TUTORIAL KIT
OMEGA SEMESTER

PROGRAMME: CHEMICAL ENGINEERING

COURSE: GEC 220
DISCLAIMER
The contents of this document are intended for practice and leaning purposes at the undergraduate level. The materials are from different sources including the internet and the contributors do not in any way claim authorship or ownership of them. The materials are also not to be used for any commercial purpose.
SECTION A

Given that \(3 \frac{d^2y}{dx^2} + 15 \frac{dy}{dx} + 18y = 2x \) (use this to answer questions 1-4)

1. The roots of the auxiliary equation are ... (Show your workings)
2. The complimentary function is ...

3. The Particular integral (PI) is ...

4. The general solution (GS) is...

5. The general formula for finding integrating is I.F = ...

Given that the third order determinant \(A = \begin{vmatrix} 3 & -1 & -4 \\ 1 & 2 & -13 \\ 2 & -5 & 11 \end{vmatrix} \) (use this to answer questions 6-8)

6. \(|A| \) is ... (Show your workings)

7. What is the co-factor of element \(A_{13} \)? .. (Show your workings)

8. What is \(A^T \)? ..

Given that \(A = \begin{bmatrix} 1 & -2 \\ -1 & 0 \\ 2 & -1 \end{bmatrix} \) and \(B = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix} \) (use this to answer questions 9-10)

9. Product \(AB \) is ...

10. Product \(BA \) is ..

11. Given a matrix \(A \), if \(A A^T = I \) then \(A \) is said to be (a) an Identity matrix (b) Unit Matrix (c) orthogonal (d) a product of the matrix \(A \) and transpose of \(A \).

12. The \(\int \frac{\sin x}{\cos x} \, dx \) = (a) \(-\ln x\) (b) \(-\ln x\) (c) \(\ln x\) (d) \(\ln x\) (e) none of the above

13. What is \(e^{-2\ln x} \)? (a) \(\ln x\) (b) \(x^2\) (c) \(x^{-2}\) (e) \(\frac{1}{x}\) (d) \(\frac{1}{2}x\)

14. What is \(e^{-\ln x} \)? (a) \(-\ln x\) (b) \(-x\) (c) \(\frac{1}{x}\) (d) \(x\)

Consider the differential equation: \(\frac{d^2y}{dx^2} - 6 \frac{dy}{dx} + 5y = 4e^{2x} \) (use this to answer questions 15 – 17)

15 The assumed solution is (a) \(-4Ce^{-2x}\) (b) \(Ce^{2x}\) (c) \(Ce^{-2x}\) (d) \(Ce^{2x} + Dx + E\)

16 \(M_1 = ?, M_2 = ? \) (show your workings)

17 The general solution is \(y = (a) Ae^y + Be^{5y} \) (b) \(Ae^{-x} + Be^{-5x} \) (c) \(Ae^x + Bxe^{5x} \) (d) \(Ae^{-y} + Bxe^{-5y} \)
18 solve the equation \(\frac{dy}{dx} = e^{3x-2y} \) given that when \(x = 0, y = 0 \) (a) \(e^{2y} = \frac{2}{3} e^{3x} + \frac{1}{3} \) (b) \(e^{3y} = \frac{2}{3} e^{2x} + \frac{1}{3} \) show your workings (3 marks)

(c) \(y = \frac{2}{3} e^{3x-2y} + \frac{1}{3} \) (d) \(e^{2y} = \frac{3}{2} e^{3x} + \frac{C}{3} \) (e) \(e^{3y} = \frac{2}{3} e^{2x} + \frac{1}{3} \) show your workings (3 marks)

Given that \(-\frac{dy}{dt} \propto xy \), if \(k = 0.5 \) and the value of \(x \) at any time is \(x = \frac{4}{(1+t)^2} \) and initially, \(y = 10 \), Use this to answer questions 19-21 (show your workings)

19 Write down the value of the integration constant

20. Then \(y \) as a function of \(t \) is (a) \(y = \frac{1}{1+t} + 0.303 \) (b) \(y = \frac{1}{1+t} + 0.503 \) (c) \(\ln y = \frac{2}{1+t} + 0.503 \)

(d) \(\ln y = \frac{2}{1+t} + 0.303 \) (e) non of the above

21. When \(t \to \infty \) (a) \(y = 0.503 \) (b) \(y = 1.35 \) (c) \(y = 0.303 \) (d) \(y = 1.53 \)

Consider an RLC circuit with \(R = 10 \) ohms, \(C = 0.1 \) farad, \(E(t) = 30 e^{-3t} \).

22. From Kirchhoff's voltage law, write the resultant first order differential equation.

23. Solve the first order differential equation in 11 (show your workings)

(a) \(I(t) = \frac{9}{2} e^{-3t} + Ce^{-t} \) (b) \(I(t) = \frac{2}{9} e^{-3t} + Ce^{-3t} \) (c) \(I(t) = \frac{9}{2} e^{-t} + e^{-3t} \) (d) \(I(t) = \frac{2}{9} e^{-t} + e^{-3t} \)

24. Given that \(I(0) = 0 \), what is the value of the constant \(C \) for the correct option in No 12

(a) \(C = -\frac{9}{2} \) (b) \(C = -\frac{2}{9} \) (c) \(C = \frac{9}{2} \) (d) \(C = \frac{2}{9} \) (e) none of the above

25. If \(R = 10 \) ohms, \(C = 0.1 \) farad, \(L = 2 \) henrys and \(E(t) = 30 e^{-3t} \) then the circuit is

(a) Critically damped (b) Under damped (c) Over damped (d) Zero damping (2 marks) show your workings

For 26-21 If the steady state equation of the differential equation \(\frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + 2y = -85 \cos 3x \) is

\(y = 7 \cos 3x - 6 \sin 3x \),

26. Find the stationary value (when \(\frac{dy}{dx} = 0 \)) of the steady state equation. Show your workings

(a) \(6 \tan 3x = -7 \) (b) \(7 \tan 3x = -6 \) (c) \(6 \cos 3x = -7 \) (d) \(7 \cos 3x = -6 \)

27. Write the steady state equation in the form of \(K \sin (3x + \theta) \) show your workings or use formulae

(a) \(9.2 \sin (3x - 49.4) \) (b) \(9.5 \sin (3x + 49.4) \) (c) \(9.2 \sin (3x + 45) \) (d) \(9.5 \sin (3x - 45) \)

28. What are the respective values of the frequency and period of the steady state equation?

(a) \(\frac{3}{\pi} \) & \(\frac{\pi}{3} \) (b) \(\frac{3\pi}{3} \) & \(\frac{2\pi}{3} \) (c) \(\frac{3}{2\pi} \) & \(\frac{2\pi}{3} \) (d) 9.5 & 3 (e) 9.2 & 3

29. Write the general form of an exact differential equation ____________

30. What is the necessary and sufficient condition for a differential equation to be exact?
(a) \(\frac{\delta M}{\delta y} = \frac{\delta N}{\delta x} \) (b) \(\frac{\delta M}{\delta x} = \frac{\delta N}{\delta y} \) (c) \(U = \int M dx + k(y) \) (d) No condition is met

SECTION B (THEORY)

1. During a fermentation process the rate of decomposition of a substance at any time \(t \) varies directly as the amount of substance \(y \) and also as the amount of active ferment \(x \). If the constant of proportionality is 0.5, the value of \(x \) at any time \(t \) is \(\frac{4}{(1+t)^2} \) and initially \(y = 10 \).

(i) Find \(y \) as a function of \(t \).

(ii) Deduce the amount of substance remaining as \(t \) becomes very large

2. Use the substitution method \(y = \frac{v}{x} \) where \(v \) is a function of \(x \) only, to transform the equation \(\frac{dy}{dx} + \frac{v}{x} = xy^2 \) into a differential equation in \(V \) and \(x \). Hence find \(y \) in terms of \(x \).

3. Find the current in an RLC –circuit with \(R = 3 \text{ ohms}, L = 0.5 \text{ henry}, \) \(C = 0.08 \text{ farad}, E(t) = 12 \text{cos}5t \) assuming zero initial current and charge.

(b) Find the amplitude, period and frequency of the steady state current (c) What sort of response do you expect from the circuit?

4. Solve the equation \(0.5 \frac{d^2x}{dt^2} - \frac{3}{2} \text{cost} + 2x = 0 \) given that

\(x = 0 \) at \(t = 0 \) and that \(\frac{dx}{dt} = -1 \) at \(t = \frac{\pi}{2} \). Find the maximum value of \(x \) in the interval \(0 < t < \pi \)

5. The volume \(V \) of a liquid of viscosity coefficient \(\eta \) delivered after time \(t \) when passed through a tube of length \(L \) and diameter \(d \) by a pressure \(p \) is given by \(V = \frac{pd^4t}{128\eta L} \). If the errors in \(V, p, \) and \(L \) are 1%, 2% and 3% respectively, using total differential, determine the error in \(\eta \). Assume there is no error in \(t \) and \(d \).

6. A rectangular box has sides of length \(x \) cm, \(y \) cm and \(z \) cm. Sides \(x \) and \(z \) are expanding at rates of 0.3 cm/s and 0.5 cm/s respectively and side \(y \) is contracting at a rate of 0.2 cm/s. Using chain rule, determine the rate of change of volume when \(x \) is 3 cm, \(y \) is 1.5 cm and \(z \) is 6 cm.

7. A possible equation of state for a gas takes the form:

\[PV = RT e^{\left(\frac{-\alpha}{VRT}\right)} \] in which \(\alpha \) and \(R \) are constants. Using the general implicit formula, determine expressions for \(\frac{\partial P}{\partial V}, \frac{\partial V}{\partial T} \) and \(\frac{\partial T}{\partial P} \).
8. The equation $3 = z^3 + 3xz$ defines z implicitly as a function of x and y. Using the general implicit formula evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

9. Determine and classify the critical points of the function: $f(x, y) = x^3 + xy^2 - 12x - y^2$.

10. Locate and determine the nature of the stationary points on the surface $f(x,y) = 2x^3 + 2y^3 - 6x - 24y + 16$.

11. Find the first three non-zero terms in the Maclaurin series of the function $e^{\sin x}$.

12. Compute the 4th order Taylor series of $\cos x$ about $x = \pi/3$.
SOLUTIONS TO SECTION A:

1. \(M_1 = -2, M_2 = -3 \)

3. \(y = \frac{1}{9}x + \frac{5}{54} \)

5. \(I, F = e^{\int p\,dx} \)

7. Co-factor is = -7

9. \(AB \) is not possible. The reason is that the number of columns in \(A \) is not equal to the number of rows in \(B \).

11. Orthogonal

13. \(x^{-2} \)

15. \(Ce^{2x} \)

17. No answer.

19. \(C = -0.303 \)

21. \(y = 1.35 \)

23. \(I(t) = \frac{9}{2}e^{-3t} + Ce^{-t} \)

25. Over-damped

27. \(9.2\sin(3x - 49.4) \)

29. \(M(x, y)\,dx + N(x, y)\,dy = 0 \)

SOLUTIONS TO SECTION B (THEORY):

Q1.

\[-\frac{dy}{dt} \propto xy\]
\[-\frac{dy}{dt} = kyx \] \hspace{1cm} (1)

Given that \(k = 0.5 \), eqn 1 then becomes

\[-\frac{dy}{dt} = 0.5yx \] \hspace{1cm} (2)

Given also that \(x = \frac{4}{(1+t)^2} \), eqn 2 becomes

\[-\frac{dy}{dt} = 0.5X \frac{4}{(1+t)^2} y \]

\[\frac{dy}{dt} = - \frac{2y}{(1+t)^2} \]

and separating variables gives

\[-\frac{dy}{y} = \frac{2}{(1+t)^2} dt \]

and integrating gives

\[\int \frac{dy}{y} = - \int \frac{2}{(1+t)^2} dt \]

\[\int \frac{dy}{y} = -2 \int (1 + t)^{-2} dt \]

\[\ln y = -2 \frac{(1 + t)^{-1}}{-1} + C \]

\[\ln y = \frac{2}{1+t} + C \] \hspace{1cm} (3)

but at \(t = 0, y = 10 \)

eqn 3 becomes

\[\ln 10 = \frac{2}{1+0} + C = 2 + C \]

\[\therefore C = \ln 10 - 2 = 2.303 - 2 = 0.303 \]

hence eqn 3 becomes
(i) \[\ln y = \frac{2}{1+t} + 0.303 \quad \ldots (4) \]

(ii)

as \(t \) becomes very large,

\[t \to \infty \]

\[\text{eqn 4 becomes} \]

\[\ln y = \frac{2}{1 + \infty} + 0.303 \]

\[\ln y = 0 + 0.303 \]

\[y = e^{0.303} \]

\[y = 1.354 \]

Q3.

From kirchoff voltage law,

\[L \frac{di}{dt} + Ri + \frac{1}{C} \int i(t)dt = E(t) \quad \ldots (1) \]

differentiating eqn 1 gives

\[L \frac{d^2i}{dt^2} + R \frac{di}{dt} + \frac{1}{C} i = \frac{dE(t)}{dt} \quad \ldots (2) \]

where \[\frac{dE(t)}{dt} = -60\sin 5t \]

and substituting known values in 2 gives

\[0.5 \frac{d^2i}{dt^2} + 3 \frac{di}{dt} + \frac{1}{0.08} i = -60\sin 5t \quad \ldots (3) \]

\[= \frac{d^2i}{dt^2} + 6 \frac{di}{dt} + 25i = -120\sin 5t \quad \ldots (4) \]
solving the 2nd order differential eqn gives

\[\frac{d^2i}{dt^2} + 6 \frac{di}{dt} + 25i = 0 \]

\[M^2 + 6M + 25 = 0 \]

solving quadratically gives that \(M = -3 \pm 4j \)

It is a complex root. hence \(\alpha = -3 \) and \(\beta = 4 \)

For complex number, the complimentary solution is obtained from

\[i = e^{\alpha t}(\cos \beta t + \sin \beta t) \] \(\ldots \) \((5) \)

Substituting known values gives the CF: \(i = e^{-3t}(\cos 4t + \sin 4t) \)

and solving the RHS of eqn 4 gives the particular integral (PI)

\[\text{given } f(t) = -120 \sin 5t \]

the assumed solution becomes

\[i = C \cos 5t + D \sin 5t \] \(\ldots \) \((i) \)

\[\frac{di}{dt} = -5C \sin 5t + 5D \cos 5t \] \(\ldots \) \((ii) \)

\[\frac{d^2i}{dt^2} = -25C \cos 5t - 25D \sin 5t \] \(\ldots \) \((iii) \)

substituting eqns (i − iii) in eqn 4 gives

\[-25C \cos 5t - 25D \sin 5t + 6(-5C \sin 5t + 5D \cos 5t) + 25C \cos 5t + 25D \sin 5t = -120 \sin 5t \]

\[-25C \cos 5t - 25D \sin 5t + (-30C \sin 5t + 30D \cos 5t) + 25C \cos 5t + 25D \sin 5t = -120 \sin 5t \]

collecting like terms gives

\[(-25C + 30D + 25C) \cos 5t + (-25D - 30C + 25D) \sin 5t = -120 \sin 5t \]

\[30D \cos 5t - 30C \sin 5t = -120 \sin 5t \]

and comparing co-efficient gives that
\[-30C = -120 \Rightarrow C = 4\]

\(D = 0\)

\[\text{hence from eqn } i,\]

\[i = 4\cos 5t \quad (\text{this is the PI, which is also called the steady state current})\]

\[\text{hence the general solution is } i = CF + PI\]

\[i = e^{-3t}(A\cos 4t + B\sin 4t) + 4\cos 5t \ldots .(6)\]

\[\text{initially, } t = 0, i = 0\]

\[\text{hence from eqn 6,}\]

\[0 = (A + 0) + 4, \text{and } A = -4\]

\[\text{differentiating eqn 6 gives}\]

\[
\frac{di}{dt} = -3e^{-3t}(A\cos 4t + B\sin 4t) + e^{-3t}(-4A\sin 4t + 4B\cos 4t) - 20\sin 5t \ldots \ldots .(7)
\]

\[\text{we could rewrite eqn 1 as}\]

\[
L \frac{di}{dt} + Ri + \frac{1}{C}Q = E(t) \ldots .(8)
\]

\[\text{at } t = 0, i = 0. Q = 0, \text{hence from eqn 8}\]

\[0.5 \frac{di}{dt} + 0 + 0 = 12\cos 5t = 12\]

\[\frac{di}{dt} = 24\]

\[\text{and substituting for } \frac{di}{dt} \text{ in eqn 7 gives}\]

\[24 = -3(-4) + 1(0 + 4B)\]

\[24 - 12 = 4B \text{ and } B = 3\]

\[\text{substituting for } A \text{ and } B \text{ in eqn 6 gives}\]
Find the current in an RLC-circuit with \(R = 3 \) ohms, \(L = 0.5 \) henry,
\[
C = 0.08 \text{ farad, } E(t) = 12\cos 5t
\]
assuming zero initial current and charge.

(b) Find the amplitude, period and frequency of the steady state current (c) What sort of response do you expect from the circuit?

(b) The steady state current is
\[
i = 4\cos 5t
\]

The amplitude \(K = \sqrt{C^2 + D^2} = \sqrt{4^2 + 0^2} = 4\)

frequency, \(f = \frac{5}{2\pi} \) and period \(p = \frac{1}{f} = \frac{2\pi}{5} \)

(ii) The sort of response expected from this type of circuit may be obtained from
\[
R^2 = 3^2 = 9
\]
\[
\frac{4L}{C} = \frac{4 \times 0.5}{0.08} = 25
\]

since \(R^2 < \frac{4L}{C} \),

The system is underdamped.

Q5.

\[
V = \frac{pd^4 t}{128\eta L}
\]

\(V = f(p, d, t, \eta, L) \)

Using total differential
\[
dV = \frac{\partial V}{\partial p} dp + \frac{\partial V}{\partial d} dd + \frac{\partial V}{\partial t} dt + \frac{\partial V}{\partial \eta} d\eta + \frac{\partial V}{\partial L} dL
\]

\[
\frac{\partial V}{\partial p} = \frac{d^4 t}{128\eta L}
\]

\[
\frac{\partial V}{\partial d} = \frac{4pd^3 t}{128\eta L}
\]
\[
\begin{align*}
\frac{\partial V}{\partial t} &= \frac{pd^4}{128\eta L} \\
\frac{\partial V}{\partial \eta} &= -\frac{pd^4 t}{128\eta^2 L} \\
\frac{\partial V}{\partial L} &= -\frac{pd^4 t}{128\eta L^2} \\
\frac{dV}{dt} &= 0.01V \\
\frac{dP}{dt} &= 0.02P \\
\frac{dL}{dt} &= 0.03L \\
\frac{dd}{dt} &= 0
\end{align*}
\]

Hence, the total differential equation becomes:

\[
0.01V = \frac{d^4 t}{128\eta L} 0.02P + \frac{4pd^3 t}{128\eta L} (0) + \frac{pd^4 t}{128\eta L} (0) - \frac{pd^4 t}{128\eta^2 L} d\eta - \frac{pd^4 t}{128\eta L^2} 0.03L
\]

\[
0.01V = 0.02 \frac{pd^4 t}{128\eta L} + (0) + (0) - \frac{1}{\eta} \frac{pd^4 t}{128\eta L} d\eta - 0.03 \frac{pd^4 t}{128\eta L}
\]

But \(V = \frac{pd^4 t}{128\eta L}\)

\[
\therefore 0.01V = 0.02V - \frac{d\eta}{\eta} V - 0.03V
\]

Thus, \(\frac{d\eta}{\eta} = 0.02\)

\[
d\eta = 0.02 \eta = \frac{2}{100} \eta
\]

\(\therefore\) The % error in \(\eta\) is 2%

Q7.

\[
\therefore PV - RT e^{\left(\frac{-a}{VRT}\right)} = 0
\]

Using the general implicit formula,

\[
\begin{align*}
\frac{\partial P}{\partial V} &= -\frac{F_V}{F_P} \\
\frac{\partial V}{\partial T} &= -\frac{F_T}{F_V} \\
\frac{\partial T}{\partial P} &= -\frac{F_P}{F_T}
\end{align*}
\]

\[
F_P = \frac{\partial \left[PV - RT e^{\left(\frac{-a}{VRT}\right)} \right]}{\partial P} = V
\]
\[
F_V = \frac{\partial}{\partial V} \left[PV - RT e^{\frac{-\alpha}{\sqrt{RT}}} \right]
= P - RT \frac{\partial}{\partial V} \left[e^{\left(\frac{-\alpha}{\sqrt{RT}}\right)} \right]
= P - RT \left[\frac{\alpha}{V^{2RT}} e^{\left(\frac{-\alpha}{\sqrt{RT}}\right)} \right]
= P - \frac{\alpha}{V^2} e^{\left(\frac{-\alpha}{\sqrt{RT}}\right)}
\]

\[
F_T = \frac{\partial}{\partial T} \left[PV - RT e^{\frac{-\alpha}{\sqrt{RT}}} \right]
= 0 - \left[RT \frac{\partial}{\partial T} \left[e^{\left(\frac{-\alpha}{\sqrt{RT}}\right)} \right] + e^{\left(\frac{-\alpha}{\sqrt{RT}}\right)} \frac{\partial}{\partial T} \left[RT \right] \right]
= -\left[RT \cdot \frac{\alpha}{\sqrt{RT}^2} e^{\left(\frac{-\alpha}{\sqrt{RT}}\right)} + R \cdot e^{\left(\frac{-\alpha}{\sqrt{RT}}\right)} \right]
= -R \cdot e^{\left(\frac{-\alpha}{\sqrt{RT}}\right)} \left[\frac{\alpha}{\sqrt{RT}} + 1 \right]
\]

\[
\therefore \frac{\partial P}{\partial V} = -\frac{F_V}{F_P}
= -\frac{P - \frac{\alpha}{V^2} e^{\left(\frac{-\alpha}{\sqrt{RT}}\right)}}{V}
\]

\[
\frac{\partial V}{\partial T} = -\frac{F_T}{F_V} = -\frac{-R \cdot e^{\left(\frac{-\alpha}{\sqrt{RT}}\right)} \left[\frac{\alpha}{\sqrt{RT}} + 1 \right]}{P - \frac{\alpha}{V^2} e^{\left(\frac{-\alpha}{\sqrt{RT}}\right)}}
= \frac{R e^{\left(\frac{-\alpha}{\sqrt{RT}}\right)} \left[\frac{\alpha}{\sqrt{RT}} + 1 \right]}{P - \frac{\alpha}{V^2} e^{\left(\frac{-\alpha}{\sqrt{RT}}\right)}}
\]

\[
\frac{\partial T}{\partial P} = -\frac{F_P}{F_T} = -\frac{V}{-R \cdot e^{\left(\frac{-\alpha}{\sqrt{RT}}\right)} \left[\frac{\alpha}{\sqrt{RT}} + 1 \right]}
= \frac{V}{R e^{\left(\frac{-\alpha}{\sqrt{RT}}\right)} \left[\frac{\alpha}{\sqrt{RT}} + 1 \right]}
\]

Q9

\[f(x, y) = x^3 + xy^2 - 12x - y^2\]

At critical points, for a function of \(f(x, y)\), \(f_x = f_y = 0\)

\[f_x = 3x^2 + y^2 - 12 = 0 \quad \text{------------------------ (1)}\]
\[f_y = 2xy - 2y = 0 \]

(2)

From Equation (2),

\[2y(x - 1) = 0 \]

Thus, \(y = 0 \) or \(x = 1 \)

(3)

Substitute Equation (3) into Equation (1)

When \(y = 0 \), Equation (1) becomes:

\[3x^2 - 12 = 0 \]

Therefore, \(x = \pm 2 \) i.e. \(x = +2 \) or \(x = -2 \)

(4)

Hence, critical points occur at the points:

\((x, y) = (2, 0) \ and \ (-2, 0)\)

When \(x = 1 \), Equation (1) becomes:

\[3 + y^2 - 12 = 0 \]

Therefore, \(x = \pm 3 \) i.e. \(x = +3 \) or \(x = -3 \)

(5)

Hence, other critical points occur at the points:

\((x, y) = (3, 0) \ and \ (-3, 0)\)

To classify the points, we use second derivative test:

\[D_{(a,b)} = f_{xx}(a,b).f_{yy}(a,b) - [f_{xy}(a,b)]^2 \]

\[f_x = 3x^2 + y^2 - 12 \]

\[f_y = 2xy - 2y \]

\[f_{xx} = 6x \]

and \(f_{xy} = 2y \)

\[f_{yy} = 2x - 2 \]

\[D_{(a,b)} = 6x.(2x-2) - (2y)^2 \]

\[= 12x^2 - 12x - 4y^2 \]

At \((x, y) = (2, 0)\)

\[D_{(2,0)} = 12(2)(2-1) - 4(0)^2 \]

\[= 24 \]

Thus, \(D_{(2,0)} \) is positive
\[
\therefore f_{xx}(2,0) = 6(2) = 12
\]
∴ \(f_{xx}(2,0) \) is also positive

Therefore, critical point \((x, y) = (2, 0)\) is a **MINIMUM POINT**

At \((x, y) = (-2, 0)\)

\[
\therefore D_{(-2,0)} = 12 (-2)(-2 - 1) - 4(0)^2 = 72
\]

Thus, \(D_{(-2,0)} \) is positive

\[
\therefore f_{xx}(-2,0) = 6(-2) = -12
\]
∴ \(f_{xx}(-2,0) \) is negative

Therefore, critical point \((x, y) = (-2, 0)\) is a **MAXIMUM POINT**

At \((x, y) = (1, 3)\)

\[
\therefore D_{(1,3)} = 12 (1)(1 - 1) - 4(3)^2 = -36
\]

Thus, \(D_{(1,3)} \) is **NEGATIVE**

Therefore, critical point \((x, y) = (1, 3)\) is a **SADDLE POINT**

At \((x, y) = (1, -3)\)

\[
\therefore D_{(1,-3)} = 12 (1)(1 - 1) - 4(-3)^2 = -36
\]

Thus, \(D_{(1,-3)} \) is **NEGATIVE**

Therefore, critical point \((x, y) = (1, -3)\) is a **SADDLE POINT**

Q 11

For Maclaurin series,

\[
f(x) \approx f(0) + xf'(0) + \frac{x^2}{2!} f''(0) + \frac{x^3}{3!} f'''(0) + \cdots \cdots \cdots \cdots \cdots
\]

\[
f(x) = e^{\sin x} \quad f(0) = e^{\sin 0} = 1
\]

\[
f'(x) = \cos x \cdot e^{\sin x} \quad f'(x) = \cos 0 \cdot e^{\sin 0} = 1
\]
\[f''(x) = \cos x \cdot \cos x e^{\sin x} + e^{\sin x} \cdot -\sin x \]
\[\therefore f''(0) = \cos 0 \cdot \cos 0 e^{\sin 0} + e^{\sin 0} \cdot -\sin 0 = 1 \]

Substitute these into the Maclaurin series equation

\[\therefore e^{\sin x} \cong 1 + x + \frac{1}{2}x^2 \]