COVENANT UNIVERSITY

OMEGA SEMESTER TUTORIAL KIT (VOL. 2)

PROGRAMME: MATHEMATICS 200 LEVEL

Raising A New Generation Of Leaders

1

DISCLAIMER

The contents of this document are intended for practice and learning purposes at the undergraduate level. The materials are from different sources including the internet and the contributors do not in any way claim authorship or ownership of them. The materials are also not to be used for any commercial purpose.

LIST OF COURSES

MAT221: Real Analysis II MAT222: Mathematics Method *MAT224: Introduction to Numerical Methods MAT225: Abstract Algebra

*Not included

ON THE REPORT OF				
COVENANT UNIVERSITY				
CANAANLAND, KM 10, IDIROKO ROAD				
P.M.B 1023, OTA, OGUN S	FATE, NIGERIA.			
TITLE OF EXAMINATION: B.Sc EXAMINATION	, 			
COLLEGE: SCIENCE AND TECHNOLOGY				
DEPARTMENT: MATHEMATICS				
SESSION: 2015/2016	SEMESTER: OMEGA			
COURSE CODE: MAT 221	CREDIT UNIT: 3			
COURSE TITLE: REAL ANALYSIS II				
INSTRUCTION: ANSWER ANY FOUR QUESTION	N TIME : 3 HOURS			
1. (a) Give the $\varepsilon - \delta$ definition of a continuous function.		(3marks)		
(b) Show that $f(x) = \frac{1}{x}$ is uniformly continuous on (0,	1).	(7 marks)		
(c) Show that if $f(x) = x^2$ then f is continuous at $x =$	3	(7.5marks)		

2. (a) Show that if f'(a) exists, then f is continuous at a. (6 marks)

(b) Given
$$f(x) = 6 - x^2$$
, find the derivative of $f'(-3)$ from first principle. (5marks)
(c) Given $g(x) = \begin{cases} \frac{1}{2} & \text{if } x = 0 \text{ or } x = 1\\ 1 - x \text{ if } 0 < x < 1 \end{cases}$.

Determine the maximum or minimum point of g(x) if they exist. If no, give a condition that will guarantee the maximum and minimum points of g(x). (6.5 marks)

3. (a) Find the value of c where $1 \le c \le 3$, that satisfy the equation $f(x) = \sqrt{x-1}, x \in [1, 3]$ (5marks)

(b) Show that the function $f(x) = x^4 + 3x + 1$, $x \in [-2,-1]$ satisfy the intermediate value theorem. (5 marks)

(c) Let f be monotonic on (a, b) and define

$$\alpha = \inf_{a < x < b} f(x) \text{ and}$$
$$\beta = \operatorname{Sup}_{a < x < b} f(x)$$

If f is nondecreasing, then show that $f(a^+) = \alpha$ and $f(b^-) = \beta$ (7.5marks)

4.(a) What do we mean when f is said to be Riemann integrable on [a, b]? (6marks)

(b) Consider the integral $\int_{2}^{4} (x+1)dx$.

Let the partition $P_n = 2 + \frac{2k}{n}$, k=0,1,2,... (i)Compute $\bigcup (f, P_n)$ (ii) $L(f, P_n)$. Using (i) and (ii), show that $\int_{2}^{4} (x+1)dx = 8$ (9.5marks)

5.(a) Suppose that f, g are differentiable on [a, b] with f', g' integrable on [a, b] then prove that
$$\int_{a}^{b} f'(x)g(x)dx = \left[fg\right]_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx$$
(8marks)

(b) If $f: R \rightarrow R$ is continuous, find F'(x) for each of the following functions;

(i)
$$F(x) = \int_{x^2}^{1} f(t)dt$$
 (4.5marks)
(ii) $F(x) = \int_{x^2}^{x^3} f(t)dt$ (5marks)

6. (a) Prove that if f is integrable on [a, b] then

$$\int_{a}^{b} f(x)dx = \lim_{c \to a} \left(\lim_{d \to b^{-}} \int_{c}^{d} f(x)dx \right)$$

(b) Evaluate the following integrals

(i)
$$\int_{1}^{\infty} \frac{1+x}{x^3} dx$$
 (ii) $\int_{\infty}^{0} x^2 e^{-x^3} dx$ (iii) $\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{(\sin x)^{\frac{1}{3}}} dx$ (11marks)

QUESTION 1

(a) Let X be a non empty set and f a function defined on X. Then f is said to be continuous at point $x_0 \in X$ if given $\varepsilon > 0$, there exists $\delta > 0$ such that

$$|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon .$$
(5marks)

(b) To show that $f(x) = \frac{1}{\chi}$ is continuous, we need to find the value of δ depending on ε such that for any $\varepsilon > 0$ we find $\delta > 0$, $\forall x, x_0 \in X$ we have $|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon$. (1mark) Let $x = \frac{1}{\delta}, x_0 = \frac{1 + \varepsilon}{\delta}, f(x) = \delta$ and $f(x) = \frac{\delta}{1 + \varepsilon}$ then, (1mark) $|x - x_0| = |\frac{1}{\delta} - \frac{1 + \varepsilon}{\delta}| = |\frac{1 - 1 - \varepsilon}{\delta}| = |\frac{-\varepsilon}{\delta}| = \frac{\varepsilon}{\delta} < \delta$ $\varepsilon < \delta^2$ (2marks)

$$\delta > \sqrt{\varepsilon}$$

$$\begin{split} \left| f(x) - f(x_0) \right| &= \left| \delta - \frac{\delta}{1 + \varepsilon} \right| = \left| \frac{\delta(1 + \varepsilon) - \delta}{1 + \varepsilon} \right| = \left| \frac{\delta + \delta \varepsilon - \delta}{1 + \varepsilon} \right| \\ \frac{\delta \varepsilon}{1 + \varepsilon} &< \varepsilon \\ \frac{\delta}{1 + \varepsilon} < 1 \\ \delta < 1 + \varepsilon \\ \text{Thus f is continuous.} \end{split}$$
(1mark)

(c) Given $f(x) = x^2$, we need to show that f is continuous at point x=3. To do this, we show that for any $\varepsilon > 0$, we find $\delta > 0$ such that $|x-3| < \delta \Longrightarrow |f(x) - f(3)| < \varepsilon$. (1mark)

$$|f(x) - f(3)| = |x^2 - 3^2| = |(x+3)(x-3)| \le \delta |x+3|$$
(1mark)

$$|x| = |x+3-3| = |x-3| + 3 \le \delta + 3.$$
 (1mark)

Let $\delta < 1$ then we have $|x| \le 1 + 3 = 4$

$$\begin{aligned} |x| &\leq 1+3=4 \qquad (1 \text{mark})) \\ \therefore |f(x) - f(3)| &\leq \delta |x+3| = \delta |4+3| \\ 7\delta &< \varepsilon \qquad (2 \text{marks}) \\ \delta &< \frac{\varepsilon}{7} \\ \text{Let } \delta &= \min\{1, \frac{\varepsilon}{7}\} \end{aligned}$$
(1.5 marks)

Thus f is continuous.

Question Two

(a) Let f'(a) exists, then we need to show that f is continuous at a. Using the definition of

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
(1mark)

We have

$$f(x) = (x-a) \times \frac{f(x) - f(a)}{x-a} + f(a)$$
(1mark)

Taking the limit of both sides as $x \rightarrow a$ gives

$$\lim_{x \to a} f(x) = \lim_{x \to a} \left[(x-a) \times \frac{f(x) - f(a)}{x-a} + f(a) \right]$$

$$= \lim_{x \to a} \left[(x-a) \times \frac{f(x) - f(a)}{x-a} \right] + \lim_{x \to a} f(a) \qquad (3marks)$$

$$= 0 \times \frac{f(x) - f(a)}{x-a} + f(a)$$

$$= f(a)$$

is f is continuous at point a. (1mark)

Thus f is continuous at point a.

(b) Given $f(x) = 6 - x^2$, we need to find the derivative of f'(-3).

Since
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 then we have (1mark)

$$f'(-3) = \lim_{x \to -3} \frac{(6-x^2) - (6-(-3)^2)}{x - (-3)}$$

=
$$\lim_{x \to -3} \frac{(6-x^2) - (6-9)}{x + 3}$$

=
$$\lim_{x \to -3} \frac{(6-x^2) + 3}{x + 3}$$
 (4marks)
=
$$\lim_{x \to -3} \frac{9-x^2}{x + 3} = \lim_{x \to -3} \frac{(3+x)(3-x)}{x + 3}$$

=
$$\lim_{x \to -3} 3 - x = 3 - (-3) = 6$$

(c) Given $g(x) =\begin{cases} \frac{1}{2} & x = 0 \text{ or } x = 1\\ 1 - x & 0 < x < 1 \end{cases}$ $Sup_{0 < x < 1} & g(x) = 1 & (2marks) \\ Inf_{0 < x < 1} & g(x) = 0 & (1mark) \\ The function has no maximum or minimum points. & (1mark) \\ For the function to have these values we need to alter the condition on & (1mark) \end{cases}$

$$g(x) = 1 - x, \ 0 < x < 1 \text{ to } g(x) = 1 - x, \ 0 \le x \le 1.$$
 (2marks)

In this case, g(x) has its maximum point to be 1 and minimum point to be 0.(1.5mks) Question Three

(a) Given
$$f(x) = \sqrt{x-1}$$
, [1,3], we need to find the value of c that satisfy the equation.

$$f(x) = (x-1)^{\frac{1}{2}}$$

$$f'(x) = \frac{1}{2}(x-1)^{-\frac{1}{2}} \times 1 = \frac{1}{2(x-1)^{\frac{1}{2}}}$$
(2marks)
$$f'(c) = \frac{1}{2(c-1)^{\frac{1}{2}}}$$
But
$$f'(c) = \frac{f(b) - f(a)}{b-a}$$
(1mark)
This gives
(1mark)

8

$$f'(c) = \frac{(3-1)^{\frac{1}{2}} - (1-1)^{\frac{1}{2}}}{3-1}$$

$$\frac{1}{2(c-1)^{\frac{1}{2}}} = \frac{2^{\frac{1}{2}}}{2}$$

$$\frac{1}{(c-1)^{\frac{1}{2}}} = 2^{\frac{1}{2}}$$

$$1 = 2^{\frac{1}{2}}(c-1)^{\frac{1}{2}}$$
Take square of both sides.
$$1 = 2(c-1)$$

$$1 = 2c-2$$

$$3 = 2c$$

$$(2marks)$$

$$c = \frac{3}{2}$$

Thus the equation is satisfied.

(b) Given $f(x) = x^4 + 3x + 1$, [-2,-1] we need to show that it satisfy the intermediate value theorem.

$$f(x) = x^{4} + 3x + 1$$

$$f'(x) = 4x^{3} + 3$$

$$f'(c) = 4c^{3} + 3$$

$$f'(b) = 4b^{3} + 3$$

$$f'(a) = 4a^{3} + 3$$

(1mark)

$$f'(-2) = 4(-2)^{3} + 3 = 4 \times -8 + 3 = -32 + 3 = -29$$

$$f'(-1) = 4(-1)^{3} + 3 = -4 + 3 = -1$$

$$f'(c) = \frac{f(b) - f(a)}{b - a} = \frac{(1 - 3 + 1) - (16 - 6 + 1)}{-1 - (-2)}$$

$$= \frac{-3 - 11}{-1 + 2} = -14$$
(1mark)
Since $-14 \in [-29, -1]$
The IVP Theorem is satisfied.
(1mark)

(c) If f is monotonic on (a, b) and define by

$$\alpha = \inf_{a < x < b} f(x)$$

and
$$\beta = \sup_{a < x < b} f(x)$$

Suppose f is nondecreasing then we need to show that $f(a^+) = \alpha$ and $f(b^-) = \beta$.

Proof: We show that $f(a^+) = \alpha$. If $M > \alpha$, there is x_0 in (a, b) such that $f(x_0) < M$. Since f is nondecreasing, f(x) < M if $a < x < x_0$. Thus, if $\alpha = -\infty$ then $f(a^+) = \infty$. If $\alpha > -\infty$, let $M = \alpha + \varepsilon$ where $\varepsilon > 0$. Then $\alpha \leq f(x) < \alpha + \varepsilon$, so $|f(x) - \alpha| < \varepsilon$ if $a < x < x_0$. (2marks) If $\alpha = -\infty$, this implies that $f(-\infty) = \alpha$. If $\alpha > -\infty$ let $\delta = x_0 - \alpha$. Then the above inequality is equivalent to $|f(x) - \alpha| < \varepsilon$ if $a < x < a + \delta$. Thus $f(a^+) = \alpha$. (2marks) Next, we show that $f(b^{-}) = \beta$ If $M < \beta$, there is x_0 in (a, b) such that $f(x_0) > M$. Since f is nonincreasing, f(x) > M if $x_0 < x < b$. Thus, if $\beta = \infty$ then $f(b^-) = \infty$. If $\beta < \infty$, let $M = \beta - \varepsilon$ where $\varepsilon > 0$. Then $\beta - \varepsilon \leq f(x) < \beta$, so $|f(x) - \beta| < \varepsilon$ if $x_0 < x < b$. (2marks) If $b = \infty$, this implies that $f(\infty) = \beta$. If $b < \infty$ let $\delta = b - x_0$. Then the above inequality is equivalent to $|f(x) - \beta| < \varepsilon$ if $b - \delta < x < b$. Thus $f(b^{-}) = \beta$. (1.5marks)

Question Four

(a) F is Riemann integrable on [a, b] if the infimum of upper sums through all partitions of [a, b] is equal to the supremum of all lower sums through all partitions of [a, b]. (6marks)

$$\bigcup(f, P_n) = \sum_{k=1}^n f(x_k)(x_k - x_{k-1})
f(x_k) = x_k + 1 = 2 + \frac{2k}{n} + 1
x_k = 2 + \frac{2k}{n}$$
(2marks)
(b) (i) $x_{k-1} = 2 + \frac{2k-1}{n}
x_k - x_{k-1} = \frac{2}{n}
\bigcup(f, P_n) = \sum_{k=1}^n (2 + \frac{2k}{n} + 1) \frac{2}{n} = \frac{6}{n} \sum_{k=1}^n 1 + \frac{4}{n^2} \sum_{k=1}^n k = \frac{6}{n} \times n + \frac{4}{n^2} n(n+1)
= 6 + \frac{2(n+1)}{n}$ (2marks)

$$L(f, P_n) = \sum_{k=1}^n f(x_{k-1})(x_k - x_{k-1})$$
(ii) $= \sum_{k=1}^n (2 + \frac{2(k-1)}{n} + 1) \times \frac{2}{n} = \frac{6}{n} \sum_{k=1}^n 1 - \frac{4}{n^2} \sum_{k=1}^n 1 + \frac{4}{n^2} \sum_{k=1}^n k$

$$= \frac{6}{n} \times n - \frac{4}{n^2} \times n + \frac{4}{n^2} \frac{n(n+1)}{2} = 6 - \frac{4}{n} + \frac{2(n+1)}{n}$$
(2marks)
$$\inf_p \bigcup (f, P) \le \lim_{n \to \infty} \{\bigcup (f, P_n)\} \le \lim_{n \to \infty} (6 + \frac{2(n+1)}{n}) = 8$$
(2marks)
$$\sup_p \{\bigcup (f, P)\} \ge \lim_{n \to \infty} \{L(f, P_n)\} = \lim_{n \to \infty} (6 - \frac{4}{n} + \frac{2(n+1)}{n}) = 8$$
Thus $\sup_p \{\bigcup (f, P)\} = \inf_p \{\bigcup (f, P)\} = 8$
(1.5marks)

Question Five

(a) Proof: By the product rule (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)(2marks)

For $x \in [a,b]$. Since f, g are continuous on [a, b] and f', g' are integrable on [a, b] it follows that (fg)' is a sum of integrable functions and hence integrable on [a, b]. Thus by the fundamental theorem of Calculus (2marks)

$$\int_{a}^{b} (f(x)g(x))' dx = \int_{a}^{b} f'(x)g(x)dx + \int_{a}^{b} f(x)g'(x)dx$$

$$\left[f(x)g(x)\right]_{a}^{b} = \int_{a}^{b} f'(x)g(x)dx + \int_{a}^{b} f(x)g'(x)dx$$
(2marks)
$$\int_{a}^{b} f'(x)g(x)dx = \left[fg\right]_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx$$
(2marks)
$$F(x) = \int_{x^{2}}^{1} f(t)dt$$
(i)
$$F'(x) = f(1)\frac{d(1)}{dx} - f(x^{2})\frac{dx^{2}}{dx} = -2xf(x^{2})$$
(4.5marks)

(b)

$$F'(x) = f(1)\frac{d(1)}{dx} - f(x^2)\frac{dx^2}{dx} = -2xf(x^2)$$
(4.5marks)

$$F(x) = \int_{x^2}^{x^3} f(t)dt$$
(ii) $F'(x) = f(x^3)\frac{dx^3}{dx} - f(x^2)\frac{dx^2}{dx}$ (3marks)

$$= 3x^2f(x^3) - 2xf(x^2)$$
(2marks)

Question Six

(a)
$$F(x) = \int_{a}^{b} f(t)dt$$
 is continuous on [a, b]. Thus

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

$$= \lim_{c \to a^{-1}} (\lim_{d \to b} (F(d) - F(c))) \qquad (3 \text{marks})$$

$$= \lim_{c \to a^{-1}} (\lim_{d \to b} \int_{c}^{b} f(x)dx) \qquad (3.5 \text{marks})$$

$$\int_{a}^{c} \frac{1+x}{x^{3}}dx = \lim_{b \to a^{-1}} \int_{a}^{b} \frac{1}{x^{2}} + \frac{1}{x^{2}} dx$$
(b) (i)

$$= \lim_{b \to c} \left[-\frac{1}{2x^{2}} - \frac{1}{x} \right]_{a}^{b} = \lim_{b \to a} \left[-\frac{1}{2b^{2}} - \frac{1}{b} \right] - \left[-\frac{1}{2} - 1 \right] = \frac{3}{2} \qquad (3 \text{marks})$$
(ii)

$$\int_{a}^{0} x^{2}e^{x^{3}}dx = \lim_{a \to \infty} \int_{a}^{0} x^{2}e^{-x^{3}}dx \qquad (1 \text{mark})$$
Let $u = x^{3}$, $du = 3x^{2}dx$
If $x = 0 \Rightarrow u = 0$, if $x = a \Rightarrow u = a^{3} \qquad (1 \text{mark})$

$$\int_{a}^{0} x^{2}e^{x^{3}}dx = \lim_{a \to \infty} \int_{a}^{0} x^{2}e^{-x} \times \frac{du}{3x^{2}} = \lim_{a \to \infty} \int_{a}^{0} \frac{e^{-u}du}{3} \qquad (1 \text{mark})$$

$$= \lim_{a \to \infty} \left[-\frac{e^{-u}}{3} \right]_{a^{-1}}^{0} = \lim_{a \to \infty} \left[-\frac{1}{3} + \frac{e^{-a^{2}}}{3} \right] = -\frac{1}{3} \qquad (1 \text{mark})$$
Let $u = \sin x$, $du = \cos xdx$
If $x = 0 \Rightarrow x = 0$, if $x = a = 0$ and (1mark)

$$= \lim_{a \to \infty} \left[-\frac{e^{-u}}{3} \right]_{a^{-1}}^{0} = \lim_{a \to \infty} \left[-\frac{1}{3} + \frac{e^{-a^{2}}}{3} \right] = -\frac{1}{3} \qquad (1 \text{mark})$$
Let $u = \sin x$, $du = \cos xdx$
If $x = \frac{\pi}{2}$, $u = 1$, If $x = a$, $u = \sin a$ (1mark)

$$\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{(\sin x)^{\frac{1}{2}}} dx = \lim_{a \to 0} \int_{a}^{\infty} \frac{\cos x}{(\sin x)^{\frac{1}{2}}} + \frac{\cos x}{\cos x} = \lim_{a \to 0} \int_{\sin a}^{1} \frac{u^{-\frac{1}{2}}}{2} du$$
 (1mark)

$$= \lim_{a \to 0} \left[\frac{3}{2} u^{\frac{1}{2}} \right]_{a = a}^{-1} \lim_{a \to 0} \left[\frac{3}{2} - \frac{3}{2} (\sin a)^{\frac{2}{3}} \right]_{a = a}^{-1} \frac{3}{2} \qquad (1 \text{mark})$$

1a.	Evaluate $\iint_R \cos(x^2 + y^2) dA$ where <i>R</i> is the region that has is above the <i>x</i> a	axis within the
	curve $x^2 + y^2 = 9$.	(4 marks)
b.	Evaluate $\iint_{R} x \sin(x+y) dy dx$, where $0 \le x \le \frac{\pi}{6}$, $0 \le y \le x$	(3 marks)
cii.	Evaluate $\iint_{R} (4x+8y) dA$, where <i>R</i> is the parallelogram with vertices (-1,3),	, (1,-3), (3,-1)
	and (1,5). Use the change of variable $x = \frac{1}{4}(u+v)$, $y = \frac{1}{4}(v-3u)$	(10.5 marks)
2a.	State and prove Leibnitz's rule for differentiating definite integrals with constant limits.	(4 marks)
b.	Find the derivative with respect to y of the integral	
c.	$I(y) = \int_{y}^{y^{2}} \frac{\sin yt}{t} dt$ Find the series solution around <i>x</i> ₀ =0 for the following differential equation.	(5 marks)
	$y^{\prime\prime} - xy = 0$	(8.5 marks)
3a.	Let $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$, derive the coefficients	
	i. a_0 , ii. a_n , and iii. b_n .	(7 marks)

b. Let f(x) be the function of period 2L given by

$$f(x) = \begin{cases} 0 & -2 < x < 0\\ 2 - x & 0 < x < 2 \end{cases}$$

Find the Fourier series

(10.5 marks)

4a.	Evaluate the following		
	(i)	$(D^2 + 2D - 3)\{e^{3x}\}$	(2 marks)
	(ii)	$(D+4)\{e^{4x}x^2\}$	(2 marks)
	(iii)	$\frac{1}{(D^2-3)}\{\cos 2x\}$	(2 marks)

b. If
$$I(\alpha) = \int_0^1 \frac{x^{\alpha} - 1}{\ln x} dx, \alpha > -1$$
 what is the value of $I(0)$? Show that
 $\frac{d}{d\alpha} x^{\alpha} = x^{\alpha} \ln x$, and deduce that $\frac{d}{d\alpha} I(\alpha) = \frac{1}{\alpha + 1}$ (7.5 marks)

c. Find the derivative with respect to x of the integral
$$I(x) = \int_{3-x}^{x^2} (x-t) dt$$
(4 marks)

b. Find the Fourier sine series of the function

$$f(x) = \begin{cases} x & 0 \le x < 1 \\ 1 & 1 \le x < 2 \end{cases}$$
(6.5 marks)

6a. Using the D-Operator method, find the general solution of the following differential equation y'' + 3y' + 2y = sin2x (7 marks)

bi. State the orthogonality conditions of sine and cosine. (4.5 marks)

ii. Evaluate the double integral
$$\int_0^{\frac{\pi}{2}} \int_0^{\cos\theta} e^{\sin\theta} dr \, d\theta$$
 (3 marks)

iii. Evaluate the triple integral
$$\iiint_E yz \cos(x^5) dz dy dx$$
 where
 $E = \{(x, y, z) | 0 \le x \le 1, 0 \le y \le x, x \le z \le 2x\}$ (3 marks)

COVENANT UNIVERSITY CANAANLAND, KM 10, IDIROKO ROAD P.M.B 1023, OTA, OGUN STATE, NIGERIA. TITLE OF EXAMINATION: B.Sc EXAMINATION COLLEGE: COLLEGE OF SCIENCE AND TECHNOLOGY				
SESSION: 2015/2016 COURSE CODE: MAT 225	SEMESTER: OMEGA			
COURSE CODE: MAT 225 COURSE TITLE: ABSTRACT ALGEBRA	CREDIT UNIT: 3			
INSTRUCTION: ANSWER ONLY FOUR QUESTIONS	TIME: 3HOURS			
1 (a) Solve the congruence $84X \equiv 24 \pmod{180}$. Find all integers n for which $13 \mid 4(n^2 + 1)$. Show that if $a \mid b$ and $a \mid c$, then $a \mid bx + cy \forall x, y \in \Box$	(5 marks) (b) (5 marks) (c) (7.5 marks)			
 2. (a) Given sets S and T such that S=(1,3,9,4,2) and T=(3,7,4.8), we Cartesian product of the sets. (b) What do you understand by an ISOMORPHISM OF RINGS ? (c) Show that for any integer a, b; b > 0, there exist unique integers a 0≤r≤b 	ite out all the members of the Give an example (5.5marks) q, r such that a = bq +r; (7 marks)			
3. (a) Give a comprehensive description of a BOOLEAN ALGEBR(b) Prove that there are infinitely many PRIMES(c) What is the g.c.d of two integers a and b ?	A (7 marks) (6 marks) (4.5 marks)			
 4. (a) What do you understand by the following: i) a Function ii) set of Rational numbers iii) set of Integers iv) set of Prime numbers (b) Let <i>R</i> be a relation on the set <i>X</i>. When is <i>R</i> said to be an effect of the relation defined by <i>R</i> = {(<i>x</i>, <i>y</i>) ∈ □ × □ equivalence relation. (d) Answer the following questions with either Yes or No and gi explain your answer: 	(4 marks) quivalence relation? (3 marks) : $x - y$ is a rational number} is an (4.5 marks) ve an example for each to			

i) Is division a binary operation on the set of real numbers?

ii) Is addition a binary operation on the set of odd numbers?	
iii) Is the operation of subtraction a commutative binary operation?	(6 marks)
 5. (a) Let (G,*) and (H,*) be two groups and let f:G→H be a function. When i) a homomorphism ii) an isomorphism (b) Define the following terms and give two examples of each i) semigroup ii) monoid 	en is f said to be (2 marks) (2 marks)
iii) group iv) abelian group (c) Show that the set $S = \{1, -1, i, -i\}$ is a group with respect to multiplication $i = \sqrt{-1}$	(8 marks) n operation where (5.5 marks)
 6. (a) When is a non-empty set, say <i>R</i>, said to form a ring? (b) Generate the addition and multiplication tables for Z₈. (c)i Define the ideal of a ring. ii) Let (□,+,·) be a ring. Consider the subset 5□ of □ defined by 5□ = {···,-Show that 5□ is an ideal. (d) Define the following terms and give an example of each i) zero divisor ii) integral domain iii) division ring. 	(2.5 marks) (2 marks) (2 marks) -10,–5,0,5,10,…} . (3 marks)
iv) field	(8 marks)