INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national “fair use” laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2011 subscription price: US$1,995 (Print, ISSN# 1934-578X); US$1,995 (Web edition, ISSN# 1555-9475); US$2,495 (Print + single site online); US$595 (Personal online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.
A New Chromene Isolated from *Ageratum conyzoides*

Abiodun Humphrey Adebayoa,b,d,*, Chang-Jiu Jia,d, Yu-Mei Zhang¹, Wen-Jun Hea, Guang-Zhi Zenga, Hong-Jin Han¹, Jun-Ju Xu², Afolabi Akintunde Akindahunsi³ and Ning-Hua Tan⁴,⁵

Keywords: *Ageratum conyzoides*, Compositae, 2,2-dimethylchromene 7-methoxy-6-O-β-D-glucopyranoside, cytotoxicity.

Received: January 16th, 2011; Accepted: June 3rd, 2011

From the ethanol extract of the whole plant of *Ageratum conyzoides* L. (Compositae), one new chromene, 2,2-dimethylchromene 7-methoxy-6-O-β-D-glucopyranoside, was isolated, together with thirteen known compounds, seven of which were being reported for the first time. The compounds were all characterized by MS, IR, 1D- and 2D-NMR spectroscopy. 7,3',5'-Tri-O-methyltricetin (7), precocene II (9), 3,5,7,4'-tetrahydroxyflavone (13) and 5,6,7,3',4',5'-hexamethoxyflavone (14) exhibited inhibitory activity on the P-388 cancer cell line with IC₅₀ values of 12.8, 24.8, 3.5 and 7.8 µM respectively, while compound 9 exhibited inhibitory activity on the HT-29 cancer cell line with an IC₅₀ value of 61µM; the others showed no significant cytotoxic activity on the cell lines tested.

![Figure 1](image.png)
Figure 1: Structure of compound 1.

The Compositae family has been employed for diverse beneficial purposes due to its wide distribution across the world. *Ageratum conyzoides* L. belongs to this family and is native to Central America, the Caribbean, Florida (USA), Southeast Asia, South China, India, West Africa (including Nigeria), Australia and South America [1,2]. It has been used in folklore for the treatment of fever, pneumonia, cold, rheumatism, spasm, headache, and curing wounds [3,4]. Its gastroprotective [4], antibacterial [5], anti-inflammatory, analgesic, antipyretic [1], anticonvulsant [6], antischistosomal [7], and anticoccidal [8] activities have been reported, and the bioactive compounds isolated include flavonoids, tannins, saponins, triterpenoids, sesquiterpenes, chromenes, and benzofurans [1]. Precocene I and II are the principal components of this plant. As part of our search for new bioactive constituents, we investigated the whole plant of *A. conyzoides*, which led to the isolation of one new compound (1) and thirteen known ones, seven of which were identified from this plant for the first time. Herein, we report the structure elucidation as well as the cytotoxicity of these compounds on cancer cell lines.

Compound 1 was obtained as colorless oil and its molecular formula was assigned as C₁₈H₂₅O₈ by HREI-MS showing an [M]⁺ at m/z 369.1542 [M+H]⁺ (calcd for 369.1549 [M+H]⁺). This was confirmed by ¹³C and DEPT NMR spectra. Its IR spectrum showed a broad band at 3424 cm⁻¹, which indicated the presence of a hydroxyl group, and the absorption at 1618 cm⁻¹ suggested an aromatic ring. One glucopyranosyl moiety was evident from the series of signals at δ 104.0, 75.0, 71.4, 77.8 and 62.5 in the ¹³C NMR spectrum. The assignment of the β-D configuration of the sugar moiety was supported by the signals at δ 4.73 (1H, d, J = 7.8 Hz, H-1'), 3.42-3.44 (2H, m, H-3', 4'), 3.86 (1H, d, J = 12.0 Hz, H-6'a), and 3.68 (1H, dd, J = 12.0, 5.0 Hz, H-6'b), in the ¹H NMR spectrum. The data of the aglycone of 1 in the ¹³C NMR spectra were consistent with those of chromene [9], and δ₂₁ 6.88 (1H, s, H-5), 6.43 (1H, s, H-8), and 4.73 (1H, d, J = 7.8 Hz, H-1') were consistent with those of the tetraacetate of 6-monodemethylated precocene II -6-O-β-D-glucoside in the ¹H NMR spectrum [10]. The HMBC correlation of δ₂₁ 4.73 (1H, d, J = 7.8 Hz, H-1') and δ₁₄ 141.8 (C-6) confirmed that the attachment of the glucosyl group was at C-6. Similarly, δ₂₁ 3.80 (3H, OCH₃) was found to correlate with δ₁₄ 151.8 (s, C-7) from HMBC, which suggests that the methoxy must be attached to C-7. Thus, the structure of 1 was established as 2,2-dimethylchromene 7-methoxy-6-O-β-D-glucopyranoside.
Thirteen known compounds, seven (2, 3, 4, 5, 6, 7 and 8) of which are being reported for the first time for this species, were also isolated and characterized from *A. conyzoides*. These were eugenyl-O-β-D-glucopyranoside (2) [11,12], eugenyl-O-β-D-apiofuranosyl-(1''→6')-β-D-glucopyranoside (3) [12], 3-(2''-O-β-D-glucopyranosyl)-phenyl-2-trans-propenoic acid (4) [13], (2S)-2,3-O-di-(9,12,15-octadecatrienoyl)-glyceryl-6-O-(α-D-galactopyranosyl)-(1''→6')-β-D-galactopyranoside (5) [14,15], (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid (6) [14,15], 7,3',5'-tri-O-methyltricetin (7) [16], and cirsineline (8) [17]. The other known compounds isolated were precocene II (9) [18-20], precocene I (10) [20], 6-(1-methoxyethyl)-7-methoxy-2,2-dimethylchromene (11) [20], 2,2-dimethylchromene-7-O-β-D-glucopyranoside (12) [9], 3,5,7,4'-tetrahydroxyflavone (13) [21,22], and 5,6,7,3',4',5'-hexamethoxyflavone (14) [18]. Compounds 7, 9, 13 and 14 exhibited cytotoxic activity against mouse leukemia (P-388) and human colon adenocarcinoma (HT-29) cancer cell lines, but there was no inhibitory activity on human non-small cell lung carcinoma (A549) (Table 1). Compound 1 showed no activity at the tested concentration of 10 μg/mL on these three cancer cell lines.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>P-388 cells (µM)</th>
<th>HT-29 cells (µM)</th>
<th>A-549 cells (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>12.9 ± 1.24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>24.8 ± 3.57</td>
<td>61.3 ± 2.90</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>3.5 ± 0.06</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>7.8 ± 0.33</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Taxol</td>
<td>0.00008±0.000001</td>
<td>0.005 ± 0.0002</td>
<td>0.02± 0.0004</td>
</tr>
</tbody>
</table>

- no activity at the tested concentration of 10 μg/mL.

Values represent mean ± SD and were calculated from at least three sets of independent experimental data.

Experimental

General: Optical rotations were measured with a Horiba SEAP-300 polarimeter. IR spectra were obtained on a Bio-Rad FTS 135 spectrophotometer with KBr pellets. UV spectra were taken on a Shimadzu 2401PC spectrophotometer. FAB-MS and HR-TOF-MS were recorded on a VG Auto Spec-3000 spectrometer. 1D- and 2D-NMR spectra were respectively recorded on Bruker AM-400 and DRX-500 spectrometers with TMS as internal standard. Column chromatography (CC) was carried out over silica gel (200-300 mesh, Qindao Marine Chemical Inc., China), Sephadex LH-20 (Pharmacia Fine Chemical Co., Ltd., Sweden), and MCI (Mitsubishi Chemicals, Japan). HPLC was carried out on an Agilent 1100 (USA) instrument.

Plant material: The whole plant of *A. conyzoides* was obtained in April, 2008 from Xishuangbanna, South Western China and authenticated by Dr You-Kai Xu of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, China. A voucher specimen (KUN 0486260) was deposited in the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, CAS, China.

Extraction and isolation: The dried whole plant (7 kg) of *A. conyzoides* was extracted 3 times with 95% ethanol (each for one week) at room temperature. After concentration of the combined extracts under reduced pressure, the residue was dissolved in hot water and extracted successively with light petroleum, ethyl acetate and n-butanol. The light petroleum extract (201 g) was fractionated by CC (268 g silica gel: light petroleum/acetone mixtures of increasing polarity) to afford fractions (Frs.) 1-5. Frs. 2, 3 and 4 were respectively subjected to CC (Sephadex LH-20: CHCl₃/MeOH 2:1; silica gel: light petroleum/CHCl₃ mixtures of increasing polarity) to afford fractions (Frs.) 6 (5.0mg) and 13 (21mg). Fr 4 was repeatedly purified by HPLC (H₂O/MeOH 2.5:7.5) to afford 1 (3.0 mg). Fr.5 was fractionated by CC (MCI: H₂O/MeOH in increasing polarity; Silica gel: CHCl₃/MeOH 4:1 and 3:1) to give 2 (2.1mg) and 5 (36.6mg).

2,2-Dimethylchromene-7-methoxy-6-O-β-D-glucopyranoside (1)

[α]D⁰ -53.57 (c 0.028, MeOH)

IR (KBr) νmax: 3424, 2925, 1618, 1505, 1071 cm⁻¹.

UV/Vis λmax (MeOH) nm (log ε): 195.40 (4.15), 220.40 (4.35), 275.40 (3.65), 316.80 (3.77).

1H NMR: (500 MHz, CDCl₃) δ: 5.53 (1H, d, J = 9.8 Hz, H-3), 6.26 (1H, d, J = 9.8 Hz, H-4), 6.88 (1H, s, H-5), 6.43 (1H, s, H-8), 1.36 (3H, s, CH₃), 1.37 (3H, s, CH₃), 4.73 (1H, d, J = 7.8 Hz, H-1'), 3.42-3.44 (2H, m, H-2', 5'), 3.34-3.46 (2H, m, H-3'), 3.86 (1H, d, J =12.0 Hz, H-6'a), 3.68 (1H, dd, J=12.0, 5.0 Hz, H-6'b), 3.80 (3H, s, -OCH₃).

13C NMR: (100 MHz, CD₂OD) δ: 77.2 (s, C-2), 129.6 (C-3), 123.0 (d, C-4), 115.2 (s, C-4a), 117.3 (d, C-5), 141.8 (s, C-6), 151.8 (s, C-7), 102.4 (d, C-8), 150.4 (s, C-8a), 28.0 (q, C-9), 27.9 (q, C-10), 104.0 (d, C-1'), 75.0 (d, C-2'), 78.1 (d, C-3'), 71.4 (d, C-4'), 77.8 (d, C-5'), 62.5 (t, C-6), 56.7 (q, -OCH₃ at C-7).

EIMS m/z (%): 368 [M⁺] (1), 206 [M-162]⁺ (42), 191 (100).

HREIMS: m/z 369.1542 [M+H]⁺ (calcd. 369.1549 [M+H]⁺ for C₁₅H₂₅O₈)

Cancer cell growth inhibition assay: The procedure described by [23] was followed. In brief: the sulforhodamine B (SRB) assay was adopted for a measurement of cell growth and viability [24]. Mouse leukemia (P-388), human colon adenocarcinoma (HT-29) and human non-small cell lung carcinoma (A549) cells were seeded in 96-well microtiter plates at 3000-7000 cells per well. After 24 h, compounds were added to a final
concentration of 10 µg/mL and incubated for 48 h. Cells were then fixed by the addition of 50% ice-cold CCl₄:COOH and then left at 4°C for 1 h. After washing, air-drying and staining for 15 min with 100 µL 0.4% SRB in 1% glacial AcOH, excessive dye was removed by washing with 1% glacial AcOH. The absorbance values of resuspended SRB in 10 mM Tris buffer were read at 560 nm on a microplate spectrophotometer (SPECTRA MAX 340, USA). If the cell growth inhibition was >50% at the highest tested concentration of 10 µg/mL, further assessment was carried out with at least 4 diluted concentrations (dilution ratio 1:2) to calculate the IC₅₀ values (50% inhibitory concentration). Each sample concentration was tested in triplicate on the plate. Results were expressed as mean IC₅₀ values ± standard deviation. Taxol was used as the positive compound.

Acknowledgments - We appreciate the Chinese Academy of Sciences (CAS) and the Academy of Sciences for the Developing World (TWAS) for their financial and material support through the CAS-TWAS Post-Graduate Research Fellowship granted to Abiodun Humphrey Adebayo. The research was also supported by the National Natural Science Foundation of China (30725048) grant given to Dr Ning-Hua Tan. The authors are also grateful to the analytic group of the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, for all the spectral measurements.

References

Determination of Caffeoyl Quinic Acids and Flavonoids in *Acanthopanax trifoliatus* Leaves by HPLC
Pongtip Sithisarn, Sarinthip Muensaen and Siripen Jarikasem

Amides and Esters of Phenylpropanoic Acids from the Aerial Parts of *Trifolium pallidum*
Barbara Szajwaj, Jaroslav Moldoch, Milea Masullo, Sonia Piacenti, Wieslaw Oleksz and Anna Stochmal

Amides from the Stems of *Cinnamomum burmanii*
Zi-Ling Hong, Jin-Cherng Huang, Soong-Yu Kuo and Chung-Yi Chen

Phenolic Composition, Antioxidant Capacity and Antibacterial Activity of Selected Irish Brassica Vegetables
Amit Kumar Jaiswal, Gaurav Rajaauria, Nisreen Abu-Ghannam and Shilpi Gupta

Dietary Burden of Phenolics Per Serving of “Mountain Tea” (*Sideritis*) from Macedonia and Correlation to Antioxidant Activity
Jasmina Petreska, Marina Stefova, Federico Ferreres, Diego. A. Moreno, Francisco. A. Tomás-Barberán, Gjose Stefkov, Svetlana Kulevanova and Angel Gil-Izquierdo

Aqueous Extract from *Vitis vinifera* Tendrils is Able to Enrich Keratinocyte Antioxidant Defences
Daniele Fraternale, Roberta De Bellis, Cinzia Calcabrini, Lucia Potenza, Luigi Cucchiari, Umberto Mancini, Marina Dachà and Donata Ricci

A New Acylated Neohesperidoside from *Geranium purpureum*
Didem Şöhretoğlu, Tibor Liptaj, M. Koray Sakar and Olov Sterner

Synthesis and Field Test of Three Candidates for Soybean Pod Borer’s Sex Pheromone
Tao Zhang, Juntao Feng, Chonglin Cai and Xing Zhang

Chemical Investigation of Carrageenan from the Red alga *Sarcocema filiforme* (Gigartinales, Rhodophyta) of Indian Waters
Sanjay Kumar, Gaurav K Mehta, Kamalesh Prasad, Ramavtar Meena and Arup K Siddhanta

Monitoring the Emission of Volatile Organic Compounds from Flowers of *Jasminum sambuc* Using Solid-Phase Micro-extraction Fibers and Gas Chromatography with Mass Spectrometry Detection
VPPalayam Shammugam Pragadheesh, Anju Yadav, Chandan Singh Chanotiya, Prasanta Kumar Rout and Girish Chandra Uniyal

Antioxidant and Potato Sprout Inhibition Activity of its Essential Oils
Chen-Lung Ho, Pei-Chun Liao, Eugene I-Chen Wang and Yu-Chang Su

Variability of Essential Oils of *Betonica officinalis* (Lamiaceae) from Different Wild Populations in Kosovo
Avni Hajdari, Behxhet Mustafa, Chlodwig Franz and Johannes Novak

Analysis of Essential Oils from *Scutellaria orientalis* ssp. *alpina* and *S. utriculata* by GC and GC-MS
Carmen Formisano, Daniela Rigano, Felice Senatore, Franco Piozzi and Nelly Apostolides Arnold

Antibacterial Activity and GC/MS Analysis of the Essential Oils from *Origanum vulgare* ssp. *vireide* Growing Wild in North-west Iran
Ali Shafaghāt

Evaluation of *Clausena anisata* Essential Oil from Cameroon for Controlling Food Spoilage Fungi and its Potential Use as an Antiradical Agent
Aoudou Yaouba, Léopold Ngoune Tatsadjieu, Pierre Michel Jazet Dongmo, François Xavier Etoa, Carl Moses Fontum Mbofung, Paul Henri Amvam Zollo and Chantal Menut

Chemical Diversity in *Mentha spicata* (Lamiaceae) from Different Wild Populations in Kosovo
Avni Hajdari, Behxhet Mustafa, Chlodwig Franz and Johannes Novak

Role of Direct Bioautographic Method for Detection of Antistaphylococcal Activity of Essential Oils
Györgyi Horváth, Noémi Jámbor, Éva Lemberkovics, Éva Héthelyi, Krisztina Kovács and Béla Kocsis

Antiphytoviral Activity of Essential Oil from Endemic Species *Teucrium arduini*
Valerija Dunki, Nada Bezić and Elma Vuko

Toxic Effects of *Citrus aurantium* and *C. limon* Essential Oils on *Spodoptera frugiperda* (Lepidoptera: Noctuidae)
Emilio Villafañe, Diego Tolosa, Alicia Bardón and Adriana Neske

Neutralizing Effects of *Nectandra angustifolia* Extracts against *Bothrops neuwiedi* Snake Venom

Enos Tangke Arung, Kuniyoshi Shimizu and Ryuichiro Kondo

Mining Invertebrate Natural Products for Future Therapeutic Treasure
Youmic Park
Contents

Original Paper

Analysis of Car-3-en-5-hydroperoxide
Nicolette Lehner, Ulrich Krings and Ralf G. Berger

Antibacterial Potential of Citral Derivatives
Soni A. Singh, Yogesh A. Potdar, Rasika S. Pawar and Sujata V. Bhat

A New Bisabolene from Stevia tomentosa

Free Radical Scavenging Activity-Guided Isolation of a Diterpenoid from Plectranthus puncticatus
Wossen Kebede, Daniel Bistrat and Kaleab Asres

Components from the Steamed Leaves of Acanthopanax koreanum and their Effects on PPAR Activity in HepG2 Cells
Jeong Ah Kim, Seok Bean Song, Seo Young Yang and Young Ho Kim

Isolation and X-ray Structure of Deoxycholic Acid from the Sponge Ircinia sp.
Keisham Sarjit Singh and Werner Kaminsky

Chemical Constituents of the Gorgonian Dichotella fragilis (Ridg) from the South China Sea
Yuan-Ming Zhou, Chang-Lun Shao, Chang-Yun Wang, Hui Huang, Ying Xu and Pei-Yuan Qian

A New Pyrrolidine Derivative and Steroids from an Algicoleus Gibberella zeae Strain
Xiang-Hong Liu, Xiao-Zhen Tang, Feng-Ping Miao and Nai-Yun Ji

Szentiamide, an N-formylated Cyclic Depsipeptide from Xenorhabdus szentirmaii DSM 16338T
Birgit Ohlendorf, Sven Simon, Jutta Wiese and Johannes F. Imhoff

Bioactive Constituents from Michelia champaca
Yu-Ting Yeh, Jin-Cherng Huang, Po-Lin Kuo and Chung-Yi Chen

Inhibition of Gastric H+, K+-ATPase Activity by Compounds from Medicinal Plants
Cristina Setim Freitas, Cristiane Hatsuko Baggio, Bárbara Mayer, Ana Cristina dos Santos, André Twardowschy, Cid Aimbrê de Moraes Santos and Maria Consuelo Andrade Marques

GC/MS Analysis of Three Amaryllidaceae Species and their Cholinesterase Activity
Lucie Cahlíková, Nina Benešová, Kateřina Macáková, Klára Urbanová and Lubomír Opletal

Astroticoumarin, an antiproliferative 4'-hydroxy-2',3'-dihydroprenylated methylcoumarin from an Astrotichilia sp. from the Madagascar dry forest
Liva Harinantenaina, Peggy J. Brodie, Martin W. Callmender, Richard Randrianaivo, Stephan Rakotonandrasana, Vincent E. Rasamison, Etienne Rakotobe and David G. I. Kingston

A New Chromene Isolated from Ageratum conyzoides
Abiodun Humphrey Adebayo, Chang-Jiu Ji, Yu-Mei Zhang, Wen-Jun He, Guang-Zhi Zeng, Hong-Jin Han, Jun-Ju Xu, Afolabi Akintunde Akindahunsi and Ning-Hua Tan

Antifibrotic Constituents from Garcinia mangostana
Young-Won Chin, Eunjin Shin, Bang Yeon Hwang and Mi Kyeong Lee

Antioxidant and Antimutagenic Polysoprenylated Benzophenones and Xanthones from Rheedia acuminata
Giovanna R. Almanza, Raúl Quispe, Patricia Mollinedo, Gloria Rodrigo, Odette Fukushima, Rodrigo Villagomez, Bjorn Akesson and Olov Sterner

Anthraquinone Profile, Antioxidant and Antimicrobial Properties of Bark Extracts of Rhamnus catharticus and R. orbiculatus
Marcello Locatelli, Francesco Epifano, Salvatore Genovese, Giuseppe Carlucci, Marianna Zovko Končić, Ivan Kosalec and Dario Kremer

Quantitative Analysis of Euglobals in Eucalyptus loxophleba Leaves by qNMR
Jasmeen Sidana, William J. Foley and Inder Pal Singh

Evaluation of Antioxidant Activity of Isoferulic Acid in vitro
Xiaozhen Wang, Xican Li and Dongfeng Chen

Continued Overleaf