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Abstract

This paper introduces a new probability distribution refeteds a transformed triangul
distribution (TTD) by using the average of the extreme valm@simum and maximum) of th
triangular distribution. The TTD is being approximated ty ¢ontinuous uniform distribution.
The basic moments of the TTD and those of the continuous omdistribution are compared
respectively, and a relationship established. This candzbinsnodeling and simulation.
Keywords: Moments, uniform distribution, triangular distribati transformed distribution,
continuous random variable.
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1 Introduction

Triangular distribution is a continuous distribution withixeed minimum, fixed maximum and

most likely value to occur (mode). The most likely valies between the minimum and
maximum values, forming a triangular-shaped distribution wisbbws that values near the
minimum and maximum are less likely to occur [1]. Th@imum and the maximum values are

called the extreme values. The values can either be stiual (themode= mear= media)
or asymmetrical [2].

The distribution is widely used to approximate Beta distrilbufB]. Some of the earliest known
written work on the triangular distribution are traceablehe work of [4,5], even though it was
Simpson that first mentioned the distribution in his papers [6].

Nevertheless, many authors and researchers have workibe tnengular distribution; some of
them are either on the statistical, probabilistic natutbetistribution or in the area of simulation
and modeling. Some of the contributions include the charaatsrist the distribution [7,8], the
product of two identically independent distributed triangulaiatdes [9], on the extension of the
triangular distribution and the convolution [10,11], applicationproject evaluation and review
techniqgue PERT [12-16], non-smooth sailing with respectsionatotic distributions [17,18],
Monte Carlo Simulation [19-22], the properties of bivarisi@ngular distribution [23-24], on the
negative binomial-triangular distribution [25], advanced wation and risk modeling [26-28]
combination of triangular and exponential distributions [28]e sum of two triangular
distributions [30], discrete nature of triangular dmftion and non-parametric estimation for
probability mass function [31].

The remaining part of the paper is structured as foll@sstion 2 deals with the basic concepts
and properties of the concerned probability distributions, secd is on methodology and
procedures towards the transformation of the triangularitdition and discussion of results;
while in section 4, a concluding remark is made.

2 The Basic Concepts of the Probability Distributios

In this section, we present both the properties of the trianguld the continuous uniform
distributions to be used in the later part of the work.

2.1 Some Moments and Properties of the Triangular Btribution (TD)

SupposeX is a random variable with parametexsb and c such that

a:all(—oo,)
b:as<bs<c
c:a<c

and a supporta< X< b
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then, X is said to follow a triangular distributiod [1 T(a, b ) with the following properties:
Probability density functiopdf) f (X) of X given as:

0 , for Xx<a
%, for a<x<b
00217 50y &)

_ 0 < X< C

(c-a)(c-b

0 , for x>c¢
Cumulative Density FunctiofCDF) X :

0, for Xx<a

_\2
&, for asx<b
(c-a)(b-9

F(x) = (2

Y
—&, for b<x<c
(c-a)(c-Db
1, for c<x
Mean:
a+b+c
E(X) = (3)
3
Median:
a+—“(c_a)(b_a) for bZ a_+c
X = \/E 2
Median — (C — a)(C— t» a+c (4)
C————— for bs——
J2 2
Most likely value
XMode = b (5)

Variance:
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2 2 2 _
Var(X):a +b“+c°— ac- ab- bc ©)
18
Skewness:
_J2(@+c-2b)(2a- ¢ H(a-2c B
X Skewness 3 (7)
5(@®+ ¢’ + b’ — ac— ab- by?

Kurtosis:

xKunosis = _3/5 (8)

2.2 Some Moments and Properties of the Continuousniform Distribution

A random variableY over the intervall =[a, b] is a continuous uniform distribution if it is
equally likelyto assume any value ih. Let f(y) andF (y)be the pdf and CDF o¥

respectively, then:

1
——— ,a<sy<b
f(y)=1(b-a)
0 , otherwis
0, for ¥ a
(y-4d)
F(y)=1-2—=%, fora<y<b
(y) (b=2) y
1, for c=b

Remark 2.1: The following can easily be computed.

Mean:
b+a
Y —

mean —
2

Mode (can be any value ih) so we choose:

_b+a
mode — 2

Median

9)

(10)

(11)

(12)
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b+a
Y === 13
median 2 ( )
Variance
_(b-a)°
Var(Y) = 1 (14)
Coefficient of skewness
Yc—skewness: O (15)

3 Methodology and the Modification of the Triangula
Distribution

3.1 The Transformation of the Triangular Distributi on (TTD)

We replace the most likely vald@, with the average of the minimum and maximum of the
Triangular distribution in order to modify the Triangulastdbution, thus;

b:a+c
2

(16)

The resulting distribution will henceforth be referred as the Transformed Triangular
Distribution (TTD).

3.2 The Resulting Distribution TTD and Its Properties

Suppose X is the random variable associated with the TTD,(X) and F (X) as the
corresponding pdf and CDF respectively, then by u@hgone can easily obtain the following:

4(x—-a) < a+c
- 7 < XS -
(c-a)* A 2
£ (x) = 4(c—x2) 1a+cs <
(c-a) 2 17)
0 otherwise

and it is easy to show that:
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0, for x<a
_ 2
%, for a< xs%c
F'(x) = 2om e (18)
1-——5-, for <x<c
(c-a)
1, for c<x
Remark 3.1 validation of the probability density functionof " (X)
To validate the pdf of the TTD, we need to show that:
ﬂ
2
j £ (x)dx=1 (19)
a
Proof: By definition,
c % 4 c _
[ ooax= [ 2 gy, [ A2,
a a (C_a) a+C(C_a)
2
4 N d i d
= X—a)dx+ c-
(c-a)° I b-a I( 3
2
4
3 A+B (20)
(C_a)Z{ }
where
2 ) a-c)’ 2\° c- a)°
A=| X —ax :( ) & B=| o2 :( Gl (21)
2 8 2 )lat+c 8
: 2
Thus,
¢ 4
{f (x)dx:—(c_a)z{ A+ § 22)
=1
Since
(a-c)’ 2 2
A+B= " & (a-9°=(c- 9", & « (23)

3502



British Journal of Mathematics & Computer Scien€24,................. ,2014

Showing thatf " (X) is indeed a valid pdf. 5

For the rest of the moments and properties we shall céfento (17), as such (16) in (3) gives:

Mean:
+
a+ LZC rc
X =—“<
mean 3 (24)
atc_b+ta
=2
2 2
Thus,
Xmean 2 Ymear
showing that:
Ymean D X meal (25)

The Median of TTD using the extreme values:

Substitute equation (16) in (4) gives:

xmedie\n =
—a+ (26)
= %C 2 Ymedian
showing that:
YmedianD X*mediar (27)
Similarly
atc
(c-a)(c- (?)
Median= c-
2
. [c-a(c-9
4
_a+tc
2

showing the same result in (27).
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The Mode of TTDcan be any value it ):
In this case of mode, choofe such that:
x at+c
X =b=
mode 2 (28)
2 Ymode
showing that:
Ymode O X:node (29)
The variance of the TTD:
Substitute (16) in (6) gives:
at+c at at
at+(2 92 4ct-ac- 40 )- ¢ 9
Var(X') = 2 2
18
2
—a
= (c-a) (30)
24
>Var Y )
showing that:
Var(Y) O Var( X) (31)
The skewness of the TTD:
From (16)
at+c
b= =2b=a+c (32)
Therefore, substituting (16) and (32) in (7) gives:
at+c at Cc
V2(20-20)| 2a- c-| “7 ||| a 2c+
— 2 2
XSkewness_ 3
(33)

5 a2+c2+(a+4c)2—ac— a(a; 9. c( a -

= =Y.

c—skewness
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4 Conclusion

In this paper, we have showed that when the mode of a triardistigbution is the average of the
extreme values, then the resulting distribution referradaasformed triangular distribution (TTD)
is a probability function that can be reasonably approxidhatanmulated and modeled by the
continuous uniform distribution. The limit theorem takes airéhe behavior of the distribution at
large sample.
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