Marshall-Olkin-Nadarajah-Haghighi Distribution: Ordinary Differential Equations

Hilary I. Okagbue, Member, IAENG, Pelumi E. Oguntunde, Abiodun A. Opanuga and Sheila A. Bishop

Abstract— Marshall-Olkin Nadarajah-Haghighi (MONH) distribution is an improved probability model proposed as an extension of the exponential distribution. In this work, differentiation was used to obtain the ordinary differential equations (ODE) of the probability functions of Marshall-Olkin Nadarajah-Haghighi distribution. The parameters and support that characterized the distribution inevitably determine the nature, existence, uniqueness and solution of the ODEs. The method is recommended to be applied to other probability distributions and probability functions not considered in this paper. Computer codes and programs can be used for the implementation.

Index Terms— Differential calculus, quantile function, hazard function, reversed hazard function, survival function, inverse survival function, probability density function, exponential.

I. INTRODUCTION

Calculus in general and differential calculus in particular is often used in statistics in parameter and modal estimations. The method of maximum likelihood is an example. Differential equations often arise from the understanding and modeling of real life problems or some observed physical phenomena. Approximations of probability functions are one of the major areas of application of calculus and ordinary differential equations in mathematical statistics. The approximations are helpful in the recovery of the probability functions of complex distributions [1-4].

Apart from mode estimation, parameter estimation and approximation, probability density function (PDF) of distributions can be transformed as ODE whose solution yields the respective PDF. Some of which are available: see [5-9].

The aim of this research is to obtain homogenous ordinary differential equations for the probability density function (PDF), quantile function (QF), survival function (SF), hazard function (HF) and reversed hazard function (RHF) of the Marshall-Olkin Nadarajah-Haghighi (MONH) distribution. Inverse survival function (ISF) was not included because of the complexity of the resulting ODE. This will also help to provide the answers as to whether there are discrepancies between the support of the distribution and the conditions necessary for the existence of the ODEs. Similar results for other distributions have been proposed, see [10-23] for details.

Lemonte et al. [24] proposed the three parameter (MONH) distribution as an extension of the exponential distribution and statistical tests were performed to support the claim.

Differential calculus was used to obtain the results.

II. PROBABILITY DENSITY FUNCTION

The PDF of the MONH distribution is given as;

\[
f(x) = \frac{\alpha \beta \lambda (1 + \lambda x)^{\beta - 1} e^{\left[\frac{(1 - \beta) \lambda}{\beta} - (1 + \lambda x)^{\beta - 1}\right]}}{1 - (1 - \beta) e^{\left[\frac{(1 - \beta) \lambda}{\beta} - (1 + \lambda x)^{\beta - 1}\right]}} \tag{1}
\]

Differentiate equation (1), to obtain the first order ODE;

\[
f'(x) = \left\{ \frac{(\alpha - 1) \lambda (1 + \lambda x)^{\beta - 2}}{(1 + \lambda x)^{\beta - 1}} - \frac{\alpha \lambda (1 + \lambda x)^{\beta - 1} e^{\left[\frac{(1 - \beta) \lambda}{\beta} - (1 + \lambda x)^{\beta - 1}\right]}}{1 - (1 - \beta) e^{\left[\frac{(1 - \beta) \lambda}{\beta} - (1 + \lambda x)^{\beta - 1}\right]}} \right\} f(x) \tag{2}
\]

The equation can only exists for \(\alpha, \beta, \lambda > 0, x \geq 0 \).

\[
f'(x) = \left\{ \frac{(\alpha - 1) \lambda}{1 + \lambda x} - \frac{\alpha \lambda (1 + \lambda x)^{\beta - 1}}{(1 - \beta) f(x)} \right\} f(x) \tag{3}
\]

The first order ODE for the PDF of the MONH distribution is given by;

\[
\beta (1 + \lambda x) f'(x) - (1 - \beta) (1 + \lambda x) f^2(x) - (\beta (\alpha - 1) \lambda - \alpha \lambda \beta (1 + \lambda x)) f(x) = 0 \tag{4}
\]

\[
f(0) = \alpha \lambda \tag{5}
\]

See [10-23] for details.
III. QUANTILE FUNCTION

The QF of the MONH distribution is given as;

\[
Q(p) = \frac{1}{\lambda} \left[-\ln \left(\frac{1 - p}{1 - (1 - \beta)p} \right)^{1/\alpha} - 1 \right]
\]

(6)

Differentiate equation (6), to obtain the first order ODE;

\[
Q'(p) = \frac{1}{\alpha \lambda} \left[\frac{1}{1 - p} - \frac{1}{1 - (1 - \beta)p} \right] \left[-\ln \left(\frac{1 - p}{1 - (1 - \beta)p} \right)^{1/\alpha} - 1 \right]
\]

(7)

The equation can only exists for \(\alpha, \beta, \lambda > 0, 0 < p < 1 \).

Equation (6) can be further simplify as;

\[
\lambda Q(p) + 1 = \left[-\ln \left(\frac{1 - p}{1 - (1 - \beta)p} \right)^{1/\alpha} - 1 \right]
\]

(8)

Substitute equation (8) into equation (7);

\[
Q'(p) = \frac{1}{\alpha \lambda} \left[\frac{1}{1 - p} - \frac{1}{1 - (1 - \beta)p} \right] \left(\lambda Q(p) + 1 \right)^{1/\alpha}
\]

(9)

Equation (8) can be further be broken down as;

\[
(\lambda Q(p) + 1)^{1/\alpha} = 1 - \ln \left(\frac{1 - p}{1 - (1 - \beta)p} \right)
\]

(10)

Substitute equation (10) into equation (9);

\[
Q'(p) = \frac{1}{\alpha \lambda} \left[\frac{1}{1 - p} - \frac{1}{1 - (1 - \beta)p} \right] \left[\frac{\lambda Q(p) + 1}{(\lambda Q(p) + 1)^{1/\alpha}} \right]
\]

(11)

\[
Q'(p) = \frac{\lambda Q(p) + 1}{\alpha \lambda} \left(\frac{\beta(1 - 2p)}{(1 - p)(1 - (1 - \beta)p)} \right)
\]

(12)

The ODE can be obtained for the particular values of \(\alpha, \beta, \lambda \). Table 1 contains some examples.

Table 1: ODE for the PDF for different given parameters

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\lambda)</th>
<th>Ordinary Differential Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>((1 - p)Q(p) + 2p - 1 = 0)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(2(1 - p)Q(p) + 2p - 1 = 0)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>((1 - p)(1 + p)Q(p) + 4p - 2 = 0)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>((1 - p)(1 + p)Q(p) + 2p - 1 = 0)</td>
</tr>
</tbody>
</table>

See [10-23] for details.

IV. SURVIVAL FUNCTION

The SF of the MONH distribution is given as;

\[
S(t) = \frac{\beta e^{(1 + \lambda t)^{\alpha - 1}}}{1 - (1 - \beta) e^{(1 + \lambda t)^{\alpha - 1}}}
\]

(13)

Obtain the derivative of equation (13) in order to obtain the first order ODE;

\[
S'(t) = -\frac{\alpha \beta \lambda (1 + \lambda t)^{\alpha - 1} e^{(1 + \lambda t)^{\alpha - 1}}}{1 - (1 - \beta) e^{(1 + \lambda t)^{\alpha - 1}}}
\]

(14)

The equation can only exists for \(\alpha, \beta, \lambda > 0, t \geq 0 \).

Use equation (13) in equation (14);

\[
S'(t) = -\alpha \beta \lambda (1 + \lambda t)^{\alpha - 1} S(t)
\]

(15)

The ODEs can be obtained for any given values of \(\alpha, \beta, \lambda \). Table 2 contains some examples;

Table 2: ODE for the SF for different given parameters

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\lambda)</th>
<th>Ordinary Differential Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(S'(t) + S(t) = 0)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>(S'(t) + 2S(t) = 0)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>(S'(t) + 2S(t) = 0)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>(S'(t) + 4S(t) = 0)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>(S'(t) + 2(1 + t)S(t) = 0)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>(S'(t) + 4(1 + 2t)S(t) = 0)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(S'(t) + 4(1 + t)S(t) = 0)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>(S'(t) + 8(1 + 2t)S(t) = 0)</td>
</tr>
</tbody>
</table>

See [10-23] for details.

V. HAZARD FUNCTION

The HF of the MONH distribution is given as;

\[
h(t) = \frac{\alpha \lambda (1 + \lambda t)^{\alpha - 1}}{\beta e^{(1 + \lambda t)^{\alpha - 1}}}
\]

(16)

Find the derivative of equation (16) in order to obtain the first order ODE;

\[
h'(t) = \frac{\left[\frac{\lambda (\alpha - 1)(1 + \lambda t)^{\alpha - 2}}{(1 + \lambda t)^{\alpha - 1}} + \frac{\alpha \lambda (1 + \lambda t)^{\alpha - 1} e^{(1 - (1 + \lambda t)^{\alpha - 1})^2}}{(e^{(1 - (1 + \lambda t)^{\alpha - 1})^2})^{-1}} \right] h(t)}{1 + \lambda t}
\]

(17)

\[
h'(t) = \frac{\lambda (\alpha - 1) + \alpha \lambda (1 + \lambda t)^{\alpha - 1}}{1 + \lambda t} h(t)
\]

(18)

The equation can only exists for \(\alpha, \beta, \lambda > 0, t \geq 0 \).

\((1 + \lambda t)h'(t) - (\lambda (\alpha - 1) + \alpha \lambda (1 + \lambda t)^{\alpha - 1})h(t) = 0\)

(19)

The ODEs can be obtained for any given values of \(\alpha, \lambda \). Table 3 contains some cases.
Table 3: ODE for the HF for different given parameters

<table>
<thead>
<tr>
<th>α</th>
<th>λ</th>
<th>Ordinary Differential Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(1 + t)h'(t) - (1 - t)h(t) = 0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(1 + 2t)h'(t) - 2(1 - 2t)h(t) = 0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>(1 + t)h'(t) - (1 + 2(1 - t)²)h(t) = 0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>(1 + 2t)h'(t) - (2 + 4(1 - t)²)h(t) = 0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>(1 + t)h'(t) - (2 + 3(1 - t)³)h(t) = 0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>(1 + 2t)h'(t) - (4 + 6(1 - 2t)²)h(t) = 0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>(1 + 3t)h'(t) - (6 + 9(1 - 3t)³)h(t) = 0</td>
</tr>
</tbody>
</table>

See [10-23] for details.

Table 4: ODE for the RHF for different given parameters

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>λ</th>
<th>Ordinary Differential Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>j'(t) + j²(t) + j(t) = 0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>j'(t) + j²(t) + 2j(t) = 0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2j'(t) + j²(t) + 2j(t) = 0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2j'(t) + j²(t) + 4j(t) = 0</td>
</tr>
</tbody>
</table>

When α = 2, β = 1, λ = 1, equation (24) becomes;

\[(1 + t)j'(t) + (1 + t)j²(t) + (2(1 + t)² - 1)j(t) = 0\]

When α = 2, β = 1, λ = 2, equation (24) becomes;

\[(1 + 2t)j'(t) + (1 + 2t)j²(t) + (4(1 + 2t)² - 2)j(t) = 0\]

When α = 2, β = 2, λ = 1, equation (24) becomes;

\[2(1 + t)j'(t) + (4(1 + t)² - 2)j(t) = 0\]

When α = 2, β = 2, λ = 2, equation (24) becomes;

\[2(1 + 2t)j'(t) + (8(1 + 2t)² - 4)j(t) = 0\]

See [10-23] for details.

VI. REVERSED HAZARD FUNCTION

The RHF of the MONH distribution is given as:

\[j(t) = \frac{\alpha \beta \lambda (1 + \lambda t)^{\alpha - 1} e^{-(1 + \lambda t + \alpha t^2)}}{1 - e^{-(1 + \lambda t + \alpha t^2)}}\] \(\text{(20)}\)

Differentiate equation (20) to obtain the first order ODE;

\[j'(t) = \frac{\lambda (\alpha - 1)(1 + \lambda t)^{\alpha - 2}}{(1 + \lambda t)^{\alpha - 1}} j(t) - \frac{\alpha \lambda (1 + \lambda t)^{\alpha - 1} e^{-(1 + \lambda t + \alpha t^2)}}{1 - e^{-(1 + \lambda t + \alpha t^2)}} j(t)\]

\[j'(t) = \left\{ \begin{array}{l} \frac{\lambda (\alpha - 1)}{1 + \lambda t} j(t) - \alpha \lambda (1 + \lambda t)^{\alpha - 1} e^{-(1 + \lambda t + \alpha t^2)} \left(1 - e^{-(1 + \lambda t + \alpha t^2)}\right) \\ 1 + \lambda t \end{array} \right\}

\(\text{(21)}\)

The equation can only exist for \(\alpha, \beta, \lambda > 0, t \geq 0\).

\[j'(t) = \left\{ \begin{array}{l} \frac{\lambda (\alpha - 1)}{1 + \lambda t} j(t) - \alpha \lambda (1 + \lambda t)^{\alpha - 1} e^{-(1 + \lambda t + \alpha t^2)} \left(1 - e^{-(1 + \lambda t + \alpha t^2)}\right) \frac{j(t)}{\beta} \\ 1 + \lambda t \end{array} \right\}

\(\text{(22)}\)

\[j'(t) + (1 + \lambda t)j²(t) + (\alpha \beta \lambda (1 + \lambda t)^{\alpha - 1} e^{-(1 + \lambda t + \alpha t^2)} \left(1 - e^{-(1 + \lambda t + \alpha t^2)}\right) j(t) = 0\]

\(\text{(23)}\)

\[\beta(1 + \lambda t)j'(t) + (1 + \lambda t)j²(t) + (\alpha \beta \lambda (1 + \lambda t)^{\alpha - 1} e^{-(1 + \lambda t + \alpha t^2)} \left(1 - e^{-(1 + \lambda t + \alpha t^2)}\right) j(t) = 0\]

\(\text{(24)}\)

The ODE can be obtained for any given values of \(\alpha, \beta, \lambda\). Table 4 contains some cases.

VII. CONCLUDING REMARKS

Ordinary differential equations (ODEs) have been obtained for the probability functions of Marshall-Okin Nadarajah-Haghighi (MONH) distribution. Inverse survival function (ISF) was excluded from the study because of the complexity of the resulting ODE. This differential calculus and efficient algebraic simplifications were used to derive the various classes of the ODEs. Different forms of ODEs can be obtained for the any given values of the parameters that defined the distribution. The parameter and the supports that characterize the distribution determine the nature, existence, orientation and uniqueness of the ODEs. The results are in agreement with those available in scientific literature. Furthermore several methods can be used to obtain desirable solutions to the ODEs [25-29]. This method of characterizing distributions cannot be applied to distributions whose PDF or CDF are either not differentiable or the domain of the support of the distribution contains singular points.

ACKNOWLEDGMENT

The comments of the reviewers were very helpful and led to an improvement of the paper. This research benefited from sponsorship from the Statistics sub-cluster of the Industrial Mathematics Research Group (TIMREG) of Covenant University and Centre for Research, Innovation and Discovery (CUCRID), Covenant University, Ota, Nigeria.
REFERENCES

generation by numerical inversion when only the density is known,”
ACM Transac.Model. Comp. Simul., vol. 20, no. 4, Article 18,
2010.

[3] H.I. Okagbue, M.O. Adamu and T.A. Anake “Quantile
Approximation of the Chi-square Distribution using the Quantile
Mechanics,” In Lecture Notes in Engineering and Computer Science:
Proceedings of The World Congress on Engineering and Computer
483.

Quantile Differential Equation,” In Lecture Notes in Engineering and
Computer Science: Proceedings of The World Congress on

[7] N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate

[8] N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous univariate

[9] H. Rinne, Location scale distributions, linear estimation and
probability plotting using MATLAB, 2010.

“Classes of Ordinary Differential Equations Obtained for the
Probability Functions of Fréchet Distribution,” In Lecture Notes in
Engineering and Computer Science: Proceedings of The World
Congress on Engineering and Computer Science 2017, 25-27

of Ordinary Differential Equations Obtained for the Probability
Functions of Exponentiated Generalized Exponential Distribution,”
In Lecture Notes in Engineering and Computer Science: Proceedings
of The World Congress on Engineering and Computer Science 2017,

of Ordinary Differential Equations Obtained for the Probability
Functions of Cauchy, Standard Cauchy and Log-Cauchy
Distributions,” In Lecture Notes in Engineering and Computer
Science: Proceedings of The World Congress on Engineering and
pp 198-204.

of Ordinary Differential Equations Obtained for the Probability
Functions of Burr XII and Pareto Distributions,” In Lecture Notes in
Engineering and Computer Science: Proceedings of The World
Congress on Engineering and Computer Science 2017, 25-27

“Classes of Ordinary Differential Equations Obtained for the
Probability Functions of Gamma and Generalized
Gamma Distributions,” In Lecture Notes in Engineering and Computer
Science: Proceedings of The World Congress on Engineering and
pp 405-411.

“Classes of Ordinary Differential Equations Obtained for the
Probability Functions of 3-Parameter Weibull Distribution,”
In Lecture Notes in Engineering and Computer Science: Proceedings
of The World Congress on Engineering and Computer Science 2017,

“Classes of Ordinary Differential Equations Obtained for the
Probability Functions of Exponentiated Frechet Distribution,”
In Lecture Notes in Engineering and Computer Science: Proceedings
of The World Congress on Engineering and Computer Science 2017,

of Ordinary Differential Equations Obtained for the Probability
Functions of Half-Cauchy and Power Cauchy Distributions,”
In Lecture Notes in Engineering and Computer Science: Proceedings
of The World Congress on Engineering and Computer Science 2017,

“Classes of Ordinary Differential Equations Obtained for the
Probability Functions of Exponential and Truncated Exponential
Distributions,” In Lecture Notes in Engineering and Computer
Science: Proceedings of The World Congress on Engineering and
pp 858-864.

[19] H.I. Okagbue, O.O. Agboola, P.O. Ugwoke and A.A. Opanuga
“Classes of Ordinary Differential Equations Obtained for the
Probability Functions of Exponentiated Pareto Distribution,” In
Lecture Notes in Engineering and Computer Science: Proceedings of
The World Congress on Engineering and Computer Science 2017,

“Classes of Ordinary Differential Equations Obtained for the
Probability Functions of Gumbel Distribution,” In Lecture Notes in
Engineering and Computer Science: Proceedings of The World
Congress on Engineering and Computer Science 2017, 25-27

“Classes of Ordinary Differential Equations Obtained for the
Probability Functions of Half-Normal Distribution,” In Lecture Notes
in Engineering and Computer Science: Proceedings of The World
Congress on Engineering and Computer Science 2017, 25-27

[22] H.I. Okagbue, M.O. Adamu, E.A. Owoloko and E.A. Suleiman
“Classes of Ordinary Differential Equations Obtained for the
Probability Functions of Harris Extended Exponential
Distribution,” In Lecture Notes in Engineering and Computer Science:
Proceedings of The World Congress on Engineering and Computer
888.

[23] H.I. Okagbue, M.O. Adamu, T.A. Anake Ordinary Differential
Equations of the Probability Functions of Weibull Distribution and
their application in Ecology, Int. J. Engine. Future Tech., vol. 15, no. 4,
p. 57-78, 2018.

three-parameter extension of the exponential distribution”,

Modified Adomian Decomposition Method for Thirteenth Order
Boundary Value Problems, Gazi Uni. J. Sci., vol. 30, no. 4, pp. 454-
461, 2017.

Value Problem,” Lecture Notes in Engineering and Computer
Science: Proceedings of The World Congress on Engineering and

[27] A.A. Opanuga, H.I. Okagbue, O.O. Agboola, “Irreversibility Analysis
of a Radiative MHD Poiseuille Flow through Porous Medium with
Slip Condition,” Lecture Notes in Engineering and Computer
Science: Proceedings of The World Congress on Engineering and
p 167-171.

Homotopy Perturbation and Adomian Decomposition Techniques for
Parabolic Equations,” Lecture Notes in Engineering and Computer
Science: Proceedings of The World Congress on Engineering and

Difference Method and Laplace Transform for Boundary Value
Problems,” Lecture Notes in Engineering and Computer Science:
Proceedings of The World Congress on Engineering 2017, 5-7 July,

“Application of Homotopy Perturbation and Modified Adomian
Decomposition Methods for Higher Order Boundary Value Problems,”
Lecture Notes in Engineering and Computer Science: Proceedings of
The World Congress on Engineering and Computer Science 2017,

Osheku and B. Ajayi, “On numerical solutions of systems of ordinary