICP-MS). Moreover, the strong optical emission that arises from the intra-4f transition of the europium ions adds a powerful tool to detect the deposition site via fluorescence microscopy. ICP-MS data from the instillation study showed that 59% of the particles remained in the lung while a significant amount was detected in the feces (20.4%) after 24 hrs, suggesting a fast clearance mechanism. Dissolution of the NPs was investigated in vitro by monitoring the photoluminescence at photophysical pH (5.0) at a physiological pH (7.4) up to 30 days; results confirmed that the lanthanides were transported as particles and not as soluble ions. The result with the instillation studies demonstrated the excellent sensitivity of this method. We have adapted our PM generator to a nose-only inhalation system for exposures of rodents. This work supported by NIEHS P42ES04699. We acknowledge the W. M. Keck Foundation for a research grant.

2390 Angiogenesis Alterations Caused by TiO2 Nanoparticles.

V. Freyre-Fonseca1, A. Déciga-Alcaraz2, E. M. Flores-Jiménez1, N. L. Delgado Buenrostro1, G. F. Gutiérrez-López2 and Y. L. Chirino1, 2*.

1Facultad de Estudios Superiores Iztacala, Instituto Politécnico Nacional, México City, Mexico; 2Departamento de Graduados e Investigación en Alimentos, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico.

Angiogenesis is a process by which the preexisting vascular tree of a tissue causes growing of new blood vessels. It plays a key role in tumor development and it has been demonstrated that titanium dioxide nanoparticles (TiO2 NPs) exposure increases hypoxia and growth factors levels and these events are related to angiogenesis. However, the TiO2 NPs effect in this process has been poorly explored. In this regard, chronic exposure to TiO2 NPs could develop disorders in angiogenesis. The aim of this study was to study angiogenic responses caused by TiO2 NPs exposure. Characterization of TiO2 NPs was done using dynamic light scattering to measure nanoparticles size distribution and zeta potential. Chicken chorioallantoic membrane (CAM) model was used as following: fertilized eggs were incubated during 7 days at 37°C and 80% humidity and then exposed to 0, 5 and 10 μg of TiO2 NPs previously suspended in MCDB-131 cell culture media and injected in blood vessels incubating for 7 days more. On 14th day, eggs were opened and digital analysis of images was done. Umbilical vein endothelial cells were obtained from embryos to measure VEGF expression by flow cytometry. Results showed that suspension of 5 and 10 μg of TiO2 NPs had an agglomerated size of 355.9±29.5 nm and 503.1±69.9 nm, respectively; Zeta potential of agglomerates suspended in MCDB-131 was -17.36±1.18. Images of CAM showed structural differences between vessels of treated and untreated TiO2 NPs eggs. An increase of 0.5 cm and of 1 cm between blood vessels was found in CAM of 5 μg and 10 μg TiO2 NPs treated eggs, respectively. In conclusion, TiO2 NPs exposure in CAM model induced and increase in the distance between blood vessels and in the VEGF expression in endothelial cells.

2391 Radiolabeled, Superparamagnetic, Nanoparticles for Bio-Distribution Studies in Life Sciences.

P.D. Nallathamby1, 2, H. Enright1, M. Malpatti1, S.T. Retterer2 and W. Wang1, 3*.

1Health & Life Sciences, B-FAST, Battelle Memorial Institute, Columbus, OH; 2BESD, Oak Ridge National Lab, Oak Ridge, TN; 3Biosciences and Biotechnology Division, Lawrence Livermore National Lab, Livermore, CA.

Nanoscale drug delivery systems have generated considerable interest because they allow for the addition of cell specific targeting molecules and/or multiple therapeutic agents, while their bio-distribution in vivo displays molecular level kinetics. Iron based nanomaterials, with their inherent magnetic properties and an easily tailored surface chemistry, are of particular interest because of their simultaneous diagnostic and therapeutic potential. To determine how bio-distribution affects the biological efficacy of an iron based nano-carrier system, hydrophillic iron oxide nanoparticles (~10 nm) were synthesized, with either a carboxylic acid (-COOH) or an amine (-NH2) functional group. 14C-labeled (t1/2=5730 years) were incorporated into the organic functional groups on the surface of the nanoparticles. The radiolabeled, superparamagnetic nanoparticles were then delivered intra-venously to mice and the pharmacokinetic distribution in vivo was determined by Accelerator Mass Spectrometry (AMS); an ultrasensitive (10^-16 mol) quantitative spectrometric technique with small sample requirements. The radiolabeled nanoparticles were well distributed in plasma and also detected in different organs like the lungs, liver and spleen. The radiolabeling approach used in this study provides comparable bio-distribution data as the radio-labeled probes have the same chemical properties as the non-labeled probes. The synthesis approach described here is broadly applicable to the synthesis of nanoscale materials with multiple core and surface functionalities. The pharmacokinetic data, suggest that functionalized iron nanoparticles may have broad use as therapeutic, diagnostic or even theranostic agents in biological systems.

2392 Susceptibility to Quantum Dot-Induced Lung Inflammation Is Mouse Strain Dependent.

D. K. Scoville1, C. C. White1, D. Botta1, L. A. McConnachie1, M. E. Zadworny1, X. Hu2, X. Gao2, J. Yu2, R. Dills1, R. C. Zanger3, J. P. Pounds3 and T. J. Kavanagh3, 1Environmental and Occupational Health Sciences, University of Washington, Seattle, WA; 2Bioscience, Engineering, University of Washington, Seattle, WA; 3Systems Toxicology Group - Division of Biological Sciences, Pacific Northwest National Laboratory, Richland, WA.

Quantum dots (QDs) are nanoparticles typically composed of a CdSe core, a ZnS shell, and an assortment of polymer coatings specific to the application. Unique fluorescent and excellent semiconductor properties make QDs useful in biomedical imaging and electronics. However, due to their small size, large surface area, and heavy metal composition, there is concern over the safety of QDs. Using 8 genetically inbred mouse strains we have investigated susceptibility to QD induced lung inflammation by using % neutrophils, total protein, and levels of inflammatory cytokines in bronchoalveolar lavage fluid (BALF) as biomarkers. Cadmium was measured as a marker of exposure and total glutathione (GSH) levels in frozen lung tissue were also measured. Significant treatment group and strain specific differences in the % neutrophils in BALF indicate that susceptibility to QD induced lung inflammation is mouse strain dependent. We also observed that the % neutrophils in BALF is correlated with lung Cd and GSH levels, as well as BALF cytokines. It is clear that strong relationships exist in some mouse strains and not in others. For example, the % neutrophils in BALF is highly correlated with macrophage inflamma-tory protein 1a (MIP1α) in A/J, C57BL/6J, WS8/116, N20/Hi/LtJ mice. However, CAST/Eij, NOD/Shi/LtJ, PWK/PhJ, and 129S1/SvImJ mice do not show a strong relationship. In future studies, recombinant inbred mouse strains will be used to map expression quantitative trait loci (eQTLs) associated with QD-induced lung inflammation. Analysis of such eQTLs could lead to insights regarding the molecular mechanisms responsible for QD toxicity and ultimately provide guidance on how to produce safer QDs. Supported by NIH grants R01ES016189, U19ES019545 and P08070033.

2393 Nrf2 Is a Positive Regulator of Cytokine Expression in Lung of Titanium Dioxide Nanoparticles Exposed Mice.

N. L. Delgado Buenrostro1, E. I. Medina-Reyes2, A. Cuadrado Pastor1, L. Lustra1, J. Pedraza2, R. Hernández2 and Y. L. Chirino3, 1Investigación y Posgrado UBIMED, Fesiztacala, UNAM, Mexico City, Mexico; 2Investigación y Posgrado, Instituto Alberto Sols, Madrid, Spain; 3Investigación, Instituto de Nutrición, México City, Mexico.

Background. Titanium dioxide nanoparticles (TiO2 NPs) increase the generation of reactive oxygen species and the inflammatory response in lung tissue of exposed animals. As a result, the expression of Nrf2 acts a defense mechanism against ROS generation; however its role in inflammation remains unclear.

Aim. The goal of this work was to evaluate role of Nrf2 in inflammatory process induced by TiO2 NPs in lung from exposed mice.

Methods. Male wild type mice (WT) and Nrf2 knockout mice (KO) were divided in the following groups: a) control-WT, b) TiO2-WT, c) control-KO and d) TiO2-KO. TiO2 NPs were suspended in 50μl of SSI and received 5 mg/kg by oropharyngeal for twice a week/4 weeks. Then, mice were perfused with p-formaldehyde and lung tissue was obtained for histological and immunohistochemical analysis. Results. Bronchioles, venules and interstitial space of TiO2-KO group showed higher inflammation and oxidative stress damage, than TiO2-WT group. On the other hand, Nrf2 was a positive mediator in the expression of IL-10, Interferon-gamma, TNF-alpha, and TGF-beta, and acts as a negative mediator of IL-4 expression in bronchial epithelium and alveolar space.

Conclusion. This work suggests that Nrf2 has a central role in up-regulation of cytokines released during inflammation induced by TiO2 NPs in lung tissue.

SOT 2013 ANNUAL MEETING 511
Distinct Expression Profiles of Stress Defense and DNA Repair Genes in Daphnia pulex Exposed to Cadmium, Zinc and Quantum Dots.

1Environmental Toxicology, Texas Tech University, Lubbock, TX; 2Biological Sciences, Texas Tech University, Lubbock, TX.

Use of nanocrystalline semiconductors (Quantum dots; QDs) is growing as new applications, especially in biomedical research, adopt this technology. More importantly, industrial and other mainstream uses of QDs seem likely to increase since QDs can theoretically more than double the efficiency of semiconductors in current photovoltaics. Often, with increased use comes increased appearance in the environment and, given the heavy metal composition of QDs, there exists a concern regarding the potential toxicity of these nanomaterials on aquatic organisms. The freshwater invertebrate Daphnia is a ubiquitous dweller of ponds and lakes throughout North America, a keystone species in aquatic food chains, and an indicator species for environmental contaminants. In this study, we aimed to compare transcriptional responses of several key stress-mediated and DNA repair genes in D. pulex following exposure to QDs and the individual metallic components of which they are comprised. Exposure to both Cd and QDs led to induction of mortality and Cd accumulation, which was biologically supported by the increased expression of the heavy metal responsive gene, metallothionein (MT). Our study also revealed that Cd, Zn and CdSe/ZnS QDs induced a different pattern of gene expression regarding stress defense and DNA repair, which furthered our understanding regarding the different mechanisms of toxicity that are elicited by the nanoparticulate form of metals versus the ionic form.

A Delphi Pilot Study in Brazilian Stakeholders About Nanotechnology, Nanomaterial, and Their Toxicological and Regulatory Implications.

W. Waissemann1, R. S. Barros1, M. Moura1, E. Wilson1, A. S. Arcuri1, V. S. Pinto2, A. B. Veggi3, T. P. Silva3 and L. Brickus4.
1Centre for Bionano Interactions, School of Environmental Toxicology, Texas Tech University, Lubbock, TX; 2Biological Sciences, Texas Tech University, Lubbock, TX.

We conducted an email study using Delphi method. In the first phase, 108 questionnaires (5 questions) were sent, 12 for each of the following groups: Researchers; Regulators, Personal from Funding Institutions (PFI); Public Health/Environmentalists, Producers, Workers/Unions Representatives, Consumers, Legislators, NGOs. Only two rounds were needed. At the first round, 43 (40%) questionnaires were completed. From the 43 sent, 37 (77%) were completed at the second round. We have no answers from legislators and NGOs. Only two answers have been changed, and this not modified the general results, which show: 60% of respondents considered the benefits equal or outweigh the risks, but recognize that population should better understand risks. More than 20% believe all research and production in nanotech should be suspended until the increase of nanorisk knowledge. Around 60% of the respondents believed Brazil is in a disadvantageous position in nanotech market products comparing to other developing countries, even though who agree that research is at a good level in the country. 80% consider inadequate and insufficient the legislation that deal with risks of nanotech, almost 100% understand consumers have insufficient information and more than 80% understand that even workers who deal with nanotechnology have little information on legislation and potential risks. It was used regular ways to send emails, similar for all categories. For next researches, the approach to NGOs and legislators should be modified.

In Vitro/In Vivo Assessment of Engineered Nanomaterials Using a High-Content Analysis Platform.

1Centre for Bionano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland; 2Centre for Toxicology, Cinvestav, Mexico City, Mexico.

With increasing numbers of nanomaterials introduced on the market in consumer products, bio-medical and environmental applications it is of primary importance to assess, understand and manage their potential toxicity. To effectively assess and understand the mechanisms of toxicity induced by nanoparticles (NPs) we implemented a platform that correlates physico-chemical properties of nanomaterials with their biological effects in vitro on human cell lines and in vivo on zebrafish as a model of toxicity to aquatic species. Nanomaterials' physico-chemical characteristics were evaluated in the relevant exposure media for in vitro and in vivo exposure and High Content Analysis (HCA) was employed to quantify several parameters of toxicity on exposed human cell lines and anatomical defects observed on exposed zebrafish larvae. To demonstrate the power of the platform the toxicological outcomes of surface-functionalized model nanoparticles (i.e. polyethylene Nanoparticles with carboxyl and amine surface modifications) are described along with Bismuth (Bi)-derived Nanoparticles designed for industrial applications developed within the EU/Mexico collaborative project Biosano. The model NPs were well dispersed in either complete cell culture medium or zebrafish embryo medium; for Bi-derived NPs it was necessary to develop a dispersion protocol in order to isolate particles in the nanometer range from a heterogeneous powder which were subsequently stabilized with bovine serum albumin. The HCA approach was able to differentiate between apoptosis and necrosis induced in different cell models by amine-modified polyethylene (PS-NH2) NPs and highlighted lysosomal damage as the triggering mechanism of toxicity for both the PS-NH2 NPs and the Bi-derived NPs. HCA analysis of zebrafish larvae quantified changes of anatomical features such as head/torso ratio, spine length and body curvature. The project was funded by QNano and Biosano.
Environmental contaminants and therapeutic substances contribute significantly to the high incidence and prevalence of acute kidney injury (AKI). Preclinical observations of kidney toxicity stop many compounds from entering later development due to the lack of early biomarkers of injury. In the clinic, morbidity and mortality with AKI remains unacceptably high. Our recent work has shown urinary as well as tissue fibrinogen levels increase significantly in mice, rats and humans following kidney injury/toxicity. We provide evidence that fibrinogen serves as a key molecular link between tubulo-vascular damage and regeneration in the kidney and provides new opportunities for its use in the diagnosis and prevention of kidney disease and enablement of the clinician to institute therapeutic interventions.

Heart disease is the leading cause of death in the United States. Cardiovascular health is a prime concern for both toxicologists and physicians. Interactions among genes and environmental factors including lifestyle and drugs, may negatively affect the cardiovascular system. Myocardial damage from ischemia, infectious and metabolic diseases, or cardiotoxic drugs may be followed with biomarkers such as the troponins, natriuretic peptides, and their combination in panels with multiple evolving biomarkers. These tools facilitate an understanding of the parallels between toxicity and background disease in animal models and human heart disease.

It is well known that environmental agents, including self-administered drugs, are capable of causing neurological damage. Such agents may be used to create animal models of human disease, which may be useful in identifying drug targets, therapeutic strategies, and biomarkers. A well-known example is MPTP, a chemical contaminant in the illicit manufacture of a synthetic opioid which produced an acute Parkinsonian syndrome in users. MPTP has been extensively used in Parkinson's disease research as an investigational agent in both cultured cells and animals. A challenge remains that few good biomarkers exist for early neurological damage and thus there is an intensive focus on better predictive and diagnostic biomarkers. The combined use of models of neurological damage caused by drugs, toxicants, and disease may move the field forward faster in the identification and use of translational biomarkers.

The major goal of this symposium is to discuss the molecular and cellular mechanisms by which cytochromes P450 (CYP) contribute to oxidative stress, which could in turn lead to inflammatory processes, ultimately leading to many human diseases including cancer, neurodegenerative diseases, bronchopulmonary dysplasia (BPD), acute respiratory distress syndrome (ARDS), and drug-induced hepatotoxicity. Although much is known about the functional role of CYPs in drug metabolism, their role in endobiologic metabolism, in relation to oxidative stress and inflammation, is understudied. The recent findings of the novel role of CYPs in oxidative stress and inflammation in the manifestation of multiple human diseases warrant the need for a symposium to discuss the latest mechanistic research in this area and its impact on human health. Specifically, the symposium will discuss: i) the role of CYP4Fs in neuroinflammation, which in turn contributes to neurodegenerative diseases such as Parkinson's and Alzheimer's disease; ii) the role of the p450s in pro-oxidative stress, and inflammation in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced hepatotoxicity; iii) the functions of CYP1A1, 1A2, and 1B1 in the metabolism of eicosanoids, which in turn play mechanistic roles in TCDD toxicity; iv) the contribution of CYPs in eicosanoid metabolism and the mechanism of down-regulation of CYPs during infection; and v) the novel protective role of CYP1A1 and 1A2, and the pro-oxidant role of CYP1B1 in hypoxic lung injury, in relation to BPD and ARDS. The symposium will also discuss new opportunities for drug discovery and their potential translatability in clinical settings.

Inflammatory processes are involved in pathogenesis and progression of CNS disorders, such as infection, traumatic brain injury, and neurodegenerative diseases. Eicosanoids including leukotrienes, particularly leukotriene B4 (LTB4) mediate inflammatory response by initiating and amplifying generation of cytokines and chemokines. Cytochrome P450 (CYP), a family of heme proteins mediate metabolism of xenobiotics and endogenous compounds, such as eicosanoids. We demonstrate that mouse brain Cyp4fs are expressed ubiquitously in several cell types in the brain including neurons and microglia, and modulate inflammatory response triggered by lipopolysaccharide (LPS), in vivo and in microglial cells, in vitro through metabolism of LTB4 to the inactive 20-hydroxy LTB4. Chemical inhibitor or shRNA to Cypfs enhance the inflammatory response, while the PPARα agonist, fenofibrate induces Cypfs and attenuates it. Fenofibrate also confers neuroprotection against Japanese encephalitis (JE), in vivo, in a mouse model of JE viral infection through up-regulation of Cypfs, and could potentially be used for prophylaxis during JE epidemics to reduce mortality and morbidity. Thus, catalytic activity of Cypfs is a novel target for modulating neuroinflammation.

A number of chemical contaminants that are highly prevalent in the environment, elicit some or all of their toxicity through the arylhydrocarbon receptor (AhR), a ligand-activated transcription factor. Activated AhR forms a heterodimer together with the AhR nuclear translocator (ARNT), and binds to xenobiotic response elements in the promoter regions of target genes resulting in induction or inhibition of expression. Among the AhR target genes are the cytochromes P450 CYP1A1, CYP1A2 and CYP1B1. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is among the most potent environmentally toxic compounds. TCDD exposure alters serum metabolite profiles as a result of attenuating hepatic carboxylesterase 3, CES3 (also known as triglyceride hydrolase), expression in an AhR-dependent manner. Serum metabolites identified azelaic acid-mono esters as significantly increased metabolites after TCDD exposure. The decreased CES3 expression was accomplished by TCDD-stimulated TGF-β-SMAD3 and IL6-STAT3 signaling, but not by direct TCDD-activated AhR induction of target genes. Proinflammatory cytokine activation was achieved by TCDD-mediated oxidative stress in the liver through TCDD-induction of sultaine dehydrogenase and NADPH oxidase expression in an AhR-dependent manner. Methionine- and choline-deficient diet-treated mice also showed enhanced serum azelaic acid ester levels following attenuation of hepatic CES3 expression, while genetically obese db/db mice did not, suggesting an association with steatohepatitis. These results support the view that azelaic acid-mono ester is an indicator of dioxin exposure and a possible diagnostic biomarker of steatohepatitis and indicate oxidative stress in the mechanisms of hepatotoxicity by TCDD.

Fibrinogen: A New Kid on the Block of Translational Biomarkers for Kidney Damage.

Cardiac Disease, Cardiotoxicity, and Translational Biomarkers.

1Cardiac Disease, Cardiotoxicity, and Translational Biomarkers.

2Mechanistic Role(s) of Cytochrome(s) P450 in Oxidative Stress and Inflammation: New Opportunities for Drug Discovery.

Lipidomic Analysis Demonstrates That 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin Increases the Levels of Multiple Pro- and Anti-Inflammatory Cytochrome P450 Metabolites of Polysaturated Fatty Acids in Several Organs of the Mouse.

Cytochromes P4504f, a Potential Therapeutic Target for Neuroinflammation.

2401 Cardiac Disease, Cardiotoxicity, and Translational Biomarkers.

2402 Links between Neurological Disease and Toxicity.

2403 Mechanistic Role(s) of Cytochrome(s) P450 in Oxidative Stress and Inflammation: New Opportunities for Drug Discovery.

2404 Cytochromes P4504f, a Potential Therapeutic Target for Neuroinflammation.

2405 Metabolomics Identifies an Oxidative Stress-Mediated Signal Transduction Cascade Involved in Dioxin-Induced Hepatotoxicity.
the levels of 81 metabolites in several mouse organs/tissues of mice treated with TCDD. B. The levels of CYP1A1, CYP1A2 and CYP1B1 in some organs but not others, suggesting that other enzymes involved were also transfected with the AHR. TCDD increased the levels of the esterified forms of the eicosanoids in the liver in parallel with the corresponding free forms. The phospholipids so formed therefore represent a reservoir for these metabolites. Analysis of Ah−/− null mice demonstrated that the changes in eicosanoid levels elicited by TCDD depend upon AHR. Many eicosapentaenonic acids and lipids of three ω-3 unsaturated fatty acids, eicosapentaenoic acid (20:5n-3), docosahexaenoic acid (22:6n-3)), and eicosatrienoic acid (18:3n-3)), were also markedly increased in the liver, lung, but not the heart of mice treated with TCDD. Since many of the oxidin metabolites that were increased by TCDD treatment exhibit potent biological activities, including both pro- and anti-inflammatory effects, these studies lay the foundation for future experiments addressing their potential role in mediating the toxic and other effects of TCDD and other ligands of the AHR.

2407 Regulation and Functions of Cytochromes P450 during Infection.

E. T. Morgan and B. A. Nyagode. *Pharmacology, Emory University, Atlanta, GA.*

Sponsor: B. Moorthy.

Activation of the innate immune system, whether by infection or aseptic stimuli, causes significant changes in hepatic cytochrome P450 (P450) enzyme expression, drug metabolism and clearance. This regulation has important consequences for drug administration and responses in disease states. Its reversal by therapeutic pro-teins targeting proinflammatory cytokines gives rise to a newly recognized drug-drug interaction mechanism. Understanding the regulatory pathways for the different enzymes is pivotal to predicting the clinical consequences of such regulation during disease and therapy. We have studied the regulation of hepatic P450 expression in various disease models in mice, including injection of bacterial lipopolysaccharide and infection with the colonic pathogen *Citrobacter rodentium*. The enzymes affected are dependent on the disease model, so that different drugs are likely to be affected in different human disease states. In the *C. rodentium*-infected mouse, the expression of Cyp1a1, Cyp1a2 and Cyp4a10 is increased in cytokine or cytokine receptor-null mice indicate roles for interleukin-6 and tumor necrosis factor-α in the regulation of a small subset of P450 transcripts, including some members of the Cyp3a subfamily. Studies in SCID mice suggest that T cells or T-cell-derived cytokines might also be important in this model. However, the absence of cytokine signals fails to alter the down-regulation of the most profoundly suppressed liver enzymes i.e. Cyp4a10, Cyp4a14 and flavin monooxygenase 3 (Fmo3), suggesting a different mechanism of regulation for these genes. To address whether or not Cyp4a enzymes play a role in the host-pathogen interaction, we infected Cyp4a14−/− and Cyp4a10−/− mice with *C. rodentium*, and compared their responses to those of wild type mice. Result from these ongoing studies will be presented. Supported by National Institutes of Health grant R01DK072372.

2408 Mechanistic Role(s) of Cytochrome P450A1 and B1 Enzymes in Hyperoxic Lung Injury: Implications for Bronchopulmonary Dysplasia (BPD) in Premature Infants and ARDS in Adults.

B. Moorthy. *Pediatrics, Baylor College of Medicine, Houston, TX.*

Hyoxia is routinely used in the treatment of pulmonary insufficiency and respiratory distress in preterm and term infants and in adults with acute respiratory disease (ARDS). However, in premature infants, hypoxia contributes to the development of chronic lung disease (CLD), which is termed bronchopulmonary dysplasia (BPD). The molecular mechanisms of oxygen-mediated lung injury are not understood, but reactive oxygen species (ROS) are the most likely candidates. ROS-mediated reactions with biological macromolecules such as DNA, proteins, and lipids are also responsible for many other lung diseases such as acute respiratory distress syndrome (ARDS), asthma, emphysema, chronic obstructive pulmonary disease (COPD), and lung cancer induced by environmental pollutants. Results from our laboratory demonstrate a novel role for cytochrome P450 (CYP)1A enzymes in the detoxification of ROS-mediated lipid peroxidation products, e.g., F.-isoprostanes. Our major observations are that mice lacking the genes for CYP1A1 or IA2 are more susceptible to hyperoxic lung injury than wild type mice, with Cyp1a2-null mice being the most sensitive. On the other hand, mice lacking the gene for CYP1B1, are less susceptible to lung injury, suggesting a pro-oxidant role for CYP1B1. Mice pre-treated with the CYP1A inducer β-naphthoflavone (BNF), followed by exposure to hyperoxia leads to protection against lung injury. We also found formation of bulky oxidative lesions (oxidative DNA adducts) in tracheal aspirates of premature infants and adults who received supplemental oxygen, and this was associated with BPD and ARDS, thereby suggesting that these adducts could serve as novel biomarkers of these diseases. Future studies could lead to the development of rational strategies for the prevention/treatment of lung diseases associated with hypoxia.

2409 Molecular Basis of Age-Related Susceptibility to Chemicals and Environmental Hazards: From Model Systems to Humans.

J. S. Lee and J. C. Fuscoe. *1US EPA, Durham, NC; 2US FDA, Jefferson, AR.*

The susceptibility of individuals to chemicals and environmental hazards at the extremes of the population age-distribution (the very young and the very old) is often not adequately assessed. By understanding genes expressed at the various life stages, the assessment of health risk versus benefit can be more rationally determined. Children are more susceptible to chemical contaminants than adults because intake rates are increased, biologically-effective doses may differ, and early life exposure may lead to adverse health effects that are chronic in nature. Older adults are more susceptible to environmental contaminants because of pharmacokinetic and pharmacodynamic changes associated with aging. Altered absorption, distribution, metabolism, and excretion (ADME), along with decreased blood flow to the liver, decreased liver mass, and decreased content of specific cytochrome P450 (CYP) could result in decreased clearance of chemicals in older adults. In addition to these factors, genetic and epigenetic changes that occur with age and chemical exposure may also increase susceptibility to environmental hazards. Our panel will examine genomic and epigenomic changes that occur with age using animal and human data. Rat liver and kidney data will be used to discuss age-related target organ vulnerabilities. Human relevance will be addressed using a longitudinal birth cohort study in Mexican-American children, two mother-child cohort studies in Mexico and the United States, and a cohort study of older men from the Normative Aging Study. Ultimately, understanding the implications of genetic and epigenetic changes related to age on the effects of chemical exposure will help to protect the health of children and older adults. Disclaimer: The views expressed are those of the authors and do not necessarily represent the views or policies of the US EPA or US FDA.

2410 Functional Genomic and Epigenomic Changes in the Liver and Kidney during the Rat Life Cycle.

J. C. Fuscoe, T. Han, V. Vijay, V. Desai and J. C. Kwékel. *Division of Systems Biology, NCTR, US FDA, Jefferson, AR.*

The susceptibility of individuals at the extremes of the population age-distribution (the very young and the very old) and differences between sexes are often not adequately assessed. By understanding the genes expressed in each sex at the various life stages, the assessment of health risk versus benefit can be more rationally determined. Comprehensive analysis of the transcriptome, including miRNA, and the epigenome in the liver and kidney of Fisher 349 rats from 2 weeks to 2 years of age reveals substantial differences at various life-stages and between the sexes. In the liver and kidney, the expression of nearly 4000 genes was found to significantly vary with age and/or sex. Many of these genes are involved in xenobiotic metabolism and transport, processes that impact drug efficacy and safety. The expression of genes that code for the cytochrome P450 enzymes affected are dependent on the disease model, so that different drugs are likely to be affected in different human disease states. Understanding these differences should improve personalized medicine both in terms of disease prevention and management, and safer use of drugs.

2411 A Case-by-Case Approach to Pediatric Drug Safety Involving Multi-juvenile Rat Models That Target Developmental Issues and Address Regulatory Concerns.

P. Espandiar, W. Rodriguez and J. P. Hanig. *CDER, US FDA, Silver Spring, MD.*

The toxicity of drugs in pediatric populations may vary considerably from that seen in adults. Capacity to generate or inactivate the toxic moiety, issues of drug half-life, volume of distribution or specific target organ toxicity as well as hypersensitivity are
2412 Genetic and Epigenetic Mechanisms of Susceptibility to Environmental Exposures in Children.

Children are more susceptible to exposures to environmental toxicants than adults, and in utero exposures may result in developmental problems and chronic diseases. Some children can be particularly vulnerable due to their genetic makeup and age-related differences in protective enzyme levels such as paraoxonase (PON1). Results from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) birth cohort study will be presented to illustrate complex relationships of the effects of prenatal exposure to pesticides, PON functional genomics and genome-wide DNA methylation in Mexican-American children. We determined PON1 genotypes and three PON1 enzyme activities in 450 mothers and their children. Although it was previously thought that children’s PON1 levels reach adult ones by age 2, we found that PON1 levels and activities were the lowest in newborns and steadily increased with age. However, they remained below adult levels up to 7 years. Infants and young children, particularly those with PON1 genotypes encoding for lower PON1 levels and activities, have up to 65-fold lower levels of the protective PON1 enzyme than adults and may be especially susceptible to OP exposures. To assess DNA methylation in cord blood and peripheral blood (clots) of 9 year old CHAMACOS children we interrogated 485,577 CpG sites to OP exposures. To assess DNA methylation in cord blood and peripheral blood (clots) of 9 year old CHAMACOS children we interrogated 485,577 CpG sites from >24,000 genes using the Illumina BeadChip platform. We found that ~15.5% of all CpG sites were differentially methylated between children at birth and 9 years of age. More than 2% of CpG sites investigated, in ~1,900 genes, showed significant differences in methylation by sex, including 731 CpG sites located in autosomes. Candidate genes and pathways involved in response to environmental exposures during pregnancy have been identified. Unlike genetics, epigenetic mechanisms could be reversible and an enhanced understanding of their role may lead to better protection of pregnant women and children, and improved public health.

2413 Prenatal Metal Exposure and Health Effects.

B. C. Fry. Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC.

We will present data that we are collecting from two mother-child cohorts, one in Gómez Palacio, Mexico and one in North Carolina, USA. Both of the newborn cohorts are at risk for metal exposure. The research focuses on an arsenic endemic area of Mexico, Gómez Palacio, the study site for our newly established birth cohort. In this region we are assessing exposure to inorganic arsenic in pregnant women. Our results suggest that pregnant women in this region are at risk for high level exposure to arsenic, a finding that has implications both for the health of the women and also their children. In related work we have investigated how inorganic arsenic is associated with changes in DNA methylation patterns. We are also examining changes in DNA methylation patterns in fetal DNA collected from the NC cohort which is at risk for prenatal exposure to cadmium. We demonstrate using genome-wide gene-specific DNA methylation analysis that there are significant differences in levels of promoter methylation in fetal or maternal samples. In addition, we highlight that prenatal exposure to cadmium is associated with altered patterns of methylation of genes in the placenta.

2414 Particulate Pollution, Susceptibility, and Epigenetic Pathways in an Elderly Cohort.

J. Madrigano1, A. Baccarelli2, M. A. Mittelman3, R. O. Wright4, D. Sparrow5, P. S. Vokonas6, L. Tarantini7 and J. Schwartz8. 1 Mailman School of Public Health, Columbia University, New York, NY; 2Harvard School of Public Health, Boston, MA; 3Beth Israel Deaconess Medical Center, Boston, MA; 4Veterans Administration Boston Healthcare System and Department of Medicine, Boston University, Boston, MA; 5Environmental and Occupational Health, University of Milan, Milan, Italy. Sponsor: L. Lee.

DNA methylation is a potential pathway linking environmental exposures to disease, and lower DNA methylation has been found in processes related to cardiovascular morbidity. Genetic and other host characteristics, such as psychological functioning, have been found to modify the association between air pollution and morbidity. In our study, DNA methylation of repetitive elements, as well as specific genes, was measured in 1406 blood samples from 706 elderly participants in the Normative Aging Study (NAS). We will discuss the changes in repetitive element DNA methylation, as well as two specific genes (the inducible nitric oxide synthase gene; iNOS, and the glucocorticoid receptor gene, GCR) associated with ambient particles (PM2.5) and black carbon (BC), estimated with mixed models. We will also discuss genotype and phenotype characteristics that may modify this association.

2415 Challenging the Limits of Nonclinical Safety Assessment of Pediatric Medicines.

Pediatric safety assessments are a fundamental and integral part of drug development programs. Introduction of regulatory guidance in the last decade has formalized the inclusion of safety evaluations in juvenile animals, leading to a better understanding of potential drug effects on developmental processes and risks specific to pediatric age groups. Toxicology studies in juvenile animals have evolved to address inherent differences in susceptibility between mature and immature systems. Pediatric safety assessments are challenged by practical and interpretive complexities of conducting toxicity studies in immature animals against a background of increasingly diverse disease indications. This symposium will review a number of innovative approaches that challenge the current limits of the nonclinical safety assessment of new pharmaceuticals. Our panel of experts will discuss unique approaches and case studies dealing with the challenges of supporting pediatric formulations, nontraditional routes of administration, and the complexities of developmental neurotoxicity assessments. Furthermore, our experts will discuss how information from various sources such as in vitro experiments using neonatal tissue, pharmacokinetics, and clinical pharmacology work may be brought together to build a risk assessment specific for a young infant and pediatric dosing. These innovative approaches from industry and government challenge the limits of nonclinical safety assessment and provide reassurances of safety for pediatric medicines.
national regulatory agencies to raise awareness of the need to build a risk/benefit approach focused on the use of excipients in pediatric drug products; in particular, the use of novel excipients in this population. Identification of key data should be determined together with an appropriate mechanism for this data to be shared to enhance access to medicines for children.

2417 Technical Challenges and Data Interpretation Evaluating an Inhaled Long Acting β2-Agonist in Juvenile Dogs.

A. Mose, Nonclinical Drug Safety Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany.

Numerous inhaled medications are marketed to pediatric populations, but most of these products were registered prior to the regulated integration of juvenile toxicity studies in nonclinical safety programs. In order to initiate clinical trials in pediatric populations, safety assessments are conducted in juvenile animals to assess any potential toxicity effects during postnatal development, particularly with regard to lung development. This presentation will detail a case study for an inhaled, long acting β2-agonist in juvenile dogs. Discussion will include insight into the pediatric safety strategy, technical challenges involved in dosing an inhaled medication to juvenile dogs, and data interpretation.

2418 Modeling Pediatric Exposures to Neuroactive Agents: Developmental Neurotoxicology.

M. G. Paule. Division of Neurotoxicology, National Center for Toxicological Research, US FDA, Jefferson, AR.

Given the obvious limitations, it is difficult to thoroughly explore the effects of perinatal neuroactive agents on neurons in human infants or children. Due to the complexity of the primate brain, the monkey is often the animal model of choice for developmental neurotoxicology experiments. Case studies will be presented on nonhuman primate models of pediatric exposures to general anesthetics and other neuroactive compounds. These examples will focus on translational endpoints involving cognitive functions such as learning and memory and in vivo imaging using PET. Strategies for neuroprotection will also be discussed.

2419 Technical and Scientific Challenges in Risk Assessments for Neonates and Infants.

Progression into clinical trials in neonates and infants often involves a risk assessment specific for that age group. The risk assessment is likely to include information from technologically challenging bespoke studies in very young animals. However, these studies may not be limited to just repeat dose toxicity studies in young animals but may also include in vitro experiments using neonatal tissue (exploring pharmacodynamic endpoints), safety pharmacology and ADME work. This presentation will illustrate with case examples how information from various sources may be brought together to build a risk assessment specific for the young infant.

2420 Pediatric Dosing Regimen Determination during Drug Development.

In the past 10 to 15 years, the medical treatment options for Juvenile Idiopathic Arthritis (JIA) have greatly evolved and expanded due to a better understanding of the disease and the application of biologic agents. Regulations pertinent to pediatric clinical research have also helped provide a legal basis for investigating the effects of drugs and biologics in pediatric populations and facilitate pediatric drug development. The evaluation of clinical pharmacology, efficacy, and safety data has provided valuable labeling information for pediatric use. This presentation will discuss the application of clinical pharmacology, safety, and efficacy assessments in determining JIA pediatric dosing regimens.

2421 Nanotoxicology: Computational Strategies, Advances, and Challenges.

S. M. Hussain and J. J. Schlager. Air Force Research Laboratory, US Air Force, Wright-Patterson AFB, OH.

Engineered Nanomaterials (ENM), in the range of 1–100 nm, have been found to exhibit fascinating physicochemical properties making them suitable for numerous applications, extending into numerous military, industrial, medical, and scientific specialties. However, massive quantities of ENM would need to be produced for these applications to be realized, thereby increasing the potential risk of human exposure and raising additional concern about their short and long-term toxicological effects. Nanotoxicology has recently emerged as a new branch of toxicology which deals with toxicological ramifications of these ENMs based on their physicochemical properties, such as size, shape, surface coating, and charge. Conducting toxicological studies considering massive quantities of ENM already in the market would be time consuming and resource intensive. Therefore, there is a great need to develop computational models to predict toxicity and human health effects of ENMs. A recent report (Nature Nanotechnology Vol 6, 2011 P138) has demonstrated a computational model to predict the cytotoxicity of various metal-based nanoparticles. The main objective of this workshop is to discuss modeling techniques based on the electronic and structural complexity of ENMs to predict their biological effects.

2422 Quantitative Nanostructure-Activity Relationships Modeling.

A. Tropha. Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC. Sponsor: S. Hussain.

Evaluation of biological effects of Manufactured NanoParticles (MNPs) (including toxicity and environmental fate) is of critical importance for the future of nanotechnology. Our group was among the first to assess the potential of modern cheminformatics methods such as Quantitative Structure – Activity Relationship modeling to develop statistically significant and externally predictive models that can accurately forecast biological effects of MNPs from the knowledge of their physical, chemical, and geometrical properties; we termed this approach Quantitative Nanostructure Activity Relationship (QNAR) modeling. We developed QNAR models for two different categories of MNP datasets: (i) those comprising MNPs with diverse metal cores and organic surface modifiers, in which experimentally measured properties were used as particle descriptors, and (ii) those involving MNPs possessing the same core, but different surface-modifying organic molecules, for which descriptors can be calculated for a single representative of the surface-modifying molecule. In the former case, binary QNAR models with external predictive accuracy as high as 75% were developed for 44 MNPs tested for cellular biactivity and characterized by experimental descriptors such as size, relativities, and zeta potential. For the latter case, we developed QNAR models for a library of 109 MNPs with CLIO-NH2 core decorated with different synthetic small molecules that were tested for uptake in PaCa2 pancreatic cancer cells; models’ external prediction power was shown to have an R2 of 0.72 with a mean absolute error of 0.18 under 5-fold external validation procedure. Similar results were obtained for another dataset of 84 surface-modified Carbon Nanotube MNPs tested for protein binding and acute cellular toxicity; these models were used to design novel MNPs that were tested experimentally with the success rate of 80%. Our studies show that QNAR modelling can be used successfully for (i) predicting activity profiles of novel MNPs solely from their representative descriptors and (ii) designing and manufacturing safer nanomaterials with the desired properties.

2423 Toxicity of Nanomaterials—Major Challenges for Theoretical Predictions.

J. Leszczynski. Department of Chemistry, Jackson State University, Jackson, MS. Sponsor: S. Hussain.

Nanotechnology is expanding rapidly, but development of novel materials synthesized at the ‘nano’ scale should be always accompanied by a comprehensive assessment of risk to human health and to environmental ecosystems. It is vital to be able to predict possible environmental impact of new nanomaterials before their mass production and application. Computational Chemistry provides various tools to evaluate interaction of nanomaterials with biomolecules, shed a light on mechanisms of such phenomena, and predict toxicity of nano sized species. We believe that there is a strong need to develop “nano descriptors” i.e. novel and reproducible ways of representing the structures and/or physical properties of nanoparticles that are suitable for distinctive grouping these types of chemicals. This will facilitate development of QSARs that could reliably predict their characteristics and activities. A conceptual framework for grouping NPs should be considered as a first step in
identifying QSARs that are applicable within each group. Due to high variability in the molecular structure and different mechanisms of action, individual groups of nanoparticles should be modeled separately. In each case, according to the general QSAR rules, the applicability domain of the models should be carefully validated. Our recent ab initio study revealed details of interactions of gold clusters, carbon nanotubes and fullerences with DNA bases and base pairs. Direct prediction of toxicity of unknown nanomaterials was done using QSAR models developed for a test set of compounds characterized experimentally. Based on experimental testing, we developed and tested novel interpretative nano-QSAR model describing cytotoxicity of 17 nano-sized metal oxides to bacteria Escherichia coli. The proposed model allowed us to formulate a hypothesis that mechanistically explained differences in toxicity between the individual oxides.

2424 Biological Surface Adsorption Index (BSAI): A Molecular Signature for Nanomaterial Interactions.

J. E. Riviere, Institute of Computational and Comparative Medicine, Kansas State University, Manhattan, KS.

Most characterization techniques available today for nanomaterials are based on hard physical-chemical properties of size, shape, and surface properties, often determined under very non-biological conditions. However, a major factor that determines biological interactions of nanomaterials in vivo are their surface properties related to forming interactions with molecules in the biological environment. We have developed the BSAI metric, which develops a signature of nanomaterial surface properties specifically related to biomolecular interactions. These properties are developed based on how a nanomaterial interacts with a series of probe compounds using a QSAR approach to generate five molecular descriptors that could be described as a multidimensional partition coefficient. This presentation will introduce the index and illustrate how it can be used to improve modeling of biological interactions.

2425 Predictive Modeling on Nanoparticle-Biomolecular Interactions.

R. Pandey, Department of Physics, Michigan Technological University, Houghton, MI. Sponsor: S. Hussain.

Nano-scale materials, such as semiconductor and metal quantum dots, carbon nanotubes, and graphene, exhibit novel optical, electrical, and magnetic properties that can be exploited for new generations of electronics and sensors. Nanoscale materials also exhibit unique affinity with biological molecules, such as nucleic acids and proteins, which can be utilized for a wide variety of biological diagnostics and sensing applications. In order to develop such application concepts, however, a fundamental understanding of the interactions between various nano and biological systems is critically important. This talk will present a brief overview of recent developments in the assembly and structure-property characterizations of hybrid nano-bio materials with a focus on the physical and chemical properties of their interface. Results obtained from recent theoretical and experimental investigations on optical protein-QD and nucleic acid base-nanotube (C, BN) interactions will be presented.

2426 Toxicogenomics in Risk and Safety Assessment: Recent Advances and Continuing Challenges.

C. Thompson and M. D. Waters, 1ToxStrategies, Inc., Katy, TX 2Integrated Laboratory Systems, Inc., Research Triangle Park, NC.

Toxicogenomic studies can provide a vast amount of data with regard to the changes a chemical can have on a cell, tissue, or organism, and technological achievements continue to make it easier and cheaper to generate such data. However, the application of toxicogenomic data to environmental risk assessments and pharmaceutical safety assessments has progressed more slowly and, despite recent advances, challenges remain as to how best to harness and interpret these large and complex datasets to facilitate their practical application. This session will des-cribe recent applications of toxicogenomics in environmental risk assessment with focus on assessing and predicting genotoxic modes of action and utilizing transcriptome changes from multidose and multi-endpoint animal bioassays in quantitative risk assessment. In addition, recent advances in the usage of toxicogenomics in pre-clinical pharmaceutical safety, clinical trial placement, and individualized medicine will be described.

2427 Characterizing and Predicting Modes of Action of Carcinogenicity Based on Conventional and Toxicogenomics Methods.

M. D. Waters, Integrated Laboratory Systems, Inc., Research Triangle Park, NC.

Predictive toxicogenomics uses global molecular expression data resulting from genotoxic perturbation (e.g., transcript profiling) to predict a toxicological outcome, such as carcinogenicity. In the context of risk assessment, the classification of carcinogens as genotoxic or nongenotoxic has become an essential and debatable issue because of the default assumption that drives regulatory decision-making regarding the presumed linearity of the dose-response curve for genotoxic carcinogens. In fact, the great majority of known human carcinogens are easily detected in conventional short-term tests for genotoxicity and induce tumors at multiple sites in rodents, thus provoking challenges as to the human relevance of nonnongenotoxic rodent carcinogens. Toxicogenomics studies appear quite useful in resolving this dichotomy and in pursuing mechanisms of action. In toxicogenomics studies, a strong DNA damage response at the gene expression level suggests direct DNA modification whereas increased expression of genes involved in cell cycle progression is more characteristic of the indirect-acting agents such as those that induce oxidative stress. Gene expression profiles have been demonstrated that discriminate nongenotoxic modes of action (e.g., cytotoxicity and regenerative proliferation, xenobiotic receptor agonists, peroxisome proliferator-activated receptors, or hormonal-mediated processes) and other profiles appear to delineate various pathways to the formation of conventional cytogenetic alterations. The evidence accumulated to date suggests that toxicogenomics approaches will be useful in conjunction with conventional test methods in the dose and phenotype anchored assessment of chemical carcinogenicity. Case studies will be used to illustrate these points.

2428 Case Studies of Dose-Response Genotoxicity and Toxicogenomic Studies Designed to Replace Default Assumptions Used in Carcinogenic Risk Assessments.

L. Recio, Integrated Laboratory Systems, Inc., Research Triangle Park, NC.

Characterizing dose-response is a fundamental aspect of toxicology and can be used determine and predict the potential adverse effects of chemicals to humans. Only recent genetic toxicology and toxicogenomic studies have adequately characterized dose–response over a range of exposures and have used these data for point-of-departure (POD) calculations needed in risk assessment, such as benchmark dose 10 (BMD10). Genotoxicity and toxicogenomic endpoints can be considered as biomarkers of key events or adaptive responses that with robust experimental designs can provide the needed qualitative and quantitative dose-response information to establish chemical-specific modes of action that can be integrated into weight-of-evidence-based approaches for risk assessments. More recently genomic signatures for mode-of-action (MOA) (e.g., genotoxic vs nongenotoxic MOA) in target organs are emerging as mRNA biomarkers of effects. Low dose studies designed to identify exposure levels that do not cause alterations in basal genotoxicity or gene expression can be used to identify exposure levels (or dose) that represent the transition between the NOEL concentrations and other PODs such as BMD. Recent studies conducted at ILS with collaborators, represent case studies aimed at identifying the NOEL concentrations and other PODs using the in vitro micronucleus and mutagenicity studies in human cells for acetaldehyde, dose-response and impact of liver GSH detoxication on naphthalene genotoxicity, expression profiling studies to assess genotoxic vs nongenotoxic MOA in human TK6 cells, and an in vivo dose-response study conducted with the mouse liver carcinogen furan examining impact on the mouse genome and epigenome.
The histological and the tumor responses were analyzed using standard benchmark dose (BMD) methods to identify non-cancer points-of-departure. The dose-related changes in gene expression were also analyzed using a BMD approach and grouped based on signaling pathways. The transcriptional BMD values showed a high degree of correlation with apical responses for specific pathways and many of the correlated pathways have been implicated in relevant disease pathogenesis. Importantly, transcriptional points-of-departure for even the most sensitive pathways were on average less than three-fold different than traditional apical points-of-departure for both cancer and non-cancer endpoints suggesting that transcriptomic changes in signaling pathways can be used to estimate noncancer and cancer points-of-departure for use in quantitative risk assessments.

2430 Challenges and Opportunities of Toxicogenomics Analyses in Safety Assessment during Preclinical Safety Studies.
C. Karbowski, Discovery Toxicology, Aymen, Thousand Oaks, CA.

Microarray analysis is a key tool utilized in the biotechnology/pharmaceutical industry as part of a holistic approach to predicting and understanding mechanisms of toxicity of molecules in development. Historically, researchers have faced significant challenges in analyzing and interpreting these large datasets such as understanding the translation of molecular changes to phenotypic changes in an organism and the relevance of observed alterations to other species. However, progress in overcoming these challenges continues to be made. For example, contextualization of gene expression changes utilizing historical and publicly available reference toxicant datasets coupled with recent advances in Systems Biology such as more comprehensive and toxicologically relevant content along with the incorporation of transcription factor analyses and gene directionality provides opportunities to understand the genesis and cross-species relevance of pre-clinical phenotypic changes. This presentation will provide an historical view of the utility of microarray analysis in preclinical safety assessment and then illustrate, through case examples, the added value provided when current state of the art tools are applied to help dissect molecular changes underlying phenotypic alterations.

2431 Role of Causal Reasoning in Patient Stratification from Efficacy and Safety Perspectives.
A. Enayettallah, Drug Safety Research & Development, Pfizer, Inc., Groton, CT.

Advances in genomic technologies have led to the ability to rapidly generate extraordinary amounts of data. However, a lack of efficient tools to manage and interrogate such large amounts of data has limited the application of genomics in the pharmaceutical industry. Recently, we developed a computational platform we call the Causal Reasoning Engine (CRE) that is a powerful tool fortranscriptomic data analysis. The CRE provides explanation of the observed transcriptomic changes in the context of prior biological knowledge, captured in a knowledge base of computable biological assertions. The platform was initially applied to investigatory toxicology to provide mechanistic understanding of organic toxicities, including drug-induced liver injury (DILI) and drug-induced cardiac injury. More recent developments of the CRE platform indicate potential predictive power for evaluating compound safety and identifying liabilities at the individual patient level, which would enable the stratification of patients in clinical trials. In the context of efficacy we will show a use case for patients with diseases known for their heterogeneity, such as systemic lupus erythematosus and inflammatory bowel disease. In this case individualized analysis using CRE clearly classifies patients based on their underlying disease mechanisms, and we will discuss the potential impact on patient and treatment selection in clinical trials. Finally, the results from the individualized analysis approach in patients with immune-mediated DILI will also be presented. Based on the examples presented here, we believe that the CRE approach shows great promise in being able to stratify patients to support the development of more effective and safer medicines.

2432 Assessment of Environmental, Dietary, and Biological Risk Factors Impacting Liver Cancer Incidence in Texas.
E. D. Bruce1, 2 and A. Romoser1. 1Institute of Biomedical Sciences, Baylor University, Waco, TX; 2Institute of Ecological, Earth, and Environmental Science, Baylor University, Waco, TX; 3Toxicology, Texas A&M University, College Station, TX.

The increasing incidence of primary liver cancer in Texas is a result of multiple risk factors, including environmental and dietary exposures to carcinogens, as well as biological factors, such as hepatitis C infection. Texas has the highest liver cancer mortality rate in the United States, affecting the Hispanic portion of the population most acutely. It is speculated that the increased incidence of primary liver cancer observed in the Hispanic communities is due to occupational exposure to pesticides, polycyclic aromatic hydrocarbons (PAHs), and dietary risk factors from contaminated maize. Current research and risk assessment in this field is focused on cancer epidemiology within these populations to determine those risk factors that are most hazardous to the community health of south Texas. Many pesticides used in farming and households are labeled as probable carcinogens and can cause many other negative health effects in people chronically exposed. Research and educational programs in Texas are striving to increase awareness of health effects from exposure and pesticide safety. PAHs are also known hepatic carcinogens, forming DNA adducts within the liver. Health effects observed in Texas from chronic PAH exposure through foods and poor air quality are being assessed. Additionally, mycotoxin occurrence is heightened in the southern portion of the state where drought conditions and excessive heat contribute to fungal growth on staple crops (i.e., maize). Specifically, aflatoxin and fumonisin exposures have been observed in various communities in San Antonio and along the Texas-Mexico border. These mycotoxins are known to both initiate and promote hepatocellular carcinoma. Understanding the risk factors for primary liver cancer in Texas is essential to developing future remediation, prevention, and treatment strategies, as well as identifying and establishing necessary changes in state regulations.

J. F. Villanacci, C. Bowcock and A. Hackenwirth. Texas Department of State Health Services, Austin, TX. Sponsor: E. Bruce.

Liver cancer is the 12th most commonly diagnosed cancer in the US and the 6th most common cause of cancer deaths. Liver cancer incidence has been increasing in both Texas and the US. Although liver cancer only accounts for 1.3% of new cancer cases, it accounts for 2.6% of cancer deaths. Survival rates are poor with a five-year survival of 13 to 15%. In 2012, approximately 2,197 Texans are expected to be diagnosed with liver cancer and 1,788 are expected to die from the disease. Liver cancer incidence trends for Texas and the US were determined using data from the Department of State Health Services, Texas Cancer Registry and National Cancer Institute, Surveillance Epidemiology & End Results. For a 15-year period (1995 to 2009) age-adjusted incidence rates were computed by gender and race/ethnicity. Texans experience higher liver cancer incidence rates than the US and the rates are increasing faster. From 1995 to 2009 Texas rates increased by an average annual rate of 5.7% compared to 3.9% for the US. The 15-year percent changes in incidence for Texas and the US were 126% and 77%, respectively. In Texas, liver cancer incidence has been increasing in both men and women but faster in men. From 1995 to 2009 age-adjusted rates for men increased by 130%, while rates for women increased by 96%. In both Texas and the US, men of all race/ethnic groups are diagnosed two to four times as often as women. In Texas, Hispanics (any race) and Asian/Pacific Islanders have the highest rates but Blacks had the highest rate of change from 1995 forward with an annual percent increase of almost 7% and a 15-year increase of 141%. Texas Hispanics and Blacks have significantly higher liver cancer incidence rates than US Hispanics and Blacks. Hispanic men living in the 28 South Texas counties have the highest age-adjusted rate (25.7). Hispanic and Black men living in the remaining Texas counties have the next highest rates (19.4 and 19.1). From 1995 to 2009 there has been a downward shift in the age of diagnosis of liver cancer for both men and women of all race/ethnic groups.

2434 A Lay Health Worker-Based Intervention for Reducing Families’ Environmental Exposures.
L. Cizma1, J. Ross1, R. Rincon2, H. Tamez2, A. Ginez2, R. Peralta2, C. Miller2 and T. McDonald1. 1Texas A&M Health Science Center School of Rural Public Health, Texas A&M University, College Station, TX; 2South Texas Environmental Education and Research Program, University of Texas Health Science Center, San Antonio, San Antonio, TX.

In economically disadvantaged areas of San Antonio and Laredo, TX, poor living conditions and a hot climate increase the likelihood of pest infestations, leading to increased pesticide use. Promotoras (lay health workers) were employed to deliver a pesticide health education module to families with children between 6 months and 5 years of age. Assessments of attitudes and behaviors relating to pesticide use were given prior to and 6 months after module delivery. In Laredo, participants reported statistically significant changes in behavior and attitudes six months after the module. For example, the percent of participants reporting that they always had emergency numbers by the phone was 35% before the training and 86% six months before.
2435 Early Obesity and Risk of Hepatocellular Carcinoma in USA.
M. Hassan1, D. Li1, A. Kasehi1, J. L. Abbruzzese1, O. Hassabo1, M. Khalil1, I. Sahn1, J. Morris1, E. Hawk1 and M. R. Spitz.1 The University of Texas MD Anderson Cancer Center, Houston, TX; Baylor College of Medicine, Houston, TX. Sponsor: E. Bruce.

Despite the public health problem of obesity and increasing incidence of hepatocellular carcinoma (HCC) in the United States (US), the relationship between obesity and HCC has never been examined extensively in US population. At the University of Texas MD Anderson Cancer Center we conducted a case-control study aimed at examining HCC risk factors in the US. Cases were patients with pathologically confirmed diagnosis of HCC and US residency. The healthy control subjects were spouses of patients at MD Anderson who had cancers other than liver, gastrointestinal, lung, or head/neck cancer. Self-reported weight and body size (Stunkard pictograms) at ages 20, 30, 40, 50, 60, 70 was obtained from participants by personal interview. Between 2005 and 2011 we enrolled 403 cases and 661 controls. Body mass index (BMI) was classified as “underweight” (BMI < 18.5), “normal” (BMI range, 18.5-24.9), “overweight” (BMI range, 25-29.9), and “obese” (BMI ≥ 30.0). We found that individuals who were obese from the ages of 30 to 49 had a significantly increased risk of HCC, independent of HCC established risk factors. The estimated odds ratio (OR) and 95% confidence interval (CI) was 4.1(1.6-10.5). The association was observed in men and women; the ORs (95% CIs) were 2.3(1.1-4.9) and 2.9(1.2-8.9) respectively. Moreover, individuals who were overweight or obese from the ages of 30 to 49 years had an earlier onset of HCC by 3 to 6 years (median age of onset was 65 years for patients with normal weight, 62 years for overweight patients [P=.02], and 59 years for obese patients [P <.001]). Underlying evidence of cirrhosis was significantly observed in HCC patients with early obesity. We concluded that obesity is a significant risk factor for HCC in US where underlying cirrhosis can be a significant burden in disease management. Integration of obesity with other HCC risk factors into a risk model may lead to the development of a new scoring system to identify high-risk individuals who may benefit from HCC screening and prevention.

2436 Biomarkers of Hepatocellular Carcinoma Risk and Diagnosis.
R. M. Santella, NIEHS Center for Environmental Health, Columbia University Mailman School of Public Health, New York, NY.

Hepatocellular carcinoma (HCC) incidence is increasing in the US and HCC has one of the fastest growing death rates of any cancer. There is wide geographic variation in HCC incidence around the world likely due to geographic differences in the prevalence of various etiological factors. In Asia and Africa hepatitis B virus is the primary etiologic agent while in the US, hepatitis C virus is more common. Identified environmental/lifestyle risk factors include aflatoxin B1 (AFB1), a dietary mold contaminant, alcohol drinking, and cigarette smoking. We have used biomarkers in a prospective study in Taiwan to demonstrate that elevated baseline levels of AFB1 urinary metabolites, AFB1-albumin adducts, polycyclic aromatic hydrocarbon (PAH)-albumin adducts and urinary isoprostanes, a biomarker of oxidative stress, are associated with later development of HCC. We have also found AFB1- and PAH-DNA adducts in liver tissues of US HCC cases. Using a candidate gene approach, studies of liver tumor tissues have identified genes that are hypermethylated in tumors compared to adjacent tissues and found that this methylation was associated with elevated levels of AFB1-DNA adducts. DNA isolated from plasma collected at the time of diagnosis contains these same methylated markers. More importantly, methylated DNA released from the tumor can be frequently found in plasma collected many years before clinical diagnosis suggesting their potential utility in screening high populations such as those with viral infection. More recently, we have used Illumina Infinium arrays that interrogate methylation of 27k or 450k Cpg sites to more comprehensively identify regions with altered DNA methylation. These studies have found large numbers of hyper or hypomethylated regions in tumors compared to adjacent tissues and identified methylation markers that should enhance early diagnosis. Biomarkers of environmental exposure in combination with viral infection markers can identify populations at increased risk while methylation and microRNA markers may potentially be used for the early diagnosis of HCC.

2437 Mitigation of Aflatoxin Exposures Using a Clay-Based Enterosorbent.
T. D. Phillips, Veterinary Integrative Biosciences, Texas A&M University College Station, TX.

Concerns about the quality and safety of foods destined for human and animal consumption have evoked a growing awareness of the significant hazards associated with chemicals known as aflatoxins. The aflatoxin problem in foods is longstanding, unavoidable and seemingly inextricable. Aflatoxin exposure is often considered a risk factor for disease in countries where there is a lack of infrastructure for food safety regulation. However, aflatoxin exposure has been observed and is a cause for concern in underprivileged communities in Texas and the Southwest U.S. as well. Aflatoxin B1 (AFB1) is a direct acting mutagen and has been shown to disrupt genes involved in carcinogenesis and tumor suppression. Recent research with mycotoxin enterosorbent, Novasil (NS), in an African population has shown the product to be safe and efficacious in reducing biomarkers of exposure to aflatoxin. Blood and urine samples were taken at Baseline, 1 Month, 3 Months and 4 Months. NS clay significantly reduced biomarkers for aflatoxin exposure in urine and blood and the treatment was well tolerated by participants. In a recent San Antonio study focusing on a population with a significantly elevated incidence of liver cancer, it was determined that biomarkers for aflatoxin correlated with ingestion of foods known to contain relatively higher levels of aflatoxin. Phase II of this study is underway to determine NS efficacy in reducing exposures to this toxin in Texas. Mitigating AFB1 exposure using NS represents an innovative, practical, sustainable and environmentally benign approach that will benefit more than 4.5 billion people living in climates conducive to the growth of fungi and production of mycotoxins in staple foods.

2438 Risk Factors Influencing the Incidence of Liver Cancer in San Antonio.
F. A. Guerra, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX. Sponsor: E. Bruce.

The incidence of hepatocellular carcinoma (HCC) is significantly elevated in Hispanic communities in Bexar County, Texas. Multiple factors including diet, environment, occupation, lifestyle, health status, and gender play a role in the etiology of HCC. Previous research with Texas A&M University has focused on defining the risk factors that may influence the high incidence of liver disease observed in San Antonio. Epidemiological and clinical intervention studies are ongoing in Bexar County, and have been successful in raising awareness in the community regarding environmental, dietary, and biological risk factors for disease. Ongoing studies with The University of Texas Health Science Center-San Antonio and Texas A&M University will investigate the impact of an intervention trial designed to decrease biomarkers of mycotoxin exposure and enhance public health in communities at high risk for HCC.

2439 A Novel Single Cell-Based High-Throughput Toxicity Study of Drugs.
L. Ma, Y. Qiao and M. Su, NanoScience Technology Center, University of Central Florida, Orlando, FL. Sponsor: T. Lam.

Many anticancer drugs are genotoxic. The ability of tumor cells to repair drug induced DNA damage is indicative of therapeutic outcomes. But, tumors are heterogeneous in their ability to repair damaged DNA, and evaluation population response only gives a statistical average. Thus selection of drugs without knowing tumor response at single cell level can cause side effects due to toxicity of drugs. There is a need to screen drugs reliably and rapidly for individual patients. This paper describes a new single cell based HaloChip assay that can be used to detect and quantify DNA damage and repair capacity after exposing to genotoxic drugs, and examine drug response without population interference. After forming cell array, cells are embedded in agarose that provides an interconnected network for DNA diffusion, followed by exposure to NaOH and stained with ethidium bromide. Dimensions of halo and nucleus are derived from collected fluorescent image. In the case of repair, cells are washed after exposing to drug and incubated for different time before HaloChip assay. The level of DNA damage is quantified using relative nuclear diffusion factor (rNDF) derived from surface areas of halo and nucleus. The rNDFs increase from 0 to 6 as drug concentration increase from 0 to 50 μM, and reach plateau when drug concentration is over 10 μM. At same dosage, VP-16 induces more DNA damage in HeLa cells than that of other two drugs; CPT-11 induces more DNA damage in LNCaP cells than that of other two drugs. The bimodal repair curves are attributed to diversity of DNA lesions induced by drugs. The repair data are regressed fitted using first order exponential.
Toxicogenomic approaches could serve as a useful tool to identify different mechanisms through which compounds/chemicals exert their genotoxic effects. Although multiple research groups to date have published papers listing several gene expression based molecular signatures in vitro using human and rodent cell lines, and in vivo using rodent models, there exists no consensus largely due to species differences and diverse ‘omics’ technologies used. The broad objective of this study is to extend the work conducted by the ILSI-HESI technical committee on differentiating genotoxic and non-genotoxic carcinogens using real-time PCR (qPCR) based toxicogenomic approaches. In this study using a human lymphoblast TK6 cell line, we evaluated the utility of a qPCR technique to identify a molecular signature by studying gene expression profiles of twenty five genes. In our initial screening study we identified six genes that differentiated genotoxins vs non-genotoxins. However, in our validation study using ten model compounds per each group of aneugens, clastogens and non-genotoxins, we succeeded in reducing six gene signature to three gene signature. The proposed three genes that could effectively differentiate clastogens and aneugens from non-genotoxins with high specificity and sensitivity are Cyclin-dependent kinase inhibitor 1A (CDKN1A), Growth differentiation factor 15 (GDF15) and Tumour protein p53 inducible protein 3 (TP53I3).
sham control group was included to account for animal handling and an additional group was dosed with ethyl methanesulfonate by oral gavage as a positive control for the comet assay. For the TDAR assay, treatment with CP resulted in a dose-dependent decrease in the antibody response with a suppression of greater than 95% at the high dose. Injection with SRBC had no impact on evaluated organ weights. Analysis of micronuclei formation revealed a dose-dependent increase in response to CP treatment, with an induction of greater than 20% at the mid and high doses. Injection with SRBC had no impact on the level of micronuclei in control animals and did not alter the dose response to CP. There was no increase in liver DNA damage in response to CP as measured by the comet assay and injection with SRBCs did not alter this endpoint. Similarly, injection with SRBC did not alter the spleen T-cell proliferation in response to CP. Overall, these data provide strong support for the concurrent assessment of general, immune, and genetic toxicology endpoints within a single study as part of an integrated testing strategy approach.

The repeated dose liver micronucleus (RDLMN) assay has a potential to detect genotoxic hepatocarcinogens that can be integrated into a general toxicological study. We have conducted a joint research in the Collaborative Study Group for the Micronucleus Test (CSGMT) to investigate the inter-laboratory variability and stable data acquisition in the RDLMN assay, which is supported by 19 Japanese institutions. In order to evaluate the performance of the assay, 28 chemicals including hepatocarcinogens but also appropriate for evaluation using a repeated low-dose regimen, and thus considered ideal for integration into the general toxicology study.

Axonal Degeneration of Chronic Organophosphate Ester-Induced Delayed Neurotoxicity (OPIDN) Has Different Features in Central and Peripheral Levels of the Nervous System.

B. S. Jortner, Laboratory for Neurotoxicity Studies, Virginia PolyTech Inst State University, Blacksburg, VA.

OPIDN is considered one of the toxicant-induced central-peripheral distal axonopathies. The latter are characterized by degeneration of distal fibers in both the central and peripheral regions of the nervous systems. This has been noted in a rat model of long-term exposure to tri-ortho-tolylphosphate (TOTP). In the present report we draw attention to a difference in the nature of the axonopathy in the peripheral and central extensions of somatosensory fibers arising from neurons of dorsal root ganglia as seen in the sural nerve and spinal-medullary levels of the gracile fasciculus. As reported earlier (Jortner et al., Toxicol. Pathol. 33:378) young adult male Long-Evans rats were administered 14 TOTP gavage doses at 75, 150 or 300 mg/kg, over a 63-day period. Sacrifice was on days 63 and 90 (after a 27 day recovery period). OPIDN was manifest by TOTP dose-related diminished activity of brain neurotoxic esterase on day 63, and distal gracile fasciculus and peripheral nerve (including sural nerve) myelinated fiber degeneration. In the present report we draw attention to a qualitative difference between lesions of central somatosensory myelinated fibers in the distal levels of the gracile fasciculus and those in peripherally directed sural nerve fibers. Axonopathy progressing to myelinated fiber degeneration was seen in both regions, and was more florid in the gracile tract. In addition, prominent dystrophic axons (Jellinger, Prog. Neuropathol.1973) were seen in the central region, and were absent peripherally. Axon dystrophy is considered to reflect terminal degeneration with retrograde progression, possibly due to aberrant regeneration, synaptic dysplasia, failing terminal catabolism or transport. This varying pathological response of myelinated fibers from the same neuronal population is considered an effect of the differing (central vs. peripheral nervous system) environments on the evolution of axonal lesions in this chronic neurotoxic condition. Supported by USAMRMC DAMD17-99-1-9489.

Maternal Paraoxonase (PON1) Status Modulates Fetal Effects Associated with Gestational Exposure of Mice to Chlorpyrifos Oxon.

T. B. Cole1, W. Li1, A. Co1, L. Marsillich1, A. Hay1, R. Richter1, M. J. MacCos1, L. G. Costa2 and C. E. Furlong2. 1Departments of Medicine, Environmental and Occupational Health Sciences, Genome Sciences, and Center on Human Development and Disability, University of Washington, Seattle, WA; 2Department of Neuroscience, University of Parma, Parma, Italy.

Paraoxonase-1 (PON1) status (PON1 level and presence of the Q192R polymorphism) is an important determinant of toxicity for chlorpyrifos (CPF) and its metabolite, CPF-oxon (CPO). We examined whether maternal PON1 status influences fetal toxicity associated with gestational CPO exposure by comparing CPO toxicology among PON1-/-, wild type (WT), and humanized transgenic mice expressing tgHuPON1R192 or tgHuPON1Q192. Pregnant mice were exposed dermally to 0, 0.50, 0.75 or 0.85 mg/kg/d CPO from gestational days 6-17, and sacrificed on day 18 to measure enzyme inhibition in maternal and fetal tissues and gene expression in the GD18 fetal brain using Affymetrix microarrays. Fetal body weights from the PON1-/- dams exposed to 0.75 mg/kg/d CPO were significantly lower compared to vehicle controls. Pregnancy rate, number of resorptions and presence of fetal abnormalities were not significantly different among treatment groups in all genotypes. In the dams, repeated CPO exposure was associated with inhibition of fetal brain AChE and plasma butyrylcholinesterase (BChE), and brain acetylcholinesterase (AChE). Maternal tgHuPON1 had protective effects on inhibition of fetal brain AChE and plasma CES, which were both inhibited only in PON1-/- fetuses. In fetal plasma, BChE was inhibited in PON1-/- and tgHuPON1Q192, but not WT or
Parathion (PS) and chlorpyrifos (CPF) are organophosphorus insecticides (OPs). Acute subcutaneous exposure to either can elicit extensive acetylcholinesterase inhibition but cholinergic signs are relatively minimal following CPF compared to PS. Endocannabinoids (eCBs, e.g., anandamide [AEA] and 2-arachidonoyl glycerol [2-AG]) inhibit neurotransmitter release via presynaptic cannabinoid CB1 receptors. Parathion and chlorpyrifos oxon, active metabolites of PS and CPF, can block CB1 receptor binding and inhibit eCB-degrading enzymes. We hypothesized that differential effects on eCB signaling play a role in selective toxicity. Male rats were treated with vehicle, PS (27 mg/kg, sc) or CPF (280 mg/kg, sc) and toxicity evaluated 2 days after treatment. The relatively high sensitivity of BChE to CPO inhibition is relevant for predicting individuals at risk is challenging because standard biomarkers of exposure (cholinesterase inhibition and urinary metabolites) do not correlate well with neurotoxicity following chronic low-level OP exposures. This may reflect the fact that mechanisms by which such exposures cause neurotoxicity are independent of or in addition to cholinesterase inhibition. We are testing the hypothesis that oxidative stress contributes to learning and memory deficits reported in individuals exposed occupationally to OPs. To test this hypothesis, we are determining whether biomarkers of oxidative stress correlate with learning and memory deficits caused by chronic exposure to the OP chlorpyrifos (CPF) and whether treatment with antioxidants protects against chronic CPF neurotoxicity. We are using a rat model based on exposure data collected from 255 Egyptian agricultural workers responsible for applying CPF to cotton fields. Our preliminary data indicate that exposure to CPF (10 mg/kg/d, s.c.) for 21 d causes deficits in performance in contextual fear conditioning. This exposure paradigm also causes decreased mitochondrial ATPase activity and increased expression of PGE2 in the brain of CPF animals that precede the onset of behavioral deficits. Preliminary studies also suggest that administration of the antioxidant 2-acetylcyclopentanone (2-ACP) attenuated oxidative stress; ongoing studies are investigating whether 2-ACP protects against the behavioral deficits caused by chronic CPF exposure. If successful, these studies will not only identify a novel biomarker of effect for chronic OP neurotoxicity but also suggest novel approaches for protecting workers occupationally exposed to OPs. Supported by NIH R01 ES016308.

Traditionally, chlorpyrifos (CPF) mediates its toxicity through inhibition of cholinesterase (ChE). However, in recent years, the toxicological effects of developmental CPs exposure have been attributed to an unknown non-cholinergic mechanism of action. We hypothesize that the endocannabinoid system may be an important target because of its vital role in nervous system development. We have previously reported that repeated exposure to CPs results in greater inhibition of the fatty acid amide hydrolase (FAAH), the enzyme that metabolizes the endocannabinoid anandamide (AEA), than inhibition of either ChE or monoacylglycerol lipase (MAGL), the enzyme that metabolizes the endocannabinoid 2-arachidonoylglycerol (2-AG). This exposure resulted in the accumulation of AEA in the forebrain of juvenile rats, but even at the lowest dosage level used (1.0 mg/kg) ChE inhibition was still present. Thus, it was not clear if FAAH activity will be inhibited as dosage levels that do not inhibit ChE. To determine this, 10 day old rat pups were exposed daily for 7 days to either corn oil or 0.5 mg/kg CPS by oral gavage. At 12 hrs post-exposure, the activities of ChE, MAGL, and FAAH were determined in the forebrain, as well as the levels of the endocannabinoids AEA and 2-AG. There was no significant inhibition of the activities of ChE or MAGL and no significant change in the amount of 2-AG. In contrast, FAAH activity was significantly inhibited resulting in a marked accumulation of AEA in the forebrain. Although it has not been determined whether this alteration of endocannabinoid signaling can impact brain maturation, it does suggest a potential candidate for the non-cholinergic mechanism of action of CPS.
Chemical Safety and Pollution Prevention and the U.S. Food and Drug Administration's regulatory review files and entered the data into a publicly accessi-
ble data set using the structure and approach of EPA's T oxRef Database; 2) develop-
opened a tiered decision framework for estimating systemic dose from dermal expo-
sures so that comparisons could be made to the oral toxicity data available; 3) ap-
plied chemoinformatics techniques to evaluate whether and how to bridge the AM data set to the 3 non-cancer TTC values of Munro et al (1996); 4) also used chemoinformatics techniques to define classes of AMs within a TTC decision framework, and 5) developed a decision tree to guide consideration of new AMs with respect to likely toxicity for anticipated systemic dose of a given formulation and the chemoinformatics class into which it falls. We will present the method for data curation, chemoinformatics, rationale for the decision approach, and case ex-
amples of the use of the approach. This work will advance the science and practical use of computational toxicology in support of risk management decision making.

Conditional Toxicity Value (CTV) Predictor for Generating Toxicity Values for Data Sparse Chemicals.

J. Wignall1, E. Muratov1, D. Fourches2, A. Tropsa1, T. J. Woodruff1, L. Ziese1, N. Wang1, D. Reif1, V. Cogliano3, W. A. Chiu1, K. Gayton1 and L. Bauw1
1University of California San Francisco, San Francisco, CA; 2University of North Carolina Chapel Hill, Chapel Hill, NC; 3US EPA, Research Triangle Park, NC.

Chemical hazard assessments necessarily vary based on data availability and the type of risk management decision they support. While much recent attention has been on use of high-throughput toxicological data for screening and prioritization, assess-
ments that support toxicity guidance values or standards still rely on epidemiolo-

gical and in vivo experimental data. Such assessments, including Integrated Science Assessments and Integrated Risk Information System Toxicological Reviews, are highly data-, time-, and resource-intensive, and cannot be realistically expected for most environmental chemicals. Thus various stakeholders and expert groups, including the National Research Council in Science and Decisions, call for a
default approaches to support risk estimation for chemicals lacking chemical-specific information. This project aims to address this challenge through the Conditional Toxicity Value (CTV) Predictor. This tool uses chemical properties and limited experimental data to predict toxicity values, such as the reference dose (RfD) and concentration (RfC), oral slope factor (OSF), inhalation unit risk (IUR), or cancer potency value (CPV). CTV predictions combine QSAR, regres-
sion, and hybrid modeling, rely on a new comprehensive database of existing guid-
ance values and experimental data, and incorporate OECD principles for model building and external cross-validation. QSAR models for predicting existing RfD values (which span 7 orders of magnitude) had an R2 up to 0.67±0.03 Median Absolute Error of 0.67±0.03 (Log10 mg/kg/day). A tool that can predict a toxicity value within an order of magnitude fills a critical gap in the current risk assessment paradigm.

Disclaimer: The views expressed here are the authors' and not necessarily those of the US or California EPA.

Application of the Threshold of Toxicological Concern (TTC) Decision Support Approach to Antimicrobial Pesticides.

R. Canady1, T. McMahon1, M. Cheseman1, C. Yang1, S. Felcher1, A. Boobis1, M. Martin2, V. Dellarco2, P. Price3, M. Lauwersliever4 and K. Jacoby4
1US EPA, Washington DC; 2ILI Rh Washington DC; 3US EPA, Research Triangle Park, NC; 4Imperial College London, London, United Kingdom; 5Altimira Inc, Columbus, OH; 6Procter & Gamble Company, Cincinnati, OH; 7Stephan and Johnson, Washington DC; 8Dow Chemical Company, Midland, MI; 9CSFA, US FDA, College Park, MD.

A tiered decision support approach has been developed to apply existing knowledge of antimicrobial pesticides (AMs) to new AMs being considered for use. The approach is intended to inform product development and regulatory review processes so that antimicrobial pesticides and pesticide products can be targeted early in de-
velopment and so that animal testing can be focused on those chemicals that need the most attention. Expert groups were convened comprised of scientists from non-government organizations, industry, academia, and government. The experts have 1) collected high quality data from studies submitted to EPA's Office of Chemical Safety and Pollution Prevention and the U.S. Food and Drug Administration's regulatory review files and entered the data into a publicly accessi-

The Navigation Guide as an Evidence-Based Medicine Methodology to Evaluate Human Health Effects of Environmental Chemicals: Perfluorooctanoic Acid (PFOA) and Fetal Growth.

E. Koustas1, J. Lam1, P. Sutton2, P. Johnson1, D. Atchley1, S. Sen1, K. Robinson1, D. Axelrad1 and T. J. Woodruff1
1Office of Policy, US EPA, Washington DC; 2Program on Reproductive Health and the Environment, University of California San Francisco, Oakland, CA; 3Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA; 4Medicine, Epidemiology and Health Policy & Management, Johns Hopkins University, Baltimore, MD.

Rationale: Evaluating environmental health literature and determining the weight of evidence are critical for informing policy and health recommendations. The National Academy of Sciences has called for an enhanced systematic and transpar-
ent approach to risk assessment and scientific decision-making. The Navigation Guide was developed through a collaboration of 22 scientists to improve methods of research synthesis in environmental health. The methodology is based on best practices in evidence-based medicine and environmental health sciences and aims to systematically and transparently synthesize the evidence from toxicology and ob-
servational epidemiology studies.

Approach: To establish proof of concept, we applied the Navigation Guide to the question of the impact of exposure to perfluorooctanoic acid (PFOA) on fetal growth. Steps include: (1) Specify the study question; (2) Select the evidence; (3) Rate the quality and strength of the evidence.

Findings: We identified 24 human observational and 21 animal toxicological stud-
ies relevant to the study question. Study quality was assessed using a modified ver-
sion of the Cochrane Collaboration’s Risk of Bias tool. Preliminary meta-analysis of combinable studies suggests there may be small reductions in birth weight with increased PFOA exposure in animals and humans. Implication: The case study illustrates that the Navigation Guide can be used to apply the rigor of systematic review methodology to questions in environmental health. As has been demonstrated in the clinical field, the adoption of a systematic and transparent method to synthesize the scientific evidence in the environmental health field would speed incorporation of research into decision-making.

Incorporating Population Variability and Susceptible Subpopulations into Dosimetry for High-Throughput Toxicity Testing.

B. A. Wetmore1, L. E. Wambough1, H. J. Clewell1 and R. S. Thomas2
1The Hamner Institutes for Health Sciences, Research Triangle Park, NC; 2National Center for Computational Toxicology, US EPA, Research Triangle Park, NC.

Xenobiotic clearance can vary widely across age-based or ethnic subpopulations due to differences in metabolic enzyme abundances and activities. A strategy to measure population-specific hepatic clearance values across a wide range of chemicals would allow pharmacokinetic variability due to age, ethnicity, and other factors to be incor-
porated into in vitro toxicity screening data. Metabolic clearance of ToxCast chemicals selected based on LC-MS method compatibility and exposure estimate availability were measured in vitro using 13 cytochrome P450 (CYP) and 5 UDP-
glucuronosyltransferase (UGT) recombinantly expressed isoforms. Together with plasma protein binding, these isoform-specific clearance rates were then incor-
porated into an in vitro-to-in vivo extrapolation (IVIVE) modeling tool, Simcyp. The modeling tool accounts for known differences in isoform abundances among vari-
ous age- or ethnic-based subpopulations to estimate the daily oral dose for each subpopulation, called the oral equivalent dose, necessary to produce steady-state in vivo blood concentrations equivalent to in vivo AC50 values across the -600
Extrapolating In Vitro Embryotoxicity Data Toward In Vivo Exposure Levels Using a Combined In Vitro-Physiologically-Based Kinetic Modeling Approach.

M. Strikwold 1, 2, R. Woutersen 1, B. Spenkelnik 1, J. Bariens 1 and A. Punt 1

1 División de Toxicología, Wageningen University, Wageningen, Netherlands; 2 Veen Hall Lorentius, University of Applied Sciences, Leeuwarden, Netherlands; 3 TNO Innovation for Life, Zeist, Netherlands.

In vitro assays play an important role in screening chemicals for their toxic potency and prioritizing them for further toxicity testing. Most of these in vitro assays are not suitable for a quantitative risk characterization as they lack in vivo kinetic processes. To overcome this limitation, the present research aimed at combining in vitro toxicity data with physiological based kinetic (PBK) modeling to predict in vivo exposure levels. In order to contribute to the 3Rs principle for the replacement, refinement of animal testing in the most optimal way the required kinetic constants, derived from literature. Phenol was selected as the model compound and the end-point of interest concerns embryotoxicity. At first, the embryotoxicity of phenol was evaluated in vitro using the embryonic stem cell test (EST), revealing a concentration-dependent inhibition of differentiation into beating cardiomyocytes. In a second step, PBK models were developed for rat and human using in vitro derived kinetic constants, in silico derived physico-chemical parameters and literature derived physiological data. After evaluating the performance of the PBK models, the in vitro concentration-response information from the EST served as an input in the PBK model, thereby predicting an in vivo dose-response curve from which a Point of Departure for risk assessment could be derived. Finally, in vivo embryotoxicity effect levels available from literature were used to evaluate this combined in vitro-PBKK approach. In summary, this study shows how combining different alternatives to animal testing like in vitro toxicity testing and PBK modeling will enlarge their application from screening and prioritizing of chemicals toward deriving safe exposure levels for the risk assessment of chemicals.
Evaluation of reproductive toxicity in regulatory studies relies on the use of sexually mature animals. This often involves the use of nonhuman primates (NHP) when lower order species are pharmacologically irrelevant. However, the decision on whether to utilize mature NHP and the criteria used to establish sexual maturity is anything but standardized. Several factors contribute to these differing opinions. Sexual maturity can occur over a wide range of ages and body weights and historical methods of predicting sexual maturity have not always correlated with the histopathological appearance of the gonads at necropsy. Evaluation of toxicity in the reproductive organs of pre/peripubertal animals is often difficult, given that the histology of the maturing reproductive organs may resemble the degenerative changes induced by reproductive toxicants in the sexually mature adult. Finally, there is a lack of consensus on the toxicological relevance and interpretation of the various possible reproductive endpoints. All of these factors result in a complicated balancing act: Ethically weighing the limited availability, high costs, and relevance of incorporating sexually mature NHP in toxicology studies against effective and meaningful evaluation of reproductive risks. This roundtable will discuss the challenges of assessing toxicity in immature vs. peripubertal vs. mature NHP; screening methods for identifying sexually mature NHP; factors that influence sexual maturity, and case studies where sexual maturity impacted the study interpretation. Overall, this session seeks to provide an opportunity for stakeholders to review the current state of the art and exchange views on appropriate paths forward to encourage ethical use of animals, while preserving appropriate risk assessments.

\[\text{SOT 2013 ANNUAL MEETING 525} \]

N. J. Walker, National Toxicology Program, NIEHS/NIH, Research Triangle Park, NC.

In recent years there has been considerable research examining the potential utility of nanoscale materials and nanostructures in commercial and biomedical applications. Nanoscale materials (nanomaterials, nanoparticles) are a broadly defined set of substances that have at least one critical dimension less than 100 nanometers. The same novel chemical and physical properties that make nanomaterials useful also make their interactions with biological systems difficult to predict and evaluate in traditional toxicity models. The diversity in composition, size, surface coatings, and physico-chemical properties even within classes of “similar” nanomaterials can make translation of findings from one nanomaterial to another problematic. On the other hand though, testing of each nanomaterial individually and what change in a physicochemical property constitutes creation of a “new” material is uncertain. Over the past years there has been considerable effort looking at developing guidance for assessing safety of nanomaterials. Some of the key considerations include: effective characterization of physicochemical properties of nanomaterials not only in the bulk phase but also within the toxicological test system; use of in vitro biological responses and shorter term in vivo studies of panels of nanomaterials to develop structure activity relationships for predicting hazard and guide prioritizing further targeted in depth testing: development of best practices to reduce potential interference of a nanomaterial with the test systems.

Molecular Dynamics Simulations with Advanced Sampling Techniques to Study Nanoparticle-Membrane Interactions.

M. A. Philberi1, P. Elvati1, K. A. Russ1 and A. Vuol1. 1Mechanical Engineering, University of Michigan, Ann Arbor, MI; 2Toxicology Program, University of Michigan, Ann Arbor, MI.

Classical toxicology assessments consider bulk transport of particulate matter into discrete organelles of living cells at the primary means of nanoparticle (NP) toxicity. However, little is known about the potential of low-level exposure to alter biochemical pathways (membrane function and composition). Atomic simulations, such as molecular dynamics (MD), can provide mechanistic information that is hard to measure experimentally. They may be used to validate theories derived from indirect experimental analysis, but the results of MD simulations are meaningful only if the run is long enough to visit all energetically relevant configurations. Well-tempered metadynamics can accelerate system dynamics allowing analysis of the process that can take several seconds or hours to occur in real systems. Classically biased MD simulations were used to reconstruct the free energy landscapes of the mechanisms of NP entry into biological cells, thus accelerating the sampling of rare events and allowing exploration of potentially new biologically relevant reaction pathways. Results show that pristine C60 resides preferentially in the aliphatic region of the lipid bilayers composed of POPC and cholesterol. With increasing cholesterol concentration, the minimum of the free energy profile moves towards the interface with water, showing a tendency of C60 to move away from the membrane center. C60 mobility inside the hydrophobic region is not limited by any relevant thermodynamic barriers at body temperature, but the energetic cost to leave the membrane is system-dependent and varies from 10 to 20 kBT. Charges (C60−2) or hydroxyl groups (C60(OH)8) make the region where the lipid heads are solvated by water the most favorable position for these species. These studies make plausible the potential for intramembranous mechanisms of NP toxicity in immune and other mammalian cells. Supported by ES08846, NIEHS NCHHR U01 (MAP), CBET 0644639 (AV), 1 U02 ES020128-01 (KR), T32-ES007062-26 (KR).

Evaluating the Local and Systemic Immunomodulatory Effects of Nanomaterials.

M. J. Smith1, 2, D. R. Germolec1, C. E. McLaughlin3, 4, W. A. Irwin1 and K. L. White1, 2. 1Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA; 2ImmunoTec, Inc, Richmond, VA; 3National Toxicology Program, Research Triangle Park, NC; 4Biomedical Engineering, Virginia Commonwealth University, Richmond, VA.

The small size of nanomaterials (NM) makes them a prime target for interaction with the immune system following their uptake, processing, and presentation to lymphocytes by antigen-presenting cells. Traditional in vivo testing strategies have been used to evaluate NM-mediated immunotoxicity. The varied routes of exposure to NM (dermal, oral, inhalation, parenteral), as well as particle size, can produce different immunomodulatory effects, including both local or systemic effects. For example, a single pharyngeal aspiration of anatase TiO2 nanoparticles (< 25 nm) produced an enhanced antibody-forming cell response to sheep erythrocytes, while TiO2 microparticles (< 45 μm) produced no such effect. Subcutaneous exposure of mice to anatase nano-TiO2 for 3 days increased cell proliferation in the draining lymph nodes, while oral exposure for 28 days was non-immunotoxic. Inhalation of 1.0 and 0.05 μm C60 fullerene for 13 weeks did not affect the systemic immune response, although inflammatory cytokines (MCP-1, MIP-1α) in the bronchoalveolar lavage fluid were increased for the 1.0 μm C60 only. Subcutaneous implantation of poly(L-lactide-co-ε-caprolactone) microbeads in the ventral quadrant for 28 days had minimal effects on the immune system, suggesting that this material may have the potential for use in a variety of clinical applications. Nanomedicines intended for clinical applications unrelated to the immune system must be examined for the possibility that they might produce unintentional or unanticipated immune effects. However, depending upon the application (e.g. local anti-inflammatory drug delivery), effects on the immune system may be desirable.

Phenotypically Profiling the Factors Affecting the Pharmacokinetics and Pharmacodynamics of Nanoparticle Agents in Preclinical Models and in Patients.

W. Zamboni, W. Caron, G. Song, P. Kumar, J. Lay and P. Gehrig, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC.

Concern about the use of engineered nanomaterials (ENMs) has increased significantly in recent years due to potentially hazardous impacts on human health. Mast cells are critical for innate and adaptive immune responses, often modulating allergen-driven and pathogen challenges. While cells are well known to sense danger signals through a variety of receptors and pathways including IL-33 and the IL-1 like receptor ST2. We have examined the involvement of mast cells and the IL-33/ST2 axis in pulmonary and cardiovascular responses to ENMs including multi-walled carbon nanotubes (MWCNT) and silver nanoparticles (AgNP). We have utilized C57BL/6 mice, mast cell deficient mice (KitW-sh), KitW-sh mice reconstituted with wild-type or ST2-/- mast cells and ST2-/- mice to assess systemic and pulmonary inflammatory responses as well as cardiac ischemia-reperfusion (IR) injury responses following ENM exposure. In addition, we have used an in vitro mast cell model to screen for the ability of ENMs to directly induce mast cell degranulation. We have found that mice with normal mast cell populations (C57/BL/6 and mast cell reconstituted KitW-sh), exhibit significant ENM directed systemic and pulmonary inflammation, fibrosis, altered lung function and exacerbated IR injury. In contrast, these toxicological effects of ENMs were not observed in mice deficient in mast cells (KitW-sh) or mice with mast cells unable to respond to IL-33 (ST2-/- mast cell reconstituted KitW-sh mice). Lastly, we have established that certain ENMs are capable of inducing mast cell activation in vitro. Our findings establish for the first time that mast cells and the IL-33/ST2 axis orchestrate adverse immune effects to ENMs giving insight into a previously unknown mechanism of toxicity and providing a realistic therapeutic target. The use of mast cells and the IL-33/ST2 axis as a screening tool for ENM toxicity and in the preclinical development of nanomedicines will be discussed.
Within a population of genetically heterogeneous individuals, a range of responses is observed for environmental exposures. The observed variability in response is attributable to extrinsic and intrinsic factors, including individual differences in exposure to environmental stressors and genetic/epigenetic heterogeneity, respectively. Current risk assessment practice is to account for interindividual variability with default uncertainty factors (e.g., a ten-fold decrease in allowable exposure to protect the most sensitive subpopulations), even though these defaults are seldom supported by scientific evidence. Advances in exposure science and molecular genetics are greatly increasing our ability to characterize intrinsic differences among individuals in their exposure and response to toxicants. This symposium highlights several novel and exciting approaches in safety evaluation that utilize recent advances in genetics. First, recent collaborative efforts in the complex traits community have led to the development of several new, powerful mouse resources that greatly facilitate the identification of allelic variants of genes associated with differential response to toxic exposure through genotype-phenotype associations. Second, several laboratories, including the National Toxicology Program, have begun applying these new mouse models of human population diversity to studies on the molecular mechanisms of interindividual variability in chemical metabolism and toxicity. Third, the ability to generate induced pluripotent stem (iPS) cells from population-derived human cell resources, as well as the availability of embryonic stem (ES) and iPS cells from mouse strains, makes it possible to conduct in vitro studies to investigate interindividual differences in resistance and susceptibility to xenobiotic exposures. Ultimately, these new approaches should greatly enhance our ability to characterize variability in response to toxicants and to identify those genes and pathways that contribute significantly to the observed differential responses to environmental exposures in humans.

Benzene is hematotoxic, genotoxic, and tumorigenic to the lymphohematopoietic systems in both laboratory animals and humans. Results from NTP population-based mouse models of human population diversity to studies on the molecular mechanisms of interindividual variability in chemical metabolism and toxicity. Third, the ability to generate induced pluripotent stem (iPS) cells from population-derived human cell resources, as well as the availability of embryonic stem (ES) and iPS cells from mouse strains, makes it possible to conduct in vitro studies to investigate interindividual differences in resistance and susceptibility to xenobiotic exposures. Ultimately, these new approaches should greatly enhance our ability to characterize variability in response to toxicants and to identify those genes and pathways that contribute significantly to the observed differential responses to environmental exposures in humans.

Benzene is hematotoxic, genotoxic, and tumorigenic to the lymphohematopoietic systems in both laboratory animals and humans. Results from NTP population-based mouse models of human population diversity to studies on the molecular mechanisms of interindividual variability in chemical metabolism and toxicity. Third, the ability to generate induced pluripotent stem (iPS) cells from population-derived human cell resources, as well as the availability of embryonic stem (ES) and iPS cells from mouse strains, makes it possible to conduct in vitro studies to investigate interindividual differences in resistance and susceptibility to xenobiotic exposures. Ultimately, these new approaches should greatly enhance our ability to characterize variability in response to toxicants and to identify those genes and pathways that contribute significantly to the observed differential responses to environmental exposures in humans.
the context of Parkinson's disease. In addition, recent epidemiological findings link-
ning residential proximity to freeway with autism will be presented. The intent of the
symposium is to stimulate discussion especially in the context of future research
needs in this rapidly emerging area of neurotoxicology which requires a multidisci-
two subgroups, hippocampus were dissected and afterward processed for immuno-
histochemistry. The second subgroup was used for western blot and spectropho-
metric techniques (to determine lipid peroxidation, oxidized proteins, superoxide
dismutase and glutathione). The results indicate that ozone, causes an increase in
lipids and proteins oxidation after 15 days of exposure. After 30 days we found in
the hippocampus damage and decrease of the neuroblasts, and neurons number,
glia activation, increased of proinflammatory markers, together with changes in
levels of antioxidant defenses and loss of its enzymatic activity. Results also showed
accumulation of deposits of amyloid beta (Aβ) 1-42 at 90 days exposure. In con-
clusions: ozone lead to oxidative stress causing a neurodegenerative process in hip-
pocampus, together with, dysregulation of immune responses, and loss of brain to
capacity repair. Aβ plaques formation before 90day of ozone exposure. These
experiments showed that chronic exposure to ozone at low doses, per se, is able to
cause an oxidative stress state, which produces progressive cellular damage and cell
death that resembling the damage described in the physiopathology of neurodegen-
erative diseases.

Grant DGAPA IN 219511

S 2484 Translational Methods to Assess the Safety of Natural Health Products, Including Traditional Medicines and Dietary Supplements.

L. C. Griffiths1 and S. A. Jordan2. 1Doc Standards, US Pharmacopeia, Rockville, MD; 2Marketed Health Products, Health Canada, Ottawa, ON, Canada.

Globally, ~80% of the world’s population relies upon traditional medicines as part of standard healthcare; ~100 million Americans spend ~$28 billion annually to
consume herbs, vitamins, minerals, amino acids, and other naturally occurring
products in the form of dietary supplements, botanical drugs, and natural health
products. The complexity of mixtures with variance in composition and quality
presents a challenge for risk practitioners. To address these issues, new methodolo-
dies and predictive technologies are being developed, tested and validated to miti-
gate risk of human toxicity and effectively increase the quality of information useful
for application in safety assessments. Many of these methods are already reflected in
multiagency government initiatives. Such methods are referred to as “translational
for application in safety assessments. Many of these methods are already reflected in

S 2485 Session Overview: The Promise of Translational and Integrative Safety Assessments of Dietary Supplements, Traditional Medicines, and Herbal Drugs.

S. A. Jordan. Marketed Health Products, Health Canada, Ottawa, ON, Canada.

For thousands of years, herbs and other natural substances have been used in health
care. Some traditional healing paradigms include knowledge of potential toxicity,
and ways of preventing adverse effects. However, with modern use, a much larger
and varied population now uses these products. In addition, commercial products
may not be true to traditional use, indication, or form. A rise in use of these prod-

2486 In Silico Methods As Translational Tools for Supporting the Safety Assessment of Natural Health Products.

In silico methods including computational toxicology can serve to help address data
gaps during safety evaluations for regulatory and industrial product safety. Natural
health products including dietary supplements, botanicals, herbs, and related sub-
stances can benefit from the wide spectrum of scientific evidence produced by in
silico toxicology analyses. Discussion will cover case studies and regulatory science
activities in the application of structure-based computational assessments of indi-
vidual chemical constituents derived from natural products and mixtures modeling.
Translation of these data to support human safety and risk assessment processes will
be presented. The in silico approach as a translational tool with emerging evidence-
based predictive technologies and the use of these methods in applied safety science is
of extraordinary heightened interest with the goal of meeting today's needs for
protecting public health.

S 2487 In Vitro and In Vivo Approaches for Assessing the Safety of Natural Health Products.

W. F. Salminen. NCTR-Center for Hepatotoxicology, US Food & Drug Administration, Benton, AR.

Dietary supplement use continues to increase as many people see these “natural”
products as inherently safe alternatives to drugs. However, in the US and many
other parts of the world, dietary supplements require none to minimal safety data
before they are marketed. Many dietary supplements are complex mixtures of a
wide variety of chemical compounds and the composition can vary greatly from
manufacturer to manufacturer and even batch to batch making safety assessments
very difficult. Various in vitro and in vivo approaches for assessing the safety of
dietary supplements from classical toxicology studies to state-of-the-art toxico-
genomics assessments will be reviewed. An overview of the US National Toxicology
Program’s (NTP) testing of dietary supplements will be presented and examples
of potential drug-dietary supplement interactions will be discussed since these are
likely to increase as people use dietary supplements in combination with approved
drugs.

2488 Computational Methods Linking Traditional Chinese Medicine (TCM) and Western Therapeutics.

D. E. Johnson. Molecular Toxicology, University of California Berkeley, Berkeley, CA.

Herbal remedies are widely used throughout the world with approximately 80% of
the global population relying on traditional medicines as part of standard health-
care. In the US, an estimated 1 in 5 adults regularly consume herbal products and
most of these are not included in patient records as “other medications”, thereby
limiting the understanding of potential herb-drug interactions to both the patient
and health care professional. We have been using computational tools to deconvo-
lute complex recipes and predict molecular targets for constituent phytochemicals
with the goal of forming a comprehensive tool to help predict herb-drug interac-
tions. This work will be illustrated using both open-source tools and commercial
biological pathway mapping and predictive algorithms. Translational methodology
will be introduced that proposes a chemical-disease category linkage between TCM
and Western medicine for a rational integrative medicine approach.

2489 Herbogenomics As a Translational Method for the Safety Assessment of the Complex Mixtures in Traditional Chinese Medicines.

Y. Kang. Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY.

Natural health products, including traditional Chinese medicines (TCMs) are
often complex mixtures. Assessing the safety of individual components of such
products is problematic. The use of TCM has raised concerns of heavy metal con-
tamination and toxicity. However, it has been known that metals and metalloids
are essential components in some TCM preparations. For instance, mercury in
cinnabar is irreplaceable for its therapeutic effect. Another scenario is that the TCM
formulation is toxic to healthy population, but becomes remedy to seriously sick
people. In this context, the dose regimen of arsenic trioxide used to treat acute
promyelocytic leukemia (APL) is extremely toxic to general population, but is of
high therapeutic efficacy for APL patients. It is difficult, if not impossible, to dis-
tinguish metal composition from metal contamination in TCM and their associ-
ated therapeutic or toxic effects. A novel approach of herbogenomics can provide
alternate perspectives on the active ingredients and toxic transformations of TCM. The overall effects of TCM on target organs can be elucidated by functional genomics and proteomics, thus the addition or subtraction of heavy metals from TCM preparations would affect the outcome, which can be reflected by the genomic profile alterations. The information about metal composition and contamination is critical for general population considering the use of TCM as an alternative remedy.

2490 Evidence-Based Reviews As a Method for Assessing the Safety of Dietary Supplements.
M. L. Hardy. Center for Integrative Medicine, University of California Los Angeles, Los Angeles, CA. Sponsor: J. Griffiths.

Dietary supplement safety is one of the main regulatory concerns in the United States. Adverse events occur for a variety of reasons including contamination, misidentification or adulteration of plant based dietary supplements. However, even when a product is correctly made, adverse events in human subjects have been reported. Systematic review and meta-analysis of published clinical trials and adverse event case reports allow aggregation of disparate reports in order to improve the analytic strength of evaluations of potential harms. When adverse events are reported in properly randomized clinical trials, causality of the reported adverse event can be assumed. Clinical trials are almost always of insufficient power to detect any but the most common adverse events. Rare or serious adverse events are usually reported in as case reports or small case series. Attribution of risk in this case is limited by a number of factors including timing and duration of exposure to suspected offending substance as well as the clinical circumstances of the user. Although causality can rarely be attributed based on case reports, systematic review of aggregated cases can identify a suspicious signal. Additional limitations of all sources of causality can rarely be attributed based on case reports, systematic review of aggregated cases can identify a suspicious signal. Additional limitations of all sources of adverse event reports are the result of incomplete information including very often misidentification or adulteration of plant based dietary supplements. However, cases comparison studies revealed that that this initial event was isolated to sustained agonism on the rat fetal isoform of the nicotinic acetylcholine muscle receptor and did not occur in humans. Feedback on this project from global regulatory agencies will be presented and discussed. This stage-setting talk provides a clear example of how human relevance can be understood if the toxicity is mediated by a relatively simple mechanism (e.g., agonism at a single receptor).

2491 Are We Like Rodents, Rabbits, or Something Else?: Mechanisms of Developmental and Reproductive Toxicity Across Species.
R. J. Rasoulpour1, K. Johnson1, S. N. Campion2, C. Timchalk3 and J. E. Goodman4, 1The Dow Chemical Company, Midland, MI; 2Pfizer Global, Groton, CT; 3Alfred I duPont Hospital for Children, Wilmington, DE; 4Pacific Northwest National Laboratory, Richland, WA; 5Graduate, Cambridge, MA.

Given the inherent complexity of embryo/fetal development and reproductive biology, developmental and reproductive toxicity (DART) hazard identification and research still heavily relies on animal models. Typically, this type of research is conducted in rodents (e.g., mouse and rat) as well as nonrodent species (e.g., rabbit and nonhuman primate), which, in the face of toxicity findings, raises the question of relevance to humans. Are we more like mice, rats, or other model organisms? Not surprisingly, answering this question is a challenge, and the scientific approach may be quite different depending upon the biological system and the level of mechanistic information available. However, within this challenge is an opportunity to understand the toxicokinetic and toxicodynamic differences between the species and provide the appropriate context for developmental and reproductive findings. Providing this context can directly impact the risk assessment and regulatory decision-making process. This workshop will highlight several different approaches to relate animal reproductive and developmental toxicity findings to human health. Speakers in fields of basic research, product safety testing, epidemiology, and physiologically-based pharmacokinetic modeling will address the central theme of the workshop, which is applying different experimental strategies to analyze cross-species toxicity. Within each presentation, potential regulatory implications and feedback from agencies when available, will be addressed. Through the workshop, a clear understanding of the different approaches and the complex toxicity mechanisms and to take the next step towards cross-species comparisons that impact human relevance and regulatory decisions.

R. J. Rasoulpour. Developmental and Reproductive Toxicology, The Dow Chemical Company, Midland, MI.

This presentation will provide a case study on unique challenges often posed by elucidating developmental toxicity mechanisms identified within guideline safety assessment studies. The case study will focus on a recently identified novel mechanism of rat-specific developmental toxicity induced by a developmental molecule, sulfoxaflor. At high doses, sulfoxaflor caused dorsal closure and limb flexure defects in rats, but not rabbits. The proposed mode-of-action was that these effects had a single mechanism mediated via the rat fetal isoform of the muscle nicotinic acetylcholine receptor. The studies included a combination of novel in vivo and in vitro mechanistic studies, which were integrated to identify agonism on this receptor as a critical event. Moreover, species comparison studies revealed that that this initial event was isolated to sustained agonism on the rat fetal isoform of the nicotinic acetylcholine muscle receptor and did not occur in humans. Feedback on this project from global regulatory agencies will be presented and discussed. This stage-setting talk provides a clear example of how human relevance can be understood if the toxicity is mediated by a relatively simple mechanism (e.g., agonism at a single receptor).

2493 Endocrine Disruption Mediated Developmental Toxicity in Mice versus Rats: Implications for Humans.
K. Johnson. Alfred I duPont Hospital for Children, Wilmington, DE.

This presentation will examine the mechanisms behind phthalate-induced fetal testis endocrine disruption in mice and rats and extrapolation of these rodent data to humans. It will analyze the species-sensitivity of phthalate endocrine disruption and compare these responses to those observed after phthalate exposure of human biological samples. In rats, gestational phthalate exposure produces male reproductive tract malformations (including hypospadias and cryptorchidism) via a phthalate-induced reduction of fetal testis insulin-like 3 and testosterone production. Although the phthalate molecular target is unknown, extensive molecular mechanistic studies in the rat have established reduced Leydig cell steroidogenic gene expression as causal for the inhibition of testosterone production. In contrast to the rat, available data for mouse gestational phthalate exposure indicate this species is resistant to inhibition of fetal testis hormone production. Despite mouse gestational phthalate exposure extensively altering the fetal testis gene expression profile and inducing fetal testis histopathology, no reductions in mouse fetal Leydig cell steroidogenic gene expression are evident. Because in vitro models do not recapitulate the fetal testis/Leydig cell endocrine disruption phenotype, the question of human susceptibility has been addressed with experiments using human fetal testis explants xenografted into rodent hosts. In these experiments, phthalate exposure of host animals harboring rodent fetal testis explants recapitulates the rodent in vivo phenotypes, and human fetal testis xenografts respond similarly to mouse fetal testis xenografts. While histopathology is observed in the human fetal testis xenografts, reductions in fetal testis testosterone production or steroidogenic gene expression are not seen. These xenografts data have important implications for current and future regulatory decisions but are not without caveats. The potential regulatory impact and caveats of these experiments will be presented.

2494 Case Studies on Testis Toxicity in Rodent Models and Risk Management Strategies.
S. N. Campion. Pfizer Global, Groton, CT.

This presentation will provide case examples of testis toxicity findings in regulatory studies for pharmaceutical development. For some of these examples, strategies used to elucidate the mechanisms of toxicity in order to put these findings into perspective for human risk assessment will be described. One of these case studies will focus on mechanistic work performed to determine that the adverse findings noted in rats were the result of a species specific mechanism that is not relevant in humans. A second case study will discuss work performed to elucidate the binding targets of a compound that elicits testis toxicity in rodents. While there are some examples of mechanistic work to de-risk testis issues with pharmaceuticals, mechanistic work is not commonly performed since the toxicity is often due to off-target effects of small molecules. In addition, the impact of the time required to perform mechanistic work to a program’s timeline often makes this work unfeasible. Alternative approaches to understanding the impact of the toxicity in order to develop human health risk management strategies will be discussed, including evaluating the safety margin as well as the intended use of the drug (e.g., indication, patient population, duration of treatment). Marketed drugs with testicular toxicity findings in nonclinical studies will be discussed to provide a perspective of the tolerance of regulatory agencies to such findings. In general, there is a higher tolerance for male reproductive toxicity findings with pharmaceuticals relative to environmental chemicals because the benefit of the pharmaceutical exposure is considered relative to the risk when determining the impact of findings in preclinical studies.
Physiologically-Based Pharmacokinetic/Pharmacodynamic Modeling of Developmental Toxicity.

C. Timchalk. Pacific Northwest National Laboratory, Richland, WA.

The developing brain is vulnerable to insults and evidence implicates low-level chemical exposures as potential developmental neurotoxins. Organophosphorus (OP) insecticides, like chlorpyrifos (CPF), inhibit cholinesterase (ChE) and are neurotoxic. PBPK/PD models have been exploited to enable cross-species extrapolation of CPF brain dosimetry and ChE inhibition and when linked with a dietary exposure model can predict response across populations. However, recent epidemiology studies suggest that OP neurotoxicity occurs at low-doses, even in the absence of significant brain ChE inhibition. The lack of quantitative cross-species brain dosimetry data associated with epidemiology results hampers any mechanistic based risk assessments. The implication of localized heterogeneous CYP450 brain metabolism has historically not been extensively investigated, but recent research suggests it is of key importance. To address these limitations, we are testing the hypothesis that low-dose exposures of preweaning rats to OP insecticides will result in differential brain region dosimetry, enhanced by localized brain bioactivation, potentially resulting in subtle changes in brain chemistry. Comparative in vitro metabolism studies in rats indicate that the overall brain microsomal metabolism was a fraction (~3%) of the mouse liver. Following in vivo pharmacokinetic administration (1 and 5 mg/kg/day) of CPF to post-natal day-10 pups, CPF and its major metabolite were quantified in the brain with evidence of regional deposition and localized metabolism. The importance of localized brain metabolism is highly relevant for lipophilic pesticides that sequester in the lipid rich regions of the brain and can undergo localized metabolic activation to produce neurotoxic effects. This is particularly important in juvenile animals, and children, where there may be a disproportionate deposition of the parent pesticide in the brain. In this regard, these PBPK/PD modeling strategy have significant regulatory implications for assessing developmental neurotoxicity.

Using Epidemiology to Analyze Neurodevelopmental Toxicity across Species.

J. E. Goodman. Gradience, Cambridge, MA.

The final presentation of the session will tackle cross-species analysis from a different angle by utilizing epidemiology data. This presentation will explore how epidemiology studies can address toxicity across species by estimating human exposures and/or outcomes with biomarkers and putting these into context with the animal model results. It will focus on how the effect of timing, selection choice, and measurement of biomarkers, as well as the results of toxicology studies, can influence the interpretation of results. Chlorpyrifos and neurodevelopmental effects will be used as a case study. US EPA assessed whether epidemiology data suggest that fetal or early-life chlorpyrifos exposure causes neurodevelopmental effects and, if so, whether they occur at exposures below those causing 10% inhibition of blood acetylcholinesterase (AChE), which is currently considered the most sensitive endpoint. We conducted a hypothesis-based weight-of-evidence analysis and found that a proposed causal association between chlorpyrifos exposure and neurodevelopmental effects in the absence of AChE inhibition does not have a substantial basis in existing animal or in vitro studies, and there is no plausible basis for invoking such effects in humans at their far lower exposure level. The epidemiology studies fail to show consistent patterns; the few associations are likely attributable to alternative explanations. The human data are inappropriate for a dose-response assessment because biomarkers were only measured at one time point, may reflect exposure to other pesticides, and many values are at or below limits of quantification. When considered with pharmacokinetic data, however, these biomarkers provide information on exposure levels relative to those in experimental studies and indicate a margin of exposure of at least 1,000. Because animal data take into account the most sensitive lifetimes, the use of AChE inhibition as a regulatory endpoint is protective of adverse effects in sensitive populations.

Cumulative Risk: Toxicity and Interactions of Physical and Chemical Stressors.

I. Simmons1 and C. Rider1. 1NHEERL, US EPA, Research Triangle Park, NC; 2NTP, NIEHS, Research Triangle Park, NC.

Recent efforts to update cumulative risk assessment procedures and develop community-based risk assessment methods reflect increased interest in incorporating the totality of variables affecting human health into the risk assessment process. One key roadblock in advancement is uncertainty as to how nonchemical stressors behave in relationship to chemical stressors. An assumption that simplifies incorporation of nonchemical stressors into current risk assessment paradigms is that nonchemical stressors act in the same manner as chemicals. However, evidence is required to support this assumption. The term nonchemical stressors encompasses a diverse set of variables including physical stressors, such as noise, temperature, disease, as well as psychosocial stressors, which involve perception of circumstances. Physical stressors offer a reasonable starting place for measuring the effects of nonchemical stressors and their modulation of chemical effects (and vice versa), as they clearly differ from chemical stressors, present many diverse and highly-relevant stressors, and “doses” of many physical stressors are easily quantifiable. The primary advantage of nonchemical stressors is the ability to noninvasively modulate the impact of nonchemical stressors on chemical-mediated toxicity or the joint impact of coexposure to chemical and nonchemical stressors. While generally true, there are several instances where a substantial body of evidence exists. The objective is to provide expert overviews, for those chemical and physical stressors that have been sufficiently studied to gain at least a limited understanding of their joint impact. In addition to providing the current state of knowledge, data gaps will be identified that should be addressed to facilitate inclusion of nonchemical stressors in risk assessment. (This abstract does not reflect US EPA or NIEHS policy.)

Cumulative Risk: Chemicals and Infectious Disease.

M. Selgrade. ICF International, Durham, NC.

At least 4 types of mechanisms underlie potential interactions between toxic chemicals and infectious disease. 1) The best understood is suppression of immune responses, resulting in increased incidence/severity of infectious disease. For example, decreased alveolar macrophage function following exposure to several air pollutants enhances the risk of certain bacterial infections. Research on this model provides both qualitative and quantitative approaches to describe this risk. 2) Certain immune mediators, inflammatory mediators, are activated during the early phase of injury and have the potential to alter chemical toxicity. For example, trichloroethylene has been shown in the mouse to delay activation of the inflammatory system. 3) Chemical exposure may enhance inflammation and immune pathology associated with an infection. This is best illustrated by effects of ozone, ultraviolet radiation, and TCDD on influenza infection. In all cases mortality is enhanced in the absence of increased virus titers in the lung or viral dissemination. Deaths appear to be due to increased inflammatory responses. Similarities exist between receptors and subsequently triggered signaling pathways for pathogen associated molecular patterns (PAMPs) and damage associated molecular patterns (DAMPS), which trigger inflammatory responses. A system approach that examines the integration of these pathways is needed to better describe this phenomenon. 4) Infection enhances chemical induced lesions, e.g., p53 mutations, inflammation, cell proliferation. Such mechanisms might explain the interaction between hepatitis B virus infection and aflatoxin in the induction of liver cancer. These mechanisms are not necessarily comprehensive, distinct, or mutually exclusive and are imperfectly understood. However, they provide a useful framework to further explore the interactions between infectious disease and exposure to toxic chemicals with the ultimate goal of improving our understanding of cumulative risk.

Enhancement of Noise-Induced Hearing Loss by Chemicals.

The auditory effects of chemical toxicants have been investigated in the past two decades, in animal and human field and clinical studies. A number of studies demonstrated that some solvents, metals, asphyxiants, pesticides not only affect the sensory organ of the auditory system, as noise does, but also affect central auditory structures. Ototoxicity induces outer hair cell dysfunction in the cochlea (similar to the effects of noise), whereas neurotoxicity induces central auditory dysfunction. Audiological signs of neurotoxicity may or may not include poorer hearing thresholds, in addition to difficulties discriminating sounds such as speech, particularly in adverse listening conditions. The existing evidence prompted the proposal of new guidelines and standards on hearing loss prevention. In the U.S., the National Institute for Occupational Safety and Health has discussed specific research needs regarding the ototoxicity of chemicals used at work. The American Conference of Governmental Industrial Hygienists and the U.S. Army have proposed preliminary practical steps that employers and occupational health professionals can take to improve hearing loss prevention. Australia and New Zealand have developed standards recommending hearing tests for workers exposed to otoxic agents. In the legislative arena, the European Parliament published a new noise directive (2003/10/EC), that requires employers to give attention to any effects on workers’ health and safety resulting from interactions between noise and work-related otoxic substances, when performing risk assessment of workplaces. Legislation regarding compensation has also changed in Australia and Brazil. In this presentation.
the auditory effects of chemical alone or in combination with noise will be re-viewed, and recent public health concerns, legislative developments and alternative strategies for the prevention of auditory effects resulting from exposure to chemicals in the workplace will be presented.

2500 Exacerbation of Toxicity of Air Pollutants and Pesticides by Thermal Stress.

Considering the likelihood of global warming in the near future, it is important to understand how heat stress will alter the health effects of toxicants. The toxicity of pesticides and airborne toxicants is generally exacerbated in a warm environment. As air temperature increases, the pulmonary intake of air pollutants and absorption of pesticides applied to the skin is generally accelerated. Cellular toxicity is typically exacerbated when body temperature is elevated. This is primarily a result of a Q10 effect, meaning that the rate of a biochemical reaction doubles with a 10 °C increase in tissue temperature. The generation of reactive oxygen species is also exacerbated with warmer temperatures.

Since warmer temperatures worsen chemical toxicity, a thermoregulatory response to lower body temperature can be protective. Hyperthermia is most likely going to be detrimental in the recovery from toxicant exposure. Rodents and other small mammals have relatively large surface area:volume ratio. Following exposure to pes-ticides and air pollutants, metabolism is reduced and a rapid reduction in body temperature ensues. If given the opportunity to thermoregulate behaviorally, rodents seek colder temperatures, allowing body temperature to decrease quickly. Thus, the hypothermic response is a regulated response. This is thought to be an adaptive response because the hypothermic response is protective. Large mammals, including humans, have a greater thermal inertia and are unable to mount a hy-pothermic response as is seen in rodents. A warmer environmental temperature will thus impede the hypothermic response to toxicant exposure in rodents and will also be stressful to large mammals that are unable to undergo a significant cooling re-

response. With the potential impact of global climate change on increased incidence of heat stress in urban areas that are also rife with pollution, the topic of the ther-
moregulatory responses to environmental toxicants is timely. This is an abstract of a proposed presentation and does not reflect US EPA policy.

2501 Modulation of X-Ray Mediated Testicular Toxicity by Chemical Exposure.
K. Beekelheide, Brown University, Providence, RI.

High density microarrays and a detailed bioinformatics analytical approach were used to demonstrate that an initial chemical exposure to 2,5-hexanedione (HD) al-
ter the rat testis to ameliorate the response to a subsequent exposure to x-irrad-
iation. Adult male rats were exposed to HD (0.33% or 1%) in the drinking water for 18 days followed by x-ray (2Gy or 5Gy), resulting in a total of 9 treatment groups. Testis samples were collected after 3 h and gene array analysis was performed. Using a novel bioinformatic approach to summarize the effect of HD across all treatment groups, we focused on the modification of x-ray-induced gene alterations by HD co-exposure. Enrichment analysis was used to identify biological pathways where HD modification of gene expression was the greatest. HD exerted a signifi-
cant influence on genes involved in Cell Cycle and DNA Replication, Recombination, and Repair. HD also had an antagonistic effect on x-ray-induced alterations of several apoptotic genes (Fas, BBC3, AEN). To further investigate the specific cell populations and stages in which these critical gene alterations occur, laser capture microdissection (LCM) samples were collected from the basal compart-
ment of the seminiferous epithelium, enriching for those germ cells most sus-
ceptible to x-ray-induced apoptosis. Quantitative RT-PCR of the LCM samples confirmed the suppression of apoptotic genes by HD co-exposure. The co-exposure attenuation of germ cell apoptosis is the result of an adaptive response to the chemical exposure, causing altered paracrine signalling of the supportive cells in the semin-
iferous epithelium. These results suggest that toxicity pathway responses deter-
mine the outcome of co-exposures, whether chemical or physical in nature, and that complex paracrine interactions between cells modulate the extent of injury.

2502 Sunlight Enhancement of the Toxicity of Air Pollutant Mixtures.
K. G. Sexton1, J. Zavala1, B. O’Brien1, W. Vizuete1, R. C. Fry1, J. Laspee1,2 and J. Rusyn1,2*Environmental Sciences & Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC; 3Center for Environmental Medicine and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.

Sunlight can significantly drive photochemical reactions of mixtures of air pollu-
tants commonly observed in the atmosphere, producing many well known toxic compounds such as formaldehyde and other carbonyl containing products. These reactions also contribute to the formation of secondary organic aerosols as well as modifying the composition of existing aerosols or particulate matter (PM). Smog chambers can be used to prepare repeatable, controlled mixtures of simple to in-
creasing complexity and be used to study photochemical atmospheric transforma-

tion with natural sunlight or simulated sunlight. Smog chambers can be interfaced with direct exposure to in vitro or in vivo models for toxicity studies including di-
rect air-liquid-interface in vitro or in vivo inhalation exposures. Photochemical ex-
periments have been conducted in smog chambers with industrial mixtures and complex mixtures of motor vehicle exhaust in urban atmospheres, often demon-
strating enhanced toxicity as measured by markers of inflammation and other bio-

dlogical endpoints such as cytotoxicity. Modifications of experiments, exposure con-
ditions and additional toxicological analyses can provide mechanistic and mode of action understanding. Novel genomic analyses of cells exposed to an urban-like mixtures showed transcriptional changes on a subset of genes, increasing the number of genes with altered expressions from 19 for the un-irradiated mixture, to 709 genes after a one-day sunlight irradiation. The implication is that toxicologists and those dependent on their findings, should consider studies that include mixtures re-
sulting from natural atmospheric photochemical reactivity, transformation of air components, and the resulting enhancement of toxic effects of air pollutants and their products. Not considering such effects, could result in misinterpreting the mode of action and underestimating the potential risk of exposure to air pollution mixtures or its sources.

2503 Mechanistic, Occupational, and Clinical Aspects of Lead Exposure.
A. Vale. School of Biosciences, University of Birmingham, Birmingham, United Kingdom.

The mechanisms of lead toxicity are increasingly being explained by the ubiquitous reactivity of the bivalent lead cation and its ability to substitute for essential cations, notably calcium and zinc. By these means, lead complexes with important func-
tional groups including thiol and carboxyl groups, and damages many fundamental cell processes and structures including enzyme pathways, phospholipid integrity, ion channel specificity and control, and intrinsic protective systems including free radical scavengers and cellular repair mechanisms. Owing to the large sample sizes involved and its nationally-representative nature, NHANES has been the subject of a number of epidemiological analyses relating blood lead concentrations to a range of adverse outcomes such as blood pressure, renal function, auditory thresholds, and a host of other cardiovascular, neurobehavioral, and other developmental or adult outcomes. Some practitioners are now proposing that, as the NHANES data suggest that lead concentrations even less than 5 μg/dL (0.24 μmol/L) can have some health consequences, chelation should be performed at even very low blood concentrations. Is this an appropriate interpretation of these data? There is concern that the occupational intervention concentrations worldwide are not only unsup-
ported scientifically and clinically but also have been set at concentrations that per-
mit unsafe practices to continue. A group of experts has proposed that workers should be removed from occupational exposure if a single blood lead concentration exceeds 30 μg/dL (1.45 μmol/L), or if two successive blood lead concentrations measured over a four-week interval equal or exceed 20 μg/dL (0.97 μmol/L). Will these recommendations prevent clinically significant occupational lead exposure? Due to the paucity of clinical data, there is controversy about the lead concentra-
tion at which chelation therapy should be instituted in adults when exposure pre-
vention has failed, the antidote to be used, and the most effective regimen to be em-
ployed.

2504 Novel Mechanisms of Toxicity.
B. Lantz. Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ.

The broad spectrum of lead toxicity with adverse manifestations in developmental and functional aspects of many if not all organ systems are increasingly being ex-
plained by the ubiquitous reactivity of the bivalent lead cation and its ability to sub-
stitute for essential cations, notably calcium and zinc. By these means lead com-
plexes with important functional groups including thiol and carboxyl groups and damages many fundamental cell processes and structures including enzyme pathways, phospholipid integrity, ion channel specificity and control and intrinsic protective systems including free radical scavengers and cellular repair mechanisms. The ability for lead to substitute for calcium causes erroneous activation of calcium-dependent proteins and modulation of calcium-sensitive receptors. At its extreme, impaired regulation of calcium transport results in intracellular calcium accumulation which triggers apoptosis. Lead can activate protein kinase C to disrupt intracellular regulatory processes causing incorrect gene expression resulting in disordered cell proliferation and differentiation. Lead-mediated malfunction of the calcium sensitive N-methyl-D-aspartate (NMDA) receptor is recognized as one of, if not the most, important mechanism of lead-induced damage to neuronal development, learning and memory.

As the details of the molecular mechanisms of lead toxicity are unravelled, it is becoming clear that their complexity is increased by the fact that lead, like many toxins, acts not in isolation but as part of a multifactorial armoury of adverse influences including environmental factors, which together dictate the development, manifestations and progress of disease.

2505 Threshold Toxic Dose: What Can We Learn from the NHANES Studies?

H. Hu, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.

The National Health and Nutrition Examination Survey (NHANES) are cross-sectional surveys of the civilian noninstitutionalized population of the United States that have been administered by the National Center for Health Statistics and ongoing for decades. Subjects are selected based on a stratified multistage probability sampling of counties, blocks, households, and persons within households, with oversampling of some population subgroups (such as Mexican Americans, non-Hispanic blacks, and adults 60 years or older). Evaluations included the administration of extensive questionnaires, physical examination, and collection of urine and venous blood for a wide range of laboratory analyses. Lead levels have been measured in samples of venous blood since the 1970’s. Owing to the large sample sizes involved (typically >10,000 individuals) and its nationally-representative nature, NHANES has been the subject of a number of epidemiologic analyses relating blood lead levels to a range of outcomes such as blood pressure, renal function, auditory thresholds, and a host of other cardiovascular, neurobehavioral and other developmental or adult outcomes. This presentation will provide an overview of these studies from the perspective of understanding dose-response relationships; it will also compare them with the parallel body of recent epidemiologic studies using other biomarkers of lead exposure (e.g., XRF-measured bone lead levels as a marker of cumulative exposure) and/or other study designs (e.g., prospective or case-control studies).

2506 Occupational Exposure Limits: Do They Protect Workers?

M. Kosnett, Division of Clinical Pharmacology and Toxicology, University of Colorado Denver, Denver, CO.

Research findings have heightened public health concerns regarding the hazards of low dose lead exposure to adults and children. In adults, studies have established the potential for hypertension, effects on renal function, cognitive dysfunction and adverse female reproductive outcome in adults with whole blood lead concentrations less than 40 μg/dL (1.93 μmol/L). However, in most nations worldwide, regulatory occupational exposure limits permit workers to maintain blood lead concentrations in excess of 40 μg/dL for a working lifetime. A group of experts has recently recommended that workers undergo removal from occupational lead exposure if a single blood lead concentration exceeds 30 μg/dL (1.45 μmol/L), or if two successive blood lead concentrations measured over a four week interval equal or exceed 20 μg/dL (0.97 μmol/L). Removal from lead exposure should be considered to avoid long-term risk to health if exposure control measures over an extended period do not decrease blood lead concentrations below 10 μg/dL (0.48 μmol/L), or if selected medical conditions exist that would increase the risk of continued exposure. In order to assure reductions in permissible blood lead concentrations, medical surveillance for lead exposed workers is recommended to include quarterly blood lead measurements for individuals with blood lead concentrations between 10 to 19 μg/dL (0.48 – 0.92 μmol/L), and semi-annual blood lead measurements when sustained blood lead concentrations are less than 10 μg/dL (0.48 μmol/L).

2507 Chelation Therapy for Lead Poisoning: Unanswered Questions and Controversies.

S. M. Bradbury, West Midlands Poisons Unit, City Hospital, Birmingham, United Kingdom.

Intravenous edetate calcium disodium and oral succimer (dimercaptosuccinic acid; DMSA) are potent chelators of lead approved in many countries for the clinical management of lead poisoning. Both agents reduce the body burden of lead by the renal elimination of a lead-chelating agent complex but there remain unanswered questions regarding their precise pharmacokinetic and pharmacodynamic properties. These include the specific effects of each agent on tissue lead distribution and mobilization and how these parameters are affected by dose and duration of both lead poisoning and chelation. Edetate calcium disodium chelates by exchanging its central calcium ion for lead but the exact chemical nature of the succimer-lead chelate in man remains ill-defined. While assessment of efficacy of both agents is hampered by limited data, for any candidate approach to the problem of lead toxicity, variations in study design, species differences and, for clinical studies, the subjective nature of reporting changes in symptoms, available data overall suggest both drugs offer similar efficacy with regard to enhancing lead elimination, though this remains controversial. In addition, the indications for chelation in man remain ill-defined. The adequacy of treatment remains contentious both because of the paucity of efficacy data and because of increasing evidence that toxic effects of lead sustained during early development cannot be reversed by chelation. Moreover, even though most clinical toxicologists agree that where exposure prevention has failed, chelation should be considered in adults whose blood lead concentrations ≥ 50 μg/dL (2.4 μmol/L), the most effective regimen to employ in these circumstances is still controversial.

2508 Ocular Medical Devices and Ocular Drug Delivery Systems: Challenges and Opportunities.

I. A. Render, Toxicology, NAMSA, Northwood, OH.

The eye is a unique organ composed of many different structures working together to facilitate vision. The maintenance of clear vision during aging is threatened by various physiological changes (e.g., presbyopia) or diseases (e.g., age-related macular degeneration). The need for treatments is of increasing importance as the size of the aging population grows. The National Eye Institute predicts that by 2020, more than 50 million Americans will be impacted by age-related eye disease. Some of these conditions have been overcome through the use of medical devices. Ocular medical devices consist of instruments, apparatuses, appliances, and materials. Some devices are purely structural; whereas, other medical devices are a part of a delivery system that releases a drug. The five presentations in this program are designed to educate the audience on the therapeutic, safety, and regulatory challenges of developing ocular medical devices and drug delivery systems. The first presentation will cover the special requirements for developing contact lenses and contact lens solutions. The second presentation will describe the challenges associated with accommodative intraocular lenses (IOLs). The third presentation will discuss the ocular barriers (e.g., blood-eye-barrier) and how ocular medical devices and sustained release drug formulations have been designed to address these barriers with respect to developing protein therapeutics. Development of and regulatory challenges associated with a unique biodegradable small molecule ocular drug/injection applicator delivery system will be discussed in the fourth presentation. The symposium will conclude with a presentation that discusses the safety and regulatory requirements and complexities pertaining to ocular medical devices and ocular drug delivery systems.
biocompatibility testing strategies for contact lenses and solutions. For example, depending on the type of assay, the tested material may need to be the formulation itself, a lens extract or a lens/formulation combination. Further, it has been demonstrated that the selection of assays and individual study designs can influence the outcome of the study, which could potentially impact product registration. Testing protocols therefore need to be designed to account for the unique chemical and physical properties of the ocular medical device being tested in order to avoid potentially false positive outcomes. Consequently, a rational science-based approach should be used to develop and justify the biocompatibility testing strategy and study designs to ensure that the biological evaluation conducted is appropriate, robust and Regulatory-acceptable. This presentation will highlight some of the key challenges and case studies when conducting biocompatibility evaluations on contact lenses and solutions.

2510 Accommodative Intraocular Lenses: A New Class of IOLs with a New Class of Challenges.

A. Glasser. College of Optometry, University of Houston, Houston, TX. Sponsor: L. Render.

A new class of intraocular lenses (IOLs) is being developed with the goal of restoring the focusing ability of the eye (accommodation) for treating presbyopia (the age-related loss of near focusing ability). Although cataract surgery may be among the safest and most common of surgical procedures, these so called accommodative IOLs (A-IOLs) present new challenges as well as offer new opportunities. A-IOLs differ considerably from standard IOLs in that they are biomechanical devices designed to move or change shape in response to ciliary muscle contraction. A-IOLs are bulkier, made from different materials, may be implanted in different locations in the eye and have mechanisms of action that differ fundamentally from standard IOLs. The surgical procedures required to implant these devices are also more challenging, as they require new surgical devices. In addition, the safety considerations for A-IOLs are different. Preclinical animal testing that can be done is limited, complications that can arise are unique, and regulatory hurdles for demonstrating safety and effectiveness are higher. The ultimate success of A-IOLs will rely on solving significant biological challenges that still remain, such as resolving the postoperative healing response of the eye including prevention of post-operative lens epithelial cell proliferation and fibrosis of the lens capsule. This presentation will describe the challenges associated with the development A-IOLs. It will also introduce some future potential applications such as, the possibility of delivering drugs from A-IOLs to solve these biological challenges, as well as other unique surgical and pharmacological interventions aimed at resolving the problem of presbyopia.
The numerals following the author's name refer to the abstract numbers. The asterisk after the abstract number indicates the author is the first presenter.
Author Index (Continued)

The numerals following the author's name refers to the abstract numbers. The asterisk after the abstract number indicates the author is the first presenter.
The numerals following the author's names refer to the abstract numbers. The asterisk after the abstract number indicates the author is the first presenter.
Author Index (Continued)

The numerals following the author names refer to the abstract numbers. The asterisk after the abstract number indicates the author is the first presenter.
<table>
<thead>
<tr>
<th>Author Name</th>
<th>Abstract Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. A.</td>
<td>1420</td>
</tr>
<tr>
<td>B. D.</td>
<td>2264</td>
</tr>
<tr>
<td>C. M.</td>
<td>2066</td>
</tr>
<tr>
<td>D. M.</td>
<td>1773</td>
</tr>
<tr>
<td>E. M.</td>
<td>2158</td>
</tr>
<tr>
<td>F. A.</td>
<td>2563</td>
</tr>
<tr>
<td>G. R.</td>
<td>932</td>
</tr>
<tr>
<td>H. E.</td>
<td>2223</td>
</tr>
<tr>
<td>I. F.</td>
<td>654</td>
</tr>
<tr>
<td>J. F.</td>
<td>191</td>
</tr>
<tr>
<td>K. A.</td>
<td>1006</td>
</tr>
<tr>
<td>L. C.</td>
<td>1707</td>
</tr>
<tr>
<td>M. E.</td>
<td>414</td>
</tr>
<tr>
<td>N. M.</td>
<td>437</td>
</tr>
<tr>
<td>O. F.</td>
<td>2328</td>
</tr>
<tr>
<td>P. J.</td>
<td>2328</td>
</tr>
<tr>
<td>Q. E.</td>
<td>466</td>
</tr>
<tr>
<td>R. J.</td>
<td>722</td>
</tr>
<tr>
<td>S. B.</td>
<td>646</td>
</tr>
<tr>
<td>T. S.</td>
<td>282</td>
</tr>
<tr>
<td>U. J.</td>
<td>335</td>
</tr>
<tr>
<td>V. K.</td>
<td>2062</td>
</tr>
<tr>
<td>W. L.</td>
<td>1382</td>
</tr>
<tr>
<td>X. Y.</td>
<td>1878</td>
</tr>
<tr>
<td>Y. Z.</td>
<td>1722</td>
</tr>
<tr>
<td>Z. A.</td>
<td>1768</td>
</tr>
</tbody>
</table>

The numerals following the author's name refer to the abstract numbers. The asterisk after the abstract number indicates the author is the first presenter.
The author index (continued)
The numerals following the author's names refer to the abstract numbers. The asterisk after the abstract number indicates the author is the first presenter.
The numerals following the author's names refer to the abstract numbers. The asterisk after the abstract number indicates the author is the first presenter.
Pearce, B .. 448
Pearce, M G ... 1334, 1487, 1740
Pearson, K 2126
Pearson, N 1467
Peat, T 1112a
Peachuck, N 1545, 2226
Peddana, S 1094
Pederson, J 239
Pefgar, R 634
Pegram, R A 507, 510, 613
Pejnenburg, A A 1941, 2087
Pelisky, J 602
Pelallo-Marteriner, N 1832
Pech, K 526
Pellegrini, K I 2198a
Pellier, J 2218
Pellizzon, M A 727a
Peltier, R 212
Peltier, R. E 609
Pemberton, R 966, 2216a
Pena, N 865a
Pence, I 918
Peng, Q 925, 1231
Penne, W 2177
Penning, T. M 292
Penningts, J 671
Penningts, J. E 1472
Penningts, P. W. ... 1092, 2285, 2286
Penninks, A 2059
Pefar, B 1936
Perales, R 2434
Perdew, J 1271, 1279
1280, 1282, 1283
Pereira, C V 2257
Pereira, L C 1733, 1993a
Pereira, N 2372
Pereiro, N 2198
Pereiro-Rios, J 1836
Perels, A 2099, 2101a
Peric, J 2097, 2098
Peric, C 65*, 1129
Peric, V 2234
Perich-Pereira, N 603, 1836a
Pérez-Osorio, C 603
Perezo-Romero, J 1264
Perkins, C 1530, 1539
Perkins, E J 143, 250, 599, 875, 1295
Perkins, G A 2159
Perkins, M 354
Perkins, R 117
Permenter, M 1513a
Perpetua, M 401, 2065, 2068
Perrett, M 2137
Perret, R 1066
Perret, J 376
Perron Lepage, M 1071*, 1238
Perrott, R. L 741
Perry, R 1109
Perry, P 2193
Persson, E 1192, 2280
Pescara, I. C 98
Pessah, I N 1376, 1444
Qi, Y 2309
Qian, G 1105, 1106, 1446*, 2138
Qian, Y 776
Qian, X 1877
Qiao, Y 2167
Quackenbush, K 1272
Quan, S 2119
Quan, T 2135
Quintanilla-Vega, G 603, 1359, 1492, 1769, 1832, 2014, 2385
Quist, E M 806, 2118
R 885
Raabe, H 957, 976, 979, 981, 982, 1479
Rabinowicz, A 1735
Rachel, S 2261
Racine, C 2181*
Radonic, M 699, 992
Raeburn, A 1715
Rafael-Vázquez, L 1492, 1832
Raffaele, K 714
Ragavan, M 672
Rager, J E 543, 698, 948*
Raghavan, S 885
Ragheb, J A 1815
Rahmer, H 434
Rai, T. J 191
Raine, M 519*
Raimundo, C M 98
Raj, D 1204
Rajagopalan, P 1416
Rajaswara, N 885
Raldush, D 559
Ralston, S 1120
Raal, J 1931
Ramachandran, A 628
Ramachandran, K 2199*
Ramasam, I 933
Ramsay, S 1963a
Ramesh, A 306, 400, 990, 995, 1110
Ramires, I 1901
Ramires, T 1437, 1475, 2250, 2270*
Ramirez, V 675*, 2186
Ramirez Lee, M 91
Ramone, S 1136
Ramos, E 592, 1781
Ramos, K S 754
Ramos-Robles, B 2104, 212*, 2117
Ramu, J 907, 908*, 1613

The numerals following the author’s names refer to the abstract numbers. The asterisk after the abstract number indicates the author is the first presenter.
Shin, K 641, 983
Shin, Y 1529, 2194
Shinoda, S 973
Shinoda, N 442
Shim, W 1960
Shiotsu, R 483
Shkolnikova, P 1064
Shinwari, K A 438 *
Shipe, E 50
Shirley, D L 394, 418
Shirley, S 1949
Shirn, C 461
Shirvanyak, A 2461
Shlisky, A 513
Siegrist, K 1358
Sieber, M 649
Siftaris, T 355, 1767
Sipes, N 116, 126, 1632 *, 2253
Sipulla, O 181
Siraki, A 2031
Sirian, O 865
Sirin, G S 135 *
Sister, D F 1903, 1910
Sissel, A 2165 *
Sitter, R 257, 2034
Sitharaman, B 469
Sivakumar, V 2036
Sivararaman, L 1003 *
Six, C 305
Sjogren, B 187
Skagen, K 1736
Skjold, T 1746
Slade, D 495
Slade, R 216
Slavov, S 938
Sleator, D 1679
Slaybaugh, R 87
Sleeman, M 1804
Slivker, W 1368, 1369, 1371
Slimak, J 471
Slottkin, T 2451
Smerdel, W 181 *
Smith, J N 1094
Smith, H W 1263 *
Smith, M J 853, 2166
Smith, S 387
Smith, A J 741
Smith, A M 1001 *
Smith, B 1554
Smith, J 372 *
Smith, C J 737
Smith, C S 1019, 1752 *
Smith, E 1936
Smith, G 85 *, 2166
Smith, G J 232, 233 *
Smith, H W 1875
Smith, J N 1363 *
Smith, K 1094
Smith, K J 1283 *
Smith, L 55, 1401
Smith, L C 1931 *
Smith, L E 144, 1907
Smith, M A 674
Smith, M J 1227, 2466 *, 2469 *
Smith, M T 16
Smith, M V 1450, 1452
Smith, P 435
Smith, P B 629, 2028
Smith, S 652 *
Smith, S Y 1220, 1234, 1896
Smith, T 253
Smith, T M 2046
Smith, T 1370
Smid, J 2386
Smid, M 1566
Smimson, A F 972, 974
Smimkin, T 430 *
Smimller, C 2336
Simmons, J 891, 2497 *
Simmons, S O 99, 103, 209
Simons, B R 1958, 2169 *
Simons, C 1041
Simons, T 2267
Simoni, M T 333 *
Simoni, A 1735
Simons, J B 367
Simonsen, J 1752
Simoyi, R 1053
Simuk, R 1432 *
Simpson, P 269
Sin, C 1752 *
Singh, M 1541, 1542, 1543 *, 1554
Singh, R 2098
Singh, B 984
Singh, M 2125
Singh, T 516, 794
Singh, J 1819, 2170
Singh, P 168, 544
Singhi, N 1838
Singh, N M 193, 686 *
Singh, N P 2076 *
Singh, S 172 *
Singh, T 1289
Singh, U P 2076
Singh, V 1089 *
Singleton, S T 310, 591 *, 1420
Sinnahariso, P 1959
Sinko, P J 353, 1767
Sipahi, M 326
Sipes, N 116, 126, 1632 *, 2253
Sipulla, O 151
Siraki, A 2031
Sireen, O 865
Sirin, G S 135 *
Sister, D F 1903, 1910
Sissel, A 2165 *
Sitter, R 257, 2034
Sitharaman, B 469
Sivakumar, V 2036
Sivararaman, L 1003 *
Six, C 305
Sjogren, B 187
Skagen, K 1736
Skjold, T 1746
Slade, D 495
Slade, R 216
Slavov, S 938
Sleator, D 1679
Slaybaugh, R 87
Sleeman, M 1804
Slivker, W 1368, 1369, 1371
Slimak, J 471
Slottkin, T 2451
Smerdel, W 181 *
Smith, J N 1094
Smith, K 741
Smith, A M 1001 *
Smith, B 1554
Smith, J 372 *
Smith, C J 737
Smith, C S 1019, 1752 *
Smith, E 1936
Smith, G 85 *, 2166
Smith, G J 232, 233 *
Smith, H W 1875
Smith, J N 1363 *
Smith, K 1094
Smith, K J 1283 *
Smith, L 55, 1401
Smith, L C 1931 *
Smith, L E 144, 1907
Smith, M A 674
Smith, M J 1227, 2466 *, 2469 *
Smith, M T 16
Smith, M V 1450, 1452
Smith, P 435
Smith, P B 629, 2028
Smith, S 652 *
Smith, S Y 1220, 1234, 1896
Smith, T 253
Smith, T M 2046
Smith, T 1370
Smid, J 2386
Smid, M 1566
Smimson, A F 972, 974
Smimkin, T 430 *
Smimller, C 2336
Simmons, J 891, 2497 *
Simmons, S O 99, 103, 209
Simons, B R 1958, 2169 *
Simons, C 1041
Simons, T 2267
Simoni, M T 333 *
Simoni, A 1735
Simons, J B 367
Simonsen, J 1752
Simoyi, R 1053
Simuk, R 1432 *
Simpson, P 269
Sin, C 1752 *
Singh, M 1541, 1542, 1543 *, 1554
Singh, R 2098
Singh, B 984
Singh, M 2125
Singh, T 516, 794
Singh, J 1819, 2170
Singh, P 168, 544
Singhi, N 1838
Singh, N M 193, 686 *
Singh, N P 2076 *
Author Index (Continued)

The numerals following the author's names refer to the abstract numbers. The asterisk after the abstract number indicates the author is the first presenter.
U

Ubbayhakar, S 1716
Uchi, H 191
Udara, A 3271
Udans, R G 199
Udey, M C 2356
Une, S 1386
Uetrecht, J 1100, 392, 2387
Uhlirová, K 563
Uhto, M 1860
Ucía-Ventura, I 1836
Uji, M 2371
Uman, E 727
Unice, K M 1423
Unbeirouze, G A 98, 1569
Umetsuna, T 1726, 5042, 1923, 2381
Umeno, H 952
Umem, H 1475
Undersper, P 2243
Unfried, K 1750
Umezu, K M 1695, 1685
Urine, J 1366
Urrah, J M 819
Uppal, H 1819*, 2179
Upp, R M 2038, 2345
Upp, S N 2345*
Uranik, R, K 1131, 2470
Urano, K 1100
Urba, D 4, 2231*
Urban, I 824
Urbe-Ramírez, M 1174*, 1768, 2385
Ursini-Siegel, G 1176
Usami, M 523
Usenko, S 1423*, 1998
Usui, S 1517*
Usui, Y 427, 428
Usui, F 667, 668
Uten, M 1070*, 2193*

V

Vaaara, O 402
Vado-Solís, I 603
Vaidya, V S 11, 1156, 2195, 2196, 2198, 2199, 2200, 2400*
Vailancourt, R R 1004*, 2331
Valdivia, I 1803
Vaks, S 443
Valberg, P 1139
Valdè, M F 745
Valdovinos, C 1565, 1950
Valdivia, A G 2317*
Valdivia, P 900*
Valdivinos-Flóres, C 2035
Vale, A M 2535
Valentín, J 376*, 2167
Valentín-Blasini, L 1915
Valentine, J 50
Valentin, M 2185*
Valero, L G 2486*
Valero, L 2161
Valin, M 1467
Vallatán, B F 59, 213, 947
Vallant, M 1300
Van, A N 121
Van Benthem, J 191
Van den Heuvel, R 2249
Van den Heuvel, J J 499
Van der Laan, L 1096
Van der Zande, M 2382*
Van der Zwag, G H 1756
Van Dree, A 1156
Van Duijnen, R 16
Van Duren, M B 524*, 1929, 1930, 2000
Van Ee, R 2097
Van Eijk, J C 2049
Van Erp, A M 377*
Van Kleef, G R 902, 903
Van Loeveren, H 1233, 2087
Van Meter, S 2185
Van Mierlo, G M 2059*
Van Ras, M 1427
Van Ravenbaya, W 105, 131, 814, 964, 957, 977, 1008, 1437, 1458,
1471, 1474, 1571, 1562, 1644*, 1692*, 1726, 1729, 2220
Van Remmen, H 921
Van Rozenbalaad, D 748
Van Schooten, F 671
Van Son, J 583
Van Steensel, M 118
Van Tongeren, S 1805
Van Trij, J 240, 699
Vargas, N 743*
Van Vliet, A C 1397
Van Vliet, E 1680
Van Wijk, H 739*, 1034, 2049
Van Wilt, L S 229, 1314, 2388
Vanderbie, R J 2382
Vanden Heuvel, J 1269
Van den Berg, R K 2074
Van Dun, M 731, 1846, 2148*
Vanhala, E 453
Vanheule, E 1809
Vandongenland, M M 1042*, 1043, 1966, 2115
Vanlouwerbeek, P 949, 2367
Vansell, N 1875
Vasgá, M M 109, 1273, 2341
Vantreeue, J 97
Varea, A 1220*, 2107
Varea, A T 655
Varela, J H 1163
Vargas-Marin, S 2104*, 2112, 2117
Vargo, J 106
Vargaz-Villaurbba, R 739
Varma, T K 679
Varner, K 1144
Varner, K J 80
Varney, T R 1184
Vatsavayi, M 555, 1294
Vasanthakumari, V 453
Vasconcelos, A 160, 2161
Vegt, P H 1374
Vigilance, J E 2367
Vignand, P 1834
Vigil, E 1009
Vijay, V 1124, 2100
Vijayabhaskara Rao, A 1168*
Vikström Bergander, I 669, 1270
Vilano, E 1413
Villazón, A M 412
Villalobos, A 1160
Villanacci, J F 2433*
Villano, C 981
Vilarruel, C 1753
Villeneuve, D L 265, 625
Villalba, J 743
Vilukela, M 1990
Vincen, M J 1974, 2278*
Vinues, L L 391
Vinggaard, A 551
Vinken, P 2126
Viol, J D 435, 2468
Virkutyte, J 743
Virtue, D L 747
Visser, A 1679
Visconti, S 2444
Vishnudas, V 1244
Vissard, H 1505
Viswanadhapalli, S 2149
Vitale, D 1541, 1542*, 1543, 1554
Vitela, M 745
Vito, S 1422
Vitolo, M I 153
Vitturro, E 2372
Vizuté, W 574
Vlaar, C 2180
Vlasakova, K 1993
Volet, M 2354
Vock, E 2255
Voelkner, W 1502
Voels, B 1162*
Vogel, A B 184*
Vogel, C 475, 1289*
Vogel, D 1437*
Vogel, S 1469, 1471*, 1474
Vogel, W A 304
Vohr, H 964
Voe, K L 1436
Vokonas, P S 2412
Volberg, V 1612
Volk, H E 2482
Vollmer, G 2250
Volk, K D 2072
Vorrick, S U 673*
Vranko, M 2268
Vrbanac, J 1235*

The numerals following the author's names refer to the abstract numbers.
The asterisk after the abstract number indicates the author is the first presenter.
Abstract Keyword Index (Continued)

The numerals following each keyword refer to the relevant abstract number(s).
Abstract Keyword Index (Continued)
The Official Journal of the Society of Toxicology

Toxicological Sciences

- Premier, hypothesis-driven, original research articles in all areas of toxicology
- Advance Access—quick online publication, weeks ahead of print
- Optional open access for authors

VISIT OUR BOOTH AT TOXEXPO 2013
OR VISIT US ONLINE AT
www.toxsci.oxfordjournals.org

* 2011 Journal Citation Reports (Thomson Reuters, 2012)
Society of Toxicology
1821 Michael Faraday Drive, Suite 300 • Reston, VA 20190
T: 703.438.3115 • F: 703.438.3113 • Email: sothq@toxicology.org

We are proud to print this publication entirely on Forest Stewardship Council certified paper. FSC certification ensures that the paper in this publication contains fiber from well-managed and responsibly harvested forests that meet strict environmental, social, and economic standards.